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We show that the scalar field of mimetic gravity could be used to construct diffeomorphism invariant 
models that reduce to Hořava gravity in the synchronous gauge. The gradient of the mimetic field 
provides a timelike unit vector field that allows to define a projection operator of four-dimensional 
tensors to three-dimensional spatial tensors. Conversely, it also enables us to write quantities invariant 
under space diffeomorphisms in fully covariant form without the need to introduce new propagating 
degrees of freedom.
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It has been recognized for some time that in order to improve 
the UV behaviour of the graviton propagator and, thus, the renor-
malizability of gravity, it is necessary to add higher spatial deriva-
tives to its Lagrangian but no higher time derivatives. Because this 
seems to contradict the relativistic local Lorentz invariance, it was 
thought necessary to break the symmetry between space and time. 
The most notable attempt is the one by Hořava [9], who con-
structed a model of quantum gravity with explicitly broken Lorentz 
symmetry, which allowed him to add to the action terms depen-
dent on the spatial Ricci tensor and curvature scalar and their 
space derivatives (see e.g. [10] and references therein). This is a 
high price to pay because, although the Hořava model is renormal-
izable when projected into the product space R ×�3, this property 
is lost when the model is made covariant by adding one new field 
[6]. Various attempts were made to keep renormalizability of the 
models while restoring Lorentz invariance by adding a dynamical 
scalar or vector [8]. Such models exhibit additional propagating de-
grees of freedom, which limited their acceptance as a solution to 
the problem of renormalizability of gravity.

Mimetic gravity was proposed as a way of separating the scale 
factor from the metric and resulted in reproducing Einstein gravity 
in addition to half a degree of freedom which could be used to 
mimic dark matter [1]. The main observation is that one can define 
the metric tensor gμν in terms of an auxiliary metric g̃μν by the 
relation
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gμν = g̃μν

(̃
gκλ∂κφ∂λφ

)
, (1)

where φ is a scalar field. The metric gμν is invariant under the 
scale transformation g̃μν → �2 g̃μν and, as can be easily shown, 
satisfies the constraint

gμν∂μφ∂νφ = 1, (2)

governing the evolution of φ. Thus, instead of introducing the 
mimetic field φ through the reparametrization (1), it is easier to 
consider directly the physical metric gμν together with a con-
strained scalar field, enforcing (2) through a Lagrange multiplier 
[2]. This implies that out of the 11 variables gμν and φ there are 
only 10 independent fields. In the ADM decomposition of gμν ,

ds2 = N2dt2 − γi j

(
dxi + Nidt

)(
dx j + N jdt

)
, i = 1,2,3 (3)

where N is the lapse function, Ni is the shift vector, and γi j = −gij
is the metric on the spatial 3d hypersurface, the constraint (2) can 
be solved for N in terms of the 10 variables Ni , γi j and φ, yielding

N2 =
(
∂0φ − Ni∂iφ

)2(
1+ γ i j∂iφ∂ jφ

) . (4)

In the synchronous gauge N = 1, Ni = 0, a solution of (2) is given 
by

φ = t + A, (5)
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where A is a constant. Since there exists a whole family of syn-
chronous coordinate systems, corresponding to the freedom of 
choice of an initial hypersurface of constant time, this solution is 
not unique. On the other hand, φ can always be used as one par-
ticular synchronous time coordinate, fixing a unique 3 + 1 slicing 
that we will use from now on. The timelike unit vector nμ = ∂μφ

points in this time direction. In particular, we can define the pro-
jection operator

Pν
μ = δν

μ − ∂μφ∂κφgνκ , (6)

satisfying the relations

Pρ
μPν

ρ = Pν
μ, Pν

μ∂νφ = 0. (7)

In the synchronous slicing from above we have

P0
0 = 0, P i

0 = 0, P0
i = 0, P j

i = δ
j
i , (8)

showing that Pν
μ projects space-time vectors to space vectors. It 

is then clear that in mimetic gravity, using the projection oper-
ator and the vector nμ = ∂μφ, it is possible to construct four-
dimensional tensors whose only non-zero components in the syn-
chronous gauge are along space directions. For example, as we will 
show in the following, the expression

R̃ := 2Rμν∂μφ∂νφ − R − (�φ)2 + ∇μ∇νφ∇μ∇νφ (9)

coincides with the spatial curvature scalar 3R of synchronous 
slices.

In previous works we have shown that in mimetic gravity, with-
out the need to introduce any additional fields, we can build cos-
mological models [3] and solve the singularity problem for Fried-
mann, Kasner [4] and Black hole [5] solutions by using the idea 
of limiting curvature. More recently we have shown that the idea 
of asymptotic freedom can be implemented in mimetic gravity by 
introducing a �φ dependent effective gravitational constant which 
vanishes at the limiting curvature [11]. Moreover, it was shown 
that such a dependence does not introduce higher time derivatives.

The purpose of this letter is to show that within mimetic grav-
ity we can construct all the terms needed in Hořava gravity using 
four-dimensional tensors that reduce to the desired form in the 
synchronous gauge. We will thus show that in mimetic gravity it 
is possible to formulate Hořava gravity in a diffeomorphism invari-
ant way without introducing ghost-like degrees of freedom.

The basic fields that appear in Hořava gravity are the three-
dimensional tensors and scalars κi j , κ , 3Rij , 3R , Dk

3Rij , and their 
contractions needed to form space diffeomorphism invariant ex-
pressions. The extrinsic curvature of the synchronous slices φ =
const . is given by

κi j = 1

2
γ̇i j, κ

j
i = γ jlκil, κ = κ i

i = (ln
√

γ )·, (10)

where dot denotes t derivative and γ is the metric determinant. 
Using φ, it can be expressed covariantly as

∇i∇ jφ = −κi j, ∇i∇ jφ = κ
j
i , �φ = κ. (11)

The non-vanishing components of the four-dimensional Riemann 
tensor are determined by

R0
ki j = Diκkj − D jκki, (12)

R0
k0 j = κ̇ jk − κ jnκ

n
k , (13)

Rl
ki j = 3Rl

ki j + κ l
iκ jk − κ l

jκik, (14)
where Di and 3Rl
ki j are the covariant derivative and the Riemann 

tensor belonging to the metric γi j . With the help of the above 
identities, we can construct the four-dimensional tensor

R̃σ
ρμν := Pσ

δ Pγ
ρ Pα

μPβ
ν R

δ
γ αβ + ∇μ∇σ φ∇ρ∇νφ − ∇ν∇σ φ∇ρ∇μφ

(15)

whose only non-zero components are 3Rl
ki j in the synchronous 

gauge. Next, we compute the Ricci tensor components

R00 = − .
κ − κi jκ

i j (16)

R0i = Dlκ
l
i − Diκ (17)

Rij = 3Rij + κκi j − κn
i κnj + R0

i0 j . (18)

These relations allow us to define the tensor

R̃μν := Pα
μPβ

ν Rαβ +�φ∇μ∇νφ − ∇μ∇ρφ∇ν∇ρφ

− Rγ
μδν∇δφ∇γ φ, (19)

whose non-zero components coincide with 3Rij in the syn-
chronous gauge. Contracting with gμν , we arrive at (9).

We note in passing that the total derivative 1√
γ ∂0

(√
γ κ

)
can be 

easily eliminated from the Lagrangian of Einstein-Hilbert gravity, 
leaving us with

−R − 2∇μ

(
�φ∇μφ

) = ∇μ∇νφ∇μ∇νφ − (�φ)2 + R̃. (20)

For manifolds with boundary ∂M = {φ = φi} ∪ {
φ = φ f

}
consisting 

of closed spatial hypersurfaces of constant φ, this has precisely the 
same effect as adding the Gibbons-Hawking boundary term.

Space derivatives of the above tensors can be obtained by ap-
plying the operator Pρ

μ∇ρ . Note that the spatial components of 
Pγ

ρ ∇γ R̃αβ coincide with Dk
3Rij in the synchronous gauge. To 

obtain a purely spatial tensor, one still must project all four-
dimensional indices, i.e. one has to use Pγ

ρ Pα
μPβ

ν ∇γ R̃αβ . Thus, we 
can now define the analogue of the three-dimensional Cotton ten-
sor

3C
i
j =

1√
γ

ε ikl Dk

(
3R jl − 1

4
γ jl

3R

)
(21)

by writing

C̃μ
ν := − 1√−g

εμρκλ∇λφ ∇ρ

(
R̃νκ − 1

4
gνκ R̃

)
, (22)

whose only non-vanishing components in the synchronous gauge 
are 3Ci

j .
Another object that could be constructed is the Chern-Simons 

three form ωP related to the Pontryagin topological invariant

Rσ
ρ ∧ Rρ

σ = dωP , (23)

ωP = �ν
μ ∧ d�

μ
ν + 2

3
�

μ
ν ∧ �ν

ρ ∧ �
ρ
μ , (24)

where �ν
μ = dxρ�ν

ρμ and Rσ
ρ = 1

2 R
σ
ρμνdx

μ ∧dxν are the Christoffel 
connection one-form and the curvature two form, respectively. The 
four-form dφ ∧ ωP is not parity invariant. Up to a boundary term, 
its integral is given by∫

dφ ∧ ωP = −
∫

φ Rσ
ρ ∧ Rρ

σ . (25)

This shows that such a contribution to the action is covariant and 
invariant under global shifts of φ. In the synchronous gauge the 
integrand reduces to
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ε i jk
(

�ν
iμ∂ j�

μ
kν + 2

3
�

μ
iν�ν

jρ�
ρ
kμ

)
= 3ωP + 2ε i jkκn

i D jκkn, (26)

where

3ωP = ε i jk
(

λn
im∂ jλ

m
kn + 2

3
λm
inλ

n
jlλ

l
km

)
, (27)

and λk
i j are the Christoffel symbols calculated for γi j . The term 

2ε i jkκn
i D jκkn can be written as

ε i jk∇i∇nφR0
njk , (28)

which coincides in the synchronous gauge with

εμνρσ ∇μφ∇ν∇λφRτ
λρσ ∇τ φ. (29)

Thus, the purely three-dimensional Chern-Simons form can be in-
corporated in the action by adding the term∫

dφ ∧ ω̃P :=
∫

dφ ∧ (
ωP − ∇λdφ ∧ Rτ

λ∇τ φ
)
. (30)

All of these manipulations illustrate that any expression invari-
ant under spatial diffeomorphisms can be written as a combination 
of four-dimensional tensors that reduces to it in the synchronous 
gauge.

We conclude by writing an exemplary Hořava action in mimetic 
gravity, in terms of four-dimensional tensors and thus completely 
preserving diffeomorphism invariance, without the need for new 
degrees of freedom:

S = 1

16πG

∫
d4x

√−g
(
∇μ∇νφ∇μ∇νφ − c1 (�φ)2 + c2 R̃ (31)

+ c3 R̃2 + c4 R̃μν R̃
μν + c5 C̃

μ
ν C̃ν

μ + c6 ημνρσ ∇μφ (ω̃P )νρσ

+c7 ημνρσ ∇σ φ R̃μα∇ν R̃
α
ρ + . . . + λ

(
gμν∂μφ∂νφ − 1

))
,

where ημνρσ = 1√−g
εμνρσ . The case where c1 = c2 = 1 and all 

other couplings vanish is just a rewritten form of General Relativity 
with mimetic matter. The constants c1, . . . , c7 could also be taken 
as functions of �φ in such a way as to reproduce General Relativity 
in the low curvature limit.

There is no need to repeat calculations done for the Hořava 
models, as those could be thought of as a gauge fixed version of a 
diffeomorphism invariant theory in the synchronous gauge.

In the projectable Hořava models, the lapse function N is as-
sumed to depend on time only, N = N (t). These models coin-
cide with the above family of actions in the synchronous gauge. 
Their renormalization analysis was carried out in references [6], 
[7], where they were shown to be renormalizable. When the same 
analysis was applied to the non-projectable case where the lapse 
function is N = N

(
xi, t

)
, so that terms dependent on the vector 

ai = ∂i N
N can occur, it was found that these models become non-

renormalizable. Attempts were made to construct diffeomorphism 
invariant Hořava models by adding a unit vector field uμ , subject 
to the hypersurface orthogonality condition u[μ ∇νu ρ] = 0. These 
models, however, have a spin-1 and spin-0 degree of freedom in 
addition to the graviton.

The synchronous gauge belongs to the family of temporal 
gauge, which for fluctuations of the metric takes the form nμhμν =
0, where gμν = ημν + hμν and nμ = (1,0,0,0). The main advan-
tage of working in this gauge is that the model proposed above 
will be power counting renormalizable and that the ghosts asso-
ciated with gauge fixing will decouple from the physical S-matrix. 
The disadvantage is the need to have an unambiguous prescrip-
tion for the unphysical singularities of the form (q.n)−α , α = 1, 2
(cf. [12]) and the difficulty in performing higher loop calculations. 
It is a challenging problem to perform a detailed analysis of the 
renormalization program, either in the synchronous gauge or in a 
covariant gauge, using the background field method and integrat-
ing out the mimetic constraint, along the lines of [6]. Even though 
an actual proof could be quite demanding, we expect the mimetic 
Hořava model presented here to be renormalizable.
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