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We show that the scalar field of mimetic gravity could be used to construct diffeomorphism invariant
models that reduce to Hofava gravity in the synchronous gauge. The gradient of the mimetic field
provides a timelike unit vector field that allows to define a projection operator of four-dimensional
tensors to three-dimensional spatial tensors. Conversely, it also enables us to write quantities invariant
under space diffeomorphisms in fully covariant form without the need to introduce new propagating
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It has been recognized for some time that in order to improve
the UV behaviour of the graviton propagator and, thus, the renor-
malizability of gravity, it is necessary to add higher spatial deriva-
tives to its Lagrangian but no higher time derivatives. Because this
seems to contradict the relativistic local Lorentz invariance, it was
thought necessary to break the symmetry between space and time.
The most notable attempt is the one by Hofava [9], who con-
structed a model of quantum gravity with explicitly broken Lorentz
symmetry, which allowed him to add to the action terms depen-
dent on the spatial Ricci tensor and curvature scalar and their
space derivatives (see e.g. [10] and references therein). This is a
high price to pay because, although the Hofava model is renormal-
izable when projected into the product space R x X3, this property
is lost when the model is made covariant by adding one new field
[6]. Various attempts were made to keep renormalizability of the
models while restoring Lorentz invariance by adding a dynamical
scalar or vector [8]. Such models exhibit additional propagating de-
grees of freedom, which limited their acceptance as a solution to
the problem of renormalizability of gravity.

Mimetic gravity was proposed as a way of separating the scale
factor from the metric and resulted in reproducing Einstein gravity
in addition to half a degree of freedom which could be used to
mimic dark matter [1]. The main observation is that one can define
the metric tensor g, in terms of an auxiliary metric g,, by the
relation
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guv = Euv (8" 0c08:19) , (1)

where ¢ is a scalar field. The metric gy, is invariant under the
scale transformation g, — Qz“g“,w and, as can be easily shown,
satisfies the constraint

gﬂvau¢3v¢ =1, (2)

governing the evolution of ¢. Thus, instead of introducing the
mimetic field ¢ through the reparametrization (1), it is easier to
consider directly the physical metric g,, together with a con-
strained scalar field, enforcing (2) through a Lagrange multiplier
[2]. This implies that out of the 11 variables g,, and ¢ there are
only 10 independent fields. In the ADM decomposition of g,

ds? = N2de? — yy (dx' + N'de) (d) + Nide), i=1,2,3  (3)

where N is the lapse function, N is the shift vector, and y;j = —gjj
is the metric on the spatial 3d hypersurface, the constraint (2) can
be solved for N in terms of the 10 variables N, y;j and ¢, yielding

i 2
N2 _ (B0d — Nidig) @
(14 yUdigpo;p)
In the synchronous gauge N =1, N; =0, a solution of (2) is given
by

p=t+A, (5)
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where A is a constant. Since there exists a whole family of syn-
chronous coordinate systems, corresponding to the freedom of
choice of an initial hypersurface of constant time, this solution is
not unique. On the other hand, ¢ can always be used as one par-
ticular synchronous time coordinate, fixing a unique 3 + 1 slicing
that we will use from now on. The timelike unit vector n, = d,¢
points in this time direction. In particular, we can define the pro-
jection operator

Ph =60 — 30 pg” . (6)

satisfying the relations

PP, =P).  P}d¢=0. (7)

In the synchronous slicing from above we have

Pl =4]. (8)

P=0, Pi=0, pY=o, ! =5

showing that P}i projects space-time vectors to space vectors. It
is then clear that in mimetic gravity, using the projection oper-
ator and the vector n, = d,¢, it is possible to construct four-
dimensional tensors whose only non-zero components in the syn-
chronous gauge are along space directions. For example, as we will
show in the following, the expression

R:=2R" 8,¢08,¢ — R — (Op)> + V, VypVF V"¢ (9)

coincides with the spatial curvature scalar 3R of synchronous
slices.

In previous works we have shown that in mimetic gravity, with-
out the need to introduce any additional fields, we can build cos-
mological models [3] and solve the singularity problem for Fried-
mann, Kasner [4] and Black hole [5] solutions by using the idea
of limiting curvature. More recently we have shown that the idea
of asymptotic freedom can be implemented in mimetic gravity by
introducing a O¢ dependent effective gravitational constant which
vanishes at the limiting curvature [11]. Moreover, it was shown
that such a dependence does not introduce higher time derivatives.

The purpose of this letter is to show that within mimetic grav-
ity we can construct all the terms needed in Hofava gravity using
four-dimensional tensors that reduce to the desired form in the
synchronous gauge. We will thus show that in mimetic gravity it
is possible to formulate Hofava gravity in a diffeomorphism invari-
ant way without introducing ghost-like degrees of freedom.

The basic fields that appear in Hofava gravity are the three-
dimensional tensors and scalars kij, &, 3Rij, 3R, D¢>Rjj, and their
contractions needed to form space diffeomorphism invariant ex-
pressions. The extrinsic curvature of the synchronous slices ¢ =
const. is given by

1 ; ) )
. 1 .
Kij = S Vij» K] =y, k =k{ =(ny), (10)
where dot denotes t derivative and y is the metric determinant.
Using ¢, it can be expressed covariantly as

ViVig =i,

V,’Vj(ﬁ:—l{,j, i |:|¢):K. (11)

The non-vanishing components of the four-dimensional Riemann
tensor are determined by

R?{ij = Dikyj — D jKyi, (12)
R0 = &l — K jnk (13)
leij :3le’ij +K1'1Kjk _Kj'Kik, (14)

where D; and 3R’ku are the covariant derivative and the Riemann

tensor belonging to the metric y;;. With the help of the above

identities, we can construct the four-dimensional tensor

R%,., == P§ P} PZPER‘SWﬁ +Vu VOOV, Vi — Vy VIV, Ve
(15)

whose only non-zero components are 3‘R’k,.j in the synchronous
gauge. Next, we compute the Ricci tensor components

Roo =—K — Kinij (16)
Roi = Dik! — Dix (17)
R,'j=3R,'j+KKij—Kl-nKnj—i-R(:»Oj. (18)

These relations allow us to define the tensor
Ruv i= PPy Rap +0pV, Vi — Vi VP $V, V0
—R" 5, V9V ¢, (19)

whose non-zero components coincide with 3R,-j in the syn-
chronous gauge. Contracting with giV, we arrive at (9).
. . . . 1
We nf)te. in passing that the total .derlvatl\{e 7780 (ﬁx) can.be
easily eliminated from the Lagrangian of Einstein-Hilbert gravity,
leaving us with

—R -2V, (OpVH¢) =V, Yy VAV ¢ — (0d)* + R. (20)

For manifolds with boundary dM = {¢ = ¢;} U {¢ = ¢7} consisting
of closed spatial hypersurfaces of constant ¢, this has precisely the
same effect as adding the Gibbons-Hawking boundary term.

Space derivatives of the above tensors can be obtained by ap-
plying the operator Pﬁvp. Note that the spatial components of
P% vy kaﬁ coincide with Dk3R,~j in the synchronous gauge. To
obtain a purely spatial tensor, one still must project all four-
dimensional indices, i.e. one has to use P% PZP{?V), ﬁaﬁ. Thus, we
can now define the analogue of the three-dimensional Cotton ten-
sor

i 1 . 1
3C3=7761k1D]< <3Rﬂ— Z)/ﬂBR> (21)
by writing
fald 1 JLPK A N 1 >
Cy :=_\/?g6 Vi Vo | Ruk — Zgch ) (22)

whose only non-vanishing components in the synchronous gauge
are 3C%.

Another object that could be constructed is the Chern-Simons
three form wp related to the Pontryagin topological invariant

RS, ARG =dwp, (23)
2
wp =Ty AdLY + 2Ty ATy AT, (24)

where T'), =dx”T}, and RY, = %R%de“ Adx" are the Christoffel
connection one-form and the curvature two form, respectively. The
four-form d¢ A wp is not parity invariant. Up to a boundary term,
its integral is given by

/d(})/\a)p:—/qu‘,’O/\R%. (25)

This shows that such a contribution to the action is covariant and
invariant under global shifts of ¢. In the synchronous gauge the
integrand reduces to
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iy 2 y
elik (Fi“uajrk“v +Irtry r,’ju> =3wp 4+ 26" D iy,  (26)

3 v jp
where
3 _ _ijk AL g.am ka)\nkl 27
wp =¢€ im1kn+§in itMm ) (27)

and Ai.‘j are the Christoffel symbols calculated for y;;. The term
2€Ukic!D jkyy can be written as
eV VIORY, . (28)

which coincides in the synchronous gauge with

eMPON L GV VIR Vi (29)

Thus, the purely three-dimensional Chern-Simons form can be in-
corporated in the action by adding the term

/d¢A&3p = /dqﬁ/\ (wp — V*d$ A RLV:9). (30)

All of these manipulations illustrate that any expression invari-
ant under spatial diffeomorphisms can be written as a combination
of four-dimensional tensors that reduces to it in the synchronous
gauge.

We conclude by writing an exemplary Hofava action in mimetic
gravity, in terms of four-dimensional tensors and thus completely
preserving diffeomorphism invariance, without the need for new
degrees of freedom:

1

5= 16nC d'xy/=g (V;va“v”d) —c1(@¢)* +c2R (31)
+ 3R+ ca R R™ +¢5 CUC), + c6 177 Vg (@p) vpo
+c7 nﬂupavg(pﬁﬂavvﬁz +o A (glwau(bavd) _ 1))7

where nH'rPo = ﬁe“”"”. The case where ¢; =c3; =1 and all
other couplings vanish is just a rewritten form of General Relativity
with mimetic matter. The constants c1, ..., c7 could also be taken
as functions of (¢ in such a way as to reproduce General Relativity
in the low curvature limit.

There is no need to repeat calculations done for the Hofava
models, as those could be thought of as a gauge fixed version of a
diffeomorphism invariant theory in the synchronous gauge.

In the projectable Hofava models, the lapse function N is as-
sumed to depend on time only, N = N (t). These models coin-
cide with the above family of actions in the synchronous gauge.
Their renormalization analysis was carried out in references [6],
[7], where they were shown to be renormalizable. When the same
analysis was applied to the non-projectable case where the lapse
function is N =N (xi,t), so that terms dependent on the vector
a; = % can occur, it was found that these models become non-
renormalizable. Attempts were made to construct diffeomorphism

invariant Hofava models by adding a unit vector field u,, subject
to the hypersurface orthogonality condition uf, Vyu p) = 0. These
models, however, have a spin-1 and spin-0 degree of freedom in
addition to the graviton.

The synchronous gauge belongs to the family of temporal
gauge, which for fluctuations of the metric takes the form n*h,, =
0, where gy, =1, +hyy and n, = (1,0,0,0). The main advan-
tage of working in this gauge is that the model proposed above
will be power counting renormalizable and that the ghosts asso-
ciated with gauge fixing will decouple from the physical S-matrix.
The disadvantage is the need to have an unambiguous prescrip-
tion for the unphysical singularities of the form (qg.n)™%, « =1,2

(cf. [12]) and the difficulty in performing higher loop calculations.
It is a challenging problem to perform a detailed analysis of the
renormalization program, either in the synchronous gauge or in a
covariant gauge, using the background field method and integrat-
ing out the mimetic constraint, along the lines of [6]. Even though
an actual proof could be quite demanding, we expect the mimetic
Horava model presented here to be renormalizable.
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