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Abstract The idea of “asymptotically free” gravity is
implemented using a constrained mimetic scalar field. The
effective gravitational constant is assumed to vanish at some
limiting curvature. As a result singularities in spatially flat
Friedmann and Kasner universes are avoided. Instead, the
solutions in both cases approach a de Sitter metric with lim-
iting curvature. We show that quantum metric fluctuations
vanish when this limiting curvature is approached.

1 Introduction

In [1] mimetic matter was introduced utilizing reparametriza-
tion of the physical metric g, in terms of an auxiliary metric
hyv and a scalar field ¢ in the form

v = huh®P ¢ o0 5 (1

This definition implies that ¢ identically satisfies

gﬂv(p,ud),v = 1. (2)

Because the physical metric is invariant under Weyl trans-
formations of h,,, the trace of the equations obtained by
variation of the Einstein action with respect to the metric
vanishes identically. In the absence of matter these equations
become

Gl; — G(]ﬁ’“(]ﬁyu =0, 3)
where G5 = Rl — %8\’,‘ R is the Einstein tensor, and they do

not imply that R = 0 even in vacuum. Therefore, Eq. (3)
taken together with (2) has additional solutions imitating
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dust-like cold dark matter. The scalar field ¢ satisfies a first
order differential Eq. (2) and hence has half a degree of free-
dom which, when combined with the non-dynamical longi-
tudinal mode of gravity, provides an extra degree of freedom
in the form of mimetic “dust”. Equivalently, the same theory
is obtained by implementing Eq. (2) as a constraint added to
the Einstein action:

1 1
S = §/d4x\/—g (—%R + 2 (e" b b — 1)) » @

where A is a Lagrange multiplier [2]. Unexpectedly, the con-
cept of a mimetic field got a support in noncommutative
geometry as a consequence of the volume quantization of
compact three dimensional foliations of space time [3-5].
The mimetic field ¢ proved to be very robust. It could be
used to modify Einstein Gravity in different possible ways. In
particular, in [6] it was shown that adding appropriate poten-
tials V (¢) to the action leads to many interesting cosmo-
logical solutions. Using instead gravity modification of the
Born-Infeld type, where (¢ is bounded by a limiting value,
allowed to obtain bouncing solutions avoiding cosmological
singularities [7] and to resolve black hole singularities [8].
Moreover, one can use the mimetic field to easily construct
ghost free massive gravity with non Fierz-Pauli mass term
[9,10].

In this paper we will explore the possibility of a running
gravitational constant assuming that it depends on O¢, that
is, G = G (J¢). As we shall see, this quantity is the only
measure of curvature G can depend on without introducing
higher time derivatives in the modified Einstein equation.
Assuming that G vanishes at some limiting curvature char-
acterized by (Dd))% we will implement in this way the idea of
“asymptotic freedom” for gravity and investigate its possible
consequences.
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2 Action and equations of motion

Let us consider the theory with action

1
S = E/d“m/—_g(—f (O¢) R — 2A (O¢)

+1 (8" pudy — 1) +2Lm) 5)
where
1
S ) = 872G (Op) (6)

is the inverse running gravitational constant, £, is the
matter Lagrangian and for generality we also included a
“cosmological-like term” A (O¢) I Below we will use
Planck units setting 87 G (¢ = 0) = 87Go = 1. In these
units f (¢ = 0) = 1. Variation of the action with respect
to the metric g, gives

fGuv + <Df—A+% (Z d’;a)‘a) 8uv — oy — Z(u®,v)

= b + T, (7

where
Z :=Rf +2A, ®)

T,ET) is the energy momentum tensor for matter and the prime
denotes derivative with respect to [J¢. The equation

(z;” + 2x¢?”) -0 9)
v
follows from the variation of action (5) with respect to ¢.
Alternatively (9) can be obtained as a consequence of the
Bianchi identities by taking the divergence of (7) and assum-

ing that the energy momentum tensor T;ET) for ordinary mat-
ter is covariantly conserved. Taken together with the con-
straint

guv¢,ﬂ¢,v = 11

Equation (9) allows to determine the Lagrange multiplier A.

3 The synchronous coordinate system

The assumption of global solvability of (2) is of course a
restriction on admissible space-times. As shown in [18], the
existence of a function whose gradient is everywhere time-
like implies stable causality, i.e. there are no closed time-like
curves also for small perturbations of the metric. Since the

! Please note that we have changed the notations used in [7,8] to more
convenient ones.
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norm of the gradient of ¢ is not just positive but everywhere
equal to unity,  := ¢ even qualifies to be used as the time
coordinate of a synchronous coordinate system (see [17])

ds? = dr? — yiedx’dx* (10)

where the above equations greatly simplify. In this coordi-
nate system, the mimetic field ¢ defines the space-like hyper-
surfaces of constant time. The extrinsic curvature of these
hypersurfaces,

1o (1
Kik = ET Yik
can be expressed as kjx = —¢.;x, while ¢.o, = 0. Thus,
of ik d
Up =g dap=v Kik=K=&ln\/_, (12)

that is, in this coordinate system [¢ is simply equal to the
trace of the extrinsic curvature of the hypersurfaces of con-
stant ¢. In this paper, for the sake of simplicity, we will only
consider a homogeneous metric with vanishing spatial cur-
vature. In this case y;; depends only on time # and Eq. (9)
simplifies to

1

ﬁat (V7 (3:Z+210)] =0, (13)

and can be easily integrated to give

=Lz + < (14)
2 VY

where the dot denotes derivative with respect to time ¢ and
the constant of integration C describes the contribution of
mimetic matter.

Substituting the expression (14) for A in (7) and calculating
the covariant derivatives of f and Z we find that the 0 — 0
component of the equation becomes

1
fG00+<i%+§R)Kf’—A+KA'=8, (15)
where
C
SETOO‘FW, (16)

is the total energy density of mimetic and ordinary mat-
ter. Assuming that the spatial components of the energy-
momentum tensor satisfy T,§ x 52, subtracting from the spa-
tial components of Eq. (7) one third of their trace gives

i 1 1 i 1 smoof
r(oi-somi) - (5 -5mm) =0 an
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For the spatially flat metric y;x
RS = —k — ik, RL=—00 (V). (18)

where K;; = yimek (see, for example, [17]). Using these
expression, Egs. (15) and (17) become

3 (F =272 = A bieh = 2 (F +of) Rk =& (19
and
9% ( fﬁk,ﬁ) —0, (20)

correspondingly, where

1.
K = Ky — 5“51@ 21
is the traceless part of the extrinsic curvature.

The absence of higher time derivative terms in the mod-
ified Einstein equations can be understood by realizing that
in the synchronous coordinate system
fR=f (—2;& S 3R)

k_
— 2F—§ <K2 +aikk + 3R> (22)

where f is assumed to be integrable with f (k) = F’(x) and
3R is the spatial curvature scalar. Hence the action contains,
up to a total derivative only first order time derivatives of
the metric.” This is a distinguishing feature of the f(C¢)-
theory which would not be present if [¢ is replaced by any
other non-constant, covariant expression containing first time
derivatives of the metric like e.g. 'V ¢, ,,, = K,i/cik .

Note that if we choose f and A to be symmetric functions,
then the time reversal invariance of the Einstein equation
is maintained. Hence the expanding counterparts for all the
contracting solutions presented in the following can be found
simply by reversing the arrow of time.

4 Asymptotic freedom and the fate of a collapsing
universe

Equation (19) can be further simplified by making the choice

A= %;ﬂ(f -1 (23)

such that it becomes

2 This argument can, however, only serve as a heuristic explanation.
Strictly speaking, it is not allowed to use [J¢ = « and impose gauge
conditions in the action before variation.

In our units the inverse gravitational constant f is nor-
malized to unity for k2> = 0. To guarantee that at low cur-
vatures the corrections to General Relativity will be in the
next order in curvature we have to assume that for k2 < 1,
f =1+0(«?); in this case A = O (k*). In addition we
assume that the gravitational constant G(x2) o 1/f van-
ishes at some limiting curvature Kg (cf. [11-16]) and thus
take the simplest possible function for f, namely

1

f= 1— (KZ/K3)7

(25)

where /cg is a free parameter of the theory and can be taken

well below the Planckian value.
Friedmann Universe First let us consider a flat contract-
ing Friedmann universe with the metric

ds® = di* — a* (t) Sipdx'dxk. (26)
In this case

a
Kk =3— 27
a

and E,i vanishes. Therefore, Eq. (21) is satisfied identically
and Eq. (24) can be rewritten as

l 5 1+2(K2/K§) _
3¢ (—1—(/<2/K§) =e. (28)

Before writing the exact solution for Eq. (28), we first
consider some of its asymptotic limits. For «? /Kg < lit
reduces in the leading order to the usual Friedmann equation

a\’> 1 ”
(a) =5 >

For a contracting universe dominated by matter with equa-
tion of state p = we it has the solution

2
a o ¢3TFw) (30)
for large negative . At the moment when the curvature
approaches its limiting value, the gravitational constant

begins to decrease and for 1 — (/c2 //cg) « 1, Eq. (28) can
be approximated by

K2
=g |14 ). (31)
&
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In a contracting universe the scale factor a decreases,
while the energy density grows as ¢ o« a>*") Hence,
the solution of Eq. (31) approaches the contracting flat de
Sitter universe with constant curvature where the scale fac-
tor decreases as

Kot
a o exp <_T) (32)

for kot > 1. The gravitational constant G oc f~! vanishes
as 1/e when ¢ — oo. The singularity is thus avoided as a
result of the asymptotic freedom of gravity irrespective of
the matter contlefwt of the universe.

For e oc y~ "2 the differential Eq. (28) can be integrated
to obtain the exact implicit solution for « (¢). In fact, differ-
entiating the logarithm of Eq. (28) with respect to time and
taking into account that d Iny /9t = 2k, we obtain a first
order differential equation which can be easily integrated to
give

1
_; w/cot U atanh L V2 arctan («/5£> . (33
K K0

Ko

One can easily verify that the asymptotics (30) and (32) are
smoothly connected in this solution. In particular, for large
negative ¢ the universe contracts according to (30). However,
as it follows from (33), k (t = 0) >~ —0.6«( instead of blow-
ing up as it would for solution (30) and for large positive ¢
our solution approaches the de Sitter asymptotic (32).

In conclusion, the singularity is replaced by a smooth tran-
sition to a de Sitter metric. This qualitative behavior follows
most naturally from our theory, independent of a specific
choice of f and A. Note that the modified Friedmann equa-
tion is in general just a relation of the form «2(¢). Demand-
ing that this relation is smooth, one-to-one, bounded and has
bounded slope, as it is necessary to ensure limiting curva-
ture, the only remaining possibility is for « to approach its
constant limiting value as ¢ tends to infinity.

Kasner Universe We now consider a contracting anisotro-
pic Kasner universe to find out what happens when the curva-
ture approaches its limiting value for which the gravitational
constant vanishes. To simplify the formulae we will set the
energy density of matter to zero although all our conclusions
survive also in the presence of the matter. For an anisotropic
universe

Yik = Vi) () ik (34)

and y = y(1)Y)¥3)- The traceless part of the extrinsic cur-
vature in this case is nonvanishing and is determined by inter-
grating Eq. (21):

K, = s
V7

@ Springer

where X}; are constants of integration satisfying X§ = 0. Sub-
stituting this expression in Eq. (24) and using (25) we obtain

L (LH2620)) 101+ ()
() R e

where A2 = )\;;)»f.‘ . Because k = y /2y, this equation allows
us to determine how the determinant of the metric depends
on time. Knowing y (¢), the components of the metric can
be found in the following way: without loss of generality we
can diagonalize A!, so that, A} = A(;8}. Taking into account
the definitions (11) and (21), Eq. (35) reduce to

Yo 17 _ 2o

= , (37)
Yiy 3v VY
from which it follows that
2A(
NS VE @) )
Yi)y =Yy '~ exp —=dt ). (38)
@ ( 7

Before giving the exact solution of Eq. (36) it is more enlight-
ening to study the asymptotic solutions. At low curvatures,
that is, for k2 < Kg, Eq. (36) simplifies to

N 2 12
(=5 ®

and has the solution
3:00
V=3 (40)

Taking into account that in this limit f = 1 and substituting
this solution in (38) we find

3_\13
Yi) = (—k2> 12Pi, (41)
2
where
-—I:I:\/ik(i) (42)
Pi=3=y375

Since A1 4+ A2 4+ A3 = 0, the p; satisfy the conditions

p1+p2+p3=1, P%"'P%"‘P:«zx:l’

and at low curvatures we have either an expanding or a con-
tracting Kasner universe [17].

In a contracting universe, at |t| ~ 1/ko the curva-
ture becomes of the order of limiting curvature and for
1 — (k?/k3) < 1, Eq. (36) is well approximated by
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1 X2
2
K| ————— | = —, 43)
0 (1—(/(2//(3)) y
from which it follows that
. , A\ 1/2
Y LGY4
— =2k |1 — = 44
y 0( 2 ) 44)

in a contracting universe and for y < A%/ /cg we have
y o exp (—2kot) . (45)
As follows from (44), in this limit

32
f= (46)
K5y
and the integrals in (38) fast converge to some constants for
t > 1/kp. These constants can be absorbed by redefinition
of the spatial coordinates to give the asymptotic solution

_ _ _ 13 2
Y1) =VYQ) =Y3) =V '~ Xexp 3mt, (47)

that describes a contracting flat de Sitter universe with con-
stant curvature.

The exact implicit solution of Eq. (36) for « (¢) is given
by

Kot = @—atanh i—\/5 arctan <\/§£>+arctan i. (48)
K Ko KQ Ko

Note that in the anisotropic case we are forced to use
asymptotic freedom if we want to obtain a non-singular mod-
ification where « tends to its constant limiting value. Only in
this way the anisotropy can disappear during contraction.

5 Quantum fluctuations

Now we look at what happens with quantum fluctuations of
the gravitational field as we approach the limiting curvature
where the gravitational constant vanishes. Asitis well known
(see, for example, [19]), in General Relativity the typical
amplitude of quantum fluctuations of gravitational waves in
Minkowski space and on curved background at scales / much
smaller than the curvature scale is about

VG
where G is the gravitational constant. Therefore, in our theory
where this gravitational constant vanishes on the background
with limiting curvature, one could expect that the quantum

metric fluctuations must also vanish. We will now show that
this is what really happens. Consider a slightly perturbed flat
Friedmann Universe with metric

ds® = a® (n) (dn2 — (Sik + hir) dxidxk) ; (50)

where we have introduced conformal time n = % and
hj is the traceless (hf = () and transverse (h;{’i = 0) part of
the metric perturbations. Substituting this metric in action (5)
and expanding it to second order in 4 we obtain the following

action for the gravitational waves:
1 , ‘
S=3 / fa? (h’k’h{.“ - hi’mhﬁ"m> dnd’x, (51)

where prime denotes the derivative with respect to conformal
time 1 and the spatial indices are raised and lowered with
dik. This precisely coincides with the action for gravitational
waves in a Friedmann universe with the “scale factor”

d::a\/?.

In this case the quantization procedure is well known and
there is no need to repeat all the steps here. Referring to
section 8.4 in [19] we find that the typical amplitude squared
for the quantum fluctuations is

2 2
PRGNS

Sh? (k, n) ~ = ,
(k, ) ) fa

(52)

where k is the co-moving wave number and the mode function
vy satisfies the equation

a//

W+ oiu =0, of=k>—— (53)

a

with initial conditions vk (9in) = 1//@k, v,/c Min) = i /oK
for quantum fluctuations. When the solution approaches the
limiting curvature we have f o ¢ o« a2+ and &
a—2(1+3w) Taking into account that in contracting de Sitter
a (n) = 3/kon, where n grows, Eq. (53) becomes

w? — 1
o + <k2_(u;—nz)> v = 0. (54)

We can define quantum fluctuations only for short wave grav-
itational waves satisfying kn > 1, thatis, for physical scales
l=a/k K K(;l. In this case vy ~ exp (ikn) /vk and, as
follows from (52)

~ VG (55)

VTl ]

Hence, quantum fluctuations in a given physical scale I <«
Ko ! vanish as k — o and correspondingly G (k) — O.

Sh(l) ~

@ Springer
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This is in complete agreement with our expectations. The
perturbations with kn < 1, which were outside the horizon
Ko ! finally come inside because n grows in a contracting de
Sitter space-time. The amplitude of metric perturbations 4 is

constant before horizon crossing, but after entering the hori-

. ~ 1
zon it decays as @~ oc a2!*3%) Thus we have shown that

the de Sitter space-time with limiting curvature is completely
classical, with no quantum metric fluctuations present.

6 Conclusions

The simple observation that the conformal part of the met-
ric in General Relativity can be extracted covariantly via a
constrained scalar field ¢ has proven to be very fruitful. The
resulting modified gravity theory does not induce any addi-
tional degrees of freedom for the graviton, but at the same
time makes the longitudinal mode dynamical even in the
absence of matter. This mode can serve as a viable candidate
for dark matter in our Universe. Moreover the constrained
scalar field allows us to build invariants which in synchronous
coordinates can be expressed exclusively in terms of first
order time derivatives of the metric. This opens the possi-
bility to modify General Relativity in a simple way avoiding
problematic higher order time derivative terms which generi-
cally lead to ghost degrees of freedom. Such a generalization
of Einstein theory happens to be very interesting and allows
us for example to implement the idea of limiting curvature
and resolve spacelike singularities in Friedmann and Kasner
universes as well as in black holes. The limiting curvature,
which is a parameter of the theory, can be taken well below the
Planckian curvature. Potentially, this would make the diffi-
cultunresolved problem of non-perturbative quantum gravity
obsolete for all practical purposes.

In this paper we have investigated the possibility of imple-
menting the idea of classical asymptotic freedom just assum-
ing that the gravitational constant vanishes at the limiting
curvature. As it was shown, in this case the singularities in
flat contracting Friedmann and Kasner universes are resolved
and close to the limiting curvature the de Sitter solution is
approached. Moreover, quantum metric fluctuations asymp-
totically vanish and the spacetime becomes fully classical at
this limiting curvature. This opens an interesting possibil-
ity to resolve the longstanding singularity problem in Gen-
eral Relativity via a simple modification of Einstein theory
at large curvatures without referring this problem to a yet
unknown non-perturbative theory of quantum gravity.

For the sake of simplicity and to highlight the most impor-
tant aspects first, in this paper we focused mainly on the
homogeneous, spatially flat sector of the theory proposed
above. In another soon to appear paper we will extend our

@ Springer

analysis and consider applications to spatially non-flat space-
times, including Black Holes.
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