
Does Story Programming Prepare for Coding? 
Jennifer Parham-Mocello 

School of EECS 
Oregon State University, USA 
parhammj@oregonstate.edu 

Martin Erwig 
 School of EECS 

Oregon State University, USA 
erwig@oregonstate.edu

ABSTRACT 
In this research study, we investigate the impact of using the 
Story Programming approach to teach CS concepts on student 
performance in a subsequent C++ class. In particular, we 
compare how students receiving little or no coding to learn and 
apply these concepts perform in comparison to students who 
learn these concepts only in the context of coding. While past 
research has shown that exposure to programming is not a 
predictor of success in such courses, these studies are based on a 
15-week versus 10-week course and do not control for the CS 
concepts and programming to which the students have been 
exposed. Consequently, we hypothesize that students from the 
Story Programming approach will perform worse in the 
following C++ class. Surprisingly, we find that this is not true: 
Students from the Story Programming approach with little to no 
coding do not significantly differ from their peers receiving a 
traditional code-focused approach. 

CCS CONCEPTS 
• Social and professional topics ~ Computational thinking 
• Social and professional topics ~ Computer science education 
• Applied computing ~ Interactive learning environments 

KEYWORDS 
Story Telling; Computer Science Pedagogy; Introduction to 
Computer Science 

ACM Reference format: 

Jennifer Parham-Mocello and Martin Erwig. 2020. Does Story 
Programming Prepare for Coding? In the 51st ACM Technical Symposium 
on Computer Science Education (SIGCSE’20). ACM, New York, NY, USA, 7 
pages. https://doi.org/10.1145/3328778.3366861. 

1 INTRODUCTION 
Inspired by our previous research using stories to explain 

computation before coding [16], we want to know how students 
receiving this treatment with little or no coding to learn and 

apply CS concepts perform in a subsequent C++ class, especially 
in comparison to students who learn these concepts only in the 
context of coding. Even though the Story Programming 
approach is a viable alternative to a code-focused approach for 
CS 0, we hypothesize that students from the Story Programming 
approach will perform worse in the following C++ class: 

 “Students in the new Story Programming approach will 
perform worse in CS 1, since they lack a half (or even a full) 
term of coding to learn and apply CS 1 concepts.” 
While past research shows that exposure to programming is 

not a predictor of success in such courses, these studies are based 
on a 15-week versus 10-week course and do not control for the 
CS concepts and programming to which the students have been 
exposed. In this paper, we compare the CS 1 performance of 
students who receive no coding or some coding using the Story 
Programming approach in CS 0 with students who receive a full 
10-week term of coding. At the host university, CS 1 is a very 
large, challenging C++ class with 5-6 assignments and a heavy 
focus on pointers and memory management in the second half of 
the 10-week term. Over the years, the instructor, who teaches 
both CS 0 and CS 1, added more and more coding to CS 0 to 
“better” prepare students for CS 1, even though CS 0 is not a 
prerequisite for CS 1. This research study investigates whether 
students who receive more coding in CS 0 really are better 
prepared for CS 1 and whether the students in the Story 
Programming approach with little or no coding are at a 
disadvantage. 

2 BACKGROUND 

2.1 Unplugged Curriculum 
Many approaches to introducing computer science to 

students are predicated on programming, that is, they require an 
understanding of how to code an algorithm in a programming 
language. This approach is used in efforts such as code.org that 
promote coding and computer science to younger children, but 
many studies have shown that comfort level and willingness to 
learn programming are the strongest predictors of success in 
programming classes [23, 18, 19]. Since computer science is not 
synonymous with programming, there is no inherent necessity 
to tie the orientation to computer science to coding activities, 
and students who are not sure whether they want to study 
computer science but are curious about the subject should not be 
excluded because they are reluctant to the idea of having to 
become a programmer as a prerequisite to understanding 
computer science. 

This is why efforts to explain computer science without a 
computer, such as csunplugged.org [2], have gained popularity, 

* This work is partially supported by the National Science Foundation under the grant 
CCF-1717300. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others 
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org.  
SIGCSE '20, March 11–14, 2020, Portland, OR, USA © 2020 Association for Computing 
Machinery. ACM ISBN 978-1-4503-6793-6/20/03…$15.00 
https://doi.org/10.1145/3328778.3366861 



SIGCSE ’20, March 2020, Portland, Oregon USA Parham-Mocello and Erwig 
 

 

 

especially among the K-12 community [1, 4, 8, 17, 21], and 
studies show that this approach broadens participation [3]. For 
these reasons, the researchers in this study believe that students 
and CS programs at institutes of higher education can benefit 
from non-coding alternatives.  

2.2 Promoting Computational Thinking 
Most alternatives for teaching introductory CS courses at the 

university focus on changing the curriculum or adding pathways 
to improve success and retention [9, 14, 11] or make topics 
covered more relevant and broader [13]. Some universities create 
interest-based classes allowing students to choose a class section 
based on what they like, such as game development, robotics, 
music, and mobile applications [9, 24], while others focus on 
adding computational thinking to their curricula with and 
without the use of a computer [7, 10, 14, 22]. These studies show 
that adding computational thinking to the curricula help 
students think about different ways to attack problems, making 
them more effective problem solvers, but these studies do not 
show whether the removal of coding or increased computational 
thinking activities helps or hinders students’ success is 
subsequent coding courses. 

2.3 Factors of Success in Programming Courses 
There are many research studies on factors that predict 

student success in CS 1 and CS 2 courses, especially regarding 
prior programming experience [20, 18, 19, 23] and grade received 
in prior classes [5, 11, 12]. Wilson and Rountree find that prior 
programming experience is not a predictor of student success or 
failure in a 15-week intro to programming class, and instead, 
comfort level and expectations seem to play a larger role. 
Whereas Smith’s research shows that an aptitude test measuring 
the retention of prior programming experience, rather than a 
self-reported survey, is correlated to the overall success in a 15-
week intro programming class, Danielsiek, Kirkpatrick, and 
Lambert all show that the grade received in the prior CS0 or CS1 
course is the strongest predictor of success in the subsequent 
class. These research studies suggest that intro CS courses 
focused on programming are not well suited for students who 
are not comfortable in a programming class or who do not really 
want to learn programming, and mere exposure to programming 
before these classes is not a strong predictor because self-
reported experience does not always account for the amount, 
quality, and retention of experience. We extend these studies by 
comparing students’ performance in a subsequent challenging, 
10-week C++ coding class, CS1, by controlling for their 
experiences to specific CS concepts and amount of coding used 
to learn and apply these concepts prior to CS 1.  

2.4 The Story Programming Approach 
Traditionally, the students in CS 0 at the host university learn 

and apply CS 1 concepts, such as algorithms, representation, 
control flow (both conditional statements and looping), 
functions, and lists, in the context of Python coding. The 
students write small Python programs as early as week two in a 

ten-week term. The lectures focus on teaching basic Python, and 
students learn basic problem-solving skills by creating 
documents with designs of solutions to computer science 
problems and plans for testing before writing their code. 

As we sought to understand whether students who receive 
more coding in CS 0 are at an advantage in CS 1, we created an 
alternative pedagogical approach to teaching these concepts 
outside the context of coding using stories to explain 
computation based on Once Upon an Algorithm [6], which we 
call Story Programming. For instance, students learn about path-
finding algorithms using the story of Hansel and Gretel, and 
groups of students write and act out these path-finding 
algorithms with pebbles during lab. 

Students read relevant chapters of Once Upon an Algorithm 
before class with a weekly online quiz. Chapters are generally 
covered in a sequential fashion with some occasional skipping to 
group like concepts together. The use of the book in the Story 
Programming approach changes the emphasis placed on some 
concepts covered in early CS classes, allowing for greater 
breadth and depth of concepts. For example, the Story 
Programming approach covers the concept of data structures 
and decidability more deeply than the traditional approach, 
which only gives a cursory view of data structures through lists 
and only mentions the idea that not all problems are solvable. 
The Story Programming approach can be used to delay or 
remove coding, but it is important that the CS concepts be 
explained, learned, and applied in the context of stories before 
simulating the CS concepts from the stories using code.  

In the remainder of this paper, we report on a study that 
investigates whether students from the Story Programming 
approach with little to no coding do worse than other students in 
a traditional code-focused approach. We use students’ course, 
assignment, and exam grades in CS 1 to measure performance, 
and surprisingly, students from the Story Programming 
approach do not significantly differ from their peers. 

3 RESEARCH METHOD 
This research study was conducted using five different 

sections of CS 0 from fall 2017 and fall 2018. The same instructor 
taught all sections, and each section had approximately 100 
students. Each section had two 50-minute lectures, one two-hour 
lab, and one assignment each week. During lecture, all students 
in each section engaged in group exercises that did not involve a 
computer. The sections varied in approach, amount of coding, 
and whether students self-selected into the approach. 

In fall 2017, we divided CS 0 into three sections to offer the 
new Story Programming approach. We taught one section using 
the traditional Python programming approach, and in the other 
two sections, we used the Story Programming approach and 
delayed coding for half a term. When coding and a language was 
introduced, one section used Python and the other used Haskell 
to evaluate which language offers better affordances in the 
subsequent CS courses. In this year, the students were unaware 
of the differences between sections to provide an unbiased view, 



Does Story Programming Prepare for Coding? SIGCSE ’20, March 2020, Portland, Oregon USA 
 

 

but due to many unhappy students, we decided to allow students 
to self-select into the approach in the following year. 

In fall 2018, we taught another section using the Story 
Programming approach without any coding to see if students do 
any worse than those from the previous year, and we continued 
to teach the traditional Python section. This time, the course 
catalog reflected the different themes for the sections, and 
advisors gave students information about the sections during 
registration. We acknowledge the threat to validity this causes, 
but it is important to research the impacts the Story 
Programming approach has on students beyond those who only 
self-select into the approach.  

3.1 Research Questions  
With 2 years of data, we look at how students from different 

sections perform in the subsequent C++ coding course to 
determine if the Story Programming approaches put students at 
a disadvantage. To investigate this issue, we formulated the 
following research questions:  
RQ1: Do CS 1 course grades differ based on the CS 0 section? 
In particular, we ask 

• Do the CS 1 mean course grades differ depending on 
the prior CS 0 section? 

• Do students' CS 1 course grade gains or losses depend 
on the taken CS 0 section? 

• Does the percentage of students who do not pass CS 1 
with a C or better differ depending on the prior CS 0 
section? 

• Does the performance in a CS 0 section determine how 
likely a student is to pass CS 1? 

• Do CS 1 passing grades of well-performing CS 0 
students depend on the prior CS 0 section? 

RQ2: Do CS 1 assignment and exam grades differ based on the CS 0 
section? 

Since RQ1 only gives a high-level view of the impact different 
sections have on the overall performance in CS 1, we ask RQ2 to 
determine the impact each CS 0 section has on applying specific 
CS 1 concepts covered in individual assignments and exams. We 
also keep RQ1, since it doesn't require student consent, and we 
therefore have access to a larger number of data points. 

3.2 Data Collection 
With IRB permission, student-level grade information for all 

the students over the last five years of CS 0 and CS 1 were 
collected from the registrar with unique, random ids to match 
students across years and classes, and the participant-level 
assignment and exam scores for consenting students in CS 0 and 
CS 1 were collected from the instructor.  

4 RESULTS AND DISCUSSION 
The course-level student success results are out of 355 

students, and the student-level assignment and exam grades are 
out of 103 consenting participants. Since the data are not 
normally distributed, the non-parametric Kruskal-Wallis test is 
used to reject hypotheses with 95% confidence, α=.05. 

RQ1: Do CS 1 course grades differ based on 
the CS 0 section? 

In order to answer this question, we need to know which 
students go on to take CS 1 after the orientation course (see 
Table 1). Even though only 65-75% of the students from a section 
take CS 1 after CS 0, we find that 7-13% of students in a section 
took CS 1 prior to CS 0, which leaves approximately 15-20% who 
do not take CS 1 in the future (see Table 1). Most students who 
take CS 1 after CS 0 do so in the following winter quarter, and 
there is no statistical difference between student course grades in 
winter 2018 CS 1 and winter 2019 CS 1 (chi-squared = 0.80823, df 
= 1, p-value = 0.3686).  

Section 
(Enrollment) 

Took CS 1 
before CS 0 

Took CS 1 
after CS 0 

Total with 
Grades in CS 0 

and CS 1 
Story Python (105) 8.6% (9) 70.5% (74) 74-0-5=69 
Story Haskell (102) 9.8% (10) 74.5% (76) 76-2-10=64 
Traditional 17 (111) 6.3% (7) 64.9% (72) 72-1-5=66 
Story No Code (89) 7.9% (7) 71.9% (64) 64-0-7=57 
Traditional 18 (102) 12.7% (13) 67.6% (69) 69-3-1=65 

Table 1: Total number of students enrolled in each section, 
and the percentage of those who take CS1 before and after 
CS0, with the number remaining who have grades in both. 

Some of the students who took CS 1 after CS 0 withdrew 
from CS 0, which were only 1-3 students in the 3 sections (Story 
Haskell and both Traditional). We removed these students from 
the sections, since we are investigating correlations between the 
performance in CS 0 with performance in CS 1. As a side note, 3 
out of the 6 who withdrew from CS 0 did not pass CS 1. 

1.4-13.2% of the students (1-10 students) from each section 
withdrew or took the CS 1 class for satisfactory/unsatisfactory 
(S/U) credit only, with the Story Haskell section having the most 
and the Traditional 18 having the least. We also removed these 
students because we cannot report on how well they performed 
in CS 1. The passing grade to move on to CS 2 is a C or above, 
and an S grade can be given for a D- or above.  

From the remaining students, there were 28 students from the 
international bridge program (INTO) in the Story Haskell 
section, which was unique to this section. The other sections in 
fall 2017 had only three or none. Since the removal of this 
demographic significantly changes the percentages in this 
section, we report statistics with and without the INTO students 
in the fall 2017 Story Haskell section. In fall 2018, the INTO 
students were evenly distributed across the sections. 

Do the CS 1 mean course grades differ depending on the 
prior CS 0 section? 

After we removed students without grades in both courses 
from the study, we use non-parametric statistics to determine if 
the mean course grades for students from different sections 
differ. The mean course grades did not differ by section with 
INTO (chi-squared = 8.907, df = 4, p-value = 0.0635) or without 
INTO (chi-squared = 9.416, df = 4, p-value = 0.052) (see Figure 1). 
This means that students from the Story Programming approach 
perform as well as those from the traditional approach. 



SIGCSE ’20, March 2020, Portland, Oregon USA Parham-Mocello and Erwig 
 

 

 

Moreover, if the INTO students are removed, then the Story 
Programming approaches from the fall 2017 slightly outperform 
the traditional approach that term.  

Do students' CS 1 course grade gains or losses depend on 
the taken CS 0 section? 

While there is no difference in mean course grades, there is a 
difference in the course grade loss among students from different 
sections with INTO (chi-squared = 27.871, df = 4, p-value = 
1.325e-05) and without INTO (Kruskal-Wallis chi-squared = 
23.621, df = 4, p-value = 9.513e-05). Even though most students 
receive a lower grade in CS 1, the students from the traditional 
section from fall 2018 do not see a decrease in grade as much as 
the other sections (see Figure 2). This does not necessarily mean 
that the traditional approach is better. The traditional section 
from the fall 2017 does not perform better than the Story 
Programming sections, and the Story Haskell section without 
INTO students is not significantly different from the traditional 
section in fall 2018. 

 

Figure 1: CS 1 Median course grades with upper and lower 
percentiles for students from different CS 0 sections. 

Figure 2: Median grade loss from CS 0 to CS 1 by section. 

Does the percentage of students who do not pass CS 1 
with a C or better differ depending on the prior CS 0 
section? 

Anywhere between 20-35% of students do not pass CS 1, and 
the traditional approaches from both years have the greatest 
number of students who pass CS 1 (see Table 2), which could be 
because the faculty member who developed the CS 1 curriculum 
also developed the traditional CS 0 curriculum. If the 28 INTO 
students are removed from the Story Haskell section, then both 
Story Programming sections delaying coding by a half term have 
about the same percentage of students as the traditional sections 
who pass CS 1. However, when the INTO students are removed 
from the Story Haskell section, the fall 2018 Story Programming 
section with no code has the highest percentage of students not 
passing CS 1 with a C or better. This might suggest that students 
who receive some coding to learn and apply CS concepts in CS 0 
are more likely to pass the class but are not necessarily that 
much more likely to get a higher grade, as we see in Figures 1 
and 2. 

Does the performance in a CS 0 section determine how 
likely a student is to pass CS 1? 

Since studies show that students who get below a B (3.0) or 
B- (2.7) in the introductory CS 0 or CS 1 courses are more likely 
not to pass the CS 1 or CS 2 class [5, 11, 12], we want to find out 
if this is true for our dataset. Out of 5 to 20% of the students in 
CS 0 who do not receive a B or better, we also find that most of 
these students are not likely to pass CS 1 (see Table 2). 

All students in the fall 2017 Story Programming sections who 
did not have a B in CS 0, which is only 5.6-10.9% of the students, 
did not pass CS 1, and out of the 12% of the students who did not 
get a B or better in the traditional Python section in fall 2017, 
62.5% did not pass CS 1 (see Table 2). In the fall 2018 CS 0 
sections, the number of students with lower than a B was a little 
higher than in the fall 2017 classes, but similarly, 69-89% of those 
students did not pass CS 1 with a C or higher.  

Our data show that those who do not receive a B or better in 
CS 0 have less than a 40% chance of passing CS 1, and this 
chance is even smaller for those who do not receive a B or better 
in the Story Programming sections, where coding is delayed or 
omitted. However, most of the students who do not pass CS 1 
had a B or above in CS0. 

Section (Total 
with Grades in CS 

0 and CS 1) 

Do Not 
Pass CS 1 
with ≥ C 

Do Not Pass 
CS 1 and had 

< B in CS 0 

Total Well-
Performing 

Students 
Story Python (69) 23.2% (16) 6/6=100% 69-6=63 
Story Haskell (64) 35.9% (23) 7/7=100% 64-7=57 

Story Haskell 
(No INTO) (36) 

25.0% (9) 2/2=100% 36-2=34 

Traditional 17 (66) 22.7% (15) 5/8=62.5% 66-8=58 
Story No Code (57) 29.8% (17) 8/9=88.9% 57-9=48 
Traditional 18 (65) 20.0% (13) 9/13=69.2% 65-13=52 

Table 2: Percentage of students from different CS 0 
sections not passing CS 1 with a C or better, as well as 
those who do not pass CS 1 and had below a B in CS 0. 

Do CS 1 passing grades of well-performing CS 0 students 
depend on the prior CS 0 section? 



Does Story Programming Prepare for Coding? SIGCSE ’20, March 2020, Portland, Oregon USA 
 

 

Since we know that the lower-performing students (those 
with lower than a B) in CS 0 are not likely to pass CS 1, we 
removed those students most likely not to pass CS1 from the 
data to find what the CS 1 grades are of well-performing CS 0 
students (those with a B or better) (see Table 2).  

Among the well-performing students with a B or above in CS 
0, 72-92% (79-92% without INTO) of those students pass CS 1 
with a C or above (see Figure 3). While the traditional section 
from the fall 2018 has the most students pass CS 1, there was not 
a significant difference among sections. Even though the Story 
Programming approach without any coding had the fewest 
number of students making above a B, the traditional section 
from fall 2017 had about the same number of students who did 
not make a B or better and even less students than the non-
coding section receiving ≥ A- in CS 1 (see Figure 3). The 
traditional section from 2018 and the Story Programming 
approaches from the fall 2017 have about the same number of 
students with a B or above, and the traditional section from the 
fall 2018 term and the Story Programming Haskell section 
without the INTO students have the most students getting ≥ A-. 

 

Figure 3: Percentage of students with a B or above in CS 0 
and a C or above, B or above, or an A- or above in CS 1. 

RQ2: Do CS 1 assignment and exam grades 
differ based on the CS 0 section? 

To answer this question, we can only use students who 
consented in CS 0 and CS 1 to allow us to conduct research on 
their CS 0 and CS 1 assignments and exams. Approximately 20 
students from each section consented in both CS 0 and CS 1, 
which we understand is not a large sample size. Most median 
course grades and upper/lower percentiles were very similar to 
the entire class, except that the Story Programming Haskell 
consenting students were more similar when INTO was removed 
(see Figure 4). Even though a Kruskal-Wallis test yielded a p-
value < .05 for mean course grades of all students versus 
consenting students in each section, a multiple comparisons test 
with adjusted p-values did not yield any significant differences 
between the sections. 

The consenting participants’ mean CS 1 course grade, 
assignments, and exams did not differ by CS 0 section (see Table 
3). This means that all Story Programming approaches (with and 
without coding) do as well as the traditional coding approaches. 
While not significant, we do notice that the students in the Story 
Programming section without code tend to do a little worse on 
the assignments and exams in CS 1, and the Story Programming 
approaches from fall 2017 that delayed coding by half a term 
always perform as well as or slightly better than the traditional 
approach on the exams (see Figure 5), but the traditional section 
from fall 2018 slightly outperforms students in all programming 
assignments. 

As with any educational research study, there are threats to 
the validity of the results. Even though the course learning 
objectives and basic structure of CS 1 is the same in both years, 
the instructors, assignments, exams, and other course material 
differ, which could contribute to one year being more or less 
difficult than the other year, but the cohort of students could 
also contribute to this difference. In addition, we recognize that 
this study only includes consenting participants for the 
assignment and exam scores, but we minimize this threat by 
comparing the mean performance of non-consenting students 
with those consenting in CS 1 to make sure these values are 
representative of the whole class. 

 

Figure 4: Median CS 1 course grades for all students versus consenting students in each section (including removing the 
INTO students from the Story Haskell section. 

0
20
40
60
80

100

>= C in CS 1 >= B in CS 1 >= A- in CS 1

CS 1 Grades of Well-Performing CS 0 Students

Story Python Story Haskell

Story Haskell (No INTO) Traditional 17'

Story No Code Traditional 18'



SIGCSE ’20, March 2020, Portland, Oregon USA Parham-Mocello and Erwig 
 

 

 

 
Assignment/Exam Chi-

squared 
p-value 

Final CS 1 Grade 4.5296 0.339 
Assignment 1 

(variables/input) 8.5165 0.07439 

Assignment 2  
(flow of control-if/else) 

6.2719 0.1797 

Assignment 3 (repetition) 6.4027 0.171 
Assignment 4  

(functions/decomposition) 8.9108 0.06337 

Assignment 5 (1-d arrays) 8.302 0.08112 
Assignment 6 (2-d arrays) 1.9485 0.7452 
Exam I (Assignment 1-3) 7.3657 0.1178 
Exam II (Assignment 4-6) 7.4153 0.1155 

Table 3: Difference in grades on CS 1 assignments and 
exams grouped by CS 0 section.  

 

 

Figure 5: Median CS 1 Exam 1 and 2 grades for consenting 
students. 

5 CONCLUSIONS 
Coding is not the only way to orient undergraduate students 

to the discipline of computer science at a university, and in fact, 

it might 1) deter/intimidate students from taking the classes, 2) 
distract and frustrate students with language syntax, and 3) 
make students without the prior coding experience feel inferior 
to those with preparatory privilege without providing much 
advantage in a subsequent C++ programming class. Our research 
findings align with other research studies indicating that the 
mere exposure to prior programming is not a strong predictor of 
success, but yet, the most well-known approach to introducing 
undergraduate students to computer science is with coding.  

Our past research has shown that Story Programming is an 
alternative for a CS 0 class, and this research study shows that 
students who receive this introduction perform as well as or 
better than those that are taught a traditional Python-coding 
approach. Actually, students from the Story Programming 
Haskell approach who are not in the international bridge 
program consistently outperform students from the traditional 
coding approaches in CS 1. However, students in CS 0 without 
any coding tend to do a little worse, even though there is no 
statistical difference in these mean values for grades, 
assignments, and exams. This suggests that the approach used 
and amount of coding in CS 0 does not impact students’ grades 
in CS 1, as much as making below a B in CS 0 does. This is the 
motivation for using a more abstract approach focused on 
algorithmic concepts, such as the Story Programming approach, 
as a more inclusive alternative to the traditional code-first 
approach. 

Based on the results from this study, we plan to offer the 
Story Programming with Haskell again to get another 
comparison group, and we will likely not offer another Story 
Programming section without coding. While this approach 
without coding might be a good option for students outside the 
major or not continuing to the subsequent C++ programming 
class, it does not seem to prepare the students as well as the 
classes with some exposure to coding. In the future, we plan to 
continue to investigate the impacts different orientations have 
on class performance beyond CS 1, such as CS 2 and Data 
Structures. 

REFERENCES 
[1] T. Bell, J. Alexander, I. Freeman, and M. Grimley. 2009. Computer Science 

Unplugged: school students doing real computing without computers. Journal 
of Applied Computing and Information Technology 13, 1. 

[2] T. Bell, I. H. Witten, M. Fellows, and R. Adams. 2002. Computer science 
unplugged. An enrichment and extension programme for primary-aged 
children. Canterbury. 

[3] T. J. Cortina. 2015. Reaching a broader population of students through 
“unplugged” activities. Communications of the ACM, 58(3):25-27. 

[4] Paul Curzon. 2013. cs4fn and computational thinking unplugged. In 
Proceedings of the 8th Workshop in Primary and Secondary Computing 
Education (WiPSE '13). ACM, New York, NY, USA, 47-50. DOI: 
http://doi.acm.org/10.1145/2532748.2611263. 

[5] Holger Danielsiek and Jan Vahrenhold. 2016. Stay on These Roads: Potential 
Factors Indicating Students' Performance in a CS2 Course. In Proceedings of 
the 47th ACM Technical Symposium on Computing Science Education (SIGCSE 
'16). ACM, New York, NY, USA, 12-17. DOI: 
https://doi.org/10.1145/2839509.2844591. 

[6] Martin Erwig. 2017. Once Upon an Algorithm. MIT Press. 
[7] Peter B. Henderson. 2011. Computing unplugged enrichment. ACM Inroads 2, 

3 (August 2011), 24-25. DOI: http://dx.doi.org/10.1145/ 2003616.2003626. 
[8] Felienne Hermans and Efthimia Aivaloglou. 2017. To Scratch or not to 

Scratch?: A controlled experiment comparing plugged first and unplugged 



Does Story Programming Prepare for Coding? SIGCSE ’20, March 2020, Portland, Oregon USA 
 

 

first programming lessons. In Proceedings of the 12th Workshop on Primary and 
Secondary Computing Education (WiPSCE '17), Erik Barendsen and Peter 
Hubwieser (Eds.). ACM, New York, NY, USA, 49-56. DOI: 
https://doi.org/10.1145/3137065.3137072. 

[9] Michael Haungs, Christopher Clark, John Clements, and David Janzen. 2012. 
Improving first-year success and retention through interest-based CS0 
courses. In Proceedings of the 43rd ACM technical symposium on Computer 
Science Education (SIGCSE '12). ACM, New York, NY, USA, 589-594. 
DOI=http://dx.doi.org/10.1145/2157136.2157307. 

[10] Dennis Kafura and Deborah Tatar. 2011. Initial experience with a 
computational thinking course for computer science students. In Proceedings 
of the 42nd ACM technical symposium on Computerscience education (SIGCSE 
'11). ACM, New York, NY, USA, 251-256. DOI: 
http://dx.doi.org/10.1145/1953163.1953242 

[11] Michael S. Kirkpatrick and Chris Mayfield. 2017. Evaluating an Alternative 
CS1 for Students with Prior Programming Experience. In Proceedings of the 
2017 ACM SIGCSE Technical Symposium on Computer Science Education 
(SIGCSE '17). ACM, New York, NY, USA, 333-338. DOI: 
https://doi.org/10.1145/3017680.3017759 

[12] Lynn Lambert. 2015. Factors that predict success in CS1. J. Comput. Sci. Coll. 
31, 2 (December 2015), 165-171. 

[13] David J. Malan. 2010. Reinventing CS50. In Proceedings of the 41st ACM 
technical symposium on Computer science education (SIGCSE '10). ACM, New 
York, NY, USA, 152-156. DOI: http://dx.doi.org/10.1145/1734263.1734316 

[14] Cindy Marling and David Juedes. 2016. CS0 for Computer Science Majors at 
Ohio University. In Proceedings of the 47th ACM Technical Symposium on 
Computing Science Education (SIGCSE '16). ACM, New York, NY, USA, 138-
143. DOI: https://doi.org/10.1145/2839509.2844624 

[15] Bruce A. Maxwell and Stephanie R. Taylor. 2017. Comparing Outcomes Across 
Different Contexts in CS1. In Proceedings of the 2017 ACM SIGCSE Technical 
Symposium on Computer Science Education (SIGCSE '17). ACM, New York, NY, 
USA, 399-403. DOI: https://doi.org/10.1145/3017680.3017757  

[16] Jennifer Parham-Mocello, Shannon Ernst, Martin Erwig, Lily Shellhammer, 
and Emily Dominguez. 2019. Story Programming: Explaining Computer 
Science Before Coding. ACM Int. Symp. on Computer Science Education 
(SIGCSE 2019). 

[17] Brandon Rodriguez, Cyndi Rader, and Tracy Camp. 2016. Using Student 
Performance to Assess CS Unplugged Activities in a Classroom Environment. 
In Proceedings of the 2016 ACM Conference on Innovation and Technology in 
Computer Science Education (ITiCSE '16). ACM, New York, NY, USA, 95100. 
DOI: https://doi.org/10.1145/2899415.2899465 

[18] Nathan Rountree, Janet Rountree, and Anthony Robins. 2002. Predictors of 
success and failure in a CS1 course. SIGCSE Bull. 34, 4 (December 2002), 121-
124. DOI=http://dx.doi.org/10.1145/820127.820182 

[19] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004. 
Interacting factors that predict success and failure in a CS1 course. SIGCSE 
Bull. 36, 4 (June 2004), 101-104. DOI: https://doi.org/10.1145/1041624.1041669 

[20] David H. Smith, IV, Qiang Hao, Filip Jagodzinski, Yan Liu, and Vishal Gupta. 
2019. Quantifying the Effects of Prior Knowledge in Entry-Level Programming 
Courses. In Proceedings of the ACM Conference on Global Computing Education 
(CompEd '19). ACM, New York, NY, USA, 30-36. DOI: 
https://doi.org/10.1145/3300115.3309503 

[21] Renate Thies and Jan Vahrenhold. 2013. On plugging "unplugged" into CS 
classes. In Proceeding of the 44th ACM technical symposium on Computer 
science education (SIGCSE '13). ACM, New York, NY, USA, 365-370. DOI: 
http://dx.doi.org/10.1145/2445196.2445303  

[22] Michele Van Dyne and Jeffrey Braun. 2014. Effectiveness of a computational 
thinking (CS0) course on student analytical skills. In Proceedings of the 45th 
ACM technical symposium on Computer science education (SIGCSE '14). ACM, 
New York, NY, USA, 133-138. DOI: http://dx.doi.org/10.1145/2538862.2538956 

[23] Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to success in 
an introductory computer science course: a study of twelve factors. SIGCSE 
Bull. 33, 1 (February 2001), 184-188. DOI: https://doi.org/10.1145/366413.364581 

[24] Zoë J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith, 
Michael Haungs, Julie Workman, John Bellardo, and Bruce DeBruhl. 2018. 
Mixed Approaches to CS0: Exploring Topic and Pedagogy Variance after Six 
Years of CS0. In Proceedings of the 49th ACM Technical Symposium on 
Computer Science Education (SIGCSE '18). ACM, New York, NY, USA, 20-25. 
DOI: https://doi.org/10.1145/3159450.3159592 

 
. 


