
Commit Message Generation for Source Code Changes

Shengbin Xu1 , Yuan Yao1 , Feng Xu1 , Tianxiao Gu2 , Hanghang Tong3 and Jian Lu1

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Alibaba Group, USA

3Arizona State University, USA
kingxu@smail.nju.edu.cn, {y.yao, xf, lj}@nju.edu.cn, tianxiao.gu@gmail.com, hanghang.tong@asu.edu

Abstract
Commit messages, which summarize the source
code changes in natural language, are essential for
program comprehension and software evolution un-
derstanding. Unfortunately, due to the lack of di-
rect motivation, commit messages are sometimes
neglected by developers, making it necessary to
automatically generate such messages. State-of-
the-art adopts learning based approaches such as
neural machine translation models for the commit
message generation problem. However, they tend
to ignore the code structure information and suf-
fer from the out-of-vocabulary issue. In this paper,
we propose CODISUM to address the above two
limitations. In particular, we first extract both code
structure and code semantics from the source code
changes, and then jointly model these two sources
of information so as to better learn the represen-
tations of the code changes. Moreover, we aug-
ment the model with copying mechanism to fur-
ther mitigate the out-of-vocabulary issue. Exper-
imental evaluations on real data demonstrate that
the proposed approach significantly outperforms
the state-of-the-art in terms of accurately generat-
ing the commit messages.

1 Introduction
In the practice of software development, a version control
system is usually adopted which requires the developers to
write a commit message to summarize each submitted code
change. The commit message is in the form of natural lan-
guage and thus can help software developers understand the
high-level intuition behind the code change without the need
to read the low-level implementation details. Consequently,
commit messages become an indispensable part of software
development, and play an essential role in software compre-
hension and maintenance.

Unfortunately, it is non-trivial for developers to write a
meaningful summary to precisely capture the changes made
to the source code written in certain programming languages.
Furthermore, writing messages for each commit even be-
comes a burden to developers since the code base may evolve
and grow incrementally with a number of fine, small commits

rather than a huge change. Due to the lack of direct moti-
vation, commit messages are sometimes overly neglected by
developers. For example, it is reported that around 14% of
the commit messages in more than 23,000 open source Java
projects hosted in SourceForge1 are completely empty [Dyer
et al., 2013]. Therefore, automatically summarizing code
changes becomes an important task. We refer to this task as
commit message generation in this paper.

To date, several commit message generation approaches
have been proposed in the literature. These approaches are
developed in three stages (see Section 4 for more discus-
sions). First, early work translates code changes into nat-
ural language descriptions based on pre-defined rules and
templates [Buse and Weimer, 2010; Cortés-Coy et al., 2014;
Shen et al., 2016]. Nevertheless, these descriptions some-
times fail to explain the reasons or purposes of code changes
and thus become tedious and useless in practice. Later, some
researchers utilize information retrieval techniques to gener-
ate commit messages. Their basic idea is to re-use the com-
mit messages of similar code changes [Huang et al., 2017;
Liu et al., 2018]. The main limitation of these approaches
is that they cannot output accurate summaries if there are no
similar code changes. In recent years, there is a tendency
to adopt learning based techniques for the commit message
generation problem [Jiang et al., 2017; Loyola et al., 2017;
Loyola et al., 2018]. Typically, these approaches translate
the source code changes into commit messages using neural
machine translation (NMT) models.

Although learning based approaches have obtained promis-
ing results in comparison with earlier work, they still suf-
fer from the following two limitations. First, NMT usually
can only maintain a limited vocabulary of the most frequent
words, making it difficult to generate the out-of-vocabulary
(OOV) words such as the self-defined class names or vari-
able names. Second, when learning the representations of the
code changes, existing approaches tend to follow the “nat-
uralness” hypothesis of software [Hindle et al., 2012], and
directly feed the code changes into the model. However, such
treatment only encodes the code semantics while ignores the
code structure.

For better understanding the above two limitations, we
present an illustrative example in Figure 1, which shows a

1https://sourceforge.net/

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3975

diff:

--- a/subprojects/tooling-api/.../model/internal/ImmutableDomainObjectSet.java
+++ b/subprojects/tooling-api/.../model/internal/ImmutableDomainObjectSet.java
@@ -17,9 +17,10 @@ package org.gradle.tooling.model.internal;

import org.gradle.tooling.model.DomainObjectSet;

+import java.io.Serializable;
import java.util.*;

-public class ImmutableDomainObjectSet<T> extends AbstractSet<T> implements
- DomainObjectSet<T> {
+public class ImmutableDomainObjectSet<T> extends AbstractSet<T> implements
+ DomainObjectSet<T>, Serializable {

private final Set<T> elements = new LinkedHashSet<T>();

public ImmutableDomainObjectSet(Iterable<? extends T> elements) {

commit message:

made ImmutableDomainObjectSet serializable

Figure 1: An example of a code change and its commit message.

diff public class ImmutableDomainObjectSet<T>

Substitution ImmutableDomainObjectSet↔ c0, T↔ n0

Structure public class c0<n0>

Semantics c0:“immutable domain object set”, n0:“t”

Table 1: The extracted code structure and code semantics for the
example in Figure 1.

piece of code change (or diff) as well as its commit mes-
sage. Typically, a code change contains various program to-
kens such as keywords, operators, and identifiers (i.e., names
for classes, methods, and variables). In the example, the gen-
erated commit message contains the class name “Immutable-
DomainObjectSet”. However, this word is usually treated as
an OOV word as it may appear only a few times or even once
in all the diffs, making it difficult for existing NMT models
to generate the word. Moreover, the meaning of a change is
the same for any other class that makes the same change (e.g.,
adding “Serializable” into the class declaration), although
such a class may have a different class name. Therefore, in
addition to the semantics contained in the self-defined identi-
fiers, the code skeleton/structure2 should be jointly modeled
to better learn the representations of the code changes.

In this paper, we propose a novel approach CODISUM
for the commit message generation problem, addressing the
above two limitations. In particular, we first extract both the
code structure and the code semantics from the code changes.
For the code structure, we identify all the class/method-
/variable names and replace them with the corresponding
placeholders. For the code semantics, we segment each
class/method/variable name into several single words. Here,
the word segmentation is based on the well-known naming
conventions widely adopted by developers. For example, part
of the extracted code structure and code semantics for Fig-
ure 1 are shown in Table 1, where we use the class name
“ImmutableDomainObjectSet” as an example to illustrate our
idea. First, we identify the class name and replace it with a
placeholder “c0”. Then, we segment it into a sequence of
words, i.e., “immutable domain object set”.

Next, we model both code structure and code semantics

2In this work, we define the code structure as the code skeleton
by substituting identifiers with placeholders.

with a recurrent neural network (RNN), and further align the
two RNNs at the position of each placeholder. With this step,
we can combine the learned representations of “immutable
domain object set” (semantic representation) and “c0” (struc-
tural representation) as the overall representation for the class
name “ImmutableDomainObjectSet”. Finally, to allow di-
rectly copying the OOV words from the input code changes
to the output commit messages, we incorporate the copying
mechanism [See et al., 2017] in our model. For example, the
model may directly copy “c0” into the generated message,
and we substitute “c0” with “ImmutableDomainObjectSet”
as the final output.

In summary, the main contributions of this paper include:

• We propose a commit message generation approach
CODISUM that jointly learns the representations of both
code structure and code semantics. The model can also
mitigate the OOV problem.

• We conduct experimental evaluations on real data,
demonstrating that the proposed approach significantly
outperforms the state-of-the-art in terms of the accuracy
of generating commit messages.

The rest of the paper is organized as follows. Section 2
describes the proposed approach. Section 3 shows the ex-
perimental results. Section 4 reviews the related work, and
Section 5 concludes.

2 The Proposed Approach
In this section, we present the proposed approach, which is
named as CODISUM (Code Diff Summarization).

2.1 Overview
The overview of the proposed CODISUM is shown in Fig-
ure 2, which contains an encoder part and a decoder part.

The input of the model is a piece of source code change.
Then, in the encoder part, we first extract the code structure
from the input by recognizing the identifiers (i.e., the names
of classes, methods, and variables). We replace all the identi-
fiers with the corresponding placeholders3 and then learn the
representations of the resulting code structure. For each iden-
tifier, we also learn its semantic representation, and combine
the learned semantics with the corresponding placeholder as
the overall representation of this identifier. The overall repre-
sentation of each input word is then fed into an attention layer
to obtain the final representation of the input code change.

For the decoder part, we use a multi-layer unidirectional
GRU [Cho et al., 2014] to generate a sequence of words as
the initial commit message. Meanwhile, we incorporate the
copying mechanism [See et al., 2017] to allow directly copy-
ing the OOV words from the code changes. Note that such
copying applies on the code structure, which directly copies
the placeholders instead of the original input words. Finally,
we substitute the placeholders with the corresponding input
words as the final generated commit message.

3We use different placeholders for the identifiers in each code
change. For different code changes, we re-use the placeholders.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3976

���"!���� ������ �����! �!

���"�������� �
��"!���������������!��!��	�
�#!��� �
� !���!��!��	���������! �
�����������!��!��	���������$���� % ���

�"���� ��� �� � �� 	 ������

���

�

���
��	 ���� �� ������$����
��������������

��������
�����

���� �� ������$��������	

����
���
���

����
���
���

�
���
���

�����������
���

������������������
����

���������
�� ���������
��

����
��"!���������������!��! ������$����

���������
���������������
��

�� � � �

	�
���������������������

Figure 2: The overview of the proposed approach.

2.2 Modeling Code Structure
In the following, we describe some details of the CODISUM
model. With code structure extracted from the input diff,
we denote the embeddings of the words/placeholders in the
code structure as [x1, x2, . . . , xN], where xi ∈ Rdx is the
embedding of the i-th word and N is the maximum length of
the structure sequence. Note that the embeddings of all the
words including those in code changes and commit messages
are maintained in the same lookup table.

To model the code structure, we use the multi-layer bidi-
rectional GRUs4. Each neuron takes the word embedding xi
and the output of the previous neuron hi−1 as input, and out-
puts hi for the current word,

hi = Bi-GRU (xi, hi−1) , (1)

where hi ∈ Rdh is the hidden state of the GRU neuron.
Note that the diff usually contains a sign (i.e., “+” or “-”)

that allows us to distinguish if the lines are added or removed.
In practice, we also maintain a lookup table for these signs
and add the corresponding embedding before each word, i.e.,
xi = [yi;xi], where yi is the embedding of “+” or “-”.

2.3 Modeling Code Semantics
If the word xi in the code structure is a placeholder (i.e., the
original word in the code changes is an identifier5), we also
use multi-layer bi-directional GRUs to encode the semantics
of the identifier. By splitting the identifier into separate words
based on the naming convention, and denoting the resulting
word sequence as [zi,1, zi,2, . . . , zi,N ′] where zi,j ∈ Rdz is
the embedding of the j-th separate word in xi and N ′ (N ′ �
N) is the maximum length of the separate word sequences,
we have

hi,j = Bi-GRU (zi,j , hi,j−1) , (2)

4We omit the multi-layer structure in Figure 2 for brevity.
5Without ambiguity, we directly use xi to indicate the word with

embedding xi in this paper.

where hi,j ∈ Rdh in the hidden state of the j-th separate
word. Here, for the separate words, we also maintain them in
the same lookup table with the other words in code changes
and commit messages (i.e., dx = dz).

Finally, since we use a multi-layer bi-directional structure
of RNNs, we concatenate the hidden states of the two last
neurons of the top-layer in both directions as the semantic
representation of the input sequence. That is, we have the
semantic representation of word xi as

zi =
[
~hi,N ′ ; ~hi,N ′

]
, (3)

where ~hi,N ′ and ~hi,N ′ are the hidden states from the forward
direction and the backward direction, respectively.

2.4 Combining Code Structure and Semantics
Next, we describe how we jointly model code structure and
code semantics. Although we can simply learn the two rep-
resentations and directly concatenate them as the encoder re-
sults, such a method would miss the correspondence between
code structure and code semantics, and thus leading to infe-
rior generation accuracy. This is also confirmed by our exper-
iments as we will later show.

In CODISUM, we align code structure and code semantics.
Specially, for each input diff, we maintain N sequences
corresponding to the N input words. For example, if the i-th
word xi is an identifier, we learn its semantic presentation zi
via Eq. (3) and concatenate it with the hidden state hi (i.e.,
structural representation) from Eq. (1) as the overall repre-
sentation of xi, i.e.,

h′i = [hi; zi] . (4)

Otherwise, if the i-th word is not an identifier, we do zero-
padding after hi to generate the combined representation h′i
for word xi, i.e., h′i = [hi; 0s].

Attention Layer. For the decoder part, we assume that de-
coder output at step t as st. The attention distribution is then

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3977

calculated as follows,

eti = vT tanh (Wh [hi; zi] +Wsst)

αt
i = softmax

(
eti
)
, (5)

where v, Wh, and Ws are learnable parameters. The normal-
ized αt

i determines how much attention should be given to
h′i = [hi; zi] when generating the t-th word in the commit
message. Then, we can produce a weighted sum of h′i, which
is also known as the context vector, as the representation of
the input code change,

h∗t =
N∑
i=1

αt
ih
′
i. (6)

Copying Mechanism. Finally, we incorporate the copy-
ing mechanism [See et al., 2017]. This mechanism directly
copies some words (e.g., class names) from the input code
changes to the generated commit messages.

Without copying mechanism, we can generate the t-th
word based on the following distribution,

P ′ = softmax (W [h∗t ; st] + b) , (7)

where W and b are learnable parameters. Here, P ′ con-
tains the generation distribution over all the words in the
vocabulary. To allow copying, we further compute a copy-
ing distribution over the words in the structure sequence
[x1, x2, . . . , xN] as,

P ′′ = DTαt, (8)

where αt = [αt
1;α

t
2; . . . ;α

t
N] is the attention vector, D ∈

RN×V is the one-hot coding of the structure sequence, and V
is the vocabulary size. As indicated by the above equation,
we tend to copy the words with higher attention.

Then, we only need to determine the probability of choos-
ing a word from the generation distribution or the copying
distribution. Specially, we use the following equation to com-
pute this probability,

p = σ (w′ [h∗t ; st] + b′) , (9)

where vector w′ and scalar b′ are learnable parameters, and
σ is the sigmoid function. We obtain the final probability
distribution of generating a word w in the commit message as

P (w) = (1− p)P ′(w) + p · P ′′(w). (10)

3 Experimental Evaluations
3.1 Experimental Setup
(A) Dataset. We use the commonly-used dataset in this area,
which was collected by Jiang and McMillan [2017] from the
top 1,000 popular Java projects in Github and contains 509k
diff files and corresponding commit messages. We make
the following pre-processing steps on the dataset. First, we
remove the diff files that contain file changes other than
.java files. Next, we apply standard NLP processing on the
data. That is, we keep only the source code in the diff files,
remove the punctuations and special symbols in the commit

messages, tokenize diffs and commit messages, and re-
move the data that contains less than three words. Finally,
we delete the duplicated diffs as there are some successive
commits in a short period fixing the same bug with the same
commit message. After pre-processing, we obtain 90, 661
pairs of 〈diff, commit message〉 and randomly choose 75, 000
for training, 8, 000 for validation, and 7, 661 for testing.

(B) Evaluation Metrics. We first use two metrics that
are widely used in natural language processing, i.e., BLEU
score [Papineni et al., 2002] and METEOR [Denkowski and
Lavie, 2014], to measure how close are the generated sen-
tences compared to the real sentences. Moreover, since we
aim to generate some OOV words, we also calculate the Re-
call metric of the correctly generated identifiers in the commit
messages.

(C) Compared Approaches. We compare the following ap-
proaches in our experiments.
• NMT [Jiang et al., 2017; Loyola et al., 2017]. NMT uses

attention-based RNNs to translate diffs into commit
messages. It treats diffs and commit messages as two
different languages.
• NNGen [Liu et al., 2018]. NNGen is an information

retrieval approach. It represents diffs as “bags-of-
words” vectors, and re-uses the commit message from
the most similar diff calculated with cosine similarity.
• CopyNet [See et al., 2017]. CopyNet is a text sum-

marization method, which incorporates copying mech-
anism into the decoder to allow copying words from
source to target.
• CODISUM. CODISUM is the proposed approach built

upon the NMT model6.
(D) Parameters and Initializations. For the encoder part,

we set the maximum length of the structure sequence and
the semantics sequence to 200 (i.e., N = 200) and 5 (i.e.,
N ′ = 5), respectively. For the decoder part, the maximum
length of commit message is set to 20. All the word embed-
ding dimensionality is set to 150 (i.e., dx = dz = 150) with
random initialization. For all multi-layer structure of RNNs,
we set the layer number to 3. In the Bi-GRUs, the hidden state
dimensionality of one direction is set to 128, and overall hid-
den state dimensionality is 256 (i.e., dh = 256). We also set
the hidden state dimensionality of the decoder GRUs as 256.
All the compared methods are set with the same parameters
if applicable (e.g., the hidden state of NMT and CopyNet is
set to 256). When training, we adopt the categorical cross-
entropy loss function and RMSProp optimizer with batch size
100 and dropout rate 0.1. We stop the training process when
the loss is no longer decreasing.

3.2 Experimental Results
Effectiveness Comparisons
For effectiveness, we compare the proposed CODISUM with
the existing competitors, and show the results in Table 2.

We can first observe from the table that the proposed
CODISUM outperforms the compared methods on all the

6The code is publicly available at https://github.com/SoftWiser-
group/CoDiSum.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3978

Model BLEU (%) METEOR (%) Recall (%)

NMT 0.87 4.81 2.98

NNGen 2.16 4.34 10.60

CopyNet 1.16 5.52 14.48

CODISUM 2.19 7.46 33.96

Table 2: Effectiveness comparison results. The proposed CODISUM
outperforms the existing methods on all the three evaluation metrics.

Model BLEU (%) METEOR (%) Recall (%)

CODISUM1 2.06 7.04 30.21

CODISUM2 1.97 6.86 29.63

CODISUM3 2.05 7.14 33.87

CODISUM 2.19 7.46 33.96

Table 3: Performance gain analysis of CODISUM. The results in-
dicate that the joint modeling of code structure and code semantics,
the copying mechanism, and the identifier substitution are all helpful
for commit message generation.

three metrics. In the competitors, CopyNet significantly
outperforms NMT. Since CopyNet incorporates the copying
mechanism into NMT, this result indicates the importance
of applying copying mechanism in commit message gener-
ation. Compared to CopyNet, the relative improvements of
CODISUM are 88.8%, 35.1%, and 134.5% w.r.t. BLEU, ME-
TEOR, and Recall, respectively. There are two major differ-
ences between CopyNet and CODISUM. First, we share all
the word embeddings from code changes and commit mes-
sages. Second, we jointly model the code structure and the
code semantics. The improvements indicate the importance
of these two differences. Compared to NNGen, CODISUM
improves it especially on the METEOR and Recall metrics.
The improvement on the BLEU metric is relatively minor.
One possible reason is that the BLEU metric favors much flu-
ent sentences as those re-used by NNGen.

Additionally, we can observe that the improvement of the
Recall metric is especially larger. The reason is as follows.
CODISUM can either generate the identifiers with the gener-
ation distribution (we can easily put all the placeholders in the
vocabulary) or copy the placeholders with the copying distri-
bution. In contrast, CopyNet can only generate such words
with the copying distribution. Therefore, although the gen-
erated messages are of close length, the generated messages
from CODISUM contain many more identifiers.

Performance Gain Analysis
Next, we analyze the performance gain of the proposed ap-
proach. The results are shown in Table 3. In the table,
CODISUM1 is the variant that deletes the copying mecha-
nism in CODISUM. Compared to NMT (whose results are
in Table 2), CODISUM1 jointly models code structure and
code semantics. As we can see, CODISUM1 significantly im-
proves NMT indicating the usefulness of our joint modeling.
Meanwhile, as indicated by the Recall metric, by allowing the
generation of placeholders and the followed identifier sub-
stitution, CODISUM1 can already mitigate the OOV issue.

50 100 150 200 250 300
Embedding Size

0

2

4

6

8

10

B
L
E
U

/M
E
T
E
O

R

BLEU(%)

METEOR(%)

(a) The effect of the word embedding size dx

32 64 128 256
Hidden Size

0

2

4

6

8

10

B
L
E
U

/M
E
T
E
O

R

BLEU(%)

METEOR(%)

(b) The effect of the hidden state size dh

Figure 3: The parameter sensitivity study. The performance of
CODISUM stays relatively stable w.r.t. the two parameters. We fix
dx = 150 and dh = 256 in this work.

Also, CODISUM is still better than CODISUM1, indicating
the usefulness of the copying mechanism.

The second variant CODISUM2 deletes the code seman-
tics part in CODISUM. Compared to CopyNet (whose re-
sults are in Table 2), this variant replaces the identifiers with
placeholders to reduce vocabulary size. The results show that
CODISUM2 is much better than CopyNet, indicating the im-
portance of identifier substitution.

The third variant CODISUM3 directly concatenates the
semantic representation and the structural representation
without alignment. As we can see, CODISUM improves
CODISUM3 which, again, verifies the usefulness of the pro-
posed joint modeling method.

Parameter Sensitivity
Next, we study the effects of two parameters in the proposed
method, including word embedding size dx and Bi-GRU hid-
den state size dh. The results are shown in Figure 3, where
we report the BLEU and METEOR scores. Figure 3(a) shows
that the BLEU and METEOR scores are stable when the word
embedding size varies from 50 to 300. We fix the embedding
size as dx = 150 in this work. Figure 3(b) shows that the
BLEU and METEOR scores increase when the hidden state
size increases. However, when dh grows from 128 to 256,
only slight performance gain is observed. Considering the
time cost, we set the hidden state size dh as 256.

Case Studies
Finally, we present an example of the generated
messages from the compared methods. The results

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3979

Real Put ErrorReporter checkReportsOnApplicationStart
Message back in the public api

NMT Fix quality flaw

NNGen Allow clean application exception handling to report exceptions

CopyNet Fix a typo in ErrorReporter

CODISUM Make checkReportsOnApplicationStart public

Table 4: An example of the generated commit messages. CODISUM
generates more accurate messages and successfully copies the
method name.

are shown in Table 4 where the real commit mes-
sage written by human is “Put ErrorReporter
checkReportsOnApplicationStart back in the
public api”. Although the meaning of the generated messages
by the compared methods is close to that of the real message,
the generated message by CODISUM is more accurate. More-
over, CODISUM can successfully generate/copy the right
method name checkReportsOnApplicationStart.
In contrast, NMT and NNGen do not copy the method name,
and CopyNet copies the class name ErrorReporter
instead of the more proper method name.

4 Related Work
In this section, we briefly review the major related work and
divide them into three parts: (1) commit message generation
or source code change summarization, (2) code summariza-
tion, and (3) text summarization.

Commit Message Generation
Existing commit message generation methods in literature
can be categorized into three classes. In the first class, re-
searchers extract information from code changes and trans-
late it into natural language based on pre-defined rules or
templates [Buse and Weimer, 2010; Cortés-Coy et al., 2014;
Linares-Vásquez et al., 2015; Shen et al., 2016]. For exam-
ple, Buse et al. [2010] analyze the control flow the program
and use the template “do Y Instead of Z” to generate the com-
mit messages; Cortés-Coy et al. [2014] focus on several types
of commit intents (e.g., creating and destroying objects, mod-
ifying the attribute getting and setting of an object, etc.), and
accompany these intents with pre-defined rules. The limita-
tions of these approaches lie in two aspects: 1) they can only
deal with the pre-defined types of code changes, and 2) the
generated commit messages do not explain the intuition be-
hind the code changes, which requires human insight.

In the second class, in order to generate commit mes-
sages that are easily understandable by humans, Huang et
al. [2017] and Liu et al. [2018] propose to search similar code
changes and reuse their commit messages. However, these
approaches heavily rely on whether similar code changes can
be retrieved, and how similar the code changes are.

In the third class, deep learning models such as neural ma-
chine translation have been used to translate the code changes
into commit messages [Loyola et al., 2017; Jiang et al., 2017;
Loyola et al., 2018]. For example, Jiang et al. [2017] di-
rectly apply NMT models to make the translation; Loyola et
al. [2018] further incorporate the context of the code changes

into the model. Although the results of these approaches are
promising, they still suffer from two challenges, i.e., how to
incorporate code structure, and how to generate OOV words.
In this work, we build our model upon the NMT model and
aim to address the two challenges via jointly modeling the
code structure and code semantics.

Code Summarization
Our work is also related to code summarization, which aims
at generating descriptions of code snippets. In literature, Srid-
hara et al. [2010] propose to summarize Java methods by
identifying important statements in the Java methods and then
transforming these statements into natural language descrip-
tions. Movshovitz-Attias and Cohen [2013] generate com-
ments from code using n-gram models and topic models. Oda
et al. [2015] translate Python code to pseudo-code (in natu-
ral language) using machine translation techniques, aiming
at improving the code readability. Iyer et al. [2016] design
a neural attention model that summarizes code as text. Hu
et al. [2018a; 2018b] combine the neural machine translation
model with the structural information (e.g., abstract syntax
tree, AST) and the API knowledge to generate the summaries.

Different from the code summarization methods, we aim
at summarizing code changes instead of code snippets. Ex-
isting code summarization methods mainly extract the AST
structure of code. However, such methods cannot be directly
applied to code changes as we usually cannot extract the AST
structure from code changes, which are short and incomplete
compared to code snippets.

Text Summarization
Finally, our work is related to the general text summariza-
tion methods [Reiter and Dale, 1997; Rush et al., 2015;
Chopra et al., 2016; Nallapati et al., 2016; See et al., 2017].
As a building block of the proposed approach, we also use
the copying mechanism inspired by the pointer-generator net-
works [See et al., 2017].

5 Conclusions
In this paper, we propose a learning based approach for the
commit message generation problem. In particular, built upon
the machine translation model, we jointly model the code
structure and code semantics of the code changes to better
learn their representations, and further augment the model
with copying mechanism to mitigate the out-of-vocabulary
issue. Experimental results demonstrate that the proposed ap-
proach significantly outperforms the state-of-the-art in terms
of accurately generating the commit messages.

Future directions include incorporating additional context
information and code structure information for the commit
message generation problem.

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China (No. 61690204, 61672274, 61702252) and
the Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization. Hanghang Tong is partially sup-
ported by NSF (IIS-1651203, IIS-1715385 and IIS-1743040).
Yuan Yao is the corresponding author.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3980

References
[Buse and Weimer, 2010] Raymond PL Buse and Westley R

Weimer. Automatically documenting program changes. In
ASE, pages 33–42, 2010.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. arXiv, 2014.

[Chopra et al., 2016] Sumit Chopra, Michael Auli, and
Alexander M Rush. Abstractive sentence summarization
with attentive recurrent neural networks. In NAACL, pages
93–98, 2016.

[Cortés-Coy et al., 2014] Luis Fernando Cortés-Coy, Mario
Linares-Vásquez, Jairo Aponte, and Denys Poshyvanyk.
On automatically generating commit messages via sum-
marization of source code changes. In SCAM, pages 275–
284, 2014.

[Denkowski and Lavie, 2014] Michael Denkowski and Alon
Lavie. Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the
ninth workshop on statistical machine translation, pages
376–380, 2014.

[Dyer et al., 2013] Robert Dyer, Hoan Anh Nguyen, Hridesh
Rajan, and Tien N Nguyen. Boa: A language and infras-
tructure for analyzing ultra-large-scale software reposito-
ries. In ICSE, pages 422–431, 2013.

[Hindle et al., 2012] Abram Hindle, Earl T Barr, Zhendong
Su, Mark Gabel, and Premkumar Devanbu. On the natu-
ralness of software. In ICSE, pages 837–847, 2012.

[Hu et al., 2018a] Xing Hu, Ge Li, Xin Xia, David Lo, and
Zhi Jin. Deep code comment generation. In ICPC, pages
200–210, 2018.

[Hu et al., 2018b] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai
Lu, and Zhi Jin. Summarizing source code with transferred
api knowledge. In IJCAI, pages 2269–2275, 2018.

[Huang et al., 2017] Yuan Huang, Qiaoyang Zheng, Xiang-
ping Chen, Yingfei Xiong, Zhiyong Liu, and Xiaonan Luo.
Mining version control system for automatically generat-
ing commit comment. In ESEM, pages 414–423, 2017.

[Iyer et al., 2016] Srinivasan Iyer, Ioannis Konstas, Alvin
Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In ACL, pages 2073–2083,
2016.

[Jiang and McMillan, 2017] Siyuan Jiang and Collin
McMillan. Towards automatic generation of short
summaries of commits. In ICPC, pages 320–323, 2017.

[Jiang et al., 2017] Siyuan Jiang, Ameer Armaly, and Collin
McMillan. Automatically generating commit messages
from diffs using neural machine translation. In ASE, pages
135–146, 2017.

[Linares-Vásquez et al., 2015] Mario Linares-Vásquez,
Luis Fernando Cortés-Coy, Jairo Aponte, and Denys

Poshyvanyk. Changescribe: A tool for automatically
generating commit messages. In ICSE, pages 709–712,
2015.

[Liu et al., 2018] Zhongxin Liu, Xin Xia, Ahmed E Hassan,
David Lo, Zhenchang Xing, and Xinyu Wang. Neural-
machine-translation-based commit message generation:
how far are we? In ASE, pages 373–384, 2018.

[Loyola et al., 2017] Pablo Loyola, Edison Marrese-Taylor,
and Yutaka Matsuo. A neural architecture for generating
natural language descriptions from source code changes.
In ACL, pages 287–292, 2017.

[Loyola et al., 2018] Pablo Loyola, Edison Marrese-Taylor,
Jorge Balazs, Yutaka Matsuo, and Fumiko Satoh. Con-
tent aware source code change description generation. In
INLG, pages 119–128, 2018.

[Movshovitz-Attias and Cohen, 2013] Dana Movshovitz-
Attias and William W Cohen. Natural language models
for predicting programming comments. In ACL, pages
35–40, 2013.

[Nallapati et al., 2016] Ramesh Nallapati, Bowen Zhou, Ci-
cero dos Santos, Caglar Gulcehre, and Bing Xiang. Ab-
stractive text summarization using sequence-to-sequence
rnns and beyond. In CoNLL, pages 280–290, 2016.

[Oda et al., 2015] Yusuke Oda, Hiroyuki Fudaba, Graham
Neubig, Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. Learning to generate pseudo-code
from source code using statistical machine translation (t).
In ASE, pages 574–584, 2015.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computational
Linguistics, 2002.

[Reiter and Dale, 1997] Ehud Reiter and Robert Dale. Build-
ing applied natural language generation systems. Natural
Language Engineering, 3(1):57–87, 1997.

[Rush et al., 2015] Alexander M Rush, Sumit Chopra, and
Jason Weston. A neural attention model for abstractive
sentence summarization. In EMNLP, pages 379–389,
2015.

[See et al., 2017] Abigail See, Peter J Liu, and Christopher D
Manning. Get to the point: Summarization with pointer-
generator networks. In ACL, pages 1073–1083, 2017.

[Shen et al., 2016] Jinfeng Shen, Xiaobing Sun, Bin Li, Hui
Yang, and Jiajun Hu. On automatic summarization of what
and why information in source code changes. In COMP-
SAC, volume 1, pages 103–112, 2016.

[Sridhara et al., 2010] Giriprasad Sridhara, Emily Hill, Di-
vya Muppaneni, Lori Pollock, and K Vijay-Shanker. To-
wards automatically generating summary comments for
java methods. In ASE, pages 43–52, 2010.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3981

