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Abstract. We developed and validated a conceptual survey that focuses on the formalism and
postulates of quantum mechanics covered in upper-level undergraduate quantum mechanics
courses. The concepts included in the Quantum Mechanics Formalism and Postulate Survey
(QMFPS) focus on Dirac notation, the Hilbert space, state vectors, physical observables and their
corresponding Hermitian operators, compatible and incompatible observables, quantum
measurement, time-dependence of quantum states and expectation values, and spin angular
momenta. Here we describe the validation and administration of the survey, which has been
administered to over 400 upper-level undergraduate and graduate students from six institutions. The
QMEFPS is valid and reliable for use as a low-stakes test to measure the effectiveness of instruction
in an undergraduate quantum mechanics course that covers relevant content. The survey can also be
used by instructors to identify students’ understanding of the formalism and postulates of quantum
mechanics at the beginning and end of a graduate quantum mechanics course since graduate students
are expected to have taken an undergraduate quantum mechanics course that covers the content
included in the survey. We found that undergraduate students who engaged with research-validated
learning tools performed better than students who did not on the QMFPS after the first semester of
a junior/senior level quantum mechanics course. In addition, the performance of graduate students
on QMFPS after instruction in the first semester of a core graduate-level quantum mechanics course
was significantly better than the performance of undergraduate students at the end of the first
semester of an undergraduate quantum mechanics course. However, both undergraduate and
graduate students struggled with many questions on the QMFPS. A comparison with the base line
data on the validated QMFPS presented here can aid instructors in assessing the effectiveness of
their instructional approaches and help them identify the difficulties their students have with
quantum formalism and postulates in order to help students develop a solid grasp of the formalism
and postulates of quantum mechanics.

I INTRODUCTION

Learning quantum mechanics (QM) is challenging partly because it is abstract as well as nonintuitive
and students often transfer ideas from classical mechanics to quantum mechanics inappropriately [1-4].
Several studies have focused on student difficulties with concepts [5-15] and formalism [16-24] in QM.
We must help students develop a coherent knowledge structure of the foundational concepts related to the
formalism and postulates of quantum mechanics before they can solve novel, complex problems.
Furthermore, developing a robust understanding of quantum mechanics requires a solid grasp of linear
algebra, differential equations, and special functions [25]. Regardless of the mathematical complexity of
quantum mechanics problems, students must develop a functional understanding of quantum mechanics.
This entails developing a good knowledge structure of the underlying concepts and be able to reason
systematically about relevant quantum mechanics concepts involved while also developing quantitative
skills to solve the problems instead of using a plug-and-chug approach.



Research-based conceptual surveys (both free response and multiple-choice format) are useful tools
for evaluating student understanding of various topics without focusing heavily on their mathematical
skills. Furthermore, carefully developed and validated surveys can play an important role in measuring
the effectiveness of a curriculum and instruction. If well-designed multiple-choice pretests and posttests
are administered before and after instruction in relevant concepts, they can provide one objective means
to measure the effectiveness of a curriculum and instructional approach in a particular course. When
compared to free response, multiple choice is free of grader bias and such tests can be graded with great
efficiency. Furthermore, the results are objective and amenable to statistical analysis so that different
instructional methods or different student populations can be compared. Also, good instructional design
requires taking into account the prior knowledge of the students. An effective way to assess the prior
knowledge of students, i.e., what the students know before instruction in a particular course, is to
administer conceptual surveys as pre-tests. When pre-tests are compared with post-tests, the comparison
can give us one objective measure of the effectiveness of instruction.

Several multiple-choice conceptual surveys have been developed for use in physics and astronomy
courses [26]. For example, in introductory physics, researchers have developed many multiple-choice
surveys to determine the knowledge states of students at the beginning and end of instruction in a particular
course and/or topic, e.g., the Force Concept Inventory, Conceptual Survey of Electricity and Magnetism,
Rotational and Rolling Motion Survey, Energy and Momentum Survey, etc. [27-30]. In addition,
conceptual surveys have been developed for use in QM (quantum mechanics) courses [31-33]. For
example, the quantum mechanics conceptual survey (QMCS) [31] was developed for sophomore-level
modern physics courses. It focuses on wave functions and probability, wave particle duality, the
Schrodinger equation, quantization of states, uncertainty principle, superposition, operators and
observables, and tunneling. It contains 12 questions. The quantum mechanics concept assessment
(QMCA) [32] is a 31-item survey that focuses on the time-independent Schrodinger equation, time
evolution, wave functions and boundary conditions, and probability and it can be used in an upper-division
junior/senior level QM course. The quantum mechanics visualization instrument (QMVI) was developed
to evaluate students’ conceptual understanding of core topics in quantum mechanics in the undergraduate
curriculum, especially their visualization skills [33]. Furthermore, the quantum mechanics assessment tool
(QMAT) gauges student learning in a first semester junior-level quantum mechanics course and focuses
on wave functions, measurement, time dependence, probability, infinite square well, one-dimensional
tunneling, and energy levels [34]. The introductory quantum physics conceptual survey (IQPCS) focuses
on basic quantum concepts related to quantization and uncertainty [35]. The quantum mechanics survey
(QMS) [36] covers topics in non-relativistic quantum mechanics in one spatial dimension typically
covered in the first semester of an upper-level undergraduate course and involves concepts such as
possible wave functions, bound/scattering states, measurement, expectation values, time dependence of
wave function and expectation values, stationary and non-stationary states, role of the Hamiltonian,
uncertainty principle, and Ehrenfest’s theorem. It can be used in most junior/senior-level quantum
mechanics courses if relevant concepts are covered.

However, previously developed conceptual surveys for use in QM courses do not focus explicitly on
the postulates or formalism of quantum mechanics. For example, Dirac notation, the Hilbert space, state
vectors, physical observables and their corresponding Hermitian operators, compatible and incompatible
observables, projection operators and writing operators in terms of their eigenstates and eigenvalues are
not covered in other QM conceptual surveys. In addition, other previously developed QM surveys do not
include concepts related to spin angular momenta. Therefore, we developed and validated a QM
conceptual survey that focuses on the formalism and postulates of quantum mechanics that includes these
concepts. Here, we discuss the development and validation of the Quantum Mechanics Formalism and



Postulates Survey (QMFPS), which is a 34-item multiple-choice test appropriate for use in an upper-level
undergraduate quantum mechanics course as a post-test (after instruction in relevant concepts) or graduate
level quantum mechanics course as a pre-test (at the beginning of the course) or post-test [19]. The survey
can be used to identify upper-level undergraduate students’ final and graduate students’ initial and final
knowledge states related to the formalism and postulates of quantum mechanics at the beginning and end
of a course to assess the effectiveness of a quantum mechanics curriculum in which relevant concepts are
covered. The results of the survey can also be used to guide the development of instructional strategies to
help students learn these concepts better.

II. QMFPS SURVEY DEVELOPMENT AND ADMINISTRATION

According to the standards for multiple-choice test design, a high-quality test has five characteristics:
reliability, validity, discrimination, good comparative data, and is tailored to the population [37-39].
Furthermore, the development of a well-designed multiple-choice test is an iterative process that involves
recognizing the need for the test, formulating the test objectives, constructing test items, performing
content validity and reliability check, and distribution [37-39]. Below, we describe the development of
the QMFPS and how we ensured that the test was developed based upon the standards of multiple-choice
test design.

Development of the survey: We recognized the need for a conceptual survey focused on the formalism
and postulates of quantum mechanics in that previously developed QM conceptual surveys do not focus
explicitly on the postulates or formalism of quantum mechanics. In particular, there are no QM surveys
that focus explicitly on Dirac notation, the Hilbert space, state vectors, physical observables and their
corresponding Hermitian operators, compatible and incompatible observables, projection operators and
writing operators in terms of their eigenstates and eigenvalues are not covered in other QM conceptual
surveys. Furthermore, other QM surveys do not include concepts related to spin angular momenta.
Therefore, we developed the QMFPS, which focuses on assessing students’ conceptual understanding of
the formalism and postulates of QM, including Dirac notation, the Hilbert space, state vectors, physical
observables and their corresponding Hermitian operators, compatible and incompatible observables,
quantum measurement, time-dependence of quantum states and expectation values, and spin angular
momenta. The final version of the survey is included on PhysPort [41]. Table I shows one possible
categorization of the questions on the survey based upon the concepts, although the categorization may
be done in many other ways.

While designing the survey, we focused on making sure that it is valid and reliable [37-39]. Validity
refers to the extent to which the test consistently measures whatever it is supposed to measure, and
reliability refers to the extent to which the test measures what it measures consistently [37-39]. To ensure
that the survey is valid for low-stakes group assessment of QM curriculum and instructional approaches
that focus on relevant topics, we consulted with 6 faculty members regarding the goals of their QM courses
and topics their students should have learned related to the formalism and postulates of quantum
mechanics in upper-level undergraduate QM. In addition to carefully looking through the coverage of
these topics in several upper-level undergraduate quantum mechanics classes, we also browsed over
several homework, quiz and exam problems that faculty in these courses at the University of Pittsburgh
(Pitt) had given to their students in the past when we started the development of the survey. We also gave
open-ended questions on relevant topics to students in upper-level QM and interviewed some students
one-on-one to get an in-depth understanding of their reasoning behind their responses. These interactions
with faculty members and students helped us formulate the test objectives and construct the preliminary
test items in initial versions of the survey. We note that the faculty members were not only consulted



initially before the development of the survey questions, but we also iterated different versions of the
survey with several instructors at Pitt at various stages of the development to ensure that the test content
was valid, i.e., that the test items matched the objectives of the test and the test items were accurate,
formatted correctly, and were grammatically correct. The faculty members reviewed different versions of
the survey several times to examine its appropriateness and relevance for the upper-level quantum
mechanics courses and to detect any possible ambiguity in item wording. These valuable comments and
feedback from faculty members also helped to ensure that the test was designed with the target population
(upper-level undergraduate and graduate students) in mind, i.e., the difficulty level of the questions were
appropriate for this target population. In addition to the analysis of the responses to the open-ended
questions and interviews, the alternative choices for the multiple-choice questions were informed by prior
research on common student difficulties in QM on these topics [1-4, 14-16, 19-24].

Table 1. One possible categorization of the survey questions, the number of questions that fall in each
category, and the question numbers belonging to each category. The number of questions in different
categories do not add up to 34 because some questions fall into more than one category.

Topic Item number

Quantum states 1,4,7,11,12,13,14,15,17,19
Eigenstates of operators corresponding to 1,4,7,14,15,17,18, 20

physical observables

Time development of quantum states 3,4,5,6,7,26,32,34

Measurement 2,3,4,5,7,8,9,13,19,21,23,24,25,27,28,31,32,33,34
Expectation value of observables 5,10,22

Time dependence of expectation value of 15,16,17,29,30

observables

Commutators/compatibility 16,17,19,20,27,28

Spin angular momentum 20,21,22,23,24,25,26,27,28,29,30
Dirac notation 4,9,10,11,12,13,14,18
Dimensionality of the Hilbert space 1

The individual interviews were conducted with 23 students using a think-aloud protocol [40] at various
phases of the test development to better understand students’ reasoning processes while they answered the
open-ended and multiple-choice questions. Within this interview protocol, students were asked to talk
aloud while they answered the questions so that the interviewer could understand their thought processes.
The interviews were invaluable and often revealed unnoticed difficulties (not necessarily clear from
written responses), and these were incorporated into new versions of the survey. This allowed us to refine
the survey further to ensure that the questions were relevant and clearly worded. The interviews also
allowed us to further confirm that the difficulty level of the test was appropriate for upper-level
undergraduate and graduate students (i.e., the test was designed for the target population in mind).

The final version of the survey can be accessed via the link in ref. [41]. Each question has one correct
choice and four incorrect choices. We find that almost all of the students are able to complete the QMFPS
in one 50 minute class period after instruction in relevant concepts. Students can answer the QMFPS
questions without performing complex calculations, although they do need to understand the basics of
linear algebra since that is central to the formalism and postulates of QM. The survey can be used in a
junior/senior level undergraduate quantum mechanics course (e.g., at the level of the first four chapters in
D. Griffiths’ QM textbook [42]) as a post-test, as long as students have learned Dirac notation. It can also
be administered in a graduate-level QM course as both a pre-test or post-test to determine students’ initial



and final knowledge states in regards to the formalism and postulates of QM. While the QMFPS should
not be administered as a high-stakes test and the data should be interpreted for the class as a whole to
gauge the effectiveness of instruction, it is suggested that students receive some credit for completing the
survey in order for students to take it seriously. For example, if the survey is given as a posttest, it can
count as a graded low-stakes quiz. If the survey is given as a pretest in a graduate course, it can count as
a quiz for which students should be given full credit for trying their best.

Administration of the validated survey: The reliability check is performed during a large-scale
administration of the final form of the test [37-39]. The validated QMFPS was administered to 464
students from 6 institutions over a period of four years.* Of the 464 students, 350 were undergraduate
students and 114 were graduate students. The undergraduate students were enrolled in the first semester
of a QM course at the junior/senior level. The graduate students were enrolled in a graduate-level core
QM course. The undergraduate students completed the survey as a posttest at the end of their first semester
in QM, and the graduate level students completed the survey after at least two months into the first
semester of graduate level quantum mechanics. Both the undergraduate and graduate students worked
through the survey during a 50-minute class period. Some of the undergraduate students were enrolled in
QM courses that used research-based learning tools such as concept tests and quantum interactive learning
tutorials (N = 43). The survey was given to a subset of these students twice, once at the end of the first
semester and then again at the beginning of the second semester after the winter break (N = 15). This
large-scale administration allowed us to collect comparative data by administrating the test to various
groups of students for whom it was designed.

General Test Statistics: The average score on the survey after instruction is 41% (including only the
first score of the students who took the survey twice). The standard deviation is 20%, with the highest
score being 100%. The average score of undergraduate students is 37% and the average score of graduate
students is 52%. The fact that the graduate students’ performance is better than undergraduate students’
performance provides another measure of content validity since graduate students are supposed to know
these concepts better overall. There is a significant difference between the graduate and undergraduate
students’ average scores (p-value of t-test<0.001). Figure 1 shows a histogram of the students’ scores on
the QMFPS.

The average posttest score for the upper-level students who used concept tests and group discussion
and Quantum Interactive Learning Tutorials (QulLTs) was 58% (S.D.=20%). The average posttest score
for other undergraduate students who did not use research-based learning tools was 32% (S.D.=16%).
There is a significant difference between the scores of students who used research-based learning tools
and those who did not (p-value of t-test<0.0001).
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Figure 1. Histogram of student scores on the QMFPS.

Reliability analysis: We performed various statistical analyses to determine if the QMFPS is reliable.
If a test is administered twice at different times to the same sample of students, then one would expect a
highly significant correlation between the two test scores (test-retest reliability), assuming that the
students’ performance is stable and that the test environmental conditions are the same on each occasion
[37-39]. Since testing students twice in a very short interval is not practical, one way to determine overall
test reliability is via the Kuder-Richardson reliability index (KR-20), which is a measure of the self-
consistency of the entire test. According to the standards of test design [37-39], the KR-20 should be
higher than 0.7 to ensure that the test is reliable. The KR-20 for the QMFPS is 0.87, indicating that the
survey is very reliable.

Performing item analysis can provide further insights into the survey’s reliability. Table II shows that,
on the QMFPS, the item difficulty (percentage correct) for undergraduate students ranges from 0.13 to
0.70 and the item difficulty for graduate students ranges from 0.16 to 0.90. Table III shows the distribution
of student responses for each survey item. We calculated item discrimination for each item on the survey
to ensure that the test is reliable. One way to measure item discrimination is by calculating the point-
biserial coefficient. It is a measure of consistency of a single test item with the whole test—it reflects the
correlation between a student’s score on an individual item and his/her score on the entire test [37-39].
The point-biserial coefficient has a possible range of —1 to +1. If an item has a high point-biserial
coefficient, then students with high total scores are more likely to answer the item correctly than students
with low total scores. A negative point-biserial value indicates that students with low overall scores were
more likely to get a particular item correct than those with a high overall score and is an indication that
the particular test item is probably defective. Ideally, point-biserial coefficients should be above 0.2 [37-
39]. Table II shows the point-biserial coefficients for each item on the QMFPS. The average point-biserial
is 0.41 and ranges from 0.20 — 0.62. The standards of test design [34,35] indicate that the survey questions
have reasonably good item discrimination. The question with the lowest point-biserial coefficient of 0.20
(Q 32) was also the most difficult question on the test for all students (item difficulty is 0.16).

Another aspect of survey reliability is construct-related validity, which is associated with understanding
the nature of the characteristics being measured and the consequences of the uses and interpretations of
the results [37-39]. A construct is an individual characteristic that is used to explain the performance on
an assessment. For example, mathematical reasoning is a construct that can be used to explain students’



performance on a mathematics assessment [37-39]. In our survey, understanding of the formalism and
postulates of QM is a construct that can be used to explain performance on the QMFPS. One way to
collect evidence of construct validity involves related measures studies. Related measures studies
investigate correlations between different assessment measures. For example, one would expect a positive
correlation between the Force Concept Inventory and the Force and Motion Conceptual Evaluation since
they were designed to measure similar constructs (i.e., students’ understanding of force and motion) [37-
39]. Therefore, we examined whether students” QMFPS scores were correlated with other validated QM
surveys and their performance in quantum mechanics courses to ensure construct validity of the QMFPS.
Eighty-two undergraduate students enrolled in the first semester of an undergraduate upper-division QM
course were given both the QMFPS and the Quantum Mechanics Survey (QMS), which is a previously
validated survey that focuses on students’ understanding of non-relativistic QM in one-dimension, after
traditional instruction in relevant concepts. Figure 2 shows that there is a strong correlation between
students’ scores on the QMS and the QMFPS. This correlation provides construct-validity to the QMFPS
survey because students who performed well on the QMS are generally likely to have a better foundation
in formalism and postulates of quantum mechanics and perform better on the QMFPS. The QMFPS tends
to be more difficult for students than the QMS, possibly because it covers more advanced topics as
opposed to the QMS which covers QM in one spatial dimension.



Table II. Item difficulty (percentage of students answering the question correctly) for undergraduate
students (UG), graduate students (G) and all students combined (ALL) and item discrimination (point-
biserial coefficient) for each item on the QMFPS.

Item Number | Item difficulty Item discrimination
UG | G | ALL | (point-biserial coefficient)

1|30% | 53% | 37% 0.49

2|165% | 59% | 63% 0.38

3119% | 43% | 26% 0.59

4162% | 90% | 70% 0.48

5140% | 47% | 42% 0.31

6|37% | 52% | 42% 0.37

7135% | 47% | 38% 0.33

8 122% | 26% | 23% 0.35

9132% | 50% | 37% 0.53
10 | 55% | 82% | 63% 0.53
11 |44% | 77% | 53% 0.49
12 | 51% | 80% | 59% 0.50
13 | 40% | 80% | 51% 0.55
141 37% | 71% | 47% 0.42
15| 23% | 59% | 39% 0.42
16 | 32% | 36% | 33% 0.23
17 | 34% | 61% | 42% 0.42
18 | 37% | 72% | 48% 0.44
19 | 32% | 49% | 37% 0.26
20 | 29% | 55% | 37% 0.43
21| 56% | 74% | 61% 0.48
22 | 23% | 32% | 26% 0.34
231 70% | 82% | 73% 0.38
24 | 42% | 56% | 46% 0.37
25 1 33% | 38% | 34% 0.42
26 | 47% | 74% | 55% 0.50
27 | 52% | 53% | 53% 0.27
28 | 41% | 48% | 43% 0.34
29 | 18% | 24% | 19% 0.39
30 | 18% | 35% | 22% 0.39
31 1 19% | 45% | 27% 0.54
32 1 16% | 16% | 16% 0.20
33 1 13% | 49% | 25% 0.62
34 119% | 18% | 19% 0.31




Table III. Distribution of undergraduate and graduate student responses to individual questions on the
QMFPS. Bolded percentages indicate the correct answer.

Undergraduate students Graduate students
Question A B C D E A B C D E

1] 30% 8% 15% 8% 39% 53% 2% 10% 3% | 32%

21 65% 2% 13% 15% 5% 59% 1% 13% | 22% 5%

3 9% | 25% 2% | 44% | 19% 4% 11% 3% 39% | 43%

41 62% 9% 13% 6% 9% 90% 3% 3% 3% 1%

5 7% 9% 9% | 40% 33% 2% 2% 8% | 47% | 42%

6 4% 2% | 29% | 37% 27% 6% 4% 5% | 52% 33%

71 22% 9% 5% | 35% 29% 20% 5% 4% | 47% | 25%

81 36% | 21% | 22% 9% 12% 38% 11% | 26% 9% 16%

9 11% | 27% | 25% 4% | 32% 2% 36% 8% 4% | 50%
10 9% 9% 4% | 55% 24% 4% 1% 2% | 82% 10%
11 37% 1% | 44% 7% 11% 18% 0% | 77% 3% 2%
12 6% | 26% | S51% 12% 5% 2% 15% | 80% 1% 2%
13 7% 10% |  25% 17% | 40% 0% 3% 8% 9% | 80%
14 37% 12% | 28% 13% 9% 1% 1% | 20% 6% 2%
15 14% | 30% 19% 13% 23% 7% 59% 8% 13% 12%
16 10% 19% 17% | 21% | 32% 13% 6% | 20% | 26%| 36%
17] 34% 12% 6% | 22% 25% 61% 6% 3% 14% 16%
18 16% | 37% 25% 5% 15% 3% 72% 16% 1% 8%
19 9% | 23% | 28% 7% | 32% 11% 8% | 27% 6% | 49%
200 24% | 29% 11% 9% 25% 24% 55% 2% 2% 16%
21 2% | 22% 7% | 56% 11% 0% 4% 1% | 74% | 20%
22 11% 18% | 21% | 25% | 23% 14% 18% 10% 25% | 32%
23 18% | 70% 5% 3% 3% 13% 82% 3% 0% 2%
241 42% 12% 12% |  25% 5% 56% 10% 13% 19% 2%
251 21% 11% 17% | 33% 13% 22% 11% 17% | 38% 12%
26 12% | 27% 7% | 47% 3% 5% 13% 1% | 74% 6%
27 28% 5% | 52% 6% 5% 37% 1% | 53% 0% 5%
28 12% | 41% 16% 19% 6% 4% 48% 11% 26% 9%
29 11% 4% | 18% 46% 15% 10% 4% | 24% 35% | 26%
30| 18% 4% 9% 51% 12% 35% 2% 6% | 45% 10%
31 13% 10% | 19% 25% 27% 9% 14% | 45% 13% 18%
32| 37% 15% | 16% 11% 15% 55% 13% | 16% 7% 5%
33 15% 11% | 13% 26% 28% 9% 10% | 49% 11% 16%
34| 38% 13% | 19% 9% 15% 53% 14% | 18% 5% 5%
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Figure 2. Correlation between 82 students' QMFPS scores and their QMS scores. The coefficient of
determination is R? and the correlation coefficient is R=0.78.

In addition, 44 graduate students enrolled in the first semester of a graduate-level core quantum
mechanics course were given the QMFPS at the end of the semester. Figure 3 shows that there is a
moderate correlation between students’ scores on the QMFPS and their final exam in the graduate-level
QM course. This correlation provides further evidence of construct validity of the QMFPS since the
concepts covered in the final exam were similar to those covered in the QMFPS.

0.9 | | |
0.8 y = 0.6752x + 0.0374 . ‘

R2=0.3487
: AR T

| o . .

0.5 -
' .................. '

04 . vvvvvvvvvv " .
: P : .
0.2

0.1

QMEPS score

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1
Final Exam Score

Figure 3. Correlation between 44 graduate students’ QMFPS scores and their final exam score in a core
graduate level quantum mechanics course. The coefficient of determination is R? and the correlation
coefficient is R=0.58.
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III. SUMMARY

Learning QM is challenging for students partly because of the “paradigm shift” from classical
mechanics to quantum mechanics as well as the mathematical expertise required to solve problems.
Students in traditionally taught and evaluated QM courses may be able to “hide” their lack of conceptual
understanding of the formalism and postulates of QM behind their mathematical skills [3]. However, in
order for students to develop functional understanding, it is important to close the gap [43] between
conceptual and quantitative problem-solving by assessing both types of learning. We have developed a
conceptual survey that assesses students’ conceptual knowledge of the formalism and postulates of QM,
which are topics that instructors of QM courses agree are important to cover [25]. The development of the
test followed the standards of multiple-choice test design [37-39], and we ensured that the test was valid
and reliable, had good discrimination, was tailored to the population, and that we collected good
comparative data [37-39].

Details of student difficulties found via QMFPS is beyond the scope of this paper and will be discussed
elsewhere. Student responses to questions on the QMFPS can be used as a formative assessment [44,45]
to help instructors identify common student difficulties and guide the design of instructional strategies
and learning tools to improve students’ understanding. This survey can also be administered to students
after instruction in the relevant concepts to evaluate the effectiveness of instruction on relevant topics in
a particular course.

Furthermore, we found that students who were enrolled in QM courses that used active learning
methods, such as peer instruction and tutorials, performed better on the QMFPS than those who did not.
These approaches included active learning techniques [46-85] such as peer instruction [52,53], tutorials
[54-68], cooperative group problem solving [69], and Just-In-Time-Teaching [70,71], to help students
develop a coherent knowledge structure of the formalism and postulates of QM. In addition, we found
that, although graduate students performed significantly better than undergraduate students, their average
overall score was not very high. This may partly be due to the fact that graduate students who were taught
primarily via traditional approaches may have developed algorithmic skills to solve problems on their
exams, which often reward “plug and chug” approaches, but lack a conceptual understanding of quantum
mechanics. However, even graduate students may not be motivated to develop a coherent knowledge
structure of QM if course assessments only focus on quantitative reasoning. Therefore, in order to help
students develop a functional knowledge of quantum mechanics, we suggest that the learning goals for
upper-level QM include proficiency in concepts covered in the QMFPS and emphasize the connection
between conceptual understanding and mathematical formalism. Furthermore, instructors of graduate-
level QM courses can reflect on their students’ responses on the QMFPS to design instruction that helps
to “close the gap” between students’ conceptual understanding and quantitative problem solving.
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Supplemental Material on PhysPort

Quantum Mechanics Formalism and Postulates Survey
Definitions, notation, and instructions:
* For a spinless particle confined in one spatial dimension, the expectation value of a time-independent

physical observable Q in a state |W(t)) at time t in position space is

Q)= (P*®|Q|¥@®) = f_oooo Y*(x,t)Q (x, —ih aa_x) W(x,t)dx . Forthe special case t = 0, we will write
simply |¥) = |¥(0)) and ¥(x) = ¥(x, 0).

* Notation (Q|¥))" = (|0w))" = (w0t = (01w

* &, p, H are generic symbols for the position, momentum and Hamiltonian operators, respectively, for a
given quantum system.

*|x), |p), and |n) are eigenstates of position, momentum and Hamiltonian operators with eigenvalues x,
p, and E,,, respectively. The eigenvalue equation for a generic hermitian operator Q with discrete and
continuous eigenvalue spectra is given by Q |qn) = q,|q,) and Q |q) = qlq), respectively.

* For a particle confined in one spatial dimension, the momentum eigenfunction in position space is

Ae'P*/" with eigenvalue p, where 4 is a constant.

* Ignore the normalization issues of the position eigenstates and momentum eigenstates.

16


https://nam05.safelinks.protection.outlook.com/?url=http%3A%2F%2Fdoi.org%2F10.1119%2Fperc.2018.pr.Keebaugh&data=02%7C01%7Cclsingh%40pitt.edu%7C23e2d308a6db4ba7a95508d6eb960f23%7C9ef9f489e0a04eeb87cc3a526112fd0d%7C1%7C0%7C636955427071038191&sdata=nl5q2USSa2gMaf9jdRayV5%2FeBl35ckbV%2FPbP17GjNKM%3D&reserved=0
https://drive.google.com/open?id=14YmqUzP9gxBo_Wbj51Je-t0R_SxBmMbC
https://drive.google.com/open?id=14YmqUzP9gxBo_Wbj51Je-t0R_SxBmMbC
https://aapt.scitation.org/doi/10.1119/1.5110473
https://drive.google.com/open?id=1SmoEyMACuVr0--1s4uBCqhpBKOnJZw3l
https://drive.google.com/open?id=1SmoEyMACuVr0--1s4uBCqhpBKOnJZw3l
https://aapt.scitation.org/doi/10.1119/1.5109862
https://doi.org/:10.1119/perc.2018.pr.Justice

* The Schrédinger representation is used throughout; there is NO explicit time dependence to any of the
observables in any question in the survey.

* When the summation or integration limits are not given explicitly, the summation/integration is over all
possible values of the summation/integration variable.

* All measurements are ideal.

*S, fy, and S, are the x, y, and z components of the spin angular momentum operator (or spin) and S

is the square of the spin angular momentum operator.

In all questions below, the correct answer is bolded.

Questions 1-3 refer to the following system: A particle interacts with a one-dimensional infinite

square well of width a (V(x) = 0 for 0 < x < a and V(x) = +oo otherwise). The stationary state

n2mp2p2
where n =

wavefunctions are ¥, (x) = \/% sin (n%x) and the allowed energies are E, = ———;
1,2,3..00.
1. Choose all of the following statements that are correct for a particle interacting with a one dimensional
(1D) infinite square well.
(1) The appropriate Hilbert space for this system is one dimensional.
(2) The energy eigenstates of the system form a basis in a 1D Hilbert space.

(3) The position eigenstates of the system form a basis in a 1D Hilbert space.

A. none of the above B.1lonly C.2only D.3only E.alloftheabove

2. The wavefunction at time t = 0 is \/év,bl (x) + \Evj;z (x) when you perform a measurement of the

energy. Choose all of the following statements that are correct.
(1) The measurement of the energy will yield either E; or E5.

(2) The spatial part of the normalized wavefunction (excluding the time part) after the energy
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measurement is either \E Y, (x) or \E Py (x).

(3) The measurement of the energy will yield %El + %E 2.

A.1lonly B.2only C.3only D.land2only E.1and3 only

3.

P ET 0w

Consider the following wavefunction at time t = 0: ¥(x,0) = Ax(a — x) for 0 < x < a, where A4 is
a suitable normalization constant. Which one of the following is the probability density |¥(x, t)|?, at

time t > 07?

[W(x,t)|? = |A|?x%(a — x)? cos? (%), where E is the expectation value of energy.

—2iEt
|W(x,t)|? = |A|?x%(a — x)%e” & , where E is the expectation value of energy.

|W(x,t)|? = |A|?x?%(a — x)? sin? (%), where E is the expectation value of energy.

|W(x,t)|? = |A|?x?%(a — x)?, which is time-independent.

None of the above.

Suppose |W) is a generic state and the energy eigenstates |n) are such that H|n) = E,,|n), wheren =

1,2,3 ... 00. Choose all of the following statements that are correct.

(1) [¥) = Zn(n|¥) n)

(2) e"H/R|Y) = 3, eTEL/ M| W) |n)

(3) If you measure the energy of the system in the state |W), the probability of obtaining E,, and
collapsing the state to |n) is |[(n|¥)|?.

A. all of the above B.land2only C.land3only D.2and3only E.3only

5.

Suppose |q,,) are the eigenstates of an operator Q corresponding to a physical observable with a
discrete spectrum of non-degenerate eigenvalues g, where n = 1, 2,...00. At time t = 0, the state of
the system is |¥) = Y., ¢, (t = 0)|g,). Choose all of the following statements that are necessarily
correct.

(1) {Q) = Znlcn(0)|?qy at time t = 0.

Q) c,(t) = e~tnt/hc (0) at time t > 0.

(3) Experimentally, |c,(0)|? for various n can be estimated by measuring Q in an ensemble of

identically prepared systems in state | V) at time t = 0.

A.lonly B.2only C.3only D.1and3only E.alloftheabove
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Questions 6-7 refer to the following system: A particle with mass m interacts with a one-dimensional

2
simple harmonic oscillator well V(x) = KTx The stationary states are ¥, (x) and the allowed

energies are E,, = (n + %) hw,wheren =0,1,2...c0 and w = \/%

6. |W(0)) is the initial state of the system at time t = 0 and H is the Hamiltonian operator. Choose all of

the following statements that are necessarily correct for all times ¢t > 0.
(1) e At/ ig g hermitian operator.
() e tHt/h ig o unitary operator.
(3) The state of the system at time t > 0 is |¥(t)) = e"iﬁt/hILP(O))
A.2only B.land2only C.1and3only D. 2and3only E.allof the above

7. Suppose you perform a measurement of the position of the particle when it is in the first excited state
of a one dimensional simple harmonic oscillator potential energy well. Choose all of the following
statements that are correct about this experiment:

(1) Right after the position measurement, the wavefunction will be peaked about a particular value of
position.

(2) The wavefunction will not go back to the first excited state wavefunction, even if you wait for a
long time after the position measurement.

(3) A long time after the position measurement, the wavefunction will go back to the first excited state
wavefunction.

A.lonly B.2only C.3only D. 1 and 2 only E. 1 and 3 only

8. Consider the following conversation between Andy and Caroline about the measurement of energy in
a state | W) which is not an energy eigenstate.

Andy: When an operator H corresponding to energy acts on a generic state |¥), it corresponds to a

measurement of energy. Therefore, H|W) = E,,|¥), where E,, is the observed value of energy.

Caroline: No. The measurement collapses the state so H|W) = E,,|n), where |¥) on the left hand side is

the original state before the measurement and |n) on the right hand side of the equation is the state in
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which the system collapses after the measurement and it is an eigenstate of H with eigenvalue E,,.

With whom do you agree?

A. Agree with Caroline only

B. Agree with Andy only

C. Agree with neither

D. Agree with both

E. The answer depends on the details of the state |W), which is a linear superposition of energy
eigenstates.

For a spinless particle confined in one spatial dimension, the state of the quantum system at time
t = 0 is denoted by |¥) in the Hilbert space. |x) and |p) are the eigenstates of position and

momentum operators. Answer questions 9 to 20.

9. An operator Q corresponding to a physical observable Q has a continuous non-degenerate spectrum
of eigenvalues. The states {|q)} are eigenstates of Q with eigenvalues q. At time t = 0, the state of the
system is |¥). Choose all of the following statements that are correct.

(1) A measurement of the observable Q must return one of the eigenvalues of the operator Q.

(2) If you measure Q at time t = 0, the probability of obtaining an outcome between q and q + dq is
[{qI¥)I?dq.

(3) If you measure Q at time t = 0, the probability of obtaining an outcome between q and q + dq is
| ffooo Yy (x)‘P(x)dx|2dq in which g(x) and W(x) are the wavefunctions in position
representation corresponding to states |q) and |W) respectively.

A.lonly B.land2only C.1and3only D.2and3 only E. all of the above
10. Suppose {|g,),n = 1,2,3 ...00} forms a complete set of orthonormal eigenstates of an operator Q

corresponding to a physical observable with non-degenerate eigenvalues q,,. [ is the identity operator.

Choose all of the following statements that are correct.
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(1) anCIn) <Qn| = i (2) (quO'qJ) = Zn Qn|<CIn|lp)|2 (3) (quQltp) = Zn Qn(inqj)
A.lonly B.2only C.3only D.1and2only E.1and3 only

11. Choose all of the following statements that are correct about the position space and momentum space
wavefunctions for this quantum state.

(1) The wavefunction in position representation is W (x) = (x|¥) where x is a continuous index.

(2) The wavefunction in momentum representation is ¥(p) = (p | Y) where p is a continuous index.
. . . .= . O

(3) The wavefunction in momentum representation is P(p) = | dx(—thaq’(x))

A. all of theabove B.2only C.land2only D.3 only E. I and 3 only

12. Choose all of the following equations involving the inner product that are correct.
(1) (x|¥) = [ x¥P(x)dx
@) (x|¥) = [8(x — x)P(x")dx’
3) (p|¥) = [(plx)}x|¥)dx = [ e P*/"P(x)dx (Ignore normalization issues.)
A.land2only B.land3only C.2and3only D.1only E.2only

13. Choose all of the following statements that are correct.
() [¥) = [{p|W)p)dp
@) |¥) = [W(x)|x)dx
(3) If you measure the position of the particle in the state |¥), the probability of finding the particle
between x and x + dx is [{x|¥)|?*dx.
A.lonly B.land2only C.land3only D.2and3only E.allofthe above

14. |p') is the momentum eigenstate with eigenvalue p’ for a particle confined in one spatial dimension.

Choose all of the following statements that are correct. Ignore normalization issues.
@ (plplp’y = p'{plp") = p'6(p — ")
@) (xlplp’y = p'(xIp’) = p'e?*/"
5lp'y = —ih2(x|p') = —ih -2 eip'x/h
3) (x|plp) = —ih—(x|p’) = —ih e

21



A. all of the above B.lonly C.land2only D.1and3only E.2and3 only

15. Choose all of the following statements that are correct:
(1) The stationary states refer to the eigenstates of any operator corresponding to any physical
observable.
(2) In an isolated system, if a particle is in a position eigenstate (has a definite value of position) at
time
t = 0, the position of the particle is well-defined at all times ¢t > 0.
(3) In an isolated system, if a system is in an energy eigenstate (it has a definite energy) at time t = 0,
the energy of the particle is well-defined at all times t > 0.
A. lonly B.3only C.]I1and3only D. 2 and 3 only E. All of the above

16. Choose all of the following statements that are correct about the time dependence of the expectation

value of an observable Q in a state |W). Neither the Hamiltonian H nor the operator Q depends

explicitly on time. (Notation: %llp) = |(?3_lf>)

(1) =(Q) = +([A,Q)])

(2) % (Q) = 0 in a stationary state for all observables Q.
d oW | A ~| 0w
) @ = (5]0]w) + (v]o] %)
A. 1 only B. 2only C.land2only D.1and3 only E. all of the above

17. Choose all of the following statements that are necessarily correct.

(1) An observable whose corresponding time-independent operator commutes with the time-
independent Hamiltonian of the system, H, corresponds to a conserved quantity (constant of
motion).

(2) If an observable Q does not depend explicitly on time, Q is a conserved quantity.

(3) Ifaquantum system is in an eigenstate of the momentum operator at initial time ¢ = 0, momentum
is a conserved quantity.

A.lonly B.2only C.3only D.1and3only E.allofthe above
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18. Suppose {|g,),n = 1,2,3 ... N} form a complete set of orthonormal eigenstates of an operator Q with
eigenvalues q,,. Which one of the following relations is correct? All of the summations are over all

possible positive integer values of n and m.
(D @ = Zn,m inqn><Qm|
(2) @ =2n Qn(ann)

(3) Q = Ynln
A.lonly B. 2only C.3only D.2and3 only E. none of the above

19. Hermitian operators A and B are compatible when the commutator [/i, E] = 0 and incompatible when

[A, E] # 0. Choose all of the following statements that are correct.

(1) You can always find a complete set of simultaneous eigenstates for compatible operators.

(2) You can never find a complete set of simultaneous eigenstates for incompatible operators.

(3) For two compatible operators A and B whose eigenvalue spectra have no degeneracy, you can
infer the value of the observable B after the measurement of the observable A returns a particular
value for A.

A.lonly B.land2only C.1and3only D.2and3 only E.allof the above
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For questions 20-30:
|s,ms) denotes a simultaneous eigenstate of $?> and S, such that the quantum numbers
corresponding to S$?and § , are s and mg, respectively.

Raising and lowering operators for spin angular momentum are defined by 5‘i =S, + i§y and

Sils,mg) = hy/s(s + 1) — mg(mg £ 1)|s, mg = 1). The commutator is defined by [Sx,Sy] = (hS,.

For example, for a spin-1/2 particle:

=3 me=i]
sy=+iRY  sp-y--tf-Y

S E R R

A R B e B

Eigenstates of S,: |T), = E%)T/E‘%) s E%)?/E_%)

20. For a spin-1/2 particle, suppose |s,mg) = E, —§> is a simultaneous eigenstate of $? and S, with
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1 1 .
quantum numbers s = p and my = — e Choose all of the following statements that are correct.
(1 S, E, — %> is an eigenstate of both $? and §,,.

) If §? I _N_3p2l 1 ,then § I _Disan eigenstate of $? with eigenvalueghz.
2’ 2 4 2’ 2 22 2 4

1 hl1l

A A . ) A h
3 IfS, %, — —> = —= |—, — %>, then S, E, — %> is an eigenstate of S, with eigenvalue — >

2 212

A.lonly B.land2only C.1and3only D.2and3only E.allofthe above

1> . |1,%>. Choose all of

1
2’2 212

21. At time t = 0, the initial state of a spin-1/2 particle is |%,%> so that S,

the following statements that are correct at time t = 0.

(1) If you measure S,,, you will obtain zero with 100% probability.
(2) If you measure S,, you will obtain g with 100% probability.

2
(3) If you measure S2, you will obtain % with 100% probability.

A.lonly B.2only C.land3only D.2and3only E.all of the above

22. At time t = 0, the initial normalized state of a spin-1/2 particle is [y) = a E, %> +b E, — %) where a

and b are suitable constants. What is the expectation value (S,.) at time t = 0?
A(Sy)=0
h
B. (Sy) =3 (lal” +1b]%)

C. {5,y =2 (lal?> = |b|)

|la+b|? |a—b|2)
2 2

D. (5.} =2 (

la+b|? |a—b|2)

E'<S">=§( 2 2
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Questions 23-25 refer to Stern-Gerlach experiments with magnetic field gradients in various

directions. The neutral silver atoms have zero orbital angular momentum. If an atom in state E, %>

1

(or E, _§>) passes through a Stern-Gerlach apparatus with the magnetic field gradient in the

negative-z direction (SGZ-), it will be deflected in the +z (or —z) direction, respectively. Assume that

the initial state of each silver atom entering the Stern Gerlach apparatus is spatially localized.

. S . 1|1 1 1 1
23. A beam of neutral silver atoms, each of which is in a spin state | y) = NG <|E’ E) + |E' — 5))' propagates
into the paper (x-direction). The beam is sent through a Stern Gerlach apparatus with a magnetic field
gradient in the —z-direction (SGZ-). Which one of the following schematically represents the pattern

you expect to observe on a distant screen in the y-z plane when the atoms hit a screen?
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=<

.-z

E. None of the above.

24. A beam of neutral silver atoms, each of which is in a spin state state |y) = E, %), propagates into the

paper (x-direction). The beam is sent through a Stern Gerlach apparatus with a magnetic field gradient
in the —y-direction (SGY-). Which one of the following schematically represents the pattern you

expect to observe on a distant screen in the y-z plane when the atoms hit a screen?
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E. None of the above.

25. Suppose Beam A consists of neutral silver atoms, each of which is in the state

lx) = = (|l, l) + |l, — l>), and Beam B consists of a mixture in which half of the silver atoms are
V2 \I2’ 2 2 2

1

each in state E, %) and the other half are each in state E, - E>‘ Both beams propagate along the y

direction. Choose all of the following statements that are correct (Note the magnetic field gradient in
each case):
(1) The state of each silver atom in beam A will become a superposition of two spatially separated

components after passing through a Stern Gerlach apparatus with a magnetic field gradient in the
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—z-direction (SGZ-).

(2) We can distinguish between Beam A and Beam B by analyzing the pattern on a distant screen
after each beam is sent through a Stern Gerlach apparatus with a magnetic field gradient in the —z-
direction (SGZ-).

(3) We can distinguish between Beam A and Beam B by analyzing the pattern on a distant screen
after each beam is sent through a Stern Gerlach apparatus with a magnetic field gradient in the —x-
direction (SGX-).

A. lonly B. 2only C. land2only D. 1and 3 only E. All of the above.

In questions 26-30, the Hamiltonian of a charged particle with spin-1/2 at rest in an external uniform

magnetic field is H = —yB,S, where the uniform field B, is along the z-direction and y is the

gyromagnetic ratio (a constant). The phrase “immediate succession” implies that the time evolution

can be ignored between the first and second measurements.

26.

27.

Suppose that at time t = 0, the particle is in an initial normalized spin state |y) = a E, %) +b E, — %>

where a and b are suitable constants. What is the state of the system after time t?

x@y=e= (alt bl 1))

@)= (alt, 4] -2))
@)= (@rn) [, 3+ @0 f.-3)

iyBgt 1 1 —iyBgt 1 1
=, -)+be 2z |-,—=
2’ 2> + 2’ 2

lx(t)) =ae 2

None of the above.

Suppose that at time t = 0, the particle is in an initial state in which the x-component of spin S, has a
. h .
definite value e Choose all of the following statements that are correct about measurements

performed on the system starting with this initial state at ¢ = 0.

(1) If you measure S, immediately following another measurement of S, at ¢ = 0, both measurements

of S, will yield the same value g

(2) If you first measure S2 at t = 0 and then measure S, in immediate succession, the measurement

of S, will yield the value g with 100% probability.
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(3) If you first measure S, at t = 0 and then measure S, in immediate succession, the measurement
of S, will yield the value g with 100% probability.
A.lonly B.3only C.land2only D.1and3only E.2and3 only

28. Suppose that at time t = 0, the particle is in an initial state in which the x-component of spin S, has a
. R . . .
definite value > (as in the preceding question). Choose all of the following statements that are correct

about measurements performed on the system after a long time t. (The only difference between the

problem statement of questions 29 and 30 is that the measurements are performed at time ¢t = 0 in
question 29 and after a long time t in question 30.)

(1) If you measure S, immediately following another measurement of S,, both measurements of S,

will yield the same value 2 with 100% probability.

(2) If you first measure S2 and then measure S . In immediate succession, the measurement of S, will
yield the value 7 with 100% probability.

(3) If you first measure S, and then measure S, in immediate succession, the measurement of S, will
yield the value + g or — g with equal probability

A.lonly B.3only C.land2only D.1and3only E.2and3 only

29. Suppose the particle is initially in an eigenstate of the x-component of spin angular momentum
operator S,.. Choose all of the following statements that are correct:
(1) The expectation value (S,.) depends on time.
(2) The expectation value (S,,) depends on time.

(3) The expectation value (S,) depends on time.
A.lonly B.3only C.land2only D.2and3only E.allofthe above

30. Suppose the particle is initially in an eigenstate of the z-component of spin angular momentum S,.
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Choose all of the following statements that are correct:
(1) The expectation value (S,.) depends on time.
(2) The expectation value (S,) depends on time.
(3) The expectation value (S,) depends on time.

A. none of the above B.1only C.3only D.1and2only E.alloftheabove

A particle interacts with a one-dimensional infinite square well of widtha (V(x) = 0for0 <x < a

and V(x) = 4+ otherwise). The stationary state wavefunctions are ,(x) = \/gsin (%) and the

n2m2h?

allowed energies are E,, = wheren = 1,2,3 ... 0. Answer questions 31-34.

2ma?
31. The wavefunction at time t =0 is W(x,0) = Ax(a —x) for 0 < x < a, where A is a suitable
normalization constant. Choose all of the following statements that are correct at time t = 0:
(1) If you measure the position of the particle at time t = 0, the probability density for measuring x

is |[Ax(a — x) |?.

(2) If you measure the energy of the system at time t = 0, the probability of obtaining E; is

an Y, () Ax(a — x) dx|2.

(3) If you measure the position of the particle at time t = 0, the probability of obtaining a value

between x and x + dx is f;mx x|¥(x,0)|? dx.

A. lonly B.3only C.1and2only D. 1 and 3 only E. All of the above

32. The wavefunction at time t =0 W(x,0) = Ax(a —x) for 0 < x < a, where A is a suitable
normalization constant. Choose all of the following statements that are correct at a time £ > 0:
(1) If you measure the position of the particle after a time t, the probability density for measuring
x is |Ax(a — x) |%.

(2) If you measure the energy of the system after a time t, the probability of obtaining E; is

|1 () Ax(a — x)dx| .

(3) If you measure the position of the particle after a time t, the probability of obtaining a value
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33.

34.

between x and x + dx is f;mx x|¥(x,0)|? dx.

A. None of the above  B. 1 only C.2o0nly D.3only E.1and3only

)+ (%)

The wavefunction at time t = 0 is W(x,0) = 1€ 7 . Choose all of the following statements that

are correct at time t = 0:
(1) If you measure the position of the particle at time £ = 0, the probability density for measuring x

S wl(x)+wz(x>|2
I

(2) If you measure the energy of the system at time t = 0, the probability of obtaining E; is

foa 7101* (x) (1P1(x)\gl)z(x)) dx

(3) If you measure the position of the particle at time t = 0, the probability of obtaining a value

|2

between x and x + dx is f;+dxx|LP(x, 0)|? dx.

1 only B.3only C.1and 2 only D. 1 and 3 only E. All of the above

)+ (%)

The wavefunction at time t = 0 is W(x,0) = balx 7% . Choose all of the following statements that

are correct ata time t > 0:

(1) If you measure the position of the particle after a time ¢, the probability density for measuring x

< w1<x)+wz<x)|2
i

(2) If you measure the energy of the system after a time t, the probability of obtaining E; is

an 0y () (11)1(96)\/4‘511)2(35)) dx|2_

(3) If you measure the position of the particle after a time t, the probability of obtaining a value

between x and x + dx is f;+dxx|‘{‘(x, 0)|? dx.

None of the above B. 1 only C.2o0nly D.3only E.1and3only
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