Does Story Programming Prepare for Coding?

Jennifer Parham-Mocello
School of EECS
Oregon State University, USA
parhammj@oregonstate.edu

ABSTRACT

In this research study, we investigate the impact of using the
Story Programming approach to teach CS concepts on student
performance in a subsequent C++ class. In particular, we
compare how students receiving little or no coding to learn and
apply these concepts perform in comparison to students who
learn these concepts only in the context of coding. While past
research has shown that exposure to programming is not a
predictor of success in such courses, these studies are based on a
15-week versus 10-week course and do not control for the CS
concepts and programming to which the students have been
exposed. Consequently, we hypothesize that students from the
Story Programming approach will perform worse in the
following C++ class. Surprisingly, we find that this is not true:
Students from the Story Programming approach with little to no
coding do not significantly differ from their peers receiving a
traditional code-focused approach.

CCS CONCEPTS

« Social and professional topics ~ Computational thinking
« Social and professional topics ~ Computer science education
« Applied computing ~ Interactive learning environments

KEYWORDS

Story Telling; Computer Science Pedagogy; Introduction to
Computer Science

ACM Reference format:

Jennifer Parham-Mocello and Martin Erwig. 2020. Does Story
Programming Prepare for Coding? In the 51st ACM Technical Symposium
on Computer Science Education (SIGCSE’20). ACM, New York, NY, USA, 7
pages. https://doi.org/10.1145/3328778.3366861.

1 INTRODUCTION

Inspired by our previous research using stories to explain
computation before coding [16], we want to know how students
receiving this treatment with little or no coding to learn and

* This work is partially supported by the National Science Foundation under the grant
CCF-1717300.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

SIGCSE 20, March 11-14, 2020, Portland, OR, USA © 2020 Association for Computing
Machinery. ACM ISBN 978-1-4503-6793-6/20/03...$15.00
https://doi.ore/10.1145/3328778.3366861

Martin Erwig
School of EECS
Oregon State University, USA
erwig@oregonstate.edu

apply CS concepts perform in a subsequent C++ class, especially
in comparison to students who learn these concepts only in the
context of coding. Even though the Story Programming
approach is a viable alternative to a code-focused approach for
CS 0, we hypothesize that students from the Story Programming
approach will perform worse in the following C++ class:
‘Students in the new Story Programming approach will
perform worse in CS 1, since they lack a half (or even a full)
term of coding to learn and apply CS 1 concepts.”

While past research shows that exposure to programming is
not a predictor of success in such courses, these studies are based
on a 15-week versus 10-week course and do not control for the
CS concepts and programming to which the students have been
exposed. In this paper, we compare the CS 1 performance of
students who receive no coding or some coding using the Story
Programming approach in CS 0 with students who receive a full
10-week term of coding. At the host university, CS 1 is a very
large, challenging C++ class with 5-6 assignments and a heavy
focus on pointers and memory management in the second half of
the 10-week term. Over the years, the instructor, who teaches
both CS 0 and CS 1, added more and more coding to CS 0 to
“better” prepare students for CS 1, even though CS 0 is not a
prerequisite for CS 1. This research study investigates whether
students who receive more coding in CS 0 really are better
prepared for CS 1 and whether the students in the Story
Programming approach with little or no coding are at a
disadvantage.

2 BACKGROUND

2.1 Unplugged Curriculum

Many approaches to introducing computer science to
students are predicated on programming, that is, they require an
understanding of how to code an algorithm in a programming
language. This approach is used in efforts such as code.org that
promote coding and computer science to younger children, but
many studies have shown that comfort level and willingness to
learn programming are the strongest predictors of success in
programming classes [23, 18, 19]. Since computer science is not
synonymous with programming, there is no inherent necessity
to tie the orientation to computer science to coding activities,
and students who are not sure whether they want to study
computer science but are curious about the subject should not be
excluded because they are reluctant to the idea of having to
become a programmer as a prerequisite to understanding
computer science.

This is why efforts to explain computer science without a
computer, such as csunplugged.org [2], have gained popularity,

SIGCSE °20, March 2020, Portland, Oregon USA

especially among the K-12 community [1, 4, 8, 17, 21], and
studies show that this approach broadens participation [3]. For
these reasons, the researchers in this study believe that students
and CS programs at institutes of higher education can benefit
from non-coding alternatives.

2.2 Promoting Computational Thinking

Most alternatives for teaching introductory CS courses at the
university focus on changing the curriculum or adding pathways
to improve success and retention [9, 14, 11] or make topics
covered more relevant and broader [13]. Some universities create
interest-based classes allowing students to choose a class section
based on what they like, such as game development, robotics,
music, and mobile applications [9, 24], while others focus on
adding computational thinking to their curricula with and
without the use of a computer [7, 10, 14, 22]. These studies show
that adding computational thinking to the curricula help
students think about different ways to attack problems, making
them more effective problem solvers, but these studies do not
show whether the removal of coding or increased computational
thinking activities helps or hinders students’ success is
subsequent coding courses.

2.3 Factors of Success in Programming Courses

There are many research studies on factors that predict
student success in CS 1 and CS 2 courses, especially regarding
prior programming experience [20, 18, 19, 23] and grade received
in prior classes [5, 11, 12]. Wilson and Rountree find that prior
programming experience is not a predictor of student success or
failure in a 15-week intro to programming class, and instead,
comfort level and expectations seem to play a larger role.
Whereas Smith’s research shows that an aptitude test measuring
the retention of prior programming experience, rather than a
self-reported survey, is correlated to the overall success in a 15-
week intro programming class, Danielsiek, Kirkpatrick, and
Lambert all show that the grade received in the prior CS0 or CS1
course is the strongest predictor of success in the subsequent
class. These research studies suggest that intro CS courses
focused on programming are not well suited for students who
are not comfortable in a programming class or who do not really
want to learn programming, and mere exposure to programming
before these classes is not a strong predictor because self-
reported experience does not always account for the amount,
quality, and retention of experience. We extend these studies by
comparing students’ performance in a subsequent challenging,
10-week C++ coding class, CS1, by controlling for their
experiences to specific CS concepts and amount of coding used
to learn and apply these concepts prior to CS 1.

2.4 The Story Programming Approach

Traditionally, the students in CS 0 at the host university learn
and apply CS 1 concepts, such as algorithms, representation,
control flow (both conditional statements and looping),
functions, and lists, in the context of Python coding. The
students write small Python programs as early as week two in a

Parham-Mocello and Erwig

ten-week term. The lectures focus on teaching basic Python, and
students learn basic problem-solving skills by creating
documents with designs of solutions to computer science
problems and plans for testing before writing their code.

As we sought to understand whether students who receive
more coding in CS 0 are at an advantage in CS 1, we created an
alternative pedagogical approach to teaching these concepts
outside the context of coding using stories to explain
computation based on Once Upon an Algorithm [6], which we
call Story Programming. For instance, students learn about path-
finding algorithms using the story of Hansel and Gretel, and
groups of students write and act out these path-finding
algorithms with pebbles during lab.

Students read relevant chapters of Once Upon an Algorithm
before class with a weekly online quiz. Chapters are generally
covered in a sequential fashion with some occasional skipping to
group like concepts together. The use of the book in the Story
Programming approach changes the emphasis placed on some
concepts covered in early CS classes, allowing for greater
breadth and depth of concepts. For example, the Story
Programming approach covers the concept of data structures
and decidability more deeply than the traditional approach,
which only gives a cursory view of data structures through lists
and only mentions the idea that not all problems are solvable.
The Story Programming approach can be used to delay or
remove coding, but it is important that the CS concepts be
explained, learned, and applied in the context of stories before
simulating the CS concepts from the stories using code.

In the remainder of this paper, we report on a study that
investigates whether students from the Story Programming
approach with little to no coding do worse than other students in
a traditional code-focused approach. We use students’ course,
assignment, and exam grades in CS 1 to measure performance,
and surprisingly, students from the Story Programming
approach do not significantly differ from their peers.

3 RESEARCH METHOD

This research study was conducted using five different
sections of CS 0 from fall 2017 and fall 2018. The same instructor
taught all sections, and each section had approximately 100
students. Each section had two 50-minute lectures, one two-hour
lab, and one assignment each week. During lecture, all students
in each section engaged in group exercises that did not involve a
computer. The sections varied in approach, amount of coding,
and whether students self-selected into the approach.

In fall 2017, we divided CS 0 into three sections to offer the
new Story Programming approach. We taught one section using
the traditional Python programming approach, and in the other
two sections, we used the Story Programming approach and
delayed coding for half a term. When coding and a language was
introduced, one section used Python and the other used Haskell
to evaluate which language offers better affordances in the
subsequent CS courses. In this year, the students were unaware
of the differences between sections to provide an unbiased view,

Does Story Programming Prepare for Coding?

but due to many unhappy students, we decided to allow students
to self-select into the approach in the following year.

In fall 2018, we taught another section using the Story
Programming approach without any coding to see if students do
any worse than those from the previous year, and we continued
to teach the traditional Python section. This time, the course
catalog reflected the different themes for the sections, and
advisors gave students information about the sections during
registration. We acknowledge the threat to validity this causes,
but it is important to research the impacts the Story
Programming approach has on students beyond those who only
self-select into the approach.

3.1 Research Questions

With 2 years of data, we look at how students from different
sections perform in the subsequent C++ coding course to
determine if the Story Programming approaches put students at
a disadvantage. To investigate this issue, we formulated the
following research questions:

RQ1: Do CS 1 course grades differ based on the CS 0 section?
In particular, we ask

e Do the CS 1 mean course grades differ depending on
the prior CS 0 section?

e Do students' CS 1 course grade gains or losses depend
on the taken CS 0 section?

e Does the percentage of students who do not pass CS 1
with a C or better differ depending on the prior CS 0
section?

e Does the performance in a CS 0 section determine how
likely a student is to pass CS 1?

e Do CS 1 passing grades of well-performing CS 0
students depend on the prior CS 0 section?

RQ2: Do CS 1 assignment and exam grades differ based on the CS 0
section?

Since RQ1 only gives a high-level view of the impact different
sections have on the overall performance in CS 1, we ask RQ2 to
determine the impact each CS 0 section has on applying specific
CS 1 concepts covered in individual assignments and exams. We
also keep RQ1, since it doesn't require student consent, and we
therefore have access to a larger number of data points.

3.2 Data Collection

With IRB permission, student-level grade information for all
the students over the last five years of CS 0 and CS 1 were
collected from the registrar with unique, random ids to match
students across years and classes, and the participant-level
assignment and exam scores for consenting students in CS 0 and
CS 1 were collected from the instructor.

4 RESULTS AND DISCUSSION

The course-level student success results are out of 355
students, and the student-level assignment and exam grades are
out of 103 consenting participants. Since the data are not
normally distributed, the non-parametric Kruskal-Wallis test is
used to reject hypotheses with 95% confidence, a=.05.

SIGCSE °20, March 2020, Portland, Oregon USA

RQ1: Do CS 1 course grades differ based on
the CS 0 section?

In order to answer this question, we need to know which
students go on to take CS 1 after the orientation course (see
Table 1). Even though only 65-75% of the students from a section
take CS 1 after CS 0, we find that 7-13% of students in a section
took CS 1 prior to CS 0, which leaves approximately 15-20% who
do not take CS 1 in the future (see Table 1). Most students who
take CS 1 after CS 0 do so in the following winter quarter, and
there is no statistical difference between student course grades in
winter 2018 CS 1 and winter 2019 CS 1 (chi-squared = 0.80823, df
=1, p-value = 0.3686).

Section Took CS 1 | Took CS 1 G:;:;:: :':lg; 0
(Enrollment) before CS 0 | after CS 0 and CS 1
Story Python (105) | 8.6%(9) | 70.5% (74) 74-0-5=69
Story Haskell (102) | 9.8% (10) | 74.5% (76) | 76-2-10=64
Traditional 17 (111) | 6.3% (7) | 64.9% (72) 72-1-5=66
Story No Code (89) | 7.9% (7) | 71.9% (64) 64-0-7=57
Traditional 18 (102) 12.7% (13) | 67.6% (69) 69-3-1=65

Table 1: Total number of students enrolled in each section,
and the percentage of those who take CS1 before and after
CS0, with the number remaining who have grades in both.

Some of the students who took CS 1 after CS 0 withdrew
from CS 0, which were only 1-3 students in the 3 sections (Story
Haskell and both Traditional). We removed these students from
the sections, since we are investigating correlations between the
performance in CS 0 with performance in CS 1. As a side note, 3
out of the 6 who withdrew from CS 0 did not pass CS 1.

1.4-13.2% of the students (1-10 students) from each section
withdrew or took the CS 1 class for satisfactory/unsatisfactory
(S/U) credit only, with the Story Haskell section having the most
and the Traditional 18 having the least. We also removed these
students because we cannot report on how well they performed
in CS 1. The passing grade to move on to CS 2 is a C or above,
and an S grade can be given for a D- or above.

From the remaining students, there were 28 students from the
international bridge program (INTO) in the Story Haskell
section, which was unique to this section. The other sections in
fall 2017 had only three or none. Since the removal of this
demographic significantly changes the percentages in this
section, we report statistics with and without the INTO students
in the fall 2017 Story Haskell section. In fall 2018, the INTO
students were evenly distributed across the sections.

Do the CS 1 mean course grades differ depending on the
prior CS 0 section?

After we removed students without grades in both courses
from the study, we use non-parametric statistics to determine if
the mean course grades for students from different sections
differ. The mean course grades did not differ by section with
INTO (chi-squared = 8.907, df = 4, p-value = 0.0635) or without
INTO (chi-squared = 9.416, df = 4, p-value = 0.052) (see Figure 1).
This means that students from the Story Programming approach
perform as well as those from the traditional approach.

SIGCSE °20, March 2020, Portland, Oregon USA

Moreover, if the INTO students are removed, then the Story
Programming approaches from the fall 2017 slightly outperform
the traditional approach that term.

Do students’' CS 1 course grade gains or losses depend on
the taken CS 0 section?

While there is no difference in mean course grades, there is a
difference in the course grade loss among students from different
sections with INTO (chi-squared = 27.871, df = 4, p-value =
1.325e-05) and without INTO (Kruskal-Wallis chi-squared =
23.621, df = 4, p-value = 9.513e-05). Even though most students
receive a lower grade in CS 1, the students from the traditional
section from fall 2018 do not see a decrease in grade as much as
the other sections (see Figure 2). This does not necessarily mean
that the traditional approach is better. The traditional section
from the fall 2017 does not perform better than the Story
Programming sections, and the Story Haskell section without
INTO students is not significantly different from the traditional
section in fall 2018.

Comparison of Median CS 1 Grades Per CS 0 Section
Story Haskell
(No INTO)

Traditional 18

Story Story . Story
Traditional 17
Python Haskell radtional 1 ys Code

Median Grade score
z

Figure 1: CS 1 Median course grades with upper and lower
percentiles for students from different CS 0 sections.

Comparison of CS 0 to CS 1 Grade Loss Per CS 0 Section

Traditional 18
004 Story Haskell
' (No INTO)

o Stary Story - Story
H Traditional 17
= 954 Python Haskell No Code
=
&
H
E l
= 104

-1.54

1 2 2a 3 4 5
Section

Figure 2: Median grade loss from CS 0 to CS 1 by section.

Does the percentage of students who do not pass CS 1
with a C or better differ depending on the prior CS 0
section?

Parham-Mocello and Erwig

Anywhere between 20-35% of students do not pass CS 1, and
the traditional approaches from both years have the greatest
number of students who pass CS 1 (see Table 2), which could be
because the faculty member who developed the CS 1 curriculum
also developed the traditional CS 0 curriculum. If the 28 INTO
students are removed from the Story Haskell section, then both
Story Programming sections delaying coding by a half term have
about the same percentage of students as the traditional sections
who pass CS 1. However, when the INTO students are removed
from the Story Haskell section, the fall 2018 Story Programming
section with no code has the highest percentage of students not
passing CS 1 with a C or better. This might suggest that students
who receive some coding to learn and apply CS concepts in CS 0
are more likely to pass the class but are not necessarily that
much more likely to get a higher grade, as we see in Figures 1
and 2.

Does the performance in a CS 0 section determine how
likely a student is to pass CS 1?

Since studies show that students who get below a B (3.0) or
B- (2.7) in the introductory CS 0 or CS 1 courses are more likely
not to pass the CS 1 or CS 2 class [5, 11, 12], we want to find out
if this is true for our dataset. Out of 5 to 20% of the students in
CS 0 who do not receive a B or better, we also find that most of
these students are not likely to pass CS 1 (see Table 2).

All students in the fall 2017 Story Programming sections who
did not have a B in CS 0, which is only 5.6-10.9% of the students,
did not pass CS 1, and out of the 12% of the students who did not
get a B or better in the traditional Python section in fall 2017,
62.5% did not pass CS 1 (see Table 2). In the fall 2018 CS 0
sections, the number of students with lower than a B was a little
higher than in the fall 2017 classes, but similarly, 69-89% of those
students did not pass CS 1 with a C or higher.

Our data show that those who do not receive a B or better in
CS 0 have less than a 40% chance of passing CS 1, and this
chance is even smaller for those who do not receive a B or better
in the Story Programming sections, where coding is delayed or
omitted. However, most of the students who do not pass CS 1
had a B or above in CS0.

Section (Total Do Not | Do Not Pass | Total Well-

with Grades in CS | Pass CS 1 | CS 1 and had| Performing
0and CS 1) with>=C | <BinCS0 Students
Story Python (69) | 23.2% (16) | 6/6=100% 69-6=63
Story Haskell (64) | 35.9% (23) | 7/7=100% 64-7=57
(E;S%?g;lgé) 25.0% (9) | 2/2=100% 36-2=34
Traditional 17 (66) | 22.7% (15) | 5/8=62.5% 66-8=58
Story No Code (57) | 29.8% (17) | 8/9=88.9% 57-9=48
Traditional 18 (65) | 20.0% (13) | 9/13=69.2% 65-13=52

Table 2: Percentage of students from different CS 0
sections not passing CS 1 with a C or better, as well as
those who do not pass CS 1 and had below a B in CS 0.

Do CS 1 passing grades of well-performing CS 0 students
depend on the prior CS 0 section?

Does Story Programming Prepare for Coding?

Since we know that the lower-performing students (those
with lower than a B) in CS 0 are not likely to pass CS 1, we
removed those students most likely not to pass CS1 from the
data to find what the CS 1 grades are of well-performing CS 0
students (those with a B or better) (see Table 2).

Among the well-performing students with a B or above in CS
0, 72-92% (79-92% without INTO) of those students pass CS 1
with a C or above (see Figure 3). While the traditional section
from the fall 2018 has the most students pass CS 1, there was not
a significant difference among sections. Even though the Story
Programming approach without any coding had the fewest
number of students making above a B, the traditional section
from fall 2017 had about the same number of students who did
not make a B or better and even less students than the non-
coding section receiving = A- in CS 1 (see Figure 3). The
traditional section from 2018 and the Story Programming
approaches from the fall 2017 have about the same number of
students with a B or above, and the traditional section from the
fall 2018 term and the Story Programming Haskell section
without the INTO students have the most students getting > A-.

CS 1 Grades of Well-Performing CS 0 Students

100
80
60
2 I I I I
b T
0 I
>=CinCS1 >=BinCS1 >=A-inCS1
H Story Python m Story Haskell

Story Haskell (No INTO)
Story No Code

M Traditional 17'
M Traditional 18'

Figure 3: Percentage of students with a B or above in CS 0
and a C or above, B or above, or an A- or above in CS 1.

RQ2: Do CS 1 assignment and exam grades
differ based on the CS 0 section?

Comparison of Median Grades for All Versus Consenting Students

SIGCSE °20, March 2020, Portland, Oregon USA

To answer this question, we can only use students who
consented in CS 0 and CS 1 to allow us to conduct research on
their CS 0 and CS 1 assignments and exams. Approximately 20
students from each section consented in both CS 0 and CS 1,
which we understand is not a large sample size. Most median
course grades and upper/lower percentiles were very similar to
the entire class, except that the Story Programming Haskell
consenting students were more similar when INTO was removed
(see Figure 4). Even though a Kruskal-Wallis test yielded a p-
value < .05 for mean course grades of all students versus
consenting students in each section, a multiple comparisons test
with adjusted p-values did not yield any significant differences
between the sections.

The consenting participants’ mean CS 1 course grade,
assignments, and exams did not differ by CS 0 section (see Table
3). This means that all Story Programming approaches (with and
without coding) do as well as the traditional coding approaches.
While not significant, we do notice that the students in the Story
Programming section without code tend to do a little worse on
the assignments and exams in CS 1, and the Story Programming
approaches from fall 2017 that delayed coding by half a term
always perform as well as or slightly better than the traditional
approach on the exams (see Figure 5), but the traditional section
from fall 2018 slightly outperforms students in all programming
assignments.

As with any educational research study, there are threats to
the validity of the results. Even though the course learning
objectives and basic structure of CS 1 is the same in both years,
the instructors, assignments, exams, and other course material
differ, which could contribute to one year being more or less
difficult than the other year, but the cohort of students could
also contribute to this difference. In addition, we recognize that
this study only includes consenting participants for the
assignment and exam scores, but we minimize this threat by
comparing the mean performance of non-consenting students
with those consenting in CS 1 to make sure these values are
representative of the whole class.

Traditional 18
Consent
Story Story Story
Story Python
4.0 Cr;’ns:nt Haskell Haskell Mo Code Traditional 18
(No INTO) Consent Consent
Traditional 17

Z a5 Consent
H Story Story " Story
g Python Haskell Tradifional 17 No Code
[C]
:'E 3.0 |
& | |

2.5

2.0

1 1c 2 2a 2c 3c 4 dc 5 Sc

Figure 4: Median CS 1 course grades for all students versus consenting students in each section (including removing the

INTO students from the Story Haskell section.

SIGCSE °20, March 2020, Portland, Oregon USA

Assignment/Exam Chi- p-value
squared
Final CS 1 Grade 4.5296 0.339
Assignment 1 8.5165 0.07439
(variables/input) ’ ’
Assignment 2
6.2719 0.1797

(flow of control-if/else)
Assignment 3 (repetition) 6.4027 0.171
Assignment 4
(functions/decomposition)

8.9108 0.06337

Assignment 5 (1-d arrays) 8.302 0.08112
Assignment 6 (2-d arrays) 1.9485 0.7452
Exam I (Assignment 1-3) 7.3657 0.1178
Exam II (Assignment 4-6) 7.4153 0.1155

Table 3: Difference in grades on CS 1 assignments and
exams grouped by CS 0 section.

Comparison of CS 1 Exam 1 Grades Per CS 0 Section

Story Story -
Traditional
Python Haskell racions
4.0 Traditional 17
Story
N No Code
L
e
5 |
H
g
= 3.0 ||
1 2 3 4 L
Section
Comparison of CS 1 Exam 2 Grades Per CS 0 Section
4 Story
Haskell
Traditional
Story
Python
£ 3 it
E Traditional 17 Story
5 No Code
=
[}
H
5
=24
1
1 2 3 4 5
Section

Figure 5: Median CS 1 Exam 1 and 2 grades for consenting
students.

5 CONCLUSIONS

Coding is not the only way to orient undergraduate students
to the discipline of computer science at a university, and in fact,

Parham-Mocello and Erwig

it might 1) deter/intimidate students from taking the classes, 2)
distract and frustrate students with language syntax, and 3)
make students without the prior coding experience feel inferior
to those with preparatory privilege without providing much
advantage in a subsequent C++ programming class. Our research
findings align with other research studies indicating that the
mere exposure to prior programming is not a strong predictor of
success, but yet, the most well-known approach to introducing
undergraduate students to computer science is with coding.

Our past research has shown that Story Programming is an
alternative for a CS 0 class, and this research study shows that
students who receive this introduction perform as well as or
better than those that are taught a traditional Python-coding
approach. Actually, students from the Story Programming
Haskell approach who are not in the international bridge
program consistently outperform students from the traditional
coding approaches in CS 1. However, students in CS 0 without
any coding tend to do a little worse, even though there is no
statistical difference in these mean values for grades,
assignments, and exams. This suggests that the approach used
and amount of coding in CS 0 does not impact students’ grades
in CS 1, as much as making below a B in CS 0 does. This is the
motivation for using a more abstract approach focused on
algorithmic concepts, such as the Story Programming approach,
as a more inclusive alternative to the traditional code-first
approach.

Based on the results from this study, we plan to offer the
Story Programming with Haskell again to get another
comparison group, and we will likely not offer another Story
Programming section without coding. While this approach
without coding might be a good option for students outside the
major or not continuing to the subsequent C++ programming
class, it does not seem to prepare the students as well as the
classes with some exposure to coding. In the future, we plan to
continue to investigate the impacts different orientations have
on class performance beyond CS 1, such as CS 2 and Data
Structures.

REFERENCES

[1] T. Bell, J. Alexander, L. Freeman, and M. Grimley. 2009. Computer Science
Unplugged: school students doing real computing without computers. Journal
of Applied Computing and Information Technology 13, 1.

[2] T. Bell, I. H. Witten, M. Fellows, and R. Adams. 2002. Computer science
unplugged. An enrichment and extension programme for primary-aged
children. Canterbury.

[3] T. J. Cortina. 2015. Reaching a broader population of students through
“unplugged” activities. Communications of the ACM, 58(3):25-27.

[4] Paul Curzon. 2013. cs4fn and computational thinking unplugged. In
Proceedings of the 8th Workshop in Primary and Secondary Computing
Education (WiPSE '13). ACM, New York, NY, USA, 47-50. DOLI
http://doi.acm.org/10.1145/2532748.2611263.

[5] Holger Danielsiek and Jan Vahrenhold. 2016. Stay on These Roads: Potential
Factors Indicating Students' Performance in a CS2 Course. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education (SIGCSE
'16). ACM, New York, NY, USA, 12-17. DOI:
https://doi.org/10.1145/2839509.2844591.

[6] Martin Erwig. 2017. Once Upon an Algorithm. MIT Press.

[7] Peter B. Henderson. 2011. Computing unplugged enrichment. ACM Inroads 2,
3 (August 2011), 24-25. DOI: http://dx.doi.org/10.1145/ 2003616.2003626.

[8] Felienne Hermans and Efthimia Aivaloglou. 2017. To Scratch or not to
Scratch?: A controlled experiment comparing plugged first and unplugged

Does Story Programming Prepare for Coding?

(10

[11

(16

[17

[19

[20

[21

[22

[23

[24

]

]

first programming lessons. In Proceedings of the 12th Workshop on Primary and
Secondary Computing Education (WiPSCE '17), Erik Barendsen and Peter
Hubwieser (Eds.). ACM, New York, NY, USA, 49-56. DOL
https://doi.org/10.1145/3137065.3137072.

Michael Haungs, Christopher Clark, John Clements, and David Janzen. 2012.
Improving first-year success and retention through interest-based CS0O
courses. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education (SIGCSE '12). ACM, New York, NY, USA, 589-594.
DOI=http://dx.doi.org/10.1145/2157136.2157307.

Dennis Kafura and Deborah Tatar. 2011. Initial experience with a
computational thinking course for computer science students. In Proceedings
of the 42nd ACM technical symposium on Computerscience education (SIGCSE
'11). ACM, New York, NY, USA, 251-256. DOL
http://dx.doi.org/10.1145/1953163.1953242

Michael S. Kirkpatrick and Chris Mayfield. 2017. Evaluating an Alternative
CS1 for Students with Prior Programming Experience. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE '17). ACM, New York, NY, USA, 333-333. DOL
https://doi.org/10.1145/3017680.3017759

Lynn Lambert. 2015. Factors that predict success in CS1. J. Comput. Sci. Coll.
31, 2 (December 2015), 165-171.

David J. Malan. 2010. Reinventing CS50. In Proceedings of the 41st ACM
technical symposium on Computer science education (SIGCSE '10). ACM, New
York, NY, USA, 152-156. DOI: http://dx.doi.org/10.1145/1734263.1734316

Cindy Marling and David Juedes. 2016. CSO for Computer Science Majors at
Ohio University. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE '16). ACM, New York, NY, USA, 138-
143. DOI: https://doi.org/10.1145/2839509.2844624

Bruce A. Maxwell and Stephanie R. Taylor. 2017. Comparing Outcomes Across
Different Contexts in CS1. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE '17). ACM, New York, NY,
USA, 399-403. DOI: https://doi.org/10.1145/3017680.3017757

Jennifer Parham-Mocello, Shannon Ernst, Martin Erwig, Lily Shellhammer,
and Emily Dominguez. 2019. Story Programming: Explaining Computer
Science Before Coding. ACM Int. Symp. on Computer Science Education
(SIGCSE 2019).

Brandon Rodriguez, Cyndi Rader, and Tracy Camp. 2016. Using Student
Performance to Assess CS Unplugged Activities in a Classroom Environment.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE '16). ACM, New York, NY, USA, 95100.
DOL: https://doi.org/10.1145/2899415.2899465

Nathan Rountree, Janet Rountree, and Anthony Robins. 2002. Predictors of
success and failure in a CS1 course. SIGCSE Bull. 34, 4 (December 2002), 121-
124. DOI=http://dx.doi.org/10.1145/820127.820182

Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting factors that predict success and failure in a CS1 course. SIGCSE
Bull. 36, 4 (June 2004), 101-104. DOI: https://doi.org/10.1145/1041624.1041669
David H. Smith, IV, Qiang Hao, Filip Jagodzinski, Yan Liu, and Vishal Gupta.
2019. Quantifying the Effects of Prior Knowledge in Entry-Level Programming
Courses. In Proceedings of the ACM Conference on Global Computing Education
(CompEd '19). ACM, New York, NY, USA, 30-36. DOI:
https://doi.org/10.1145/3300115.3309503

Renate Thies and Jan Vahrenhold. 2013. On plugging "unplugged" into CS
classes. In Proceeding of the 44th ACM technical symposium on Computer
science education (SIGCSE '13). ACM, New York, NY, USA, 365-370. DOI:
http://dx.doi.org/10.1145/2445196.2445303

Michele Van Dyne and Jeffrey Braun. 2014. Effectiveness of a computational
thinking (CS0) course on student analytical skills. In Proceedings of the 45th
ACM technical symposium on Computer science education (SIGCSE '14). ACM,
New York, NY, USA, 133-138. DOI: http://dx.doi.org/10.1145/2538862.2538956
Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to success in
an introductory computer science course: a study of twelve factors. SIGCSE
Bull. 33, 1 (February 2001), 184-188. DOI: https://doi.org/10.1145/366413.364581
Zoé J. Wood, John Clements, Zachary Peterson, David Janzen, Hugh Smith,
Michael Haungs, Julie Workman, John Bellardo, and Bruce DeBruhl. 2018.
Mixed Approaches to CS0: Exploring Topic and Pedagogy Variance after Six
Years of CSO. In Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (SIGCSE '18). ACM, New York, NY, USA, 20-25.
DOI: https://doi.org/10.1145/3159450.3159592

SIGCSE °20, March 2020, Portland, Oregon USA

