
Semiclassical theory of laser-assisted radiative recombination

I. I. Fabrikant and H. B. Ambalampitiya

Department of Physics and Astronomy,

University of Nebraska, Lincoln, Nebraska 68588-0299, USA

(Dated: April 7, 2020)

Abstract

We study the process of laser-assisted radiative recombination of an electron with a proton

by using a semiclassical approach involving calculation of classical trajectories in combined laser

and Coulomb fields. Due to chaotic scattering in the combined fields, the radiation probability

as a function of the impact parameter and the constant phase of the laser field exhibits chaotic

behavior and fractal structures. We obtain a strong enhancement of the recombination cross section

as compared to the laser-free case due to the Coulomb focusing effect. For sufficiently low incident

electron velocities the cross section becomes infinite, and we limit it by assuming a finite laser

pulse duration. With the pulse duration tp = 5 ps we obtain the gain factor for capture into the

ground state of the hydrogen atom of about 220 for infrared fields in the intensity range 109− 1012

W/cm2. The gain factor grows with tp but slower than linearly.

PACS numbers:
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I. INTRODUCTION

Spontaneous radiative recombination (RR)

e− + A+(n) → A+(n−1) + hν

is an important process in plasmas [1, 2] and in electron cooling in ion beams [3, 4]. In 1983

Neumann et al.[5] proposed to use it for formation of antihydrogen atom through a similar

reaction involving positron capture by antiproton. Since the rate of spontaneous RR is very

small, they proposed to increase it by using stimulated RR of the type

e− + A+(n) + hν → A+(n−1) + 2hν.

The ratio of the stimulated recombination rate to the spontaneous recombination rate is

called the gain factor. In their storage ring experiments Schramm et al. [6] were able to

obtain the gain factor up to 22 for capture into the n = 2 state of the hydrogen atom. In

similar experiments of the Mitchell’s group [7, 8] the value of the gain factor reached up to

a few thousand for capture into Rydberg states with the principal quantum numbers n=11,

12 and 13.

The rate of the stimulated RR is proportional to the laser intensity. However, in practice

the intensity is limited by the competing process of photoionization. Indeed, according to

the Einstein theory of stimulated emission the ratio of the stimulated emission rate W StRR

to the photoionization rate WPI is [5]

W StRR

WPI
=

π2h̄2j

mEe∆ν

where m is the electron mass, Ee is the electron energy, j is the electron current density,

and ∆ν is the spectral width of the radiation field. This ratio is very small for realistic

parameters j and ∆ν. However, at low intensities, when both rates are small, the capture

into excited state is accompanied by another competing process, spontaneous emission into

a lower state. If we require that this process happens faster than photoionization, we obtain

for intensity

I <
hν

σPIτ

where σPI is the photoionization cross section, and τ is the lifetime with respect to the

spontaneous emission. For the 2p state of hydrogen τ = 1.6 ns. Using this lifetime, Schramm
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et al. [6] estimated that in the conditions of their storage ring experiment the restriction for

intensity is I < 20 MW/cm2. With this restriction they were able to achieve the gain factor

up to 22. Mitchell’s group [7, 8] was able to prevent reionization by limiting the duration of

the laser pulse. However, attempts to use laser stimulated RR for antihydrogen production

in the n = 11 state by ATHENA collaboration [9] demonstrated no evidence for this process,

apparently because the e+ + p̄ RR to the n = 11 state of H̄ has much lower cross section

than that for the three-body recombination which is the dominant process in the ATHENA

experiment [10].

In the present paper we discuss an alternative method to increase the RR rate, the

laser-assisted recombination. In contrast to the stimulated recombination, the laser-assisted

recombination is a nonresonant process since the frequency of the laser field is not equal to

the emitted photon frequency. The advantage of the laser-assisted, rather than stimulated,

emission is that the reionization process in the latter could be relatively weak. Indeed, for a

low-frequency field one-photon ionization is not possible. The laser intensity should be still

limited due to possibility of tunneling ionization in strong fields. However the restriction on

intensity is not as strong as for the stimulated emission.

The laser-assisted RR is the final step of the high-order harmonic generation process

(HHG) [11–13] when electron is captured by an ion by emitting high-frequency photon in

an infrared field. It was studied experimentally in this context in Refs.[14, 15] whereby

continuum electrons were created by photoionization of Ca and Ba atoms with a subsequent

observation of radiative recombination in a half-cycle electric field pulse [14] or a microwave

field [15, 16]. A strong enhancement of RR into Rydberg states by a half-cycle laser pulse

was studied theoretically in [17, 18]. More recent theoretical papers on laser-assisted RR [19–

27] were focused on relatively high-energy electrons (hundreds of eV) capable of producing

X rays. The Coulomb effects were either neglected or treated perturbatively which can be

justified for strong fields and high-energy electrons. However, the cross sections for RR in

these cases are rather small. In contrast, in the present paper we concentrate on low-energy

electrons with velocities of about or below 0.2 a.u. (energy below 0.54 eV) when the Coulomb

effects are important and the cross sections become large.

A complete quantum treatment of electron motion in combined laser and Coulomb fields,

although possible by numerical solution of the time-dependent Schrödinger equation [28–32],

presents big challenges and lacks physical transparency. Fortunately, sometimes processes
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involving electron motion in a superposition of laser and Coulomb fields can be treated

classically. A typical example is electron bremsstrahlung, or continuum-continuum radiative

transition. At low electron velocities the motion in the Coulomb field is quasiclassical [33],

specifically for the motion in the Coulomb field “the condition for quasiclassical motion...

can be written in the form α/h̄v � 1” [33] (α is the Coulomb constant). In particular

comparison of classical and quantum cross sections for bremsstrahlung in the Coulomb

field shows a good agreement [34]. This conclusion was used [34] to calculate laser-assisted

bremsstrahlung. Two important features have been found. First, since classical scattering

in combined fields is chaotic [35–37], the emission probability is a random function of the

impact parameter and the constant phase of the laser field. The latter feature was used

[38] to explain the plateau behavior of the above-threshold ionization. Second, due to the

effect of Coulomb focusing [39], a very wide range of impact parameters contributes to the

emission process resulting in the cross section which is much larger than that for the laser-

free bremsstrahlung. The Coulomb focusing was studied before in the process of strong-field

ionization [39–45] and HHG [46]. However, in these two processes the range of impact

parameters is strongly limited since the processes start with a bound electron. In contrast,

the processes of free-free and free-bound transitions start with an unbound electron, therefore

the range of impact parameters contributing to the processes is much wider, and the cross

section enhancement is much more substantial.

In contrast to bremsstrahlung, the RR process cannot be treated completely classically,

since the electron is captured into a bound quantum state. However, even before the de-

velopment of quantum mechanics Kramers [47] used the Bohr theory and correspondence

principle to derive semiclassical expressions for cross sections for photoionization and RR.

The Kramers’s formula works surprisingly well even for the ground state. Specifically, the

Kramers photoionization cross section from the 1s state of the hydrogen atom exceeds the

exact quantum-mechanical result [48] at the photoionization threshold by only about 25%,

and agreement is improving with the growth of the photon energy. Berson [49] used the

same approach to derive semiclassical formula for multiphoton ionization. Comparison with

quantum results shows that the Berson’s formula works very well if n ≥ Nm where Nm is

the minimum number of photons required for ionization.

In the present paper we use the Kramers’s approach to treat laser-assisted RR. Similar to

the laser-assisted bremsstrahlung case [34] the cross section is strongly increased as compared
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to the laser-free case. Atomic units are used throughout the paper unless stated otherwise.

II. RADIATIVE RECOMBINATION

A. Original Kramers formula

In order to make our approach more transparent, we will go first through the major

points of derivation of the Kramers formula. We will focus on the RR process, although

a similar treatment works for the processes of one-photon and multiphoton ionization [49].

Consider field-free radiative electron capture by a Coulomb center with charge Z. Since

most of radiation occurs when the electron is close to the center, we will assume motion

along a parabolic orbit with eccentricity ε close to one. Then, using the classical theory of

radiation [50], we obtain for the power radiated

Is =
64 · 22/3s4/3E4

3c3Z2

{
(1− ε2)Ai2(u) +

(
2

s

)2/3

(Ai′)2(u)

}
(1)

where s is the harmonics order, s = ωT/2π, ω is the frequency of the emitted radiation, and

T is the period of revolution of the electron on the orbit, E is the electron energy on the

orbit, and

u =
(
s

2

)2/3

(1− ε2).

Note that the Landau and Lifshitz’s [50] definition of the Airy function Φ differs by a constant

factor from Ai:

Φ(u) =
√
πAi(u).

In the classical theory the harmonic order is a positive integer, and Eq. (1) is obtained

from a more accurate expression for intensity of radiation of high harmonics for a motion

on a bounded orbit, in terms of the Bessel function, assuming that the eccentricity of the

orbit is close to 1, i.e. the orbit is close to a parabola. Accordingly,

1− ε� 1, s� 1.

For a capture to a low-lying orbit these conditions might not be valid. However, the accurate

expression cannot be used in the problem of RR because it assumes that the initial electron

motion is already bound. The approximate Eq. (1) is more appropriate since it describes the
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motion of the charged particle on the border between the unbounded and bounded motion.

Moreover, the asymptotic expression for the Bessel function used in derivation of Eq. (1)

Js(sε) ≈
(

2

s

)1/3

Ai

[(
s

2

)2/3

(1− ε2)
]

is valid for noninteger s and works quite well for rather low values of s, down to 0.4. This

explains the success of the Kramers formula even for capture into the ground state, n = 1,

when s is close to 1/2. This is an important conclusion which we will use for the laser-assisted

recombination as well.

Using the correspondence principle, we obtain for the energy

E = − Z
2

2n2
,

for the period

T =
2πn3

Z2

and for the eccentricity

1− ε2 =
l2

n2

where n is the principal quantum number, and l is the angular momentum quantum number.

Using these expressions, we can rewrite Eq. (1) as

Is =
4 · 24/3ω2/3Z14/3

3c3n6
[(Ai′)2(u) + uAi2(u)].

The probability of emission of a photon for a given electron angular momentum l during the

period is

Pl =
T

ω
Is =

8π · 24/3ω2/3Z8/3

3c3n3ω
[(Ai′)2(u) + uAi2(u)]. (2)

We can relate l to the impact parameter b as

l = kb (3)

where k is the initial electron momentum. Then the total cross section for the radiative

recombination is

σ = 2π
∫
P (b)bdb =

64π2Z4

3c3n3 · 4Eeω

∫ ∞
0

[(Ai′)2(u) + uAi2(u)]du (4)

where we have expressed the electron momentum k in terms of the energy of the incident

electron, k = (2Ee)
1/2, and used

u =
(
ω

2Z2

)2/3

l2
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and Eq. (3) resulting in

bdb =

(
2Z2

ω

)2/3
du

2k2
.

Although the maximum value of l is n− 1, we have extended the upper integration limit to

infinity since the Airy function decays very fast with l. Physically this means that only the

orbits with low l (or eccentricity close to 1) contribute to radiation. In this case the integral

in Eq. (4) is easily evaluated using

[Ai′(u)Ai(u)]′ = uAi2(u) + (Ai′)2(u).

Therefore ∫ ∞
0

[(Ai′)2(u) + uAi2(u)]du = −Ai′(0)Ai(0) =
1

2π
√

3
.

Finally

σ =
8πZ4

3
√

3c3n3ωEe

(5)

where

ω = Ee +
Z2

2n2
.

Eq. (5) is the Kramers’ result for the RR cross section. Note that it exhibits the correct

threshold behavior: σ diverges as 1/Ee for low Ee.

B. Generalization to laser-assisted recombination

In the case of the presence of a laser field we use the electric dipole approximation and

direct the incident electron velocity v0 parallel to the electric field. The force acting on the

electron is chosen in the form

F = F0 cos(ωt+ φ0)

where F0 is the amplitude and φ0 is a constant phase. We direct both vectors along the

x axis and start integration of classical trajectories with the following initial conditions:

x(0) = x0, y(0) = b, vx(0) = v0. We choose the initial position far enough from the Coulomb

center so that the Coulomb interaction at t = 0 can be nelgected. Accordingly the initial

dependence vx(t) is given by

vx(t) = v0 +
F0

ω
[sin(ωt+ φ0)− sin(φ0)] . (6)
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The results for the cross sections should be averaged over φ0. This is equivalent to averaging

over the initial position x0 [51].

For calculations we choose classical trajectories which start with an arbitrary large impact

parameter b but eventually lead to orbits with low angular momentum l. At this point the

electron is close to the Coulomb center, l becomes approximately constant, and the electron

radiates according to the Kramers scenario. Typically the minimum value of the angular

momentum lmin correlates well with the small value of the distance of the closest approach

rmin. However at initial energies close to zero this might be not the case, therefore we assign

a nonzero value to the radiation probability only if rmin is well within the zone where the

Coulomb interaction dominates. After calculation of the radiation probability, the RR cross

section is obtained as

σRR = 2π
∫
P [lmin(b)]bdb

where P is the probability of radiation for a trajectory leading to the minimum (in absolute

value) angular momentum lmin which is found by running trajectories in the superposition of

the laser and Coulomb fields. The trajectories are computed by using the method described

in ref. [34]. After lmin is found, the probability of RR to an orbit with the principal quantum

number n is calculated using Eq.(2). The probability is nonnegligible if

1− ε2 =
l2

n2
� 1.

We will be interested in parameters of the laser for which the Coulomb focusing effect is

important. First, from the studies of the laser-stimulated bremsstrahlung [34] we conclude

that the mean electron velocity in the laser field, following from Eq. (6),

v̄x = v0 −
F0

ω
sinφ0

should be small to allow several oscillations before the electron hits the nucleus.

At this point it is convenient to introduce a parameter

χ =
ωv0
F0

.

For χ < 1 there are two values of phase φ0, φ1 and π − φ1, where

φ1 = arcsinχ,

corresponding to v̄z = 0. In the vicinity of these values the range of impact parameters

contributing to the RR cross section becomes very large, in fact, as will be shown below,
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theoretically infinite. If χ > 1 the cross section is finite, but can be still large if χ is not

exceeding 1 greatly.

The electron quiver amplitude a0 = F0/ω
2 should not be too large in order to allow for

the Coulomb focusing to be efficient:

F0

ω2
=

v0
χω

< a1.

Choosing a1 = 100 a.u., we get ω > 0.01v0 a.u., F0 > 0.01v20 a.u. For illustration we have

chosen three examples: (1) v0 = 0.2 a.u., F0 = 0.0056 a.u. (I = 1.10 TW/cm2), ω = 0.014

a.u. (λ = 3.26µm); (2) v0 = 0.1 a.u., F0 = 0.000244 (I = 2.09 GW/cm2), ω = 0.002

(λ = 22.8µm); (3) v0 = 0.2 a.u. F0 = 0.000244, ω = 0.002. The values of the parameter χ

are 0.5000, 0.8197, and 1.639 in cases 1, 2, and 3 respectively. In all three cases we calculate

the electron-proton recombination, that is Z = 1.

As was discussed in Introduction, for a realistic experiment the field should not be too

strong since intense field can lead to a fast reionization of the captured electron. A possible

restriction on the field intensity comes from the requirement that the RR rate is higher than

the multiphoton ionization rate due to the laser field

WRR � W PI

where

WRR = σRRj

is the radiative recombination rate, W PI is the photoionization rate, and j is the incident

electron current density. A weaker restriction for excited states can be obtained from notic-

ing that the excited state formed as a result of recombination is unstable with respect to

spontaneous decay to a lower, typically ground, state. If

W PI < W S,

where W S is the rate of the spontaneous decay, then the excited state is not ionized, but

decays, and a stable atom is formed in the ground state.

At low frequencies, corresponding to infrared and far infrared radiation, and moderate

principal quantum numbers n, ranging from 1 to 5, one-photon ionization is not possible, and

in order to estimate the ionization rate we used the formula of Popruzhenko et al. [52] which

works well for a wide range of values of the Keldysh parameter describing both tunneling and
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multiphoton regimes, if Nmin > n where Nmin is the minimum number of photons required

to ionize the state with the principal quantum number n. (An alternative formula of Berson

[49] works for small Nmin.) In Table I we present the values of ionization rates for hydrogen

atom and compare them with spontaneous decay rates, taken from Bethe and Salpeter [48],

for three cases chosen above. In case 1 (TW field) the rate appears too high even for n = 2

which is not surprising since the threshold field for the classical over-the-barrier ionization

in this case is lower than the actual field, 0.0056 a.u. However, the ground state should

survive against photoionization even for moderate electron currents. In cases 2 and 3 (GW

field) states with n = 1, 2 and 3 should survive against photoionization both due to higher

recombination rates and sufficiently short lifetimes with respect to spontaneous emission.

However, for n = 4 the ionization rate is higher than the spontaneous decay rate.

TABLE I: Multiphoton ionization rates and spontaneous decay rates for the hydrogen atom. γ is

the Keldysh parameter, and Ft is the threshold field for the classical over-the-barrier ionization.

The spontaneous decay rate is given for np→ 1s transitions which have the highest probability for

the nl→ n′l′ series. All quantities are listed in a.u.

n Nmin γ Ft WPI WS

case 1 1 36 2.5 0.0625 5.0× 10−38

2 9 1.25 0.0039 2.13× 10−3 1.51× 10−8

cases 2 and 3 2 63 4.10 0.0039 0 1.51× 10−8

3 28 2.73 0.00077 1.30× 10−23 3.98× 10−9

4 16 2.05 0.00024 2.38× 10−6 1.70× 10−9

5 11 1.64 0.00010 19.52 0.82× 10−9

III. RESULTS AND DISCUSSION

A. Radiation probabilities and cross sections

In Fig. 1 we present the minimum (in absolute value) angular momentum lmin and the

distance of the closest approach rmin as functions of the impact parameter b for case 2,

φ0 = 0.51439. Strictly speaking, l is the projection of the angular momentum on the axis

perpendicular to the collision plane (the only nonzero component of the angular momentum),
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FIG. 1: (Color online)Dependencies of the minimum angular momentum lmin (thick black curve)

and the distance of the closest approach (thin red curve) on the impact parameterr b for v = 0.1

a.u., F0 = 0.000244 a.u., ω = 0.002 a.u., φ0 = 0.51439. Note that lmin is the value of l corresponding

to the minimum value of |l|.

therefore it can be both positive and negative, and the quantity of interest is |l|min. Low

values of |l|min, allowing efficient radiation, correlate very well with low values of rmin meaning

that radiation occurs only at close approaches which is physically reasonable. Typically a

trajectory starts with high value of l, and it becomes low (if it does) only at small distances

from the Coulomb center. Even for low b, when lmin is naturally low, the distance of the

closest approach is low as well.

In Figs. 2 and 3 we present the RR probability as a function of impact parameter.

In cases 1 and 2 the parameter χ < 1, and we choose phase φ0 close to φ1. Note that

φ1 = π/6 = 0.52360 in case 1 and φ1 = 0.96084 in case 2 meaning that in the first example

(φ0 = 0.51439) the mean drift velocity in the pure field v̄x is slightly positive, and in the

second example (φ0 = 0.60) slightly negative.

Two important features are apparent. First, function P (b) exhibits a fractal structure

which is somewhat more regular in case 2. We demonstrate it in Fig. 2 by enlarged scales
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FIG. 2: RR probability for n = 2 as a function of the impact parameter b for v = 0.2 a.u.,

F0 = 0.0056 a.u., ω = 0.0140 a.u., and φ0 = 0.51439. Panels b and c are showing progressively

enlarged scales in b.

in panels (b) and (c). Second, in cases 1 and 2, when χ < 1, P (b) does not seem to decrease

for high b. This can be understood in terms of Coulomb focusing: If the mean drift velocity

v̄x is small enough, the oscillating electron will be eventually brought close to the nucleus

by the Coulomb force, even for large impact parameters. To demonstrate this, we present

in Figs. 4 and 5 electron trajectories for case 1, φ0 < φ1 (Fig. 4), and φ0 > φ1 (Fig. 5).

Even in the second example, when v̄x < 0, the Coulomb field is able to turn the trajectory

around and to bring the electron to the Coulomb center. Panel (b) of Fig. 5 demonstrates

the sensitivity of the radiation probability to the impact parameter. Although the values of

impact parameter are close for two trajectories (b = 300 and 304 a.u. respectively), only the

first trajectory brings electron close enough to the Coulomb center to lead to a substantial

radiation probability. This effect is similar to that found in the bremsstrahlung problem
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FIG. 3: (Color online)RR probability for n = 2 as a function of the impact parameter for case 2

(v = 0.1 a.u., F0 = 0.000244 a.u., ω = 0.002 a.u.), φ0 = 0.92 (solid red line), and case 3 (v = 0.2

a.u., F0 = 0.000244 a.u., ω = 0.002 a.u.), φ0 = 0.92 (dashed black line).

[34] and explains the chaotic structure of the function P (b). The radiation probability is

less chaotic at low b since the corresponding angular momentum in this case is low at the

starting points of trajectories.

Further investigations show that P (b) does not decrease at b→∞ in two narrow ranges of

φ0 close to φ1 and π−φ1. In these ranges the radiative recombination cross section becomes

theoretically infinite. However, in practice the range of impact parameters contributing to

the total cross section is limited by several factors including geometrical constraints (like

a finite distance between electrons in the beam) and the finite laser pulse duration. For

illustrative purposes we have limited the range of b by choosing a finite pulse duration tp. In

this case trajectories which require time t exceeding tp to reach the Coulomb center do not

contribute to the enhancement of the cross section. Since t depends on the initial electron

position x0, in general the finite pulse duration leads to dependence of the RR cross section

on x0 (even after averaging over φ0). However, if v̄xtp � |x0|, this dependence is negligible.

Calculations show that for tp > 5 ps and |x0| about few hundred a.u. σ is independent of x0.
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FIG. 4: (Color online) Electron trajectories for case 1, φ0 = 0.51439. Black line (curve 1): b = 1166

a.u., red line (curve 2): b = 1170 a.u.

For a continuous electron beam this would mean that the RR yield per one Coulomb center

during the pulse duration is σjtp, and the gain in the yield (as compared to the field-free

case) is exactly the same as the gain in the cross section σ.

In Fig. 6 we present the radiative recombination cross section as a function of φ0. To

make the cross section finite in cases 1 and 2, we assumed tp = 5 ps. The cross sections

demonstrate two important features: first they exhibit the chaotic structure; second, for

χ < 1 (cases 1 and 2) they are large in the regions close to φ1 and π − φ1.

Fig. 7 compares dependence of σ(φ0) for two values of the laser pulse duration tp. Al-

though the peak value of the cross section grows faster than tp, the averaged cross section

grows somewhat slower than tp. Somewhat unexpected is the double-peak structure in the

vicinities of φ0 = φ1 and φ0 = π − φ1. The local minima between the peaks are located ex-

actly at these values of φ0, but maxima correspond to slightly negative and slightly positive

values of v̄x, of the order of 10−3 a.u.

In Table II we present the cross sections averaged over φ0 and the gain factor due to the

presence of the laser. Since in our calculations we use the same semiclassical approach as
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FIG. 5: (Color online) Electron trajectories for case 1, φ0 = 0.60. Black line (curve 1): b = 300

a.u., red line (curve 2): b = 304 a.u. Panel (b) shows the same trajectories on the enlarged scale

near the Coulomb center which is marked by the full circle. The distance of the closest appoach

for the first trajectory is 0.47 a.u. which is not noticeable on the scale of drawing.

Kramers, we obtain the gain factor by dividing our cross section by that of Kramers. For

χ < 1 (cases 1 and 2) the gain factor is large and grows with the pulse duration tp. But

even in case 3, when χ > 1, the gain factor is substantial. As was discussed in Sec. II, in

the field F0 = 0.0056 a.u. only the ground state survives against the multiphoton ionization,

therefore the data for excited states in this case are more of academic rather than practical

value. They might be also relevant to the HHG problem where the survival of recombined

atom is of less importance.

In Fig. 8 we present the velocity dependence of the cross section for case 2. Note that

by “velocity” we mean the electron velocity v0 outside the field region. After entering the
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FIG. 6: (Color online) Cross section for RR into the n = 2 state as a function of φ0. Solid black

line: case 1, dashed red line: case 2, dotted purple line: case 3. The laser pulse duration in cases

1 and 2 is 5 ps.

field the mean electron energy outside the Coulomb zone is v20/2 +Ep where Ep = F 2
0 /4ω

2 is

the ponderomotive energy. As a result, the laser-assisted cross section does not exhibit the

1/Ee singularity as the field-free cross section does. The laser-assisted cross section peaks

at the value of v0 close to F0/ω corresponding to χ = 1, and then drops sharply. Although

the chaotic features in the dependence of cross section on φ0 are essentially smoothed out

after averaging over φ0, some small irregularities are still visible in the σ(v0) dependence.

Another substantial difference of the present case with the field-free case is that for a fixed

initial electron energy the radiation spectrum does not consist of sharp lines corresponding

to the photon energies ωn = Ee + 1/(2n2), but is broad due to a broad range of energy

values Ec obtained by electron when it approaches the Coulomb center. Due to the random

(fractal) feature of the dependence Ec(b), the photon spectrum also looks chaotic.

In Fig. 9 we present the radiation spectrum for recombination to n = 1, 2 and 3 states

for φ0 = π/6. Generally the spectrum is distributed chaotically within the range from about
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FIG. 7: (Color online) Cross section for RR into the n = 2 state as a function of φ0 for case 1,

different laser pulse duration. Solid black line: tp = 10 ps, dashed red line: tp = 5 ps.

ωn − 2Ep to ωn + 4Ep.

B. Chaos and quantum effects

Laser-assisted RR involves dynamical chaos which is not usually discussed in quantum

treatment of this and similar problems of electron-ion interaction in the presence of laser

fields. RR is the final step in the HHG process which leads to a broad spectrum of the

emitted photons, like in our case of laser-assisted RR. However, most quantum-mechanical

calculations show that the harmonic spectrum in this case is regular. Moreover, it is usually

interpreted in terms of just two, “short” and “long” electron trajectories [12], and does

not require chaotic trajectories, some of which can lead to numerous revolutions of electron

about the Coulomb center. This can be explained by the different energy range involved:

in the present paper we are concerned with low-energy electrons for which the Coulomb

effect is essential. In contrast, in the HHG problem the interest is towards production of

high-order harmonics, the process involving relatively high-energy electrons for which the
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TABLE II: Radiative recombination cross sections and gain factors for the hydrogen atom. σKr is

the Kramers cross section. Cross sections are listed in a.u.

n σ σKr gain factor

case 1, tp = 5 ps 1 0.4102× 10−1 0.1807× 10−3 227.0

2 0.1466× 10−1 0.8102× 10−4 180.9

3 0.5478× 10−2 0.4607× 10−4 118.9

4 0.2610× 10−2 0.2865× 10−4 91.1

case 1, tp = 10 ps 1 0.6387× 10−1 0.1807× 10−3 353.4

2 0.2288× 10−1 0.8102× 10−4 282.5

3 0.8558× 10−2 0.4607× 10−4 185.8

4 0.4121× 10−2 0.2865× 10−4 143.8

case 2 tp = 5 ps 1 0.1652× 100 0.7444× 10−3 221.9

2 0.6523× 10−1 0.3615× 10−3 180.5

3 0.3716× 10−1 0.2299× 10−3 161.6

4 0.2512× 10−1 0.1620× 10−3 155.0

case 3 1 0.1710× 10−2 0.1807× 10−3 9.462

2 0.5681× 10−3 0.8102× 10−4 7.013

3 0.3022× 10−3 0.4607× 10−4 6.560

4 0.1960× 10−3 0.2865× 10−4 6.841

Coulomb effects can be either neglected or treated perturbatively, like in the simple man

model [11]. Note, however, that chaotic features in the photon spectrum were observed in

quantum calculations [22, 25] of RR.

The problem can be discussed from a much broader perspective. Quantum effects typ-

ically suppress chaos in corresponding classical systems [53, 54]. A well known example is

the quantum suppression of classical chaotic diffusion in ionization of Rydberg atoms by

microwaves [55, 56]. Therefore it is natural to look for mechanisms of quantum suppression

of chaos in the problem of electron motion in a superposition of the Coulomb and the laser

fields. One of this mechanisms can be related to the quantum nature of the field [36]: in a

quantum scattering process electron cannot get or give off energy less than h̄ω. The other is

related to the Coulomb singularity which in a sense is suppressed in quantum mechanics due
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to the uncertainty principle. This might suggest that in classical simulations a soft Coulomb

potential, widely used in problems of above-threshold ionization and HHG [57–59], rather

than the singular Coulomb potential, should be used. It was claimed [60], for example, that

all observed features in microwave ionization can be explained by classical simulations with

a soft Coulomb potential and don’t require the quantum localization mechanism. However,

some caution is required at this point. First, the soft Coulomb potential has been used a lot

in quantum simulations with reasons which are completely different from those used in clas-

sical simulations. For example, in a model one-dimensional problem the Coulomb singularity

becomes unphysical and should be removed. Even in two- and three-dimensional quantum

simulations [22] the soft Coulomb potential was used just for computational convenience.

Second, the preservation of the Coulomb singularity is often crucial for quantum-classical

correspondence. For example, classical and quantum results for Rutherford scattering are

identical, and this does not require Coulomb “softening”. A similar conclusion results from

comparison of classical and quantum bremsstrahlung in the Coulomb field [34]. The last

observation is particularly important for RR, since both RR and bremsstrahlung processes

are dominated by close collisions when the Coulomb singularity is fully exposed.

We conclude that attempts to estimate quantum effects should not incorporate Coulomb

“softening”. On the other hand, quantum effects might remove some chaotic features ob-

served in the RR problem, for example, in the radiation probability as a function of phase

φ0 or in the radiation spectrum. Note, however, that some quantum calculations of RR [22]

and HHG [61] exhibit spectra with chaotic features. In particular van de Sand and Rost [61]

connected these features with chaos in classical scattering.

IV. CONCLUSION

In conclusion we have developed a semiclassical theory for laser-assisted radiative recom-

bination using approach similar to that of Kramers [47] for a field-free recombination. We

expect that our results have the same accuracy as the Kramers’ formula. The obtained

results demonstrate several important features. First they show how the spontaneous RR

can be enhanced by using moderate-intensity infrared fields. This might have important

applications to plasma processes [2] and antihydrogen formation [10]. Second, they exhibit

interesting physics: the classical treatment of laser-assisted RR results in chaotic behavior
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of the radiation probability as a function of the impact parameter and the constant phase

of the electric field. This happens because of the chaotic nature of the problem of Coulomb

scattering in an external laser field investigated by Wiesenfeld [35–37]. What happens when

quantum mechanical effects are incorporated, is not quite clear. Although some regular-

ization of chaotic features is expected from a general theory, chaotic behavior of radiation

spectrum cannot be ruled out, and in fact it was observed in quantum-mechanical simula-

tions [22, 61]. Finally, due to the Coulomb focusing effect the RR cross section, for certain

field parameters becomes very large, theoretically infinite. We make it finite by limiting the

duration of the laser pulse and present sample results for tp 10 and 5 ps.
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[26] S. Odžak and D. B. Milošević, Phys. Rev. A 92, 053416 (2015).
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