To Code or Not to Code? Programming in
Introductory CS Courses'

Jennifer Parham-Mocello
School of EECS
Oregon State University
Corvallis, USA
parhammj@oregonstate.edu

Abstract— Code-first approaches for introducing students to
CS exclude those without preparatory privilege in programming
and those intimidated by coding. Delaying coding or not using
coding in an introductory CS course provides an equitable
learning opportunity and includes a broader group of students in
computational education. We present a study that compares a
traditional Python code-first approach with an approach to delay
or remove coding by first using simple, well-known stories to
explain computation without the need for a computer or coding.
We find that many students, especially female students and those
without prior programming, are initially not interested in coding
but in using stories to explain computing. We conclude that a
traditional Python code-first approach excludes these students
and an option using stories is a viable alternative.

Keywords— Story Telling;
Introduction to Computer Science

Computer Science Pedagogy;

I. INTRODUCTION

Coding can be frustrating to students [13, 22], and thus an
immediate focus on coding in computer science education can
discourage students from considering computer science (CS) as
a field of study. In addition, coding-based teaching approaches
create a divide between those who have prior programming
experience and those who have not, which leads to feelings of
low self-efficacy, inferiority, and attrition among females [15]
and underrepresented minorities [16].

Thus, many current coding-based approaches to the
introduction of computer science and computational thinking
(CT) create inequitable entrances into CS education by
inhibiting participation and suffer from three sources of inequity
affecting different groups of students:

e Intimidation (affects those who are put off by coding),

e Preparatory Privilege (affects those who have not had prior
programming experience), and

e Race & Gender

These factors are not completely independent, but they do cover
a larger group of students than any single one. For example,
white males can be intimidated or not have prior programming
experience.

Programming predicates many approaches introducing
computer science to students; that is, they require an
understanding of how to code an algorithm in a programming
language. Code.org uses this approach to promote CS to
younger children, but the abstract nature of programming

Martin Erwig
School of EECS
Oregon State University
Corvallis, USA
erwig@oregonstate.edu

Emily Dominguez
School of EECS
Oregon State University
Corvallis, USA
domingue@oregonstate.edu

languages (block based or not) can pose a significant barrier to
entry. A code-first approach can be effective when students have
a good understanding of programming or are willing to acquire
it. However, since computer science is not synonymous with
programming, there is no inherent necessity to tie the orientation
to computer science to coding activities.

We believe that the state-of-the-art introductory computer
science education at the university level could benefit from more
creativity and computational thinking without the use of a
computer. To reach a wide audience with a diverse background
and set of expectations, we employ the so-called Story
Programming approach that uses well-known stories and
everyday situations to explain computer science concepts before
teaching coding. This approach is based on the book [6] and was
first proposed in our previous work [18] where we found that
delaying coding by 5 weeks and using stories to explain
computation is a viable approach compared to a traditional code-
first approach to teaching a CS orientation course (CS 0).
Delaying coding bears a number of risks, including frustrating
students who are expecting to learn how to code and who fear
that they might get behind compared to others who start in a
coding-first environment. To explore the non-coding approach
further, we decided to take an even bigger risk and remove
coding altogether. In the remainder of this paper we outline the
approach and present a comparison of the traditional code-first
with the story approach that removes or delays coding.

We find that there are a significant number of students,
especially females and those without prior programming
experience, who are initially not interested in coding but in using
stories to explain computing. We conclude that offering a
traditional Python code-first approach excludes these students
and an option using stories to explain computing is a viable
alternative

II. BACKGROUND

The two most closely related areas to our approach are the
so-called “unplugged” computational thinking approach and
other approaches to using stories for explaining computing
concepts.

A. Unplugged CT activities

The most well-known approach to teaching CS concepts without
the use of a computer is the approach taken in csunplugged.org
[3]. It is a collection of engaging activities that can illustrate
computing concepts, but it does not use stories. The Story

f This work is partially supported by the National Science Foundation under the grant CCF-1717300.

978-1-7281-0810-0/19/$31.00 ©2019 IEEE

Programming approach uses the idea of unplugged activities
performed without a computer to introduce the computational
concept before coding, but the actual non-coding activities relate
to the existing stories or stories students create.

Thus far the unplugged activities have been primarily
employed in the K-12 education [1, 4, 9, 19, 20]. The research
presented in this paper investigates the idea of teaching
computational thinking without a computer at the university
level. Most alternatives for teaching introductory CS courses
focus on changing the curriculum to improve success and
retention [7, 17] and make topics covered more relevant and
broader [14]. Some universities create interest-based classes
allowing students to choose a class section based on what they
like, such as game development, robotics, music, and mobile
applications [7, 23], while others focus on adding computational
thinking to their curricula with and without the use of a computer
[8, 11, 17, 21]. These studies show that adding computational
thinking to a curriculum helps students think about different
ways to attack problems and makes them more effective
problem solvers. The Story Programming approach uses interest
in stories as a tool for teaching computational thinking in CS 0.

B. Approaches Based on Stories

There are other approaches using stories to explain
computing. For example, the author of [12] describes a story
about a princess on a quest to save her father’s kingdom and
introduces algorithms and data structures along the way. The
target audience is middle school children. The author of [2]
employs a similar approach and tells a story about a girl who
wants to find her way back home after getting lost in a forest. As
part of her quest, she has to solve several problems, which are
used to introduce concepts of algorithms and math. The story is
a bit like Alice in Wonderland with its playful and clever use of
names, and the target audience is again middle school children.

One study introduced Computational Fairy Tales alongside
coding to help the retention and academic performance of CS
majors, mostly aimed at students with little to no programming
experience [17]. It found that “CSO students without prior
programming experience got significantly higher grades in CS1
than CSO students who had programmed before”; the students
were split on how useful the book was to their learning. This is
different than the study presented in this paper, which removes
coding from the Story Programming approach and compares it
with a traditional Python code-first approach. Another
difference is that Story Programming employs existing stories
students are already familiar with, which means students don’t
have to absorb a new story before making the connection to
computational concepts.

Another study claimed that using a story to learn a concept
will be easily accessible because that is how many of us learn to
begin with [10]. These claims align with the rationale for using
a Story Programming approach, but our study presented in the
following sections does not investigate these claims. One other
study used unplugged activities and storytelling to introduce
teachers to computational thinking, but it focused on teacher
training and used contextual stories to relate different unplugged
activities to specific computational skills for teachers as the
storytelling approach [5].

Most closely related to the study reported in this paper is our
previous work [18], which describes an experiment of varying
an existing computers science orientation course. This course is
primarily taken by incoming first-year students declared as CS
majors, although upper-level CS students or those outside the
major may take the course as well. Traditionally, the course
taught Python as a coding language with students beginning to
write small programs as early as week two in a ten-week term.
In the prior study from fall 2017, the course was divided into
three sections. Two of the sections introduced a new so-called
Story Programming approach, which is based on the book [6]
using stories to explain computation, and delayed coding by 5
weeks. The other section remained the same as traditionally taught
in previous years. One of the two Story Programming sections
used Python in the second half of the class, while the other
section used Haskell. The goal was to investigate the new
approach and differences in language choice with the new
approach. Also, the students were not told about the different
approaches prior to the class to elicit an unbiased opinion of the
approach from students who do not self-select based on interest.
The most important result of that study was that a delayed
coding approach is a viable alternative to the coding-first
approach.

III. RESEARCH METHOD

The study described in this paper pushes the idea of delayed
coding further and investigates how well a “Story No Code”
approach, which doesn’t use coding at all, might work. We
decided to also offer a “traditional” Python coding section that
uses the same curriculum as the Python section from [18] to
obtain a direct comparison. To avoid some of the student
frustration about lack of coding that was reported in [18], we
decided to let students self-select into the sections based on a
small description of the two different sections. The same
instructor who taught the fall 2017 courses also taught the two
sections in fall 2018.

In the following, we describe the structure of the course
sections from [18] and our study and the research questions. We
have kept the curriculum of our Story Programming section
(which has essentially become a Story No Code section) as close
as possible to the Story Programming sections from [18] to
facilitate a meaningful comparison.

A. Course Structure

The Story Programming sections from fall 2017 and 2018
had between 65 and 105 students per lecture and used
presentation slides to teach concepts, as well as live coding
demonstrations through a terminal when teaching programming
in the two delayed-coding sections. The students in the Story
Programming sections read relevant chapters of the book before
class with a weekly online quiz. Every week students engaged
in in-lecture group exercises focused on understanding the
stories used in the book from a computational perspective,
coming up with new stories to explain computational concepts,
and developing and tracing algorithms.

All sections had two one-hour lectures each week and one
two-hour lab per week, and the first 5 weeks of all the Story
Programming labs focused on small group activities applying
concepts to the real world. For example, one of the first activities

examined path finding algorithms using the tale of Hansel and
Gretel, and this activity presented the students three variants of
the algorithm that they had to act out with pebbles. Another
activity helped students learn about the runtime of different
algorithms by having to count and transfer beans across the
classroom using different methods. In the delayed-coding
sections, the programming activities in the last 5 labs and
assignments used code to mirror the concepts covered in the first
5 weeks, rather the new concepts covered in class; whereas, the
non-coding section continued using hands-on, small group
activities related to the concepts covered in lecture and the book.

B. Research Questions

Offering a new, non-coding Story Programming section that
students self-selected into allowed us to investigate the effects
of removing coding from a university CS orientation course and
explore who is interested in the approach using stories versus
Python programming before the class.

e RQI: Do the DWF (Drop/Withdraw/Failure) rates and
grade distributions differ when coding is removed?

o RQ2: What are students’ initial interests in the class, coding,
and the use of stories to explain computing, and do these
interests change after the class?

C. Data Collection

With IRB permission, we collected course-level DWF rates
and grade distribution information from the registrar, and we
collected student-level pre- and post-survey data from consen-
ting participants.

IV. RESULTS AND DISCUSSION

The course-level results for RQ1 are out of 191 students, and
the student-level survey results for RQ2 are out of 147
consenting participants (73 Story No Code and 74 Falll8
Python). Since the data are not normally distributed and are
based on a Likert scale (ordinal), we use non-parametric
statistical tests, i.e., the Kruskal-Wallis hypothesis test for 2 or
more categories and the Wilcoxon paired t-test between
dependent pre and post information to reject hypotheses with
95% confidence, a<=.05.

RQI: Do the DWF rates and grade distributions differ when
coding is removed?

Does removing coding retain more students and increase their
grade point average compared to the code-first approach
traditionally used to teach the CS Orientation course? In fall 2017
we observed that using the Story Programming approach and
delaying coding, regardless of language, did not retain (nor did it
lose) more students than the traditional Python code-first
approach (6.5%-9.2%) [18]. In fall 2018 we observe the same
thing when coding is completely removed. The DWF rates using
different approaches do not significantly differ, but it is
interesting to note that the DWF rate doubles from 6.5% in fall
2017 to 13.7% in fall 2018 in the traditional code-first section
with the same exact curriculum and instructor. Overall, the fall
2018 sections had a higher DWF rate than the fall 2017 section,
which suggests the academic year has more to do with the DWF
rates than the approach used in this class.

When coding is removed, students do not get a significantly
higher grade-point average than when coding is delayed or used
immediately. However, there is a significant difference in the
Story Programming approach delaying coding with Python and
the grades in the fall 2018 code-first traditional Python
programming approach. Across all sections, the majority of the
students are As (60-82%), with only 2-5% of the students
making Cs. However, the Story Python with delayed-
programming had significantly more As than the fall 2018
traditional Python code-first approach, which has more Bs and
higher DWF rates. Overall, the approach using stories without
coding or delaying coding seems to yield more consistent DWF
rates and grade distributions than the traditional Python code-
first approach.

RQ?2: What are students’ initial interests in the class, coding,
and the use of stories to explain computing, and do these
interests change after the class?

Since students self-selected into the different sections in fall
2018, we asked questions about their interests in the class,
coding, and use of stories to explain computing before and after
the class to understand (1) who and what are the interests in each
of these areas before entering the course and (2) if there are any
changes in these interests after the class.

1) What are the initial student interests in the class and
learning more about programming/coding, and do these
interests change after the class?

Prior to the courses, there are significant differences in
students’ interest in the class and learning more about
programming/coding among the two sections with and without
coding. More students in the Python programming section are
extremely interested in the class than in the Story No Code
section, which could be because they are in the section for a
reason other than interests or because they are unsure of a new
approach using stories without coding (see Fig. 1). It makes
sense there are less students extremely interested in coding in
the Story No Code section (see Fig. 1), but overall, coding
extremely interests most students in both sections. This is likely
due to students self-selecting to take a computer science
orientation course and having interest in majoring in CS, but it
is worthwhile pointing out that almost 20% of the students in the
Story No Code section were only somewhat interested in coding,
which means that a code-focused orientation to CS does not
necessarily appeal to all students and may be worse for non-
majors.

A paired t-test of pre- and post interests in the class shows a
significant decrease in interests in the class within the Python
coding section and the Story No Code section, with Python
having a larger decrease. The change in student interests in both
classes could be because the course content did not meet
students’ expectations or because the students did not sign up
for this section based on interest but rather for scheduling
reasons or availability in the class. However, an unexpected
result is that there is a significant decrease in students’ interest
to learn more about coding after taking the Python coding class;
whereas, the students’ interest in learning more about coding
does not change at all in the Story No Code section (see Fig. 1).

Somewhat Extremely

Response . Not At AlL

Class Interest Before
10097 —

Coding Interest Before

7]
o
2
&

5096 -

2504

Percentage of Students

=)
2
&

Class Interest After
100%0 7 D EE—

T5%0

Coding Interest Afier

5026

25%% 1

Percentage of Students

Story No Code F18 Python
Sections

Story No Code F18 Python
Sections

Fig. 1. Distribution of student responses to survey question: “Rate your
interest in... 1) this class and 2) learning more about programming/coding”.

2) How would using stories to explain computation versus
writing programs/code affect student interests in the class and
motivation to learn more about CS and coding, and do these
interests change after the class?

We notice that writing programs/code interest students more
than using stories to explain computing (see Fig. 2), and coding
and using stories does not significantly differ among sections.
However, it is worth mentioning that more students in the
Python section said that having stories would increase
motivation to learn about CS than the Story No Code section,
which is likely due to students in sections for reasons other than
interest. Even though there is more interest and motivation for
writing code, 40-45% of the students say that the use of stories
would greatly or slightly increase their interests in the class and
motivation to learn more about CS and coding (see Fig. 2),
which suggests that a combination of the story approach with
coding might be better.

Across sections, there is a significant difference in students’
pre- and post-response to how using stories to explain
computing would (or did) affect their interest in the class and
motivation to learn more about CS and programming/coding. In
the Python section, students responded more negatively about
the use of stories after the class; whereas, the students in the
Story No Code section responded more positively about the use
of stories after the class. It is interesting to note that we see fewer
positive responses about the effect writing programs/code had
on interests in the class and motivation to learn more about CS
before and after the class with coding.

Sres “\"- 1t wouldn't

Decreas
Slightly Slightly
Increaze

Decreaze

Creatly
Increaze

No Answer

Interests/Motivation

How would using stories affect vour interests/motivation...

to learn more
about CS

to learn more
about coding

in this class

How would coding affect your interests/motivation...

to learn more
about CS

to learn more
about coding

in this class

0% 2504 S0% 75%% 100%%
Percentage of Students

Fig. 2. Distribution of student responses to a pre-survey question: “How
would using stories to explain computing affect your interest/motivation ...”
and “How would writing programs/code affect your interest/motivation ...”

3) Who is initially interested in the class, coding, and using
stories to explain computing?

To better understand who is interested in the different
approaches, we look at whether prior programming or gender
play a role in students’ initial interests. There is no difference in
coding interests based on the gender or prior programming, but
prior programming experience and gender do play role in the
interest of the class and the use of stories to explain computing.

There is no significant difference between students’ with and
without prior programming and their initial class interests in
each section. However, it is interesting to note that those without
prior programming are more interested in either class than those
with experience, and students with prior programming are the
only ones who ever respond that they are not interested in the
class at all or are more likely to only be somewhat interested,
which suggests that these students are not interested in CS 0.
Overall, there are a significant number of students without prior
programming experience who say the use of stories to explain
computing would greatly increase their interest in the class and
motivation to learn more about coding and CS before the course.
This could be because students without prior programming
experience want a non-coding or different approach to learning
about CS than those who already chose to get into CS by
programming.

There is no difference in female and male interests in the
Python coding class, but there is in the Story No Code approach.
In this section, females are intitially more interested in the class,
which suggests that a non-coding or story approach might be
more attractive to females. It is interesting to note that only male
students responded not-at-all-interested in the class. While there
are differences in responses to all questions about using stories
and students with and without prior programming experience,
there are not as many differences between responses from
different genders. However, more females initially stated that
using stories to explain computing would greatly increase their
motivation to learn more about CS.

V. CONCLUSIONS

Based on the results from this study, we conclude a code-first
approach for CS 0 excludes some students and is advantageous
to those students to continue offering the story approach as an
alternative for the following reasons:

e The approach and amount of coding used to orient students
to CS has less of an effect on DWF and grades than the term
in which a class is taught.

e A significant number of students think the use of stories to
explain computing would increase their interest in the class
and motivation to learn more about CS or coding

e Those without prior programming experience and females
are initially more interested in and motivated by the non-
coding class using stories. Almost 20% of the students are
only somewhat interested in coding.

e A code-first approach negatively impacts interests in coding
and learning more about CS.

—

—

REFERENCES

T. Bell, J. Alexander, I. Freeman, and M. Grimley. 2009. Computer
Science Unplugged: school students doing real computing without
computers. Journal of Applied Computing and Information Technology
13, 1.

C. Bueno. 2014. Loren Ipsum. No Starch Press.

CS Education Research Group. CS unplugged: Computer Science without
a computer. http://www.csunplugged.org

P. Curzon. 2013. cs4fn and computational thinking unplugged. In
Proceedings of the 8th Workshop in Primary and Secondary Computing
Education (WiPSE '13). ACM, New York, NY, USA, 47-50.

P. Curzon, P. W. McOwan, N. Plant, and L. R. Meagher. 2014.
Introducing teachers to computational thinking using unplugged
storytelling. In Proceedings of the 9th Workshop in Primary and
Secondary Computing Education (WiPSCE '14). ACM, New York, NY,
USA, 89-92.

M. Erwig. 2017. Once Upon an Algorithm: How Stories Explain
Computing. MIT Press.

M. Haungs, C. Clark, J. Clements, and D. Janzen. 2012. Improving first-
year success and retention through interest-based CSO courses. In
Proceedings of the 43rd ACM technical symposium on Computer Science
Education (SIGCSE '12). ACM, New York, NY, USA, 589-594.

P. B. Henderson. 2011. Computing unplugged enrichment. ACM Inroads
2, 3 (August 2011), 24-25. DOI http://dx.doi.org/10.1145/
2003616.2003626

F. Hermans and E. Aivaloglou. 2017. To Scratch or not to Scratch?: A
controlled experiment comparing plugged first and unplugged first
programming lessons. In Proceedings of the 12th Workshop on Primary
and Secondary Computing Education (WiPSCE '17), Erik Barendsen and
Peter Hubwieser (Eds.). ACM, New York, NY, USA, 49-56.

W. J. Joel. 2013. A story paradigm for computer science education. In
Proceedings of the 18th ACM conference on Innovation and technology
in computer science education (ITiCSE '13). ACM, New York, NY, USA,
362-362.

D. Kafura and Deborah Tatar. 2011. Initial experience with a
computational thinking course for computer science students. In
Proceedings of the 42nd ACM technical symposium on Computer science
education (SIGCSE '11). ACM, New York, NY, USA, 251-256.

J. Kubica. 2012. Computational Fairy Tales. CreateSpace Independent
Publishing Platform.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Lishinski, A. Yadav, and R. Enbody. 2017. Students’ Emotional
Reactions to Programming Projects in Introduction to Programming:
Measurement Approach and Influence on Learning Outcomes. ACM
Conf. on International Computing Education Research (ICER 2017), pp.
30-38.

D. J. Malan. 2010. Reinventing CS50. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education (SIGCSE '10).
ACM, New York, NY, USA, 152-156

J. Margolis and A. Fisher. 2003. Unlocking the clubhouse: Women in
computing. Cambridge, Mass: MIT Press.

J. Margolis. 2008. Stuck in the shallow end education, race, and
computing. MIT Press.

C. Marling and D. Juedes. 2016. CS0O for Computer Science Majors at
Ohio University. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (SIGCSE '16). ACM, New York, NY,
USA, 138-143

J. Parham-Mocello, S. Ernst, M. Erwig, L. Shellhammer, and E.
Dominguez. 2019. Story Programming: Explaining Computer Science
Before Coding. SIGCSE '19, February 27-March 2, 2019, Minneapolis,
MN.

B. Rodriguez, C. Rader, and T. Camp. 2016. Using Student Performance
to Assess CS Unplugged Activities in a Classroom Environment. In
Proceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE '16). ACM, New York, NY,
USA, 95-100.

R. Thies and J. Vahrenhold. 2013. On plugging "unplugged" into CS
classes. In Proceeding of the 44th ACM technical symposium on
Computer science education (SIGCSE '13). ACM, New York, NY, USA,
365-370. .

M. Van Dyne and J. Braun. 2014. Effectiveness of a computational
thinking (CS0) course on student analytical skills. In Proceedings of the
45th ACM technical symposium on Computer science education (SIGCSE
'14). ACM, New York, NY, USA, 133-138. .

B. C. Wilson and S. Shrock. 2001. Contributing to success in an
introductory computer science course: A study of twelve factors. Thirty-
Second SIGCSE Technical Symposium on Computer Science Education

Z.J. Wood, J. Clements, Z. Peterson, D. Janzen, H. Smith, M. Haungs, J.
Workman, J. Bellardo, and B. DeBruhl. 2018. Mixed Approaches to CS0:
Exploring Topic and Pedagogy Variance after Six Years of CS0. In
Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE '18). ACM, New York, NY, USA, 20-25

