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Abstract. We present an approach for explaining dynamic program-
ming that is based on computing with a granular representation of values
that are typically aggregated during program execution. We demonstrate
how to derive more detailed and meaningful explanations of program be-
havior from such a representation than would otherwise be possible. To il-
lustrate the practicality of this approach we also present a Haskell library
for dynamic programming that allows programmers to specify programs
by recurrence relationships from which implementations are derived that
can run with granular representation and produce explanations. The ex-
planations essentially answer questions of why one result was obtained
instead of another. While usually the alternatives have to be provided
by a user, we will show that with our approach such alternatives can be
in some cases anticipated and that corresponding explanations can be
generated automatically.

1 Introduction

The need for program explanations arises whenever a program execution pro-
duces a result that differs from the user’s expectation. The difference could be
due to a bug in the program or to an incorrect expectation on part of the user.
To find out, a programmer may employ a debugger to gain an understanding of
the program’s behavior [1,2]. However, debugging is very costly and time con-
suming [3]. Moreover, the focus on fault localization makes debuggers not the
most effective tools for program understanding, since they force the user to think
in terms of low-level implementation details. In fact, debuggers typically already
assume an understanding of the program by the programmer [4]. The work on
customizable debugging operations is additional testimony to the limitations
of generic debugging approaches [5,6]. Finally, debugging is not an option for
most users of software, simply because they are not programmers. Therefore, to
generate program explanations we need to consider alternative methods.

One approach to producing explanations is to track data that is aggregated
during a computation and keep the unaggregated representation that can later
be queried to illustrate the effects of the performed computation. Specifically,
as we illustrate in Section 2 we can maintain value decompositions of those data
that are the basis for decisions in computations that might require explanations.

* This work is partially supported by DARPA under the grant N66001-17-2-4030 and
by the National Science Foundation under the grant CCF-1717300.
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Since our goal is to facilitate systematic explanations of decisions made by
dynamic programming algorithms, we show in Section 3 how dynamic program-
ming algorithms can be expressed as recurrence equations over semirings, and
we present a Haskell implementation to demonstrate that the idea is feasible in
practice. In Section 4 we demonstrate how to use this implementation to operate
with value decompositions and produce explanations.

Value decompositions produce explanations for decisions. Specifically, they
are used to answer questions such as “Why was A chosen over alternative B?”
Alternatives against which decisions are to be explained are typically provided
by users, but as we demonstrate in Section 5, sometimes they can be anticipated,
which means that comparative explanations can be generated automatically. Fi-
nally, we compare our approach with related work in Section 6 and present some
conclusions in Section 7. The main contributions of this paper are as follows.

— A framework based on semirings for expressing dynamic programming algo-
rithms that supports the computation with value decompositions.

— An extension of the framework for the automatic generation of explanations.

— A method for the automatic generation of examples in explanations.

— An implementation of the approach as a Haskell library.

2 Explaining Decisions With Value Decompositions

Many decision and optimization algorithms select one or more alternatives from
a set based on data gathered about different aspects for each alternative. For
example, to decide between two vacation destinations one may rank weather
(W), food (F'), and price (P) on a point scale from 1 (poor) to 10 (great) and
compute a total point score for each possible destination and then pick the one
with the highest score.

This view can be formalized using the concepts of value decomposition and
valuation. Given a set of categories C, a mapping v : C — R is called a value
decomposition (with respect to C). The (total) value of a value decomposition
is defined as the sum of its components, that is, v = 2(07;8)6” x. A wvaluation
for a set S (with respect to C) is a function ¢ that maps elements of S to
corresponding value decompositions, that is, ¢ : S — RY. We write ¢(A) to
denote the total value of A’s value decomposition. In our example scenario lets
consider two destinations S = {X,Y} with the respective value decompositions
vx ={Ww—7F—8P—1}and vy ={W — 4,F — 4, P — 9,}, which
yields the valuation ¢ = {X — vx,Y — vy }.

The elements of S can be ordered based on the valuation totals in an obvious
way:

VA,B€S. A> B ¢(A) > ¢(B)

When a user asks about a program execution why A was selected over B, the
obvious explanation is $(A) > $(B), reporting the valuation totals. However,
such an answer might not be useful, since it ignores the categories that link the
raw numbers to the application domain and thus lacks a context for the user to
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interpret the numbers. In our example, destination Y would be selected since
G(Y) =17 > $(X) = 16, which might be surprising because X seems clearly so
much better than Y in terms of weather and food.

If the value decomposition is maintained during the computation, we can
generate a more detailed explanation. First, we can rewrite ¢(A) > @(B) as
P(A) — ¢(B) > 0, which suggests the definition of the wvaluation difference be-
tween two elements A and B as follows.

6(A,B) = {(c,x —y) | (¢,2) € p(A) A (¢,y) € p(B)}

The total of the value difference & (A, B) is given by the sum of all components,
just like the total of a value decomposition. In our example we have §(Y, X) =
{W — =3, F = —4, P — 8}. It is clear that the value difference generally
contains positive and negative entries and that for (A4, B) > 0 to be true the
sum of the positive entries must exceed the absolute value of the sum of the
negative entries. We call the negative components of a value difference its barrier.
It is defined as follows.

B(A,B) ={(c,z) | (c,z) € (A, B) ANz < 0}

The total value /3’ (4, B) is again the sum of all the components. In our example
we have B(Y, X) = {W — —3,F — —4} and B(Y, X) = —7.

The decision to select A over B does not necessarily need as support all of the
positive components of (A, B); any subset whose total is larger than |3(4, B)|
will suffice. We call such a subset a dominator:!

A(A,B)={D | DC§(A,B)AD > |B(A,B)|}

The only dominator in our toy example is A(Y, X) = {P > 8}.

The smaller a dominator, the better it is suited as an explanation, since it
requires fewer details to explain how the barrier is overcome. We therefore define
the minimal dominating set (MDS) as follows.

A(A,B)={D|DC AA,B)AD C D= D' ¢ A(A,B)}

Note that A may contain multiple elements, which means that minimal domi-
nators are not unique. In other words, a decision may have different minimally
sized explanations. Again, due to the small size of our example, the only domi-
nator is also the MDS in this case. Nevertheless, it captures the explantion that
Y is preferred over X due to the extreme price difference.

! This definition allows dominators to contain negative components, which are counter-
productive to the goal of dominators. However, the definition of minimal-size domi-
nators will never produce a dominator with a negative component, so that the general
definition does not hurt.
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3 Dynamic Programming with Semirings

We show how to represent dynamic programming (DP) algorithms by semirings
in Section 3.1 and how such a representation can automatically generate effi-
cient implementations from recursive specifications in Haskell in Section 3.2. We
illustrate the use of the library with an example in Sections 3.3 and 3.4.

3.1 Semirings and Dynamic Programming

A semiring is an algebraic structure (S, @, ®,0, 1), which consists of a nonempty
set S with binary operations for addition (¢) and multiplication (®) plus neutral
elements zero (0) and one (1) [7]. Figure 1 lists the axioms that a semiring
structure has to satisfy and several semiring examples.

@® (bGEB@cZ)) Z l()a@EBab) @e Semiring Set ® |® O 1
ad0=0da=a Boolean {true, false}| V |A|false|true
a®(b®c)=(a®d)®c Counting N + x| 0 |1
a®l=1®a=a Tropical (Min-Plus)| RT U {co0} |min|+| co | 0
a®(b®c)=a®bdad®c Arctic (Max-Plus) |R* U {—o0o}|max|+|—oco| 0
(a® l;)g(c) z ggz&i%@ ¢ Viterbi [0,1] max|x| 0 1

Fig. 1. Semiring axioms and examples.

A semiring (S, ®,®,0,1) with a partial order < over S is monotonic if
Vs,t,bu € S, (s <t)= (s@u<t®u)and (s <t) = u®s <u®t). A
monotonic semiring ensures the so-called optimal subproblem property, which
says that the optimal solution of a dynamic programming problem contains the
optimal solutions of the subproblems into which the original problem was di-
vided. This can be seen as follows [8]. Suppose the values s and ¢ correspond to
two solutions of a subproblem such that s is a better solution than ¢ (that is,
s < t). Further, suppose that u is the optimal solution of a set of subproblems
that does not include the subproblems producing the values s and ¢. The mono-
tonicity property ensures that s combined with u (and not ¢ combined with u)
always results in the optimal solution when the aforementioned subproblem is
combined with the set of subproblems.

Dynamic programming algorithms can be described by recursive equations
that use operations of a particular kind of semiring, and since monotonic semi-
rings satisfy the optimal substructure property, the computations produce cor-
rect solutions. Note that we can slightly weaken the requirements for the optimal
subproblem property. Since monotonicity doesn’t depend on the absorption rule
(which requires a ® 0 = 0 ® a = 0), the optimal subproblem property holds
for DP algorithms that are based on what we call quasi-semirings, which are
semirings for which the absorption rule doesn’t hold. We will make use of this
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property later in Section 3.4 where we define a quasi-semiring for computing
values “alongside” the values of a semiring.

3.2 A Haskell Library for Dynamic Programming

We have implemented a library for dynamic programming and semirings that is
based on the DP library by Sasha Rush.? The first component is a representation
of semirings. The semiring structure can be nicely captured in a Haskell type
class. Of course, the required laws cannot be expressed in Haskell; it’s the pro-
grammer’s obligation to ensure that the laws hold for their instance definitions.

class Semiring a where

zero, one :: a
(<+>), (£.>) :: a->a ->a
sconcat :: Semiring a => [a] -> a

sconcat = foldr (<+>) zero

Several Haskell packages exist that already define a Semiring type class (some
of which are defunct). In general, previous approaches have the advantage that
they integrate the Semiring class more tightly into the existing Haskell class
hierarchy. For example, zero and <+> are essentially mempty and mappend of the
class Monoid. Mainly for presentation reasons we decided to define the Semiring
type class independently, since it allows the definition of instances through a
single definition instead of being forced to split it into several ones.

To see how this library is used, consider the following implementation for
computing Fibonacci numbers, which uses the Counting semiring, obtained by
defining a number type as an instance of the Semiring class in the obvious way.?

instance Semiring Integer where
{zero = 0; one = 1; (<+>) = (+); (<.>) = ()}

The semiring recurrence representation is very similar to the well-known recur-
sive definition, except for two notable differences are: First, recursive calls are
made by a function memo to indicate when intermediate results of recursive calls
should be stored in a table. Second, the implementation consists of two parts,
(a) the definition of the recurrence relation that denotes a table-based, efficient
implementation (£ibT), and (b) an interface that simply executes the table-based
implementation (£ib).

2 See http://hackage.haskell.org/package/DP. The code has not been maintained
in some time and doesn’t seem to work currently. Our implementation is available
at https://github. com/prashant007/XDP.

3 Note that the Counting semiring is not monotonic. The implementation of Fibonacci
numbers is still correct, since the @ function isn’t used to select among different
alternatives.
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fibT :: DP Integer Integer

fibT O = zero

fibT 1 = one

fibT n = memo (n-1) <+> memo (n-2)

fib :: Integer -> Integer
fib n = runDP fibT n

This examples illustrates some of the major building blocks that are provided
by the dynamic programming library.

— The functions <+> and <.> correspond to semiring addition (@) and multi-
plication (®), respectively.

— The type DP t r represents a dynamic programming computation. Param-
eter t represents the argument, corresponding to the table index on which
recursion occurs, and r represents the result type of the computation.

— The function memo takes an index as input. The index can be thought of as
the input to the smaller subproblems that need to be solved while solving
a dynamic programming problem; it is the quantity on which the algorithm
is recursively invoked. With memo a subproblem for a given input value is
solved only once, and the result is stored in a table for potential reuse.

— The function inj (used later) turns any semiring value (different from 0 and
1) into a DP value.

— The function runDP executes a dynamic programming specification DP t r
that works on tables indexed by a type t by producing a function that
computes results of type r from an initial value of type t.

3.3 Computing the Lengths of Shortest Paths

In its simplest form, a shortest path algorithm takes a graph together with a
source and destination node as inputs and computes the length of the shortest
path between the two nodes.

In the following, we show how a program for computing shortest paths can
be systematically extended to support the generation of explanations in addition
to the computed answers. We use the Bellman-Ford algorithm [9], which can be
concisely described by the following recurrence relation in which SP denotes the
length of the shortest path in a graph between the start node s and any other v
with at most 4 number of edges. This algorithm works only for graphs with non-
negative edge weights. We directly show the definition using the operations from
the Min-Plus semiring (see Figure 1): @ represents min, ® represents numeric
addition, and the constants 0 and 1 represent the additive and the multiplicative
identity and stand for oo and 0, respectively.

1 1=0ANv=s
SP(v,i)=< 0 i=0Av#s
SP(v,i— 1) ® DBy p)ep(SP(u, i — 1) @ w(u,v)) otherwise



Explanations for Dynamic Programming 7

Here E is the set of edges in the graph, and w(u,v) denotes the weight of edge
(u,v). This algorithm incrementally updates connection information between
nodes. When all edge labels in a graph with n nodes are positive, the shortest
path contains at most n—1 edges. Therefore, the shortest path to a node t can be
obtained by the expression SP(t,n). In each step the algorithm considers nodes
that are one more edge away from the target node and updates the distance of
the currently known shortest path.

Note that this formulation of the algorithm is actually more general than the
original, since the operations can be taken from different semirings to express
different computations. We will later take advantage of this generality by gener-
ating, in addition to the shortest path value, decomposed values, the path itself,
and explanations.

Next we show how the shortest path algorithm can be expressed as a dynamic
programming algorithm in our library. The Min-Plus semiring is implemented
in Haskell through a class instance definition for the type constructor Large that
adds oo to a number type. We need oo to represent the case when there isn’t a
path between two nodes.

data Large a = Finite a | Infinity deriving (Eq,0rd)

instance (Num a,0Ord a) => Semiring (Large a) where
{zero = Infinity; omne = Finite 0; (<+>) = min; (<.>) = (+)}

The instance definitions for Functor, Applicative, and Num are all straightforward
(they are basically the same as for Maybe), and we omit them here for brevity.
One subtle, but important, difference between Large and Maybe is that Infinity
is defined as the second constructor in the data definition, which makes it the
largest element of the Large data type when an Ord instance is derived.

For the Haskell implementation of the algorithm, we represent edges as pairs
of nodes and a graph as a list of edges paired with their lengths, see Figure 2. We
use a multi-parameter type class SP to facilitate a generic implementation of the
shortest path function that works for different edge label types (type parameter
1) and types of results (type parameter r). As in the Fibonacci example, the
implementation consists of two parts: (a) a recurrence specification of the DP
algorithm (the function sp) and (b) the function shortestPath for actually run-
ning the described computation. Both functions have a default implementation
that doesn’t change for different class instances. The class consists of an addi-
tional member result that turns labeled edges into values of the DP result type
r. The definition of the sp function is directly derived from the semiring repre-
sentation of the Bellman-Ford recurrence relation. Note that the memo function
in the definition of sp takes pairs as input and effectively denotes a recursion
of the sp function, memoizing the output of each recursive call for later reuse.
The second argument of the <+> function in the recursive case of the sp function
implements the part @, ,ycp(SP(u, 7 —1) ® w(u,v)) of the recurrence relation.
The function sconcat takes a list of values, namely all incoming edges at node v,
and combines these using the semiring addition function <+>. Finally, the actual
computation of a shortest path between two nodes is initiated by the function
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type Node Int
type Edge = (Node,Node)
type Graph 1 = [(Edge,1)]

noNodes :: Graph 1 -> Int
noNodes = length . nub . concatMap (\((p,q),_) -> [p,ql)

class Semiring r => SP 1 r where
result :: (Edge,l) > r

sp :: Graph 1 -> Node -> DP (Node,Int) r
sp g s (v,0) = if s==v then one else zero
sp g s (v,i) = memo (v,i-1) <+> sconcat
[memo (u,i-1) <.> (inj.result) e | e@((u,v'),_)<-g, v'==v]

shortestPath :: Graph 1 -> Node -> Node -> r
shortestPath g s t = runDP (sp g s) (t,noNodes g-1)

Fig. 2. Generic shortest path implementation.

shortestPath through calling sp and passing the number of nodes of the graph
as an additional parameter (computed by the helper function noNodes).

To execute the shortestPath function for producing path lengths for graphs
with non-decomposed edge labels, we need to create an instance of the SP
type class with the corresponding type parameters. Since the functions sp and
shortestPath are already defined, we only need a definition for result.

instance SP Double (Large Double) where
result (_,1) = Finite 1

The result of running the shortest-path algorithm on the non-decomposed graph
shown on the left of Figure 3 produces the following output.

> shortestPath g 1 4 :: Large Double
30.0

Specifying the result type (r) to be Large Double selects the implementation in
which the result function maps a labeled edge to the DP result type as shown.
In addition to the length of the shortest path we may also want to know the
path itself. We develop a solution based on semirings next.

3.4 Computing Shortest Paths

To compute shortest paths in addition to their lengths, we need an instance
of Semiring for the type (Large Double, [Edge]). A first attempt could be to
define pairs of semirings as semirings. This would require both components to
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Fig. 3. An edge-labeled graph (g) and its version with decomposed edge-labels (gd).

be semirings themselves, but since there is not a straightforward instance of lists
as semirings, we have to adopt a different strategy.

If we look at this example more closely, we can observe that the DP com-
putation of a shortest path is solely driven by the first component of the pair
type and that the paths are computed alongside. This means that the path type
doesn’t really need to support the Semiring structure. We can exploit this fact
by defining a semiring instance for pairs that relies for its semiring semantics
only on the semiring instance of its first component. To handle the combination
of values in its second component, we require that the type be a monoid and
use the binary operation in the instance definition for the <.> function. The
<+> function acts as a selector of the two values, and the selection is controlled
by a selection function that the first type parameter has to support through
a corresponding instance definition for the class Selector. The function first
implements a selection decision between two values; it returns True if the first
argument is selected and False otherwise. The code is shown in Figure 4.

Note that View is not a semiring, because the absorption rule (a®0 = 0®a =
0) doesn’t hold. However, that is not a problem, since the monotonicity property,
which ensures the correctness of DP implementation, is not affected by that.

With the help of this view quasi-semiring structure we can now obtain a
DP algorithm that computes the paths alongside the lengths. To this end, we
represent a path p and its length 1 as a value View 1 p so that the length provides
a view on the path on which the DP computation operates.

type Path 1 = View 1 [Edgel

The shortest path algorithm results from an instance of the sP type class for the
result type Path (Large Double), which again only requires the definition of the
result function to map labeled edges to the DP result type.

instance SP Double (Path (Large Double)) where
result (e,l) = View (Finite 1) [e]

The result of running the shortest-path algorithm on the non-decomposed graph
produces the following output. Again, we specify the result type of the DP
computation to select the appropriate implementation of result and thus sp.
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data View a b = View a b

class Selector a where
first :: a -> a -> Bool

instance Ord a => Selector (Large a) where
first = (<=)

instance (Selector a,Semiring a,Monoid b) => Semiring (View a b) where
zero = View zero mempty

one = View one mempty
lo(View x _) <+> r@(View y _) = if first x y then 1 else r
(View x a) <.> (View y b) = View (x <.> y) (mappend a b)

Fig. 4. The View quasi-semiring.

> shortestPath g 1 4 :: Path (Large Double)
View 30.0 [(1,2),(2,5),(5,4)]

This is the correct result, but we don’t get an explanation why it is faster than,
say, the more direct path [(1,3),(3,4)].

4 Explanations From Value Decomposition

To use the generic DP programming framework with value decompositions, we
have to define a type for decomposed values and define its 0rd and Eq type class
instances. Both definitions use the sum of the elements of the lists contained in
the Values constructors to perform the comparison.

newtype Decomposed a = Values {values :: [al}

instance (Eq a,Num a) => Eq (Decomposed a) where
(==) = (==) “on” sum.values

instance (0rd a,Num a) => Ord (Decomposed a) where
(<=) = (<=) “on” sum.values

These definitions ensure that decomposed values are compared based on their
sums.

To use value decompositions in the shortest path computation, we need a Num
instance for the Decomposed data type, which is straightforward to define, except
that we need a flexible interpretation of the semiring constants that depends
on the number of value components. For example, in the Min-Plus semiring we
expect 1 to denote [0, 0] in the context of [1,2]® 1, while it should denote [0, 0, 0]
in the context of [1,2,3] ® 1. We can achieve this behavior by defining the Num
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instance to be singleton lists by default that will be padded to match the length
of potentially longer arguments.

Next we can obtain two more versions of the shortest path algorithm as
an instance of the SP type class, one for computing lengths only, and one for
computing paths alongside lengths. The type of the edge labels is [Double] to
reflect the decomposed edge labels in the input graphs. The result types for the
DP computations are either the path lengths represented as decomposed edge
labels or the view of paths as decomposed values. Here are the corresponding
instance definitions.

instance SP [Double] (Large (Decomposed Double)) where
result (_,1) = Finite (Values 1)

instance SP [Double] (Path (Large (Decomposed Double))) where
result (e,1) = View (Finite (Values 1)) [e]

The shortest-path algorithms use the graph gd with decomposed edge labels.

> shortestPath gd 1 4 :: Large (Decomposed Double)
[20.0,4.0,4.0,2.0]

> shortestPath gd 1 4 :: Path (Large (Decomposed Double))
View [20.0,4.0,4.0,2.0] [(1,2),(2,5),(5,4)]

We can compute valuation differences and minimally dominating sets to com-
pare the results with alternative solutions. For example, the decomposed length
of the alternative path (1, 3), (3,4) between nodes 1 and 4 is [17,10,3,1]. Since
Decomposed and Large are Num instances, we can compute the valuation difference
with respect to the shortest path to be [3.0,-6.0,1.0,1.0]. To implement a
function for computing minimally dominating sets, we have to extract the de-
composed values (of type Decomposed Double) from the semiring values (of type
Large (Decomposed Double)) produced by the shortest path function. Moreover,
when sorting the components of the valuation difference into positive and neg-
ative parts, we need to decide which parts constitute the barrier and which
parts are supporting components of the computed optimal value. This decision
depends on the semiring on which the computation to be explained is based.
In the shortest path example, we have used the Min-Plus semiring for which
positive value differences constitute barriers and negative values overcome the
barrier. In general, a value s is a supporting value (for overcoming a barrier)
if s® 1 = s. We can realize both requirements through a (multi-parameter)
type class Decompose that relates semiring types with the types of values used in
decompositions, see Figure 5.4

With this type class we can directly implement the definition of A from Sec-
tion 2 as a function for computing the smallest sublist of supporting values whose

4 The additional argument of type a for supportive is required to keep the types
in the multi-parameter type class unambiguous. Moreover, we can’t unfortunately
simply give the generic definition for supportive indicated by the equation, since
that would also lead to an ambiguous type.
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class Semiring a => Decompose a b | a -> b where
dec :: a -> Decomposed b
supportive :: a -> b -> Bool

instance Decompose (Large (Decomposed Double)) Double where
dec Infinity = Values []
dec (Finite vs) = vs
supportive _ x = x<0

data Labeled a = Label String a

unlabel :: Labeled a -> a
unlabel (Label _ x) = x

withCategories :: Decomposed a -> [String] -> Decomposed (Labeled a)
withCategories d cs = Values (map Label cs) <x> d

explainWith :: (Decompose a b,0rd b,Num b) =>
[String] -> a -> a -> Decomposed (Labeled b)
explainWith c¢s d d' = Values $ head $ sortBy (compare “on” length) doms
where (support,barrier) = partition sup $ values delta
doms = [d | d <- sublists support, abs (sum d) > abs (sum barrier)]
delta = dec d “withCategories™ cs - dec d' “withCategories™ cs
sup = supportive d . unlabel

Fig. 5. Minimal dominators and explanations.

(absolute) sum exceeds the sum of the barrier, in this case it’s the singleton list
[-6.0]. Since the number itself doesn’t tell us what category provides this dom-
inating advantage, we assign meaning to the bare numbers through a data type
Labeled that pairs values with strings. Creating a Num instance for Labeled allows
us to assign labels to the individual numbers of a Decomposed value and apply
the computation of dominating sets to work with labeled numbers, resulting in
the function explainWith. If p is the result of the shortest path function shown
above and p' is the corresonding value for the alternative path considered, then
we can explain why p is better than p' by invoking the function.

> explainWith ["Distance","Traffic","Weather","Construction"] p p'
[Traffic:-6.0]

The result says that, considering traffic alone, p has an advantage over p', since
the traffic makes the path of p faster by 6.

The generation of explanation for other DP algorithms works in much the
same way: First, identify the appropriate semiring for the optimization problem.
The View quasi-semiring facilitates variety of computations that produce results
on different levels of detail. Second, implement the DP algorithm as a type class
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that contains the main recurrence, a wrapper to run the described computa-
tion, plus the function result that ties the DP computation to different result
types. Finally, define a value decomposition for the result type. The function
explainWith can then compare optimal results with alternatives and produce
explanations based on value categories.

5 Proactive Generation of Explanations

At this point, a user who wants an explanation has to supply an alternative
as an argument for the function explainWith. Sometimes such examples can be
automatically generated, which means that user questions about solutions can
be anticipated and proactively answered.

In the case of finding shortest paths, a result may be surprising—and there-
fore might prompt the user to question it—if the suggested path is not the
shortest one in terms of traveled distance. This is because the travel distance
retains a special status among all cost categories in that it is always a determin-
ing factor in the solution and can never be ignored. This is different for other
categories, such as traffic or weather, which may be 0 and in that case play no
role in deciding between different path alternatives.

In general, we can therefore distinguish between those categories that always
influence the outcome of the computation and those that only may do so. We call
the former principal categories and the latter minor categories. We can exploit
knowledge about principal and minor categories to anticipate user questions by
executing the program with decomposed values but keeping only the values for
the principal categories. If the result is different from the one produced when
using the complete value decomposition, it is an alternative result worthy of an
explanation, and we can compute the minimal dominating set accordingly.

Unfortunately, this strategy doesn’t work as expected, because if we remove
minor categories to compute an alternative solution, the values of those cate-
gories aren’t aggregated alongside the computation of the alternative and thus
are not available for the computation of minimal dominating sets. Alternatively,
instead of changing the underlying decomposition data, we can change the way
their aggregation controls the DP algorithm. Specifically, instead of ordering de-
composed values based on their sum, we can order them based on a primary
category (or a sum of several primary categories). In Haskell we can achieve this
by defining a new data type Principal, which is basically identical to Decomposed
but has a different 0rd instance definition.

instance (Ord a,Num a) => Ord (Principal a) where
(<=) = (<=) “on” head.pvalues

We also need a function that can map Principal data into Decomposed data within
the type of the semiring to get two Decomposed values that can be compared and
explained by the function explainWith. To compute the main result (calculated
using all the categories), and the alternative result (calculated using just the
principal categories) simultaneously we can use a pair semiring, which is defined
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newtype Principal a = PValues {pvalues :: [al}

class FromPrincipal f where
fromPrincipal :: f (Principal a) -> f (Decomposed a)

explain :: (FromPrincipal f,Decompose (f (Decomposed a)) b,
Eq (f (Decomposed a)),0rd b,Num b) =>
(i -> (£ (Decomposed a), f (Principal a))) -> [String] -> i ->
(f (Decomposed a),Maybe (f (Decomposed a),Decomposed (Labeled b)))
explain f cs i | ol==02 = (o1,Nothing)
| otherwise = (ol,Just (02,explainWith cs ol 02))
where (ol,0') =f i
02 = fromPrincipal o'

Fig. 6. Generating automatic explanations.

component-wise in the obvious way. With these preparations we can define the
function explain that takes an instance of the function to be explained. The
function outputs a pair of Decomposed and Principal values whenever they differ,
which can then be explained as before using the function explainWith.

To use explain in our example, we have to create another instance for the
SP class that works with the pair of Decomposed and Principal types, captured
in the type synonym LPair. We also have to create an instance for the function
fromPrincipal so that we can turn Principal data into Decomposed data inside
the Large type.

type LPair = (Large (Decomposed Double),Large (Principal Double))

instance SP [Double] LPair where
result (e,1) = (Finite (Values 1),Finite (PValues 1))

instance FromPrincipal Large where
fromPrincipal = fmap (Values . pvalues)

Finally, to be able to apply explain we have to normalize the argument type of
the shortest path function into a tuple.

type SPInput = (Graph [Double],Node,Node)
spPair :: SPInput -> LPair
spPair (g,v,w) = shortestPath g v w

When we apply explain, it will in addition to computing the shortest path
also automatically find an alternative path and explain why it is not a better
alternative.

> explain spPair ["Distance","Traffic","Weather","Construction"] (gd,1,4)
([20.0,4.0,4.0,2.0],Just ([17.0,10.0,3.0,1.0], [Traffic:-6.0]))

Of course, the output could be printed more prettily.
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6 Related Work

In [10,11] we proposed the idea of preserving the structure of aggregated data
and using it to generate explanations for reinforcement learning algorithms based
on so-called minimum sufficient explanations. That work is less general than
what we describe here and strictly situated in a machine learning context that
is tied to the framework of adaptation-based programming [12]. Value decom-
position and minimal dominating sets are a general approach to the generation
of explanations for a wider range of algorithms. A different concept of “mini-
mal sufficient explanations” was also used in related work on explanations for
optimal Markov Decision Process (MDP) policies [13]. That work is focused
on automated planning and on explaining the optimal decision of an optimal
policy. Those explanations tend to be significantly larger than explanations for
decisions to select between two alternatives. Also, that work is not based on
value or reward decompositions.

Debugging can be viewed as a specific form of explanation. For example,
Delta debugging reveals the cause-effect chain of program failures, that is, the
variables and values that caused the failure [14]. Delta debugging needs two runs
of a program, a successful one and an unsuccessful one. It systematically narrows
down failure-inducing circumstances until a minimal set remains, that is, if there
is a test case which produces a bug, then delta debugging will try to trim the
code until the minimal code component which reproduces the bug is found. Delta
debugging and the idea of MDSs are similar in the sense that both try to isolate
minimal components responsible for a certain output. An important difference
is that delta debugging produces program fragments as explanations, whereas
an explanation based on value decompositions is a structured representation of
program inputs.

The process of debugging is complicated by the low-level representation of
data processed by programs. Declarative debugging aims to provide a more high-
level approach, which abstracts away the evaluation order of the program and
focuses on its high-level logical meaning. This style of debugging is discussed in
[15] and is at the heart of, for example, the Haskell debugger Buddha. Obser-
vational debugging as used in the Haskell debugger Hood [16] allows the obser-
vation of intermediate values within the computation. The programmer has to
annotate expressions of interest inside the source code. When the source code
is recompiled and rerun, the values generated for the annotated expressions are
recorded. Like value decomposition, observational debugging expects the pro-
grammers to identify and annotate parts of the programs which are relevant to
generate explanations. A potential problem with the approach is that the num-
ber of intermediate values can become large and not all the intermediate values
have explanatory significance.

The Whyline system [17] inverts the debugging process, allowing users to
ask questions about program behavior and responding by pointing to parts of
the code responsible for the outcomes. Although this system improves the de-
bugging process, it can still only point to places in the program, which limits
its explanatory power. In the realm of spreadsheets, the goal-directed debugging
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approach [18] goes one step further and also produces change suggestions that
would fix errors. Change suggestions are a kind of counter-factual explanations.

Traces of program executions can explain how outputs are produced from
inputs. While traces are often used as a basis for debugging, they can support
more general forms of explanations as well. Since traces can get quite large,
focusing on interesting parts poses a particular challenge. Program slicing can
be used to filter out irrelevant parts of traces. Specifically, dynamic slicing has
been employed to isolate parts of a program that potentially contribute to the
value computed at a point of interest [19]. Using dynamic slicing for generating
explanations of functional program execution is described in [20]. This approach
has been extended to imperative functional programs in [21]. Our approach
does not produce traces as explanations. Instead, value decompositions maintain
a more granular representation of values that are aggregated. Our approach
requires some additional work on the part of the programmers in decomposing
the inputs (even though in our library we have tried to minimize the required
effort). An advantage of our approach is that we only record the information
relevant to an explanation in contrast to generic tracing mechanisms, which
generally have to record every computation that occurs in a program, and require
aggressive filtering of traces afterwards.

7 Conclusions and Future Work

We have introduced an approach to explain the execution of dynamic programs
through value decompositions and minimal dominating sets: Value decomposi-
tions offer more details about how decisions are made, and minimal dominating
sets minimize the amount of information a user has to absorb to understand an
explanation. We have put this idea into practice by integrating it into a Haskell
library for dynamic programming that requires minimal effort from a program-
mer to transform a traditional, value-producing program into one that can also
produce explanations of its results. The explanation component is modular and
allows the explanations for one DP algorithm to be specialized to different ap-
plication domains independently of its implementation. In addition to producing
explanations in response to user requests, we have also shown how to anticipate
questions about results and produce corresponding explanations automatically.

In future work, we will investigate the applicability of our approach to more
general algorithmic structures. An open question is how to deal with the aggre-
gation of data along unrelated decisions. Our approach works well for dynamic
programming algorithms because all the decisions involved in the optimization
process are compositionally related through a semiring. For algorithms that don’t
fit into the semiring structure, the data aggregation for producing explanations
must be achieved in a different way.
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