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Abstract

Motivation: Mass spectrometry imaging (MSI) characterizes the molecular composition of tissues at
spatial resolution, and has a strong potential for distinguishing tissue types, or disease states. This can
be achieved by supervised classification, which takes as input MSI spectra, and assigns class labels
to subtissue locations. Unfortunately, developing such classifiers is hindered by the limited availability
of training sets with subtissue labels as the ground truth. Subtissue labeling is prohibitively expensive,
and only rough annotations of the entire tissues are typically available. Classifiers trained on data with
approximate labels have sub-optimal performance.

Results: To alleviate this challenge, we contribute a semi-supervised approach mi-CNN. mi-CNN
implements multiple instance learning with a convolutional neural network (CNN). The multiple instance
aspect enables weak supervision from tissue-level annotations when classifying subtissue locations. The
convolutional architecture of the CNN captures contextual dependencies between the spectral features.
Evaluations on simulated and experimental datasets demonstrated that mi-CNN improved the subtissue
classification as compared to traditional classifiers. We propose mi-CNN as an important step towards
accurate subtissue classification in MSI, enabling rapid distinction between tissue types and disease
states.

Availability: The data and code are available at https://github.com/Vitek—-Lab/mi—CNN_MST
Contact: o.vitek@neu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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Fig. 1: MSI data. (a) Hematoxylin and eosin (H&E)-stained optical images
of a pair of tumor and healthy tissues from the human renal cell carcinoma
(RCC) experiment. (b) Mass spectrum from one location in the tumor
tissue. The inset zooms into m/z € (250, 300). Two features with m/z
shift Am = 22 can correspond to molecular ions and sodium adducts.
Two features with m/z shift Am = 38 can correspond to molecular ions
and potassium adducts. (c) Ion images of m/z 215 of the tissues in (a).

1 Introduction

Biochemical constitution of tissues varies with tissue types (such as
epithelial and connective tissues), or disease states (such as tumor and
healthy tissues). Mass spectrometry imaging (MSI) provides an untargeted
characterization of the molecular composition of such tissues at spatial
resolution, simultaneously quantifying hundreds of analytes without the
need for chemical labels or antibodies [1, 2]. Therefore, MSI has a strong
potential to become a rapid diagnostic technology in the clinic [3, 4].

Although the name of the technology contains the word “image”, the
structure of MSI data is very different from other bioimaging technologies
(Figure 1). In MSI, mass spectra are acquired at thousands of different
spatial locations in a raster pattern throughout the tissue. MSI techniques
fall into two major categories: matrix-assisted laser desorption/ionization
(MALDI) MSI [5] and desorption electrospray ionization (DESI) MSI
[6]. With each technique, the mass spectrum obtained at each location is
a collection of features, corresponding to the ions of biochemical analytes
such as metabolites, lipids, peptides and proteins. The features do not
contain direct information regarding the identity of the underlying analyte,
except for their ratios of mass over charge m/ z. For one tissue location, a
typical MSI experiment reports hundreds to thousands of m / z in ascending
order. The intensities of the m/z correlate with the abundance of the
analyte. A plot of the abundance of one m/ z across all locations is referred
to as an ion image.

A reliable diagnostics can be achieved by supervised classification
models that take as input the observed mass spectra, and predict labels such
as tumor, healthy, or tumor subtypes. Beyond tissue-level classification
(classifying the entire tissues), subtissue-level classification (classifying
the disease status of individual locations within the tissues) is of most
interest. Ranking m / z features by their predictive ability is also important.
Currently, training subtissue-level classifiers providing this information
requires training sets of tissues with reliable subtissue labels.

Unfortunately, accessing a training set with reliable subtissue labels is
challenging in practice. In a typical workflow, pathologists examine the
hematoxylin and eosin (H&E)-stained optical images such as in Figure
1(a). To obtain subtissue labels, the pathologist must manually examine
and annotate the distinct regions of each tissue [7]. The cost of manual
work is one of the reasons to the relatively small number of biological
replicates in MSI. The procedure is particularly costly for heterogeneous
tissues that require labelling of multiple small sub-regions, or for tissues
with challenging histology. To be transferrable to MSI, the subtissue
labeling must use specialized software that takes time to learn. As the
result, pathologists often avoid labeling the individual locations, and only
roughly annotate the entire tissues. Figure 1(c) shows that, although the
tissue on the left is annotated as tumor, the ion image indicates tissue

heterogeneity, and the tissue likely contains both cancerous tissue and
healthy kidney parenchyma. Such imprecise labeling of tissue locations
compromises the accuracy of the resulting classifiers.

In addition to the labeling, high correlations between many m /2 limit
our ability to train accurate classifiers on MSI data. For example, in peptide
MSI proteins are digested to give rise to multiple peptide ions of a same
protein, and therefore have similar spatial distributions of abundance. An
analyte can also produce multiple 7/ z ions for other reasons, that include
sodium adducts, neutral loss ions, fragment ions or multiply charged ions.
For example Figure 1(b) illustrates the potential sodium and potassium
adducts that give rise to correlated features. The high correlation in the
high-dimensional vector of m/z features undermines the stability of the
classifiers, and leads to overfitting. [3, 4]

To improve our ability to accurately classify subtissue locations in MSI
from approximate tissue-level annotations, we propose a semi-supervised
approach mi-CNN. Mi-CNN implements multiple instance learning with a
convolutional neural network (CNN). The multiple instance aspect of the
approach enables weak supervision from tissue-level annotations when
classifying subtissue labels. The convolutional architecture of the CNN
captures potential contextual dependencies between m/ z, such as sodium
adducts and dehydrated ions. Evaluations on simulated and experimental
datasets demonstrate that mi-CNN improved the subtissue classification as
compared to traditional classifiers such as support vector machine (SVM)
and CNN, and successfully reflected the truly predictive spectral features.
We propose mi-CNN as an important step towards accurate subtissue
classification in basic biology and clinical applications of MSIL.

2 Background

Subtissue-level classification in MSI Classifying tissue locations using
MSI spectra has already received a lot of attention [3, 4]. Various classifiers
have been proposed for these task, including linear discriminant analysis
[8, 9], regularized logistic regression [10, 11], support vector machine
(SVM) [12], and many others. Variations of these approaches such as
nearest shrunken centroids [13] incorporate spatial smoothing to enhance
the spatial stability of the results. The classifiers take as input m / z features
at each location, classify the label of each location, and classify the tissues
according to the majority of its location labels.

Recently neural networks became of a great interest for MSI. Rauser
et al. [14] used fully connected neural networks for tumor classification,
and Inglese et al. [15] used unsupervised neural networks to cluster
tumor tissues. Convolutional neural networks (CNN), a class of deep
neural networks originally designed for image classification, were also
introduced. CNN convolutes the image using a small-sized kernel to
capture the local connectivity within an image [16]. A novel application
of CNN to MSI proposed to view mass spectra as one-dimensional
images. Behrmann et al. [17] used a modified Residual Net with 13935
parameters and kernel size of 3 to capture isotopic patterns in mass
spectra. Kersbergen ez al. [18] replaced convolutional layers in Behrmann’s
network with dilated convolutional layers to increase receptive size, and
capture globally-distributed patterns in the spectra.

Although the approaches above are quite diverse, they all rely on
quality subtissue labels for training. As the result, they are undermined
by training sets with approximate annotations, such as in Figure 1.

Multiple instance learning (MIL) Multiple instance learning is a semi-
supervised framework commonly used in a variety of applications such as
image and video analysis [19] and computer-aided diagnosis [20, 21], but
so far not utilized for MSI. In contrast to the classifiers above, MIL allows
weak supervision of the training data. The approach considers groups of
observations, called bags, where ground-truth labels are only available at
the bag level. The labels of the observations in a bag, called instances, are
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unknown. In a binary classification problem MIL assumes that a positive
bag contains at least one positive instance, but the negative bags contain
only negative instances. The homogeneity of the data in the negative bags
is the key feature of the approach that enables efficient learning.

Existing MIL algorithms can be classified into two groups: bag space
algorithms and instance space algorithm. Bag space algorithms, such as mi-
Graph [22] and MILIS [21], do not predict labels of individual instances.
They classify the bags directly by considering similarities of input features
between the bags. Instance space algorithms, such as mi-SVM [23] and
MILboost [24], take features of the instances as input and predict labels
of both instances and bags. For instance-level prediction, mi-SVM is one
of the most accurate methods [20]. The method treats labels of instances
in positive bags as latent variables, and estimates them from the data.
Parameters of SVM are optimized by iteratively training SVM on the
current instance-level labels, and updating the instance-level labels from
their predictions by the current SVM.

Interpretation of black-box machine learning models Many of the
classification approaches above function like a “black box" and lack
interpretability. Post-processing of these models [25] helps characterize
the relative importance of each predictive feature after the model is fit. One
such approach is Local Interpretable Model-agnostic Explanation (LIME)
[26], which ranks features by their importance in predicting the label of
a particular observation of interest. LIME generates new observations by
permuting the values of the predictive features in the dataset, and obtains
the black box predictions for these new observations. Next, LIME weights
the new observations by their proximity to the observation of interest, and
trains a weighted interpretable model (such as linear regression with subset
selection or regularization) on the new observations and their predictions.
Finally, LIME repeats this procedure multiple times, and ranks the features
by their frequency of being selected as predictive.

3 Multiple instance learning with convolutional
neural network (mi-CNN)

Overview For the purposes of subtissue classification in MSI, we propose
to view a tissue as a bag, and a tissue location as an instance. We assume
that tissues annotated as non-tumor do not have tumor locations, but tissues
annotated as tumor can have both tumor and non-tumor locations. Multiple
instance learning allows us to train classifiers of subtissue locations on
training sets with such rough tissue-level annotations. Instance space
algorithms are of a particular interest for this task. Our proposed approach
takes as the baseline mi-SVM, which reported high classification accuracy
on similar tasks in the past, but substitutes the SVM classifier with a
convolutional neural network (Figure 2). Although CNN are frequently
used for image analyses in computer vision domains, the proposed
approach uses CNN is a different way. We do not apply spatial convolution
on a tissue, as we expect high heterogeneity of the microenvironment
within a tumor, and an insufficient spatial smoothness of the location
labels. Instead, the CNN incorporates convolutional filters to m/z in
individual locations to capture potential correlations between m/z of a
same location. The CNN has a lightweight structure to avoid overfitting.
Finally, post-processing with LIME identifies highly predictive m/z for
downstream biological and clinical interpretation.

Notation Consider tissue j and its locations 7. The tissue is characterized
by a collection of mass spectra X; = {X;;}, 4 = {1,...,1;},j =
{1,...,J}, and each mass spectrum X is a vector of M intensities of
m/z features X;; = {Xi(jl), AN Xi(]M)}' Let Y; € {0, 1} denote the
annotation of the tissue j, and y;; the subtissue label at the ith location.
Note that Yj; is known, and y;; is unknown. Denote 7; the probability
that tissue j belongs to class 1, and 7;; is the corresponding probability

for the location ¢ in that tissue. Given a mass spectrum X;; , our goal is to
predict the label y;; of this location, and the label Y of the entire tissue.

Subtissue-level classification Using cross-entropy as the loss function,
the objective of multiple instance learning is defined as

mgxz {ijlog(miz) + (1 — yiz)log(l — mij)}
2,7

such that max(y;;) = Yj (1
J

where m;; = f(©,X;;) is the prediction of a classifier (a CNN) with
parameters O.

Since the subtissue labels y;; are not observed, they are estimated
by an expectation-maximization-like algorithm (Algorithm 1, similar to
mi-SVM in [23]) minimizing the entropy loss (Equation 1). First, the
labels of all subtissue locations are initialized with the annotations of the
corresponding tissues. Next, the algorithm iterates between training CNN
on the current location labels, estimating the probability 7r;; that location ¢
in tissue j belong to class 1, and imputing the location labels y; ; from these
probabilities until convergence. The constraint in Equation (1) ensures that
the labels of non-tumor locations in non-tumor tissues are always classified
as non-tumor. On the other hand, if no locations on a tumor tissue are
classified as tumor, the location with the highest 7r;; in this tissue will
be labeled as tumor (line 7-10, Algorithm 1). The algorithm stops when
the number of updated labels is below a threshold, or when the maximum
number of iterations is reached.

The architecture of CNN must be adapted to the specifics of the MSI.
In these experiments the number of m/z features can be very large (up
to one hundred thousand), while the number of biological replicates is
relatively small (typically less than 50). Therefore, the CNN should be
relatively lightweight, and minimize the number of parameters to avoid
overfitting. The convolution filter should be large enough to incorporate
neighboring m/z, but small enough to benefit from weight sharing and
computation reduction.

We propose a one-dimensional CNN, consisting of three basic
components, namely convolutional layers, pooling layers and fully
connected layers. Three convolutional layers hierarchically learn the
potential patterns in a mass spectrum. For each layer, the filter size is
set according to the contextual dependencies between m/z of interest,
such as mass shifts corresponding to sodium adducts and molecular
ions. After each convolutional layer, maxpooling reduces the resolution
of the previous layer by focusing on large intensities of m/z features
and reducing the impact of spectral noise. The CNN includes only one
fully connected layer that captures globally distributed patterns (Figure

Algorithm 1 mi-CNN

1: procedure mi-CNN(X1,...,Xs,Y7,..

2 Initialize: y;; = Y forj € 1,...,J
while the number of updated labels < threshold do

., Y7y, threshold)

3
4 Compute CNN parameters © for current labels y;;

5 Compute Tij = f(@7 Xij)

6: For each j where Y; = 1, sety;; = ifelse(w;; > 0.5, 1, 0)
7 for each j where Y; = 1 do

8 if Zyi]' = 0 then

9 Compute ¢’ = arg max mi;

10: Sety; ; =1
11: end if
12: end for

13:  end while
14:  OUTPUT (O, y;5)
15: end procedure
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Fig. 2: Architecture of mi-CNN. 7; the probability that tissue j belongs to class 1, and 7;; is the corresponding probability for the location 4 in that

tissue.

2). Softmax activation function is used in the output layer to generate
probability of each class.

The CNN is trained using stochastic gradient descent. It calculates the
partial derivative of the loss function in Equation (1) with respect to the
learnable parameters in © by backpropagation, and iteratively updates ©
and values in each layer until convergence.

Tissue-level classification The proposed tissue-level classification does
not count the proportion of predicted location labels in a tissue. Instead, it
treats each tissue as one observation, and uses the collection of mass spectra
{Xl Goe-
features. The CNN architecture for this task is the same as the architecture

L X 1 4 from all the locations in the tissue as its predictive

for subtissue-level classification, with the exception of combining the
probabilities of the individual locations into a pooling layer that estimates
the probability of a tissue-level label. The pooling can be a simple max or
mean pooling, or a generalized mean pooling

mj (g, wag) = (O ) @

where I is the number of locations on tissue j, and r is an integer tuning
parameter. The loss function is the cross-entropy of tissue-level predictions
and tissue-level labels

maxy _ {Yjlog(m;) + (1= Y;)log(1 — ;)} 3)
J

where 7; is pooled probability of 7;;, and m;; = f(©,X;) are the
predicted probabilities by CNN.

Evaluation and interpretation We evaluate the accuracy of subtissue
classification by calculating the accuracy and the balanced accuracy of
label predictions at individual locations. We evaluate the accuracy of tissue-
level classification by calculating the accuracy and the balanced accuracy
of label predictions at the entire tissues. The metrics are defined as

TP+ TN
Accuracy = —————— and )
P+N
Bal d 1TP n 1TN )
alanced accuracy = —— 4 — ——
Y 2 P 2 N

where for subtissue-level classification, TP is the number of correctly
classified positive (i.e., tumor) locations across all the tissues, TN is
the number of correctly classified negative (i.e., non-tumor) locations
across all the tissues. P and IV are the total numbers of locations across
the tissues classified as tumor or non-tumor respectively. For tissue-level
classification, TP, TN, P and N have the same interpretation, but for
the entire tissues. Accuracy quantifies the overall proportion of correct
predictions by model. When the number of observations in each class is
not balanced, and the prediction of a minority class is under-represented,
overall accuracy may inaccurately characterize the performance. In this

case, balanced accuracy, quantifying the average of individual proportions
of correct predictions in each class may provide more insights.

Even when we can report the accuracy of classification, the classifier
remains a black box. Therefore, we use LIME to assist with the
interpretation, and identify m /z features that play a particularly important
role in classifying the labels of individual locations. We randomly select a
subset of locations in the validation sets in our experiments, use LIME to
select top five influential features for each location, and rank the selected
features by frequency of being selected in multiple locations.

Implementation We implemented mi-CNN using Tensorflow [27] in
the RStudio environment. We constructed a CNN architecture of three
convolutional layers with ReLU activation, and a fully connected layer.
The filter sizes of each convolutional layer were set as 38, 18 and
16. The network had 1774 trainable parameters in total for an input
length of 850. CNN were trained using batch stochastic gradient descent
optimization. Training one epoch of the RCC dataset with 5350 spectra
took approximately 10s, and training the entire model took approximately
1.5h on a computer with 64 RAM and 3.6 GHz CPU. Baseline model mi-
SVM was implemented in R in following [23]. The maximum number of
iterations of mi-SVM was set as 200. The kernel function used was radial
basis function with gamma as 0.0012 in simulation datasets and human
renal cell carcinoma data, and sigmoid function with gamma as 0.00125
in human bladder cancer data. LIME was implemented using R package
lime [28]. The number of bins for continuous variable was set as 4 and the
kernel width was set as 0.1 in lime.

(a) Training set (b) Validation set

UH9905_18
MH0204_33 UHO0505_12 UHO0710 33 -
UH9812 03 UH9912 01 UH9610_15 UH9911_05

Fig. 3: Human renal cell carcinoma (RCC) experiment Pairs of tumor

and healthy tissues from 8 donors were H&E-stained, and examined by
a pathologist. For each pair, the tissue on the left has the pathology

=

annotation of tumor, and the tissue on the right has the pathology annotation
of healthy. The subtissue-level annotations were not available for this
experiment. (a) Training set. (b) Validation set.
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4 Data

We evaluated the performance of mi-CNN on five datasets. Two
experimental datasets represent two human cancers, and two different
MSI acquisition strategies (DESI, characterizing metabolites and lipids
and MALDI, characterizing peptides). We further simulated three datasets
with known ground truth, inspired from one of the experimental datasets.

Human renal cell carcinoma (RCC) experiment The experiment aimed
to classify locations in human renal tissues as tumor versus healthy. Pairs
of tumor and healthy tissue sections were collected from eight human
donors with RCC. The tissues were subjected to serial hematoxylin and
eosin (H&E) staining. Pathology examination of the H&E stained tissues
was unable to classify the tissues at the sub-tissue resolution, and only
annotated each entire tissue section as tumor or healthy (Figure 3).

Data from the tissues were acquired using DESI ionization source on a
Thermo Finnigan LTQ ion trap mass spectrometer in negative mode. The
mass range covered 150-1000 Da. 7567 mass spectra were collected from
on average 472 locations per tissue. Prior to classification, the spectra
were normalized by total ion current (TIC) and resampled to unit mass
resolution, which produced 850 m/z features per mass spectrum. The
data are available in R package CardinalWorkflow [29]. The pairs of tissues
were randomly split into a training set (six pairs) and validation set (two
pairs).

Human bladder cancer experiment The experiment aimed to classify
human bladder cancer tissues as tumor versus stroma. Two tissue
microarrays (TMAs) containing core needle biopsies from resected
formalin-fixed and paraffin-embedded bladder tissues of 49 patients were
built, and each TMA was mounted onto a separate glass slide (Figure 4). A
pathologist annotated 42 tissue cores by carefully examining sub-areas of
each tissue and color-coded subregions presenting tumor and subregions
presenting stroma (Figure 4). The annotations are viewed as ground truth
in this manuscript. The label tumor was assigned to tissue cores containing
tumor subregions, and the label stroma to cores containing only stroma.

The proteins in the tissues were digested with trypsin and the peptides
were covered with alpha-cyano-4-hydroxycinnamic acid matrix and
analyzed with an AB SCIEX 4800 MALDI TOF/TOF mass spectrometer
in positive mode. The mass range was 800-2300 Da. Subregion annotations
containing 3152 mass spectra in total and 77 spectra per tissue were
extracted via an affine transformation strategy [30]. The two datasets were
resampled, combined and preprocessed using Cardinal and MALDIquant
algorithms on https://usegalaxy.eu [30, 31, 32]. The major preprocessing
steps comprised peak picking, re-calibration, removal of contaminants and
TIC normalization. The preprocessed file contained 593 m/z features.
Annotated tissues from one slide were used as training set (21 tissues),
and on the second slide as the validation set (21 tissues). The split aims to
test the robustness of the classifier to experimental batch effects.

Simulated Dataset 1: One differentially abundant analyte with four
features, and a complex background. The simulation is based on the
mass spectra from eight healthy tissues in RCC dataset. It mimicked
real-life variation in feature intensities, while providing the ground truth
regarding both the labels of the tissue locations and the predictive features.

First, the eight healthy tissues in the RCC dataset were split into two
halves, as shown in Figure 5. Since the mass spectra from these tissues have
real-life biological and technological variation, but no systematic variation
between the tissue types, they are viewed as a complex background.

Second, the newly created tissues were assigned tissue-level and
subtissue-level labels. The left half of the upper newly created tissues
was labeled as tumor, and the remaining locations as healthy. These labels
were viewed as the ground truth. To mimic pathology annotations at the
tissue level, the entire upper tissues were annotated as tumor, and the lower
tissues as healthy.

(a) Training set

(b) Validation set

Fig. 4. Human bladder cancer experiment. Hematoxylin and eosin
(H&E)-stained optical images of human bladder cancer tissues after data
acquisition. Letters above each tissue are tissue-level annotations (T:
tumor, S: stroma). The colors inside each core indicate subtissue-level
pathology (red: tumor; blue: stroma), viewed as the ground truth. (a)
Training set: 3 purely stroma tissues and 18 tissues with both tumor and
stroma locations. (b) Validation set: 7 purely stroma tissues and 14 tissues
with both tumor and stroma.

o Synthetic analyte
-—* 27 447
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Tissue annotation

Ground truth
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Fig. 5: Simulated Dataset 1. Healthy tissues from the RCC experiment
were split into halves. Locations on the left half of the upper newly created
tissues were labeled as tumor, and the remaining locations as healthy. The
labels were viewed as the ground truth. To mimic pathology annotations,
the entire upper tissues were annotated as tumor, and the lower tissues
as healthy. A synthetic analyte with four features, differentially abundant
between tumor and healthy, was added to the experimental spectra. Its
intensity was confounded by a morphology structure spanning both tissue

types.

Next, one synthetic differentially abundant analyte between the tumor
and the healthy locations was added to the experimental spectra. The
simulation incorporated a morphology (grey area in Figure 5) that
confounded the intensity of the differentially abundant analyte and spanned
both tumor and the healthy tissue locations. The intensity X ’ of this
analyte at location ¢ in tissue j was simulated as follows

Xij = p+8j+bij +ei ©)
S5 Y N(0,0%), 615 N (0,02), 81 L N((~Tout + Iin) Apt, 03)

where 14 is the mean intensity of the analyte for tumor or stroma, S;
is the biological between-tissue variation, J;; is the variation between
the morphological region and background, and €;; is the biological and
technological variation between locations of a same tissue. All the random
variables are independent. I;;, and Ioy¢t are indicators of whether a tissue
location is inside or outside a morphology region, and Ay is the mean
intensity shift of locations inside or outside the morphological region. Here
= 50 for tumor and pwe = 150 for healthy, cg = 0.15u, Ap = 5,
o5 =0.1Apand o = 0.1p.
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6
Compareto SVM  CNN mi-SVM mi-CNN
2 tissue 0.895 0948  0.885 0.751
‘£ | annotations (0.895) (0.948) (0.882) (0.742)
<
E | subtissue 0747 0.747  0.809 0.979
labels (0.833) (0.833) (0.862) (0.981)
=
'% subtissue  0.778  0.752  0.833 0.975
% labels (0.671) (0.831) (0.693) (0.964)
>

Table 1. Simulated Dataset 1: classification accuracy. Accuracy (Equation (4))
and balanced accuracy (in parentheses, Equation (5)). The first two rows evaluate
the accuracy with respect to tissue-level annotations. The last four rows evaluate the
accuracy with respect to labels of within-tissue locations.

Finally, we simulated four individual m/z features generated by
this analyte. The features correspond to dehydrated ions [M — H —
H5O]~ (m/z 407), molecular molecules [M — H]|~ (m/z 425), sodium
adducts [M — 2H + Ng])~ (m/z 447) and potassium adducts [M —
2H + K|~ (m/z 463). Each feature was simulated as X Z(Jm/ 2)
Dirchlet(1,1,1,1) - Xl(j.

Similarly to the RCC dataset, the tissues were split into a training set
of six tissue pairs, and a validation set of two tissue pairs.

Simulated Dataset 2: One analyte with differential relative intensity
of two of the four features, and a complex background We mimicked
a situation where tumor locations affect the relative intensities of features
of a same analyte. We assumed that the synthetic analyte produced
more potassium adducts in tumor locations, but more sodium adducts
in healthy tissues. The simulation repeated the procedure above, while
setting the mean intensity of the analyte to ;x = 50 for both tumor and
healthy locations, and setting the total intensity of molecular ions and
dehydrated ions to X 1.(;107’425) . The total intensity of adducts X 5;47’463)
was simulated from Dirichlet(a = ¢(1,1)) - X, . Next, in the

tumor locations we set the intensity of sodium adducts Xi(;lu)

0.2 - XZ-(;47’463), the intensity of potassium adducts XZ.(;GS) = 0.8 -

X 1.(;147’463) . In the healthy locations we set the intensity of sodium adducts

(447) _ (447,463)
Xij = 08X,

> , and the intensity of potassium adducts
(463) _ (447,463)
X =02-X,

in healthy.

Simulated Dataset 3: Impact of biological variation, technological
variation, and sample size The simulation evaluated the effect of
biological and technological variation, and of the number of tissues in
the training set, on the performance of mi-CNN. We simulated training
sets with between 13 and 130 tissues, half of which annotated at the tissue
level as tumor, and the other half as healthy. Each simulated tissue was
characterized by 25 locations, with spectra randomly selected from the
healthy tissues in the RCC experiment to represent complex background.
As in Datasets 1 and 2, only half of the locations in the tumor-annotated
tissues had tumor locations as the ground truth. The synthetic analyte was
simulated as in Equation (6), with p = 50 for the tumor locations and
p = 150 for the healthy locations. g varied from 0.1x to 0.3u, oe
varied between 0.05u and 0.154.

5 Results
5.1 Results for the simulated datasets

Taking as input tissue-level annotations, mi-CNN accurately classified
subtissue labels We compared the ability of mi-CNN and mi-SVM,
and that of the classical CNN and SVM, to classify subtissue labels on

UH9912_01 UH9911_05
Ground truth | _ S | Y| |
st || | |
o |l | |
mi-svm |l | . g
mi-CNN | _ i | [ | | e

B Tumor I Healthy

Fig. 6: Simulation Dataset 1: subtissue-level classification on the

validation set.

(2) mi-SVM

1.83 < m/z151

1.88 < m/z603
m/z750 <= 3.56
1.97 < m/z968
2.02 < m/z982
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(b) mi-CNN
miz425 <= 6.7
1.87 < m/z463

6.77 < m/z407 <= 15.68
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miz216 <= 1.83 -
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Fig. 7: Simulated Dataset 1: LIME-based importance of m /z features when
classifying a tumor location in the validation set. A location in the simulated tissue
UH9912_01 was classified correctly by both mi-SVM and mi-CNN. However, only
mi-CNN captured the four m/z features (407, 425, 447, 463) from the synthetic
differentially abundant analyte. (a) mi-SVM. (b) mi-CNN

Simulated Dataset 1. Table 1 shows that SVM and CNN had high accuracy
when comparing the classified locations to tissue-level annotations in the
training set. This is expected, as the methods were trained to minimize the
classification loss with respect to tissue-level annotations. However, these
predictive patterns were undermined by the mislabeled healthy locations
in the tumor-annotated tissues of the training set. When comparing the
classifications to the ground truth at the location level, the methods had
worse accuracy (and worse balanced accuracy, that accounts for differences
in the number of tumor and healthy locations) in both the training and the
validation dataset. Figure 6 details the predictions on the validation set.
It illustrates that SVM had poor predictions for both tumor and healthy
locations, while CNN had poor predictions for healthy locations.

While the accuracy of mi-SVM and mi-CNN classification compared
to tissue-level annotations was lower than that of SVM and CNN (Table 1,
row 1-2), their results were closer to the ground truth location labels, both
on the training (Table 1, row 3-4) and the validation sets (Table 1, row 5-6).
Figure 6 illustrates that mi-SVM, and in particular mi-CNN, classified the
labels of the individual locations more correctly.
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Compareto SVM  CNN mi-SVM mi-CNN
& tissue 0.532  0.778 0.860 0.700
‘£ | annotations  (0.530) (0.777) (0.856)  (0.690)
<
E | subtissue  0.565 0.734  0.758 0.877
labels (0.538) (0.810) (0.776)  (0.800)
=
'% subtissue  0.530 0.869  0.771 0.912
% labels (0.449) (0.896) (0.500) (0.701)
>

Table 2. Simulated Dataset 2: classification accuracy. As Table 1, for Simulated
Dataset 2.

SVM CNN mi-SVM mi-CNN

tissue-  0.959 0.827 0939  0.800
level  (0.946) (0.946) (0.946) (0.855)

subtissue- 0.801  0.767 0.847 0.941
level (0.793) (0.759) (0.842) (0.941)

Training

subtissue- 0.755 0.779  0.827 0.928
level (0.750) (0.774) (0.823)  (0.928)

Validation

Table 3. Classification accuracy: the human bladder cancer experiment. Values
without the parentheses are accuracy calculated by Equation 4. Values in parenthesis
are balanced accuracy calculated by Equation 5.

Table 2 shows that the results are not limited to situations when the
predictive analyte is differentially abundant. Qualitatively similar results
are obtained with the predictive pattern in Simulated Dataset 2.

mi-CNN improved subtissue classification by leveraging changes in
relative abundances of features from a same analyte Table 1 and Table
2 show that mi-CNN and CNN had higher classification accuracy with
respect to the location labels as compared to mi-SVM and SVM. To
evaluate whether the improved accuracy was due to the CNN’s ability
to capture the contextual relationships between related m/z, we ranked
the predictive features by their importance in these methods using LIME.
Figure 7 compares the relative importance of the top 5 features, when
classifying a tumor location in one tissue with mi-SVM and mi-CNN. Both
methods classified this location correctly. However, while in mi-SVM the
most predictive feature is part of the background, mi-CNN ranked the
m/ z features (407, 425, 447, 463) of the synthetic differentially abundant
analyte among the top 5 most predictive.

Out of 200 randomly selected locations, mi-CNN consistently ranked
all these features among the top 5 most predictive in 32.3% of the locations,
and at least one of these features among the top 5 most predictive in 99.3%
of the locations. The respective numbers for mi-SVM were very low, 0%
and 6%. This illustrates the utility of incorporating the domain-specific
information in the size of the convolution filter in the neural network.

In presence of larger variation, accurate subtissue-level classification
with mi-CNN required a larger sample size We evaluated the accuracy
of mi-CNN with respect to subtissue labels on Simulated Dataset 3. Figure
8(a) shows that, in situations where both between-tissue and within-
tissue variation is relatively small, mi-CNN can have a high classification
accuracy on the validation set, even when trained on a relatively small
number of 12 biological replicates. Figures 8(c)-(d) illustrate that the
between-tissue variation dominates the classification accuracy, and the
within-tissue variation has a relatively small impact. Including more
biological replicates is beneficial when variation is large.

(a) Low biological variation
og=0.1p,0, = 0.1p

(b) High biological variation
og= 03,0, =0.1p

1.0 gt ——— 104
§u_g— —————————— P DL U, e 1
éu.a- €os
5071 307+
0.6 A < 0.6
051 . . 0.5
50 100 50 100

# of biological replicates # of biological replicates

(c) Low within-tissue variation (d) High within-tissue variation
os=0.24,06, = 0.05p og=0.24,6, = 0.15u

10]  _pt—t—2 101  gt——p——s
B0 o< - - - - - T T - oA - Ty
081 oz
507 807

05 051

051 054

£0 100 50 100
# of biological replicates # of biclogical replicates
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Fig. 8: Simulated Dataset 3: impact of biological and technological
variation of the synthetic analyte, and of the number of training set
tissues, on the accuracy of mi-CNN with respect to subtissue labels.
‘When biological variation is relatively small, mi-CNN correctly classified
subtissue locations, even with a small number of biological replicates in
the training set. Including more biological replicates is beneficial when
variation is large.

5.2 Results for the experimental datasets

RCC experiment Although subtissue-level ground truth was not available
for the RCC experiment, we used the fact that the tissue sections annotated
as healthy were expected to be free from tumor. Therefore, we evaluated the
classifications with respect to the homogeneity of subtissue classification
of the healthy sections. Figure 9 illustrates that, on the training set,
mi-SVM and mi-CNN both had homogeneous predictions of healthy
on healthy tissue. On the validation set, mi-CNN had slightly more
homogeneous predictions of healthy on healthy tissues than mi-SVM.
The predictions of SVM and mi-SVM had no substantial difference in
this dataset. CNN has less homogeneous predictions of healthy on healthy
tissues than mi-CNN in both training and validation set. This indicates
that mi-CNN can improve prediction on healthy locations by considering
healthy locations in the tumor tissues.

LIME-based interpretation of mi-SVM and mi-CNN highlighted
different features as highly predictive. For mi-SVM, m/z 181, 215, 760,
865 and 898 were ranked as the top 5 most important. For mi-CNN, these
were m/z 217, 751, 773, 885 and 886. These results indicate that the
choice of the classifier plays an important role in both predictive accuracy
and the choice of predictive features in this dataset.

Human bladder cancer experiment Figure 10 compares the classification
of SVM, CNN, mi-SVM and mi-CNN with the ground truth subtissue-
level labels on selected heterogeneous tumor tissue and pure stroma tissue.
Similar to results on Simulated Dataset 1 and 2, SVM and CNN classified
many stroma locations in the tumor tissue as tumor in the training dataset
(see Figure 10). Not surprisingly, both SVM and CNN had poor predictions
in the validation set, presenting mixture predictions of tumor and stroma
in the stroma tissue.

Mi-SVM and mi-CNN improved the classification of SVM and CNN
in terms of both accuracy and balanced accuracy (Table 3). From Figure
10, mi-CNN correctly classified more stroma locations in the tumor tissues
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than mi-SVM for both training and validation tissues. In addition, mi-CNN
had the smallest number of false positives on the stroma tissues, showing
most clean classifications in stroma tissues in Figure 10.

LIME analysis of mi-CNN classifications of a subset of 200 locations in
validation set selected m /z 925.44, 944.44, 946.44, 1105.54 and 1198.69
as most predictive. Among those, m/z 944.44 is likely to be Histone 2A,
which is known to be upregulated in tumors, and m/z 1105.54 is likely
to correspond to collagen I which is known to be upregulated in stroma.
LIME analysis of mi-SVM selected five different predictive features, m/z
1669.73, 1475.72, 1529.7, 963.44 and 1054.49.

6 Discussion

We introduced mi-CNN, a deep multiple instance learning approach
for classifying subtissue locations in MSI experiments. The multiple
instance aspect of the approach enabled training the classifier with weak
supervision, using rough tissue-level annotations in the training set. The
convolutional architecture of the CNN captured contextual dependencies
between the spectral features. Evaluations on simulated and experimental

datasets demonstrated that mi-CNN improved the subtissue classification
as compared to traditional SVM and CNN.

The approach assumed that, in a binary classification problem, a tissue
labeled as tumor had at least one tumor location, but the tissues labeled
as non-tumor were tumor-free. This assumption is reasonable for MSI,
as homogeneous healthy tissue biopsies are relatively easy to obtain,
however tumor biopsies are more likely to contain a mix of tumor and
non-tumor regions. In a case where both non-tumor and tumor tissues
are heterogeneous, the proposed approach is no longer suitable since the
reliable label of non-tumor is crucial to the method. Although we only
discussed binary classification, mi-CNN can also be adapted to multi-
class classification, such as different grades of tumor tissues or multiple
tissue types.

In contrast to the typical applications of CNN in computer vision,
the CNN architecture in this work did not include spatial convolution
of tissues. This is a consequence of typically high heterogeneity of the
microenvironment within a tumor, and of lack of spatial smoothness of
location labels.

At the same time, the CNN architecture took advantage of the
mass spectral patterns to alleviate the high dimensionality and the high

Training set Validation set

Donor MH0204_33 UHO0505_12 UH0710_33 UH9610_15 UH9812_03 UH9912_01 UH9905_18 UH9911_05
a) Pathology

annotation, Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | Tumor | Healthy | Tumor | Healthy
tissue-level
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Fig. 9: Classification accuracy: the RCC experiment. (a) Tissue-level pathology annotations. (b) Optical images of H&E stained tissues. (c)-(d)

Subtissue-level classifications.
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Fig. 10: Classification accuracy: the human bladder cancer experiment. (a) Tissue-level pathology annotations. (b) Subtissue-level pathology labels
on optical images. (c) Subtissue-level labels on MSI (viewed as ground truth). (d)-(g) Subtissue-level classifications.
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correlations in the predictive feature space. In this work, the size
of convolutional filters captured one of the most common sources of
correlations between m/z, i.e. the presence of molecular ions and their
adducts. The m/z dependencies can become more complicated and
ambiguous in other cases, e.g. with larger mass ranges. The convolutional
aspects can be easily adapted to such situations types by changing the size
of filter and the network depth.

Although neural networks have a large parameter space and need large
training datasets, we found that mi-CNN worked well on the relatively
small numbers of biological tissues. This may be due to a combination
of the CNN architecture, which uses locally connected neurons and
weight sharing filters to reduce the parameter space and the computational
cost, and a relatively large number of heterogeneous subtissue locations
available for training.

Overall, we found that mi-CNN is well-suited for training subtissue-
level classifiers on datasets with tissue-level annotations. This is
particularly important in situations where tumor and non-tumor tissues
are tightly connected, making manual labeling of the training sets difficult
or even impossible at all. The approach is an important step towards taking
a full advantage of MST’s capability of providing molecular information,
and minimizing manual labor for tissue imaging and classification.
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