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1 Introduction

The two unresolved issues of black hole physics actively discussed during the last 50 years

are: a) the singularity problem, b) the final state of black hole evaporation and, closely

related to it, the information paradox (see, for instance, [1]). Both issues are usually

referred to some, as yet unknown, non-perturbative theory of quantum gravity. The nature

of Planck mass black holes, their stability and the resolution of the space-like singularity

remain unclear. In this letter we suggest a completely different approach to these problems.

Namely, we assume that classical General Relativity is modified at curvatures close to, but

still below Planckian curvature, in such a way that some limiting curvature, which is a

free parameter of the theory, can never be exceeded (cf. [2, 3]). Moreover, we propose

that at this limiting curvature the gravitational constant vanishes. These two assumptions

allow us to avoid all problems related to non-perturbative quantum gravity effects and

study in a fully controllable way the final stage of non-singular evaporating black holes. To

implement the above ideas, we use the mimetic field introduced in [4] and further exploited

in references [5–10]. We show that in asymptotically free theories with limiting curvature,

black holes generically have stable remnants with mass determined by the inverse limiting

curvature value, thus exceeding Planck mass. These remnants have vanishing Hawking

temperature and, by the arguments shown in [10], metric quantum fluctuations never

become relevant for them.

2 The Lemâıtre coordinates

The metric of both black hole and de Sitter universe in “static” coordinates can be

written as

ds2 =
(
1− a2 (r)

)
dt2 − dr2

(1− a2 (r))
− r2dΩ2, (2.1)
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where dΩ2 = dϑ2 + sin2 ϑdϕ2. For a black hole of mass M the function a2 (r) = rg/r,

where rg = 2M and for the de Sitter universe a2 = (Hr)2 with H−1 being the radius of

curvature. Throughout this paper we use Planck units where all fundamental constants

are set to unity. In both cases the static coordinate system is incomplete. Moreover, at

the horizon corresponding to a2 = 1, there is a coordinate singularity. Therefore, in both

cases it is more convenient to use the synchronous Lemâıtre coordinates

T = t+

∫
a

1− a2
dr, R = t+

∫
dr

a (1− a2)
, (2.2)

which are non-singular on the horizons (cf. [11]). In these coordinates metric (2.1) becomes

ds2 = dT 2 − a2 (x) dR2 − b2(x)dΩ2, (2.3)

where a2 and b2 = r2 must be expressed in terms of Lemâıtre coordinates T and R using

the relation

x ≡ R− T =

∫
dr

a (r)
, (2.4)

which follows from (2.2). Note that the norm of the Killing vector field ∂/∂t = ∂/∂R+∂/∂T

vanishes wherever a = 1. The black hole metric in these new coordinates becomes

ds2 = dT 2 − (x/x+)−2/3 dR2 − (x/x+)4/3 r2g dΩ2, (2.5)

and it is regular at the horizon x = x+ = 4M/3. The region x > 0 covers both interior and

exterior of the black hole and x = 0 corresponds to the physical space-like singularity where

curvature invariants blow up. Hence, in General Relativity this metric is not extendable

to negative x.

Correspondingly, the de Sitter metric takes the form

ds2 = dT 2 − exp (2H(x− x−))
(
dR2 +H−2dΩ2

)
, (2.6)

where x− is a constant of integration in (2.4) and the de Sitter horizon occurs at x = x−.

The region x < x− corresponds to the patch of size r = H−1 covered by static coordinates,

which on larger scales do not exist.

Calculating the spatial curvature of constant T hypersurfaces of metric (2.3), one finds

that it vanishes if a2 = (db/dx)2. Hence, both solutions (2.5) and (2.6) are spatially flat in

the Lemâıtre slicing.

The Schwarzschild metric has a Kasner type space-like singularity. In the previous pa-

per [10] we have found that in a theory where the ideas of limiting curvature and asymptotic

freedom of gravity are realized via the mimetic field, Kasner singularities are avoided and

replaced by a de Sitter region at limiting curvature. In this paper we implement these same

ideas for black holes. Using ansatz (2.3) for the metric, we will find an explicit solution

describing a non-singular black hole whose metric approaches asymptotics (2.5) and (2.6)

at low and high curvatures, respectively.

– 2 –
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3 Modified mimetic gravity

Introducing the mimetic field φ through a Lagrange multiplier constraint, consider the

theory of gravity defined by the action

S =
1

16π

∫
d4x
√
−g (−L+ λ (gµνφ,µφ,ν − 1)) , (3.1)

with Lagrangian density

L = f(�φ)R+ (f(�φ)− 1) R̃+ 2Λ(�φ), (3.2)

where

R̃ ≡ 2φ,µφ,νGµν − (�φ)2 + φ;µνφ;µν , (3.3)

andGµν is the Einstein tensor. In [10] we argued that �φ is the unique measure of curvature

that f can depend on without introducing higher time derivatives to the modified Einstein

equation. The extension of the action presented in [10] by the R̃-term is done with the

purpose to remove higher spatial and mixed derivatives. Thus, (3.1) defines a theory of

gravity free of any higher derivatives.

Since the Lemâıtre coordinates are synchronous, the generic solution of the constraint

equation φ,αφ,α = 1 satisfied by the mimetic field, which is compatible with the symmetries

of ansatz (2.3), is φ = T + const. In this coordinate system

�φ = κ =
∂

∂T
ln
√
γ = − d

dx
ln
(
ab2
)

(3.4)

represents the trace of extrinsic curvature κ = κaa of synchronous slices of constant T . The

expression R̃, given in (3.3), is nothing but the spatial curvature scalar 3R of these slices,

expressed in covariant form.

Variation of (3.1) with respect to the metric gµν yields the modified vacuum Ein-

stein equations. Solving the equation obtained by varying (3.1) with respect to φ for the

Lagrange multiplier λ and substituting the metric ansatz (2.3), after lengthy but straight-

forward calculations we find that the spatial components of the modified Einstein equations

have the first integral (see [10]),1

ḃ

b
− ȧ

a
=

3M

fab2
, (3.5)

where dot denotes the derivative with respect to x and a constant of integration has been

fixed to match the Schwarzschild solution with mass M in the limit x → ∞. In deriv-

ing (3.5) we have assumed that the spatial curvature remains negligible everywhere for

solutions matching the two spatially flat asymptotics (2.5) and (2.6). Later on we will

justify this assumption.

Accordingly, the temporal modified Einstein equation becomes

κ2 (f − 2κf ′)− 3 (Λ− κΛ′)

(f + κf ′)
=

(
3M

fab2

)2

, (3.6)

where prime denotes the derivative with respect to κ. The equations (3.5) and (3.6)

determine the two unknown functions a (x) and b (x).

1The more general and detailed calculations will be presented in a forthcoming publication by the

authors.
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4 Asymptotic freedom at limiting curvature

The inverse running gravitational constant is represented by

f (�φ) =
1

G (�φ)
, (4.1)

normalized as f (�φ = 0) = 1 in Planck units. Asymptotic freedom is characterized by

a divergence of f as �φ → |κ0| approaches the limiting curvature κ0, which is a free

parameter of the theory. In [10] we have shown that in a contracting Kasner universe the

vanishing gravitational constant very efficiently suppresses anisotropies and the solution

close to the limiting curvature becomes isotropic, approaching a de Sitter universe with

H = κ0/3. Since black hole and Kasner singularities are similar, one can expect that the

black hole singularity can be resolved in the same way. Namely, the asymptotic solution

far away from the black hole, which is still given by (2.5), will start to approach (2.6) as

soon as the curvature approaches its limiting value. The full solution extends for the entire

range −∞ < x < +∞.

For the Schwarzschild solution (2.5) the function a ∝ b−1/2 increases as b → 0, while

for the de Sitter solution a ∝ b. It follows that ȧ has to vanish at some intermediate point

x∗ where a reaches its maximum value before starting to decrease as we go deeper into the

black hole. If a (x∗) > 1, there exist two Killing horizons where a (x±) = 1 at x+ > x∗ and

x− < x∗, named in analogy with (2.5) and (2.6). In the limiting case where a (x∗) = 1,

the two horizons merge at x+ = x− = x∗ and the region where ∂/∂t = ∂/∂R + ∂/∂T

is spacelike disappears. This is the case of a minimal black hole with mass Mmin ∼ κ−10

which exceeds the Planck mass if the limiting curvature is below the Planckian value. For

M < Mmin, a is always smaller than unity, no horizon occurs and thus no black holes with

mass smaller than Mmin exist.

One can easily find that for the metric (2.3) the surface gravity of the Killing horizons

is given by

gs = −ȧ(x±), (4.2)

and it hence vanishes for the minimal black hole. Because the Hawking radiation temper-

ature is proportional to gs, it is equal to zero for these minimal mass black holes and as a

result of evaporation there must remain stable remnants of mass Mmin. Thus, the existence

of limiting curvature combined with asymptotic freedom of gravity generically leads to the

existence of minimal stable black hole remnants.

To demonstrate this in a concrete theory, below we will find an explicit spatially flat,

exact solution describing a non-singular black hole with stable remnant.1

5 Exact solution

Let us take

f(κ̃) =
1 + 3κ̃2

(1 + κ̃2) (1− κ̃2)2
, (5.1)
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where κ̃ ≡ κ/κ0 and chose Λ(κ) in such a way that the square root of the branch κ < 0

of (3.6) becomes
−κ̃

1− κ̃4
=

3M/κ0
ab2

. (5.2)

Taking the x derivative of the logarithm of this equation and using (3.4), we obtain a first

order differential equation for κ̃ (x) with the implicit solution

− κ0 x =
1

κ̃
+ 2

(
arctan κ̃− tanh−1 κ̃

)
. (5.3)

This provides a one-to-one relation between x ∈ (−∞,∞) and κ̃ ∈ (−1, 0) and hence κ̃

can be used to parametrize the solution for a and b. After some algebra, we find that the

exact solution of equations (3.5) and (5.2) parametrized in terms of κ̃ is given by

a3(κ̃) =
4Mκ0

3
|κ̃|
(
1− κ̃4

) ( 1 + κ̃2

1 + 3κ̃2

)2

, (5.4)

b3(κ̃) =
9M

2κ20κ̃
2

(
1− κ̃2

) (
1 + 3κ̃2

)
. (5.5)

Using (5.3) to express κ in terms of x, we can easily verify that in the far exterior limit

x → ∞, κ̃2 → 0 and the above solution tends to (2.5), describing a black hole of mass

M . On the other hand, deep inside the black hole at x → −∞, κ̃2 → 1 and we obtain

asymptotic (2.6) corresponding to the de Sitter space with H = κ0/3. Thus, the obtained

exact solution smoothly matches the desired asymptotics, in agreement with our general

consideration above. The function a reaches its maximum at κ̃∗ = −1/
√

5. The horizons,

which occur at a = 1, exist only if a (κ̃∗) ≥ 1. This condition is satisfied only if

M ≥Mmin =
55/2

18κ0
. (5.6)

Otherwise, no horizon exists and the solution (5.3), (5.4), (5.5) describes solitonic-like ob-

jects whose metric is completely static and approaches the de Sitter metric in the center.

For black holes with the minimum mass Mmin, there is only one horizon with vanish-

ing surface gravity and hence these minimal black holes represent the stable remnants of

evaporating black holes.

One can check that solution (5.3), (5.4), (5.5) satisfies a2 = ḃ2 and hence the hyper-

surfaces T = const. are exactly spatially flat, in complete agreement with the assumption

under which it was derived. To better understand the properties of this solution, it is

more illuminating to go back to the familiar singular static coordinates (2.1). From (2.4)

it follows that dr = adx and therefore a2 = ḃ2 implies that b = r everywhere. Setting

b = r in equation (5.5t), we obtain an algebraic equation for κ̃ (r), which can be solved

perturbatively and the obtained result can be substituted in (5.4) to determine a2 (r) in

the “static coordinates”, where the metric is given by (2.1).

For r →∞ where κ̃2 � 1 we find the expansion

1− a2 = 1− 2M

r

[
1−O

((r∗
r

)3)]
, (5.7)

– 5 –
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where r∗ =
(
144M/5κ20

)1/3
is the “radial” coordinate at which κ̃∗ = −1/

√
5 and the

curvature becomes comparable to the limiting curvature. For large black holes with M �
Mmin the outer horizon, defined by a (r+) = 1, is located at

r+ = 2M

[
1−O

((
Mmin

M

)2
)]

, (5.8)

and the deviations from the Schwarzschild solution become significant only deeply “inside”

the black hole at r � r+. Close to the limiting curvature
(
κ̃2 → 1

)
, that is for r � r∗, the

metric is well approximated by

1− a2 = 1− (Hr)2

[
1−O

((
r

r∗

)3
)]

(5.9)

where H = κ0/3 and the inner de Sitter horizon occurs at

r− = H−1
[
1 +O

(
Mmin

M

)]
. (5.10)

If the mass M is comparable to the minimal mass Mmin, these two asymptotics fail to

describe the region close to the horizons. In the minimal case M = Mmin inner and outer

horizon coincide. Expanding a (κ̃) around its maximum at κ̃∗ and using (5.5) to express κ̃

in terms of r, we find that the near horizon metric of such a minimal black hole is given by

1− a2 ≈ 10

7

(
1− r

r∗

)2

, (5.11)

where r+ = r− = r∗ = 2
√

5/κ0. Note the similarity to the near horizon metric of an

extremal charged Reissner-Nordström black hole.

6 Black hole thermodynamics

The Hawking temperature TH is determined by the surface gravity (4.2) at the exterior

horizon x+. For solution (5.1) we find

TH =
gs
2π

=
κ0
6π
|κ̃+|

1− 5κ̃2+
1 + 3κ̃2+

, (6.1)

where κ̃+ = κ̃ (x+) ∈ (−1/
√

5, 0). Since a (κ̃+) = 1, we can use (5.4) to express M also

through κ̃+ as

M =
3

4κ0 |κ̃+|
(
1− κ̃4+

) (1 + 3κ̃2+
1 + κ̃2+

)2

. (6.2)

The formulae (6.1) and (6.2) implicitly define the relation TH (M). In particular, at large

mass we reproduce in leading order the familiar Hawking formula

TH =
1

8πM

[
1 +O

((
Mmin

M

)2
)]

. (6.3)

– 6 –
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Instead of diverging as M → 0, the temperature reaches its maximum value Tmax ∼ 10−2κ0
at |κ̃+| ≈ 0.23 which corresponds to M = Mc ≈ 1.32Mmin. At this point the negative heat

capacity diverges and becomes positive for M < Mc. Close to the minimal mass the

temperature decreases as

TH ∝
√
M −Mmin. (6.4)

According to the Stefan-Boltzmann law, the rate of energy loss of a radiating body is

determined by dM
dt ∝ −T

4
HA where A = 4πr2+ is the horizon area. For an evaporating

black hole close to minimal mass A ∼ M2
min, and hence it will eventually approach Mmin

according to M(t)−Mmin ∝ t−1. That is, the final product of black hole evaporation is a

stable minimal remnant with M = Mmin and vanishing Hawking temperature.

Finally, taking into account that the Bekenstein entropy of the black hole is equal to

S = A/4 = πr2+ = πb2 (κ̃+) it is straightforward to verify that the modified first law of

thermodynamics becomes

G(κ̃+)dM = TH dS, (6.5)

where G(κ̃+) = f−1(κ̃+) is the value of the gravitational constant at the outer horizon.

7 Conclusions

We have shown that a modification of classical Einstein theory at very high curvatures,

implementing asymptotic freedom at limiting curvature, can spare us from having to deal

with non-perturbative quantum gravity (at least in application to cosmological and black

hole problems). The existence of a sub-Planckian limiting curvature at which the gravita-

tional constant vanishes can resolve the black hole singularity and replace it with a patch

of de Sitter space (similar to [12]). Moreover, in this theory the final result of black hole

evaporation are remnants whose near horizon geometry is similar to the extremal Reissner-

Nordström geometry. Therefore, the Hawking temperature of these remnants is equal to

zero. In distinction from extremal Reissner-Nordström black holes, they do not exhibit a

singularity and, because they have no charge, they are stable. As becomes clear from the

maximal extension of the solution obtained above,1 these remnants can store an unlimited

amount of information. This information lies in the absolute future of external observers

and remains forever inaccessible for them. Hence, their degeneracy should not lead to any

paradoxes in calculating physical processes observed by external observers. This suggests

one of the possible ways for a resolution of the information paradox (see [1]). Moreover,

the stable remnants can serve as well as Dark Matter candidates.
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[11] G. Lemâıtre, The Expanding Universe, Mon. Not. Roy. Astron. Soc. 91 (1931) 490 [INSPIRE].

[12] V.P. Frolov, M.A. Markov and V.F. Mukhanov, Through a black hole into a new universe?,

Phys. Lett. B 216 (1989) 272 [INSPIRE].

– 8 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1361-6633/aa778e
https://arxiv.org/abs/1703.02140
https://inspirehep.net/search?p=find+J+%22Rept.Prog.Phys.,80,092002%22
https://doi.org/10.1007/BF02732276
https://inspirehep.net/search?p=find+J+%22NuovoCim.,B86,97%22
https://doi.org/10.1007/JHEP11(2013)135
https://arxiv.org/abs/1308.5410
https://inspirehep.net/search?p=find+J+%22JHEP,1311,135%22
https://doi.org/10.1088/1475-7516/2014/06/017
https://doi.org/10.1088/1475-7516/2014/06/017
https://arxiv.org/abs/1403.3961
https://inspirehep.net/search?p=find+J+%22JCAP,1406,017%22
https://doi.org/10.1088/1475-7516/2017/03/009
https://doi.org/10.1088/1475-7516/2017/03/009
https://arxiv.org/abs/1612.05860
https://inspirehep.net/search?p=find+J+%22JCAP,1703,009%22
https://doi.org/10.1140/epjc/s10052-017-4658-3
https://doi.org/10.1140/epjc/s10052-017-4658-3
https://arxiv.org/abs/1701.08590
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C77,83%22
https://doi.org/10.1007/JHEP06(2018)060
https://doi.org/10.1007/JHEP06(2018)060
https://arxiv.org/abs/1805.06283
https://inspirehep.net/search?p=find+J+%22JHEP,1806,060%22
https://doi.org/10.1007/JHEP06(2018)062
https://arxiv.org/abs/1805.06598
https://inspirehep.net/search?p=find+J+%22JHEP,1806,062%22
https://doi.org/10.1140/epjc/s10052-019-7075-y
https://doi.org/10.1140/epjc/s10052-019-7075-y
https://arxiv.org/abs/1905.01343
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C79,558%22
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,91,490%22
https://doi.org/10.1016/0370-2693(89)91114-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B216,272%22

	Introduction
	The Lemaître coordinates
	Modified mimetic gravity
	Asymptotic freedom at limiting curvature
	Exact solution
	Black hole thermodynamics
	Conclusions



