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Abstract— In this paper, we will present new stability con-
ditions for a special class of linear switched systems, that
evolves on non-uniform time domain. The considered systems
switch between continuous-time subsystems on intervals with
variable lengths, and discrete-time subsystems with variable
step sizes. Time scales theory is introduced to derive conditions
for exponential stability of this special class of switched systems
by using the dwell time approach. The conditions are based on
the existence of a multiple Lyapunov function. This shows that
this class of switched systems can be stabilized if the dwell
time of each continuous-time subsystem is greater than some
bound, and if the gap of the discrete-time subsystem is bounded
by some specific values. Numerical examples are presented to
show the effectiveness of the proposed scheme.

I. INTRODUCTION

Switched systems are systems composed of a finite number
of continuous or discrete-time subsystems and the corre-
sponding switching signal orchestrating the switching be-
tween them. In the past decade, switched systems have drawn
considerable attention and they have been widely studied,
because they describe a wide range of engineering systems
and control fields [1], [9]. The stability under arbitrary
switching and the stability under constrained switching have
been addressed [1], [6], [7]. The existence of a common
Lyapunov function (CLF) for all subsystems guarantees the
stability of the switched system under arbitrary switching. In
this case, it is necessary to require that all subsystems are
asymptotically stable [1]. Noting that, finding a CLF is not an
easy task, except for certain special cases [8], [12]. To seek
less conservative results, the multiple Lyapunov functions
(MLF) approach was introduced to analyze the stability of
switched systems under constrained switching [1], [3], [11].
It was shown that switched systems, without exception, are
prone to instability problems and an arbitrary fast switching
may cause large state transients at the switching points.
Much effort has centralized on time-controlled switching
[1], [11], where it is shown that a dwell time may then
be required for these transients. The dwell time approach is
demonstrated to be a successful and an effective technique
to analyze switched system stability and controller design.
The idea behind it is that the time interval between any
two consecutive switching is not smaller (or in average) than
τd ∈ R+ [5], [10].
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Most of the existing dwell time methods to analyze the
stability of switched systems can only be applied to systems
operating in the continuous-time [1], [10], [14], or uniform
discrete-time domains [13], [2]. In contrast, in engineering,
there are many switched systems that evolve on a non-
uniform time domain, such subsystems can be discrete with
non-uniform sampling time, or a combination of discrete and
continuous time domains. A set of discrete-time controllers
and switching among the controllers is one example. Im-
pulsive systems in which non-instantaneous jumps occur at
some time instances is a second example. In these cases,
the time domain is neither continuous (R) nor uniformly
discrete (hZ). To overcome this difficulty and extend existing
results for switched systems evolving on a non-uniform time
domain, time scales theory has been introduced and shown
promising results. This theory unifies and demonstrates the
interplay between continuous-time and discrete-time dynam-
ics [15]. The concept of exponential stability of dynamical
systems on time scale T, has been derived in [16], [17]. Such
results have been recently generalized including switched
systems on arbitrary time scales [18], [19].
The stability of a special class of systems that switches
between continuous-time dynamics that evolve on intervals
with variable lengths, and discrete-time dynamics with vari-
able discrete step-size has been studied in [20], [21], [22],
[23]. The stability conditions are derived using the gener-
alized exponential function on time scale. The motivation
to study such systems is that, there are many applications
involving such switched systems, such impulsive systems
with non-instantaneous jumps. In [22], the problem of con-
sensus for multi-agent systems with intermittent information
transmission has been converted to an asymptotic stabiliza-
tion problem of this class of switched systems, and stability
conditions have been derived using the general solution of
the switched systems. In [21], the asymptotic stability of this
class of switched system has been studied by designing a
CLF. However, in these works, the time scale T is supposed
to be given in advance, and pairwise commutative matrices
are assumed. In this paper, we will consider this special
class of continuous/discrete switched systems. The aim of
this work is to derive a new dwell time conditions (i.e
design the time scale T) to establish a stabilizing switching
law for the considered switched system. The results are
derived by introducing MLF and by considering that unstable
subsystems may exist. A numerical example is presented to
show the effectiveness of the proposed method.
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II. PRELIMINARIES ON TIME SCALE THEORY

We present here, for convenience, a few preliminaries
regarding time scales calculus.

The time scale is a closed nonempty subset of real
numbers denoted by T. For the calculus of time scales we
refer the readers to [15]. The forward jump operator is given
by σ(t) = inf{s ∈ T : s > t}. The backward jump operator
is defined by ρ(t) := sup{s ∈ T : s < t}. The mapping
µ : T → R+, called the graininess function, is defined by
µ(t) = σ(t)− t. For T = R, we have ρ(t) = t = σ(t), and
µ(t) = 0, for all t, while for T = hZ, we have ρ(t) = t−h,
σ(t) = t + h, and µ(t) = h. A point t ∈ T is called right-
scattered (resp. left-scattered ) if σ(t) > t (resp. ρ(t) < t)
and right-dense (resp. left-dense), if σ(t) = t (resp. ρ(t) = t).

If T has a left-scattered maximum m, then Tκ = T−{m};
otherwise Tκ = T. For f : T→ R, t ∈ Tκ, the ∆-derivative
of f(t) is defined by

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
.

The ∆-derivative unifies the derivative in the continuous
sense, and the difference operator in the discrete sense. A
function f : T → R is said right-dense continuous (rd-
continuous), if it is continuous at every right-dense points
in T and its left-hand limit exists at every left-dense points
in T.

A function p : T → R is regressive (resp. positively
regressive), if 1+µ(t)p(t) 6= 0,∀t ∈ Tκ (resp. 1+µ(t)p(t) >
0, ∀t ∈ Tκ). We denote the set of regressive (resp. positively
regressive) and rd-continuous functions by R (resp, R+).
Similarly, a matrix function A : T → Rn×n is called
regressive, if and only if all its eigenvalues, λj(t), are
regressive (i.e; 1 + µ(t)λi(t) 6= 0, ∀1 ≤ j ≤ n, ∀t ∈ Tκ).

Let the transformation ξµ(z), with µ > 0, be defined on
the set {z ∈ C : z 6= −1

µ } by ξµ(z) := log(1+µz)
µ , and

ξ0(z) := z.
The generalized exponential function of p ∈ R, on a time
scale T, is expressed by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
, s, t ∈ T.

For T = R and p constant, ep(t, t0) = ep(t−t0), and for
T = hZ, ep(t, s) =

∏t−h
τ=s(1 + hp(τ)).

Let a regressive constant matrix A ∈ Rn×n. The unique
solution of the first order dynamical system

x∆(t) = Ax(t), x(t0) = x0, t, t0 ∈ T, (1)

is expressed by the generalized exponential function, such
that x(t) = eA(t, t0)x0 (see [15]). Note that, the regressivity
of A is needed in order to eA(t, t0) to be well defined. For the
continuous case T = R, the matrix A is always regressive.

System (1) is exponentially stable on T, if there exists a
constant β ≥ 1 and a negative constant λ ∈ R+, such that
the corresponding solution satisfies

‖x(t)‖ ≤ β‖x0‖eλ(t, t0), ∀t, t0 ∈ T.

This characterization is a generalization of the definition of
exponential stability for dynamical systems defined in R or
hZ. More specifically, the condition that λ < 0 and λ ∈ R+

is reduced to λ < 0 for T = R, to 0 < 1 + hλ < 1 for T =
hZ, and to 0 < 1 +µ(t)λ < 1, ∀t ∈ T for any discrete time
scale T. To study the stability of linear dynamical systems
on a time scale T, a particular open set of the complex plane
called the Hilger circle is defined for all t ∈ T as

Hµ(t) :=

{
z ∈ C : |1 + zµ(t)| < 1, z 6= − 1

µ(t)

}
,

with H0 = C−. For T = hZ, the Hilger circle is determined
by the disc of center (−1

h , 0) and radius 1
h . The smallest

Hilger circle (denoted Hmin) is the Hilger circle associated
with µmax = supt∈T µ(t). A regressive time-invariant matrix
A is called Hilger stable if spec(A) ⊂ Hmin (i.e all the
eigenvalues of A are in Hmin) [24].

The Lyapunov stability on time scales was studied in
several works [19], [21]. Let T be an arbitrary time scale and
P = PT > 0 a positive definite matrix. The ∆-derivative of
the Lyapunov function V = xTPx along the trajectories of
system (1) on T is given by ATP+PA+µ(t)ATPA = −Q,
where Q = QT > 0. In [19], the authors shows that, if A
has all its eigenvalues in the corresponding Hilger circle for
every t ≥ t0, then for each t ∈ T, the matrix P is determined
by

P =

∫ t

t0

eAT (s, t0)QeA(s, t0)∆s,

and the existence of such Lyapunov function implies the
exponential stability of the dynamical system (1), which
is a generalization of the Lyapunov criteria for exponential
stability of discrete and continuous linear systems.

III. PROBLEM STATEMENT

It is known that the trajectories of a continuous-time or
discrete-time switched system can be unstable under arbitrary
switching, even if all the subsystems are stable. One method
to stabilize such switched system is by using the dwell time
switching approach, where some constraints are imposed
on the duration of each subsystem (slow switching). Note
that, in the literature, the dwell time conditions are de-
rived for continuous-time and discrete-time switched systems
separately. In this paper, we will derive stabilizing dwell
time conditions, using MLF, for a special class of switched
systems evolving on a particular time scale,

T = P{σ(tk),tk+1} = ∪∞k=0[σ(tk), tk+1],

which is the union of disjoint closed intervals with variable
lengths and variable gaps, where σ(.) is the forward jump
operator, such that, σ(t0) = t0, tk < σ(tk) < tk+1, ∀k ∈ N∗
and the graininess function µ(tk) = σ(tk)−tk,∀k ∈ N∗ (Fig.
1). This time scale arises for example in the consensus of
multi-agent systems with intermittent information transmis-
sion [22], or impulsive systems with non-instantaneous jump.
It is assumed throughout the paper that T is unbounded above
and µ(t) is bounded. Let {Ac, Ad} be a set of two constant
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Fig. 1. Time scale T = P{σ(tk),tk+1}.

regressive matrices in Rn×n. The eigenvalues of Ac (resp.
Ad) are denoted by λjc ∈ spec(Ac) (resp. λjd ∈ spec(Ad)),
1 ≤ j ≤ n. The considered switched linear system on
T = P{σ(tk),tk+1}, is given by

x∆(t) =

 Acx(t), for t ∈ ∪∞k=0[σ(tk), tk+1[

Adx(t), for t ∈ ∪∞k=0{tk+1}.
(2)

The first equation in (2) describes the continuous-time
dynamics of the system. At times tk+1, k ∈ N, the
state x(tk+1) will jump non instantaneously to the state
x(σ(tk+1)). The duration of this jump is described by µ(tk)
which is considered to be variable in time. At the instants
t = tk+1, k ∈ N, we determine a discrete dynamic of the
state by using the ∆-derivative as follows,

x∆(tk+1) =
x(σ(tk+1))− x(tk+1)

µ(tk+1)
= Adx(tk+1), ∀k ∈ N.

So, the second equation of (2) can be seen as the non-
instantaneous state jump dynamic.

Hilger stability is related to the Hilger circle. If all
the eigenvalues of Ac lies in H0 = C−, the continuous-
time subsystem is Hilger stable (exponentially stable). The
discrete-time subsystem is Hilger stable, if all the eigenvalues
of Ad lies strictly within the Hilger circleHmin, which means
that,

|1 + µ(t)λjd| < 1, ∀1 ≤ j ≤ n, ∀t ∈ ∪∞k=0{tk+1}. (3)

Condition (3) implies that,

0 < µ(t) < γd, where γd = min
1≤j≤n

{
−2<(λjd)

|λjd|2

}
. (4)

On the other hand, Ad is unstable if there exists at least
one eigenvalue λjd of Ad such that |1 + µ(t)λjd| > 1, ∀t ∈
∪∞k=0{tk+1}. In all the following, Ad is assumed to be

regressive (i.e µ(t) 6= −1

λjd
, ∀1 ≤ j ≤ n, ∀t ∈ ∪∞k=0{tk+1}).

Note that, the stability and instability of Ad do not depend
only on λjd, but also on µ(tk), which makes the novelty
in studying such switched systems and leads us to choose
carefully the dwell time of the discrete-time subsystems.

IV. DWELL TIME CONDITIONS USING MLF

We will study in this section the exponential stability of
the switched system (2), by considering the cases where Ac
and Ad can be Hilger stable or unstable. The objective is
to determine dwell time conditions in order to guarantee the
exponential stability of (2). We will introduce the framework
of MLF, which may correspond to each single subsystem,
and is non-increasing at the switching instants. This non-
traditional Lyapunov function may not be monotonically
decreasing along the state trajectories.

A. Formulation of the problem

Consider the switched system (2). Let us first present
some necessary background. Note that if the matrix Ac is
exponentially stable, so there exists a constant λc > 0,
such that (Ac + λcI) remains exponentially stable. On the
other hand, if Ac is unstable, there exists a positive constant
λc > 0, such that (Ac−λcI) is exponentially stable. If Ad is
Hilger stable with respect to time scale T (i.e; condition (3)
is satisfied), there exists a constant λd with |λd| < 1, such
that

As(t) =

[
1

λd
Ad +

(
1− λd
µ(t)λd

)
I

]
, (5)

is Hilger stable, ∀t ∈ ∪∞k=0{tk+1}. This is shown as:

I + µ(t)As = I + µ(t)

[
1

λd
Ad +

(
1− λd
µ(t)λd

)
I

]

=
1

λd
(I + µ(t)Ad).

Let λjs be the eigenvalues of As, 1 ≤ j ≤ n, so they satisfies,

|1 + µ(t)λjs| =
1

|λd|
|1 + µ(t)λjd|, ∀t ∈ ∪

∞
k=0{tk+1}. (6)

Since, Ad is supposed to be Hilger stable, and from (3), we
can always choose |λd| < 1, such that

|1 + µ(t)λjs| < 1, ∀t ∈ ∪∞k=0{tk+1}, ∀1 ≤ j ≤ n,

which means that As is Hilger stable with respect to T.
In the same way, if Ad is unstable (i.e, ∃λjd ∈ spec(Ad),
such that |1 + µ(t)λjd| > 1,∀t ∈ ∪∞k=0{tk+1}), so there
exists a constant λd with |λd| > 1, such that As =[

1

λd
Ad +

(
1− λd
µ(t)λd

)
I

]
is Hilger stable. This means that,

and similar to (6),

|1 + µ(t)λjs| =
1

|λd|
|1 + µ(t)λjd| < 1, ∀t ∈ ∪∞k=0{tk+1}.

(7)
Let Ac and Ad be Hilger stable. By considering the Hilger

stable matrices (Ac + λcI) (with λc > 0) and As, so there
exists a Lyapunov quadratic functions

Vi(x(t)) = xT (t)Pix(t) with Pi = PTi > 0, i ∈ {c, d},

such that, ∀t ∈ ∪∞k=0[σ(tk), tk+1[,

V ∆
c (x(t)) = xT [(Ac+λcI)TPc+Pc(Ac+λcI)]x < 0, (8)

and ∀t ∈ ∪∞k=0{tk+1} (see [21]),

V ∆
d (x(t)) = xT (ATs Pd +PdAs +µ(t)ATs PdAs)x < 0. (9)

Substituting As by its value in (9), we get the following
inequality, ∀t ∈ ∪∞k=0{tk+1}

(ATd Pd + PdAd + µ(t)ATd PdAd) <

(
λ2
d − 1

µ(t)

)
Pd, (10)

with |λd| < 1. The ∆-derivative of Vc(x(t)) along the
trajectories of the continuous-time subsystem of (2) is given
by V ∆

c (x(t)) = xT (t)(ATc Pc+PcAc)x(t). From (8), we get

V ∆
c (x(t)) < −2λcx

T (t)Pcx(t) = −2λcVc(x(t)). (11)

4931

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on June 07,2020 at 02:56:10 UTC from IEEE Xplore.  Restrictions apply. 



The ∆-derivative of Vd(x(t)) along the trajectories of the
discrete-time subsystem of (2) is given by

V ∆
d (x(t)) = xT (t)(ATd P + PAd + µ(t)ATd PAd)x(t).

From (10), we get

V ∆
d (x(t)) <

(
λ2
d − 1

µ(t)

)
Vd(x(t)), ∀t ∈ ∪∞k=0{tk+1}.

(12)
Let the following MLF of (2),

Vi(x(t)) = xT (t)Pix(t), i ∈ {c, d}. (13)

From (11) and (12), we get

V ∆
i (x(t)) ≤


−2λcVc(x(t)), t ∈ ∪∞k=0[σ(tk), tk+1[,(
λ2
d − 1

µ(t)

)
Vd(x(t)), t ∈ ∪∞k=0{tk+1}.

Using differential inequalities on time scale [15], we obtain,
for t ∈ [σ(tk), tk+1[,∀k ∈ N,

Vc(x(t)) ≤ e−2λc(t−σ(tk))Vc(x(σ(tk))), (14)

and for t = tk+1,∀k ∈ N

Vd(x(σ(t))) ≤
[
1 + µ(t)

(
λ2
d − 1

µ(t)

)]
Vd(x(t)) = λ2

d Vd(x(t)).

(15)
Notice that, the following inequalities are always satisfied
[4],

λmin(Pi)‖x‖2 ≤ Vi(x) ≤ λmax(Pi)‖x‖2, i ∈ {c, d} (16)

which implies that, for all k ∈ N,

Vd(x(tk)) ≤ λmax(Pd)

λmin(Pc)
Vc(x(tk)) = δVc(x(tk)),

and

Vc(x(σ(tk))) ≤ λmax(Pc)

λmin(Pd)
Vd(x(σ(tk))) = δ′Vd(x(σ(tk))).

Let β = max{δ, δ′} ≥ 1, we get, ∀t ∈ T

Vi(x(t)) ≤ βVj(x(t)), i 6= j, i, j ∈ {c, d}. (17)

B. Main results

Let us now, derive the stabilizing dwell time conditions
for system (2). From (14), (15) and (17), we can derive an
upper bound of the solution of the switched system (2) as
follows:
For t0 ≤ t ≤ t1,

Vc(x(t) ≤ e−2λc(t−t0)Vc(x(σ(t0))) = e−2λc(t−t0)Vc(x(t0)).

For t = t1, Vc(x(t1)) ≤ e−2λc(t1−t0)Vc(x(t0)).

For t = σ(t1),

Vd(x(σ(t1))) ≤ (λ2
d)Vd(x(t1))

≤ β (λ2
d)Vc(x(t1))

≤ β (λ2
d) e

−2λc(t1−t0)Vc(x(t0)).

For σ(t1) ≤ t ≤ t2,

Vc(x(t)) ≤ e−2λc(t−σ(t1))Vc(x(σ(t1)))

≤ β e−2λc(t−σ(t1))Vd(x(σ(t1)))

≤ β e−2λc(t−σ(t1)) β (λ2
d) e

−2λc(t1−t0)Vc(x(t0)).

By induction, for σ(tk) ≤ t ≤ tk+1 and τk := tk+1 −
σ(tk),∀k ∈ N, we have

Vc(x(t)) ≤ e−2λc(t−σ(tk))
k−1∏
i=0

e(log(β)−2λcτi) (βλ2
d)
k Vc(x(t0)).

(18)
From (16), we derive

‖x(t)‖ ≤ ξ e−λc(t−σ(tk))
∏k−1
i=0 e

(log(
√
β)−λcτi) (

√
β|λd|)k

×‖x0‖,
(19)

with ξ =

√
λmax(Pc)

λmin(Pc)
. One can get the following upper

bound

‖x(tk+1)‖ ≤ ξ
k∏
i=0

e(log(
√
β)−λcτi) (

√
β|λd|)k ‖x0‖. (20)

Consider the switched linear system (2) such that Ac and
Ad are Hilger stable. Let λc > 0, |λd| < 1, and β ≥ 1
be defined as in (8), (5) and (17) respectively. Suppose that
the dwell times of each continuous-time subsystem τk and
of each discrete-time subsystem µ(tk), satisfy one of the
following conditions:
(i) For all k ∈ N, and ∀1 ≤ j ≤ n,

|1 + µ(tk)λjd| < |λd| and |λd| <
1√
β
< 1, (21)

τk >
log(
√
β)

λc
, ∀k ∈ N. (22)

(ii) For all k ∈ N, and ∀1 ≤ j ≤ n,

τk >
log(β)

λc
and |1 + µ(tk)λjd| < |λd| < 1. (23)

Then, the switched system (2) is exponentially stable.
Proof:
(i) Let the upper bound of the solution of system (2) given

by (20). Since λc > 0, we have

‖x(tk+1)‖

≤ ξ e
∑k

i=0(log(
√
β)−λcτi) ek log(

√
β|λd|)‖x0‖

≤ ξ e
∑k

i=0(log(
√
β)−λcτmin) ek log(

√
β|λd|)‖x0‖

= ξek[log(
√
β)−λcτmin+log(

√
β|λd|)] ‖x0‖.

(24)
From (22) and (21), we get

log(
√
β)− λcτmin < 0 and log(

√
β|λd|) < 0.
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We deduce that the terms at the exponential in (24)
are negative, which implies that the solution converges
exponentially to zero when k →∞ (i.e; t→∞).

(ii) If
√
β|λd| > 1, inequality (24) can be written as,

‖x(tk+1)‖ ≤ ξek[log(β)−λcτmin+log(|λd|)] ‖x0‖. (25)

So, from (23), we have log(β) − λcτmin < 0 and since
|λd| < 1, all the terms at the exponential function in (25)
are negative and the solution converges exponentially to zero
when k →∞ (i.e; t→∞).

Suppose now that Ac is exponentially stable and Ad may
be unstable. Consider the switched linear system (2) such
that Ac is stable and Ad may be Hilger stable or unstable.
Let λc > 0, |λd| > 1 and β ≤ 1 defined as in (8), (7) and
(17) respectively. Suppose that the following assumptions are
fulfilled:

(i) µ(tk) satisfies, ∀k ∈ N∗,

|1+µ(tk)λjd| < |λd|, and |λd| > 1, ∀1 ≤ j ≤ n. (26)

(ii) The duration of each continuous-time subsystem satis-
fies

τk >
log(β|λd|)

λc
, ∀k ∈ N. (27)

Then, system (2) is exponentially stable under (26), (27).
Proof: Since Ad can be unstable, so there exists a constant
|λd| > 1, such that As defined as in (5) is Hilger stable,
which leads to the condition (26). Since Ac is exponentially
stable, so there exists λc > 0 such that (Ac +λcI) is stable,
and an upper bound of the solution of (2) is given by (20).
Similar to (24), we get

‖x(tk+1)‖ ≤ ξ ek[−λcτmin+log(β|λd|)] ‖x0‖, (28)

with |λd| > 1. From conditions (27), we conclude that the
term at the exponential in (28) is always negative, and the
solution converges exponentially to zero when k → ∞ (i.e.
t→∞).

Suppose now that Ac is unstable and Ad is Hilger stable.
Consider the switched linear system (2) such that Ac is
unstable and Ad is Hilger stable. Let λc > 0, and let |λd| < 1
and β ≥ 1 defined as in (5) and (17), respectively. Suppose
that the following assumptions are fulfilled:

(i) µ(tk) satisfies, ∀k ∈ N∗

|1 + µkλ
j
d| < |λd|, with |λd| <

1

β
, ∀1 ≤ j ≤ n. (29)

(ii) The duration of each continuous-time subsystem satis-
fies

0 < τk <
− log(β|λd|)

λc
, ∀k ∈ N. (30)

Then, the switched system (2) is exponentially stable.
Proof: Since Ac is unstable, so there exists a constant
λc > 0 such that (Ac − λcI) is stable. Suppose that Ad is
Hilger stable such that µ(t) satisfies condition (3), so there
exists a constant |λd| < 1, such that As defined as in (5) is

Hilger stable. Similar to the above analysis, the upper bound
of the solution of (2) is given by

‖x(tk+1)‖ ≤ ξ
k∏
i=0

e(log(
√
β)+λcτi) (

√
β|λd|)k ‖x0‖, (31)

with |λd| < 1 and λc > 0. We can derive the following

‖x(tk+1)‖ ≤ ξ e
∑k

i=0(log(
√
β)+λcτi) ek log(

√
β|λd|) ‖x0‖

≤ ξek[λcτmax+log(β|λd|)] ‖x0‖.
(32)

From conditions (29), (30), the term at the exponential in
(32) is negative, which implies the exponential stability of
(2).

The matrix Pd in (10) is computed by fixing µmax, with
0 < µ(t) < µmax, such that condition (3) is satisfied (i.e,
Ad is Hilger stable with respect to µ(t)). By fixing |λd| < 1,
the matrix Pd satisfies

ATd Pd + PdAd + µmaxA
T
d PdAd <

(
λ2
d − 1

µmax

)
Pd, (33)

which is equivalent to solving the LMI

−λ2
dPd + (I + µmaxAd)

TPd(I + µmaxAd) < 0.

Note that, if (33) is satisfied, so inequality (10) is satisfied
for any µ(t) ≤ µmax, since, we have

ATd Pd + PdAd + µ(t)ATd PdAd + (µmax − µ(t))ATd PdAd <(
λ2
d − 1

µ(t)

)
Pd +

[(
λ2
d − 1

µmax

)
−
(
λ2
d − 1

µ(t)

)
Pd

]
,

(34)
which implies that,

ATd Pd + PdAd + µ(t)ATd PdAd <

(
λ2
d − 1

µ(t)

)
Pd

+(µmax − µ(t))

[
−ATd PdAd +

(
λ2
d − 1

µ(t)µmax

)]
Pd.

(35)

Inequality (33) implies that

ATd Pd + PdAd < −µmaxA
T
d PdAd +

(
λ2
d − 1

µmax

)
Pd < 0.

Ad is Hilger stable and ATd PdAd > 0, which leads to

−ATd PdAd +

(
λ2
d − 1

µ2
max

)
Pd < 0. (36)

One can conclude from (35) and (36), that (10) is always
satisfied.

V. A NUMERICAL EXAMPLE

Consider the switched system

x∆ =



(
−3 −3

2 ,
2 1

2

)
x, t ∈ ∪∞k=0[σ(tk), tk+1[,

( −1
2

1
10

0 −1

)
x, t ∈ ∪∞k=0{tk+1},

(37)
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The matrix Ac is exponentially stable with eigenvalues, λ1
c =

−1.5 and λ2
c = −1. The eigenvalues of Ad are λ1

d = −0.5
and λ2

d = −1, so Ad is Hilger stable if 0 < µ < 2 and
it is regressive if µ 6= 1. Let λc = 0.5, so (Ac + λcI) =(
−2.5 −1.5

2 1

)
and Pc =

(
1.0534 0.8466
0.8466 0.9801

)
. Let

µmax = 1.8 and λd = 0.4, so Pd =

(
1.2735 0.0937
0.0937 1.695

)
.

We have β = 10.1294, so for 1.2 ≤ µ(t) ≤ 1.4 and
τk > 4.6309, condition (23) is satisfied and the switched
system (37) is exponentially stable. Let the time scale T =
∪∞k=0[4.5k + 7k

5k+0.8 , 4.7(k + 1)], which verifies the dwell
times conditions. Fig. 2 show that the switched system (37)
is stable.

0 5 10 15

Time(t)

-0.5

0

0.5

1

x(
t)

x1
x2

Fig. 2. Stable trajectories of system (37) with x0 = [−0.5, 1]T .

VI. CONCLUSION

Time scale theory was introduced to derive new dwell
time conditions for stability of continuous/discrete switched
systems which evolve on a non-uniform time domain in the
presence of unstable subsystems. Note that, the stability of
discrete-time subsystems with variable discrete steps is not
only related to their dynamics, but also to the step sizes.
Using Lyapunov-like functions, we have shown that this
special class of switched systems can be stabilized if the
dwell time of each continuous-time and the gaps of the
discrete-time subsystems are bounded by specific values.
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