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Abstract—This paper investigates the stability problem of wide-
area damping controllers with intermittent information transmis-
sion. Due to the interruption in communication links between
remote measurements and damping controller or from the damping
controller to the damping actuators, the closed-loop system might
become unstable. The instability is strongly related to the duration
of interruption of information transmission. To estimate instabil-
ity, this paper formulates the problem as continuous/discrete-time
switched system and the stability conditions are derived using time-
scale theory. This method allows us to handle continuous and dis-
crete dynamics as two pieces of the same framework, such that the
system will switch between a continuous-time subsystem (when the
communication occurs without any interruption) and a discrete-
time subsystem (when the communication fails). The contribution
is to estimate the maximum allowable value of the time of interrup-
tion of information transmission that does not violate the exponen-
tial stability of the closed-loop system. The findings are useful in
specifying the minimum requirements for communication infras-
tructure and the time to activate remedial action schemes. Simula-
tions are performed based on both linear and nonlinear systems to
validate the theoretical development.

Index Terms—Low-frequency oscillations, intermittent informa-
tion, time scale theory, switched systems.

I. INTRODUCTION

W ITH increasing interconnection complexity, modern
grids are more vulnerable to system-wide disturbances.

These wide-area disturbances require more sophisticated mea-
surement systems and coordinated control actions to avoid sys-
tem collapse as local responses (delivered based on the local
observations) are not sufficient. This will bring new challenges
as coping with instability problems requires wide-area measure-
ment and control systems (WAMCS) [1]. Phasor measurement
units (PMUs) can play a crucial role in these applications by
providing the necessary measurement infrastructure.
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Fig. 1. A networked control system with components that are remotely
operated over a communication network.

Traditionally, PMU data has been used only for off-line post
event analysis. However, with recent advancement in commu-
nications (e.g. faster communication channels) and processing
power, it is now possible to use geographically dispersed PMUs
for real-time applications in power systems [2]. PMUs are cur-
rently installed in different point in the North American grid,
to record and communicate GPS-synchronized, hight sampling
rate (60 sample/sec), dynamic power systems data. They can
be used to address the problem of inter-area oscillations which
happens between several areas and require wide-area supervi-
sion and control schemes. In these applications, usually damping
controllers (located in control centers, substations), sensors (e.g.
PMUs) and actuators (e.g. synchronous generators, FACTS de-
vices and energy storage systems) are located remotely and can
only communicate with others over a communication network
as shown in Fig. 1.

Implementation of damping controllers over a network such
that, the portions of the control system located remotely, might
create challenges as the closed loop performance is highly de-
pendent on the communication network. In this study, we aim to
consider the effect of the communication network in our analy-
sis. The main question is what happens when the communication
is lost during some periods. The network may experience con-
stant or time varying delays [3], packet dropout [4] or packet
disordering [5]. Hence, the communication network introduces
uncertainty in the operation and the performance of the closed-
loop system.

In the power systems literature, communication effects are
often ignored [6], [7]. Reference [8] studied the impact of in-
duced network delays using LMIs but only for state feedback
controllers. In [9], [10], simple models were considered to cap-
ture the effects of communication failure with known lower and
upper bounds. The problem of network control system with data
packet dropout and transmission delays, was studied in several
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ways in the literature [11]–[13]. In fact, existing methods based
on sampling signal output such that, the samples only arrive at
the destination after a (possibly variable) delay which is assumed
always smaller than one sampling interval, but the delays longer
than one sampling interval may result in more than one signal
arriving. Other approaches consider the problem as a differential
equations with delay (where the restriction to assuming delays
smaller than one sampling interval is lifted). The Lyapunov–
Krasovskii and the Razumikhin theorems are the two main tools
available to study the stability of such systems and some LMI-
based conditions are derived [14], [15]. However, the required
communication time rate conditions are rather complex to verify.

Motivated by that, in this paper, new stability conditions are
derived using time scale theory. Dynamical systems modeled
using time scales theory shows promise as a new approach to
solve this problem. Based on this theory, it will be shown that
the problem of communication loss can be converted into the
asymptotic stabilization problem of a switched system on a par-
ticular non-uniform time domain, formed by a union of disjoint
intervals with variable lengths and variable gaps [16], [17]. In-
deed, the closed loop system evolves during some continuous
time intervals when the communication occurs without any inter-
mittence in information transmission. When the communication
fails, the control will not evolve, holds its last value and it will
be updated after some periods (considered to be variable). In
this case, the system acts as if discretized with a variable step
size and the system will be modeled as a switched system be-
tween a continuous-time dynamics with variable intervals length
and a discrete-time dynamics with variable step size. Thus, it is
of interest to mix the continuous-time and discrete-time cases
under a unified framework [18]–[20]. In this paper, new con-
ditions are derived to estimate the allowable value of the time
of interruption in information transmission in order to maintain
the exponential stability of the closed loop power system. The
findings are useful in specifying the minimum requirements for
communication infrastructure and the time to activate remedial
action schemes to avoid the critical situation [21]. Moreover,
we have explored realistic cases involving sensor-to-controller
and/or controller-to-actuator communication failures.

The remainder of this paper is organized as follows. Back-
ground on time scale theory is presented in Section II. In
Section III, it is shown that the stability problem of linear sys-
tem with intermittent information transmission is equivalent to
the stabilization of a switched system consisting of a linear
continuous-time and discrete-time subsystem. A set of condi-
tions on the maximum time of interruption to guarantee the ex-
ponential stability of the closed-loop power system is derived in
Section III. Numerical results and conclusions are presented in
Section IV and Section V, respectively.

II. PRELIMINARIES ON TIME SCALE THEORY

Basic notations and properties of time scales theory [18] are
presented in this section. A time scale, noted T is an arbitrary
nonempty closed subset of R. The usual integer sets hZ, N, the
real numbers R, any discrete subset or any combination of dis-
crete points with union of closed intervals, are examples of time
scales. The forward jump operator σ(t) : T → T is defined by

σ(t) := inf{s ∈ T : s > t}. The mapping μ : T → R+, called
the graininess function, is defined by μ(t) = σ(t)− t, which
measure the distance between two consecutive points. In par-
ticular, if T = R, σ(t) = t and μ(t) = 0. If T = hZ, σ(t) =
h and μ(t) = h. For T = ∪∞

k=0[k(a+ b), k(a+ b) + a], with
a, b ∈ R,

σ(t) =

{
t, t ∈ ∪∞

k=0[k(a+ b), k(a+ b) + a[

t+ b, t ∈ ∪∞
k=0{k(a+ b) + a}

μ(t) =

{
0, t ∈ ∪∞

k=0[k(a+ b), k(a+ b) + a[

b, t ∈ ∪∞
k=0{k(a+ b) + a}

Let f : T → R. The Δ-derivative of f at t ∈ T is defined as

fΔ(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
(1)

The Δ-derivative, unify the derivative in the continuous sense
and the difference operator in the discrete sense. If T = R,
σ(t) = t and fΔ(t) = ḟ(t). If T = hZ, σ(t) = t+ h and
fΔ(t) = f(t+h)−f(t)

h . In particular, if h = 1, fΔ(t) = f(t+
1)− f(t) = Δf(t), the difference operator. Note that the Δ-
derivative, generalizes the continuous and discrete derivatives.
A function f : T → R is regressive if 1 + μ(t) f(t) �= 0, ∀t ∈
T . A matrix A is called regressive, if ∀t ∈ T , the matrix
(I + μ(t)A) is invertible, where I is the identity matrix (equiv-
alently, (1 + μ(t)λi) �= 0, ∀t ∈ T , for all eigenvalues λi of A
[18]). We denote the set of all regressive functions by R and
by R+, if they satisfies 1 + μ(t)f(t) > 0, ∀t ∈ T (positively
regressive). The generalized exponential function of p ∈ R is
expressed by

ep(t, t0) =

⎧⎨
⎩ e

∫ t
t0

log(1+μ(τ)p(τ))
μ(τ)

Δτ , if μ(τ) �= 0

e
∫ t
t0

p(τ)Δτ , if μ(τ) = 0
(2)

where s, t ∈ T , log is the principal logarithm function and the
delta integral is used [18], [22]. Let p ∈ R and t0 ∈ T , for
T = R, ep(t, s) = exp(

∫ t

s p(τ) dτ) and for T = hZ, ep(t, s) =∏t−h
τ=s(1 + hp(τ)). Notice that the regressivity of p is needed for

the exponential function to be well defined, in particular on dis-
crete time scales.

Let A be a regressive matrix. The unique matrix-valued
solution of

xΔ(t) = A x(t), x(t0) = x0, t ∈ T , (3)

is the generalized exponential function denoted by eA(t, t0)x0.
The dynamical system (3) is exponentially stable on an arbi-

trary time scale T , if there exists a constant β ≥ 1 and a constant
λ < 0 and λ ∈ R+, such that the corresponding solution satis-
fies ‖x(t)‖ ≤ β‖x0‖eλ(t, t0), ∀t ∈ T .

This characterization is a generalization of the definition of
exponential stability for dynamical systems defined on R or
hZ. More specifically, the condition that λ < 0 and λ ∈ R+ in
the characterization of exponential stability is reduced to λ < 0
for T = R, and to 0 < 1 + μ(t)λ < 1, ∀t ∈ T (an arbitrary
discrete time scale). Since, the generalized exponential func-
tion can be negative, the positive regressivity of λ is needed
(see [18]).
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Fig. 2. Sample of control signal with intermittent communication transmis-
sions when assigning a value a) equal to zero (zero strategy) and b) equal to the
previous value (hold strategy).

III. WIDE AREA CONTROL WITH INTERMITTENT

INFORMATION TRANSMISSION

Damping controllers relying on a communication network
where portions of the control system are located remotely, cre-
ates challenges. The closed loop performance is highly depen-
dent on the communication network. In this study, we consider
the effects of the communication network in the stability analy-
sis. To begin, nonlinear power system models can be expressed
as the following differential algebraic equations

ẋ(t) = f
(
x(t), y(t), u(t)

)
(4)

0 = g
(
x(t), y(t)

)
(5)

wherex is the state vector, y is a vector of algebraic variables,u is
the vector of control inputs and t is the time variable. Linearizing
the power system model (4) around the operating point leads
to the following generalized form

ẋ(t) = Ax(t) +Bu(t) (6)

y(t) = Cx(t) (7)

where A and B are constant real matrices with appropriate di-
mensions such that (A,B) is stabilizable and u ∈ Rm is the
control input. The aim in this section is to estimate the time
of interruption of information transmission and analyze what
happens when the communication network is no longer perfect
due to packet loss, delay or any other common communication
failure.

Two general schemes are generally used when faced with
intermittent communication: the zero strategy, in which the in-
put/measurement of the plant is set to zero if a packet is dropped,
and the hold strategy, in which the latest arrived/measured packet
is kept constant until the next packet arrived/measured [23] (see
Fig. 2,). In this paper, the hold strategy is used in control and
measurement loops in which the last value of the control before
communication failure is hold and continues to be used when
packet dropouts happen. However, if the failure time becomes
large, and since the control will not evolve, the system may be-
come unstable. Hence, communication network reliability is a
key requirement and the goal is to estimate the maximum time
of interruption of communication that does note violate the sta-
bility of the system.

Fig. 3. Time scale T = P{σ(ti),ti+1}.

A. State Feedback Problem Formulation

Consider the particular time scale T = ∪∞
i=0[σ(ti), ti+1],

where σ(.) is the forward jump operator, such that, σ(t0) = t0
and the graininess functionμ(ti) = σ(ti)− ti, ∀i ∈ N∗ (Fig. 3).
To solve the power systems problem under intermittent infor-
mation transmission between generators and controllers, the
following switched control law is applied

u(t) =

{
Kx(t), if t ∈ ∪∞

i=0[σ(ti), ti+1)

Kx(ti+1), if t ∈ ∪∞
i=0[ti+1, σ(ti+1))

(8)

where K is an appropriate state feedback controller. The union
of time intervals over which the communication occurs is repre-
sented by ∪∞

i=0[σ(ti), ti+1). The remaining intervals represent
the time intervals over which the feedback does not evolve (i.e.,
maintained constant to its value at the switching times instants
ti+1) due to the absence of local information. The time sequence
{t1, t2, t3, . . .} characterizes the time when the communication
failure occurs with no accumulation points. The duration of a
communication failure equal to μ(ti) which is assumed to be
variable and bounded, ∀i ∈ N∗. With the control law (8), the
dynamical system (6) is equivalent to

ẋ(t) =

{
(A+BK)x(t), if t ∈ ∪∞

i=0[σ(ti), ti+1)

Ax(t) +BKx(ti+1), if t ∈ ∪∞
i=0[ti+1, σ(ti+1)).

(9)
Since the feedback does not evolve when local information is not
available, the study of system (9) is not trivial. There exist previ-
ous works dealing with the stabilization of linear systems under
variable sampling periods or by considering a differential equa-
tions with delay. The approaches are usually based on LMIs and
derived using Lyapunov-Razumikhin stability conditions, which
are rather complex to verify [24], [14], [15]. To reduce the con-
servatism and facilitate the analysis, the problem (9) is converted
to a switched system on time scale T = ∪∞

i=0[σ(ti), ti+1] such
that, the communication fails at ti+1 and only the behavior of the
solution of the second equation in (9) at the discrete times {ti+1}
and {σ(ti+1)} is considered. The descritization is as follows (for
more details see [25]):

For t ∈ [ti+1, σ(ti+1)), i ∈ N, we have

ẋ = Ax(t) +Bu(ti+1) (10)

such that u(ti+1) = Kx(ti+1) is constant on the time interval
[ti+1, σ(ti+1)). The solution of (10) is given by

x(t)=eA(t−ti+1)
[
x(ti+1)+A−1Bkx(ti+1)

]−A−1BKx(ti+1)

= eA(t−ti+1)
[
I +A−1BK

]
x(ti+1)−A−1BKx(ti+1)
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At time t = ti+1, the Δ-derivative of x(t) is given by

xΔ(ti+1) =
x(σ(ti+1))− x(ti+1)

σ(ti+1)− ti+1

=

(
eAμ(ti) − I

μ(ti)

)[
I +A−1BK

]
x(ti+1).

By using the above development, the closed-loop system (9) is
modelled as the following switched linear system

xΔ(t) =

⎧⎨
⎩

(A+BK)x(t), t ∈ ∪∞
i=0[σ(ti), ti+1)(

eAμ(t)−I
μ(t)

) (
I+A−1BK

)
x(t), t ∈ ∪∞

i=0{ti+1}
(11)

on T = ∪∞
i=0[σ(ti), ti+1]. The derived system commutes be-

tween a stable continuous-time linear subsystem (on contin-
uous intervals with variable length) and may be an unstable
discrete-time linear subsystem with variable discrete-step size
μ(t), which corresponds to the interruption time of the control
evolution. Note that, the stability and instability of the discrete-
time subsystem is strongly related to μ(t) [17], [25], [26]. It
is known that switching between stable and unstable (or even
between stable) systems may make the overall system unstable
if we will not put some restriction on the dwell time of each
subsystem [27], [28].

B. Stability Criteria

In this section, sufficient conditions are derived to guarantee
the stability of system (11).

Proposition 1: Consider the switched system (11), and sup-
pose that the following assumptions are fulfilled:

i) (A,B) is stabilizable and the matrix control law K is
determined such that (A+BK) is stable.

ii) Suppose that μ(t) is bounded and the discrete subsystem
is regressive and can be stable or unstable.

iii) Let τ(ti) = ti+1 − σ(ti) be the duration of each
continuous-time subsystem, such that ∀i ∈ N, we have∥∥∥e(A+BK)τ(ti)

[
I+

(
eAμ(ti)−I

)
(I +A−1BK)

]∥∥∥ <1.

(12)
Then the switched system (11) is exponentially stable.
Proof: For the proof see Appendix B �
Remark 1: Notice that, if A is not invertible, we can always

determine the discrete matrix via the convergence power series

E(Aμ(t)) =
∞∑

n=1

(Aμ(t))n−1

n!
, (13)

and the matrix of the discrete subsystem in (11) is equal to

E(Aμ(t))(A+BK).

Condition (12) will be: ∀i ∈ N,∥∥∥e(A+BK)τ(ti) [I + μ(ti)E(Aμ(ti))(A+BK)]
∥∥∥ < 1. (14)

C. Extension to Dynamic Output-feedback

In practical applications for power systems, the full state vec-
tor is not available. Consequently, it is desirable to adopt the dy-
namic output-feedback controller to directly use the measured

Fig. 4. Failure of communication in the output-controller.

output signals for damping the oscillations. This type of con-
troller can be defined as

ẋc(t) = Akxc(t) +Bky(t) (15)

u(t) = Ckxc(t) +Dky(t) (16)

where xc ∈ Rn is the controller states, Ak, Bk, Ck, Dk are an
appropriate matrices to be designed, u and y are the controller
and system outputs, respectively. This controller yields with (6)
and (7) the following system.

˙̂x(t) =

[
A 0

BkC Ak

]
x̂(t) +

[
B

0

]
u(t) (17)

u(t) =
[
DkC Ck

]
x̂(t) (18)

where x̂T = [xTxT
c ] is the augmented system state vector, and

the closed loop matrix is

Acl =

[
A+BDkC BCk

BkC Ak

]
.

Consider the case where a communication failure happens in
the control signal (as is shown in Fig. 4). The system can be
rewritten on the time scale T = ∪∞

i=0[σ(ti), ti+1] as follows

˙̂x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
A+BDkC BCk

BkC Ak

]
x̂(t), t ∈ ∪∞

i=0[σ(ti), ti+1)

[
A 0

BkC Ak

]
x̂(t) +

[
B

0

]
u(ti+1),

t ∈ ∪∞
i=0[ti+1, σ(ti+1)),

with u(ti+1) =
[
DkC Ck

]
x̂(ti+1) is maintained constant on

[ti+1, σ(ti+1)]. So we get

˙̂x(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
A+BDkC BCk

BkC Ak

]
x̂(t), t ∈ ∪∞

i=0[σ(ti), ti+1)[
A 0

BkC Ak

]
x̂(t) +

[
B
0

][
DkC Ck

]
x̂(ti+1),

t ∈ ∪∞
i=0[ti+1, σ(ti+1)).

(19)
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Fig. 5. Failure of communication in the output measurement.

Similarly to the above analysis, the system can be rewritten as
follows:

x̂Δ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A+BDkC BCk

BkC Ak

]
x̂(t), t ∈ ∪∞

i=0[σ(ti), ti+1)

⎛
⎜⎜⎝e

⎡

⎣
A 0

BkC Ak

⎤

⎦μ(t)

− I

⎞
⎟⎟⎠

μ(t)
×⎡

⎣I +
[

A 0

BkC Ak

]−1[
BDkC BCk

0 0

]⎤
⎦ x̂(t),

if t ∈ ∪∞
i=0{ti+1}

(20)
The stability criteria (21), shown at the bottom of this page,
can be formulated for the augmented system with output-
feedback controller and communication failures in the control
signal.

Similarly, for the case where a communication failure hap-
pens in the measurement signal (Fig. 5), the output feedback
controller (15) and (16) with (6) and (7) yields the following
system:

˙̂x(t) =

[
A BCk

0 Ak

]
x̂(t) +

[
BDk

Bk

]
y(t) (22)

y(t) =
[
C 0

]
x̂(t) (23)

such that y(ti+1) = [C 0 ] x̂(ti+1) is constant on [ti+1,
σ(ti+1)) when communication fails at ti+1. The switched

system on the time scale T = ∪∞
i=0[σ(ti), ti+1] will be

x̂Δ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A+BDkC BCk

BkC Ak

]
x̂(t),

t ∈ ∪∞
i=0[σ(ti), ti+1)⎛

⎜⎜⎝e

⎡

⎣
A BCk

0 Ak

⎤

⎦μ(t)

− I

⎞
⎟⎟⎠

μ(t)
×[

I +

[
A BCk

0 Ak

]−1 [
BDkC 0

BkC 0

]]
x̂(t),

t ∈ ∪∞
i=0{ti+1}

(24)

The stability criteria (25), shown at the bottom of this page, is
deduced for the augmented system with output-feedback con-
troller and communication failure in the measurement signal.

Remark 2: Note that, the matrix
[

A 0
BkC Ak

]
is invertible if

both A and Ak are invertible. If not, we can always use the
convergence power series as in (13).

IV. APPLICATION TO POWER SYSTEMS

In this section, stability conditions provided above, will be ap-
plied to the Single-Machine Infinite Bus (SMIB) and Kundur’s
two-area power systems. Both systems are modified to have un-
damped inter-area modes and the accuracy of the stability con-
ditions will be verified. In case of two-area system, the dynamic
output feedback controller has been designed based on a re-
duced model and the results has been tested for a large system.
In practice, use of the reduced model avoid feasibility problem
and realize practical lower-order controller. The reduced model
is based on the balanced model truncation method, which re-
tains the most important states variables for control purposes.
The appropriate order of the reduced model can be determined
by comparing the accuracy of frequency response of the full or-
der and the reduced order system which has a closer response to
the full-order system.

A. Case Study I: SMIB Power System

In this subsection, a SMIB power system model is consid-
ered. As shown in Fig. 6, this system consists of a synchronous

∥∥∥∥∥∥∥∥
e

⎡

⎣
A+BDkC BCk

BkC Ak

⎤

⎦τ(ti)

⎡
⎢⎢⎣I +

⎛
⎜⎜⎝e

⎡

⎣
A 0

BkC Ak

⎤

⎦μ(ti)

− I

⎞
⎟⎟⎠
(
I +

[
A 0

BkC Ak

]−1[
BDkC BCk

0 0

])⎤⎥⎥⎦
∥∥∥∥∥∥∥∥
< 1, ∀i ∈ N (21)

∥∥∥∥∥∥∥∥
e

⎡

⎣
A+BDkC BCk

BkC Ak

⎤

⎦τ(ti)

⎡
⎢⎢⎣I +

⎛
⎜⎜⎝e

⎡

⎣
A BCk

0 Ak

⎤

⎦μ(ti)

− I

⎞
⎟⎟⎠
(
I +

[
Ak 0

BCk A

]−1[
BDkC 0

BkC 0

])⎤⎥⎥⎦
∥∥∥∥∥∥∥∥
< 1, ∀i ∈ N (25)
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Fig. 6. A single-machine infinite-bus (SMIB) power system.

generator connected through two transmission lines to an infi-
nite bus that represents an approximation of a large system. A
flux-decay model of the synchronous generator equipped with
a fast excitation system can be represented by the following set
of dynamic equations

δ̇ = ωs(ωr − 1) (26)

ω̇r =
1

2H

[
TM−(E ′

qIq + (Xq −X ′
d)IdIq+Dωs(ωr − 1)

)]
(27)

Ė ′
q = − 1

T ′
d0

[
E ′

q + (Xd −X ′
d)Id − Efd

]
(28)

Ėfd = −Efd

TA
+

KA

TA

[
Vref − Vt + sat(Vs)

]
(29)

while satisfying the following algebraic equations

ReIq +XeId − Vq + V∞ cos (δ) = 0 (30)

ReId −XeIq − Vd + V∞ sin (δ) = 0 (31)

Vt =
√

V 2
d + V 2

q (32)

where Re and Xe = Xt +
1
2Xl are the total external resistance

and reactance respectively. The SMIB power system is con-
sidered to demonstrate the idea and verify the resulting im-
provement. The parameters of the machine, excitation system,
transformer and transmission lines are listed as follows

Xt = 0.1, Xl = 0.8, Re = 0, V∞ = 1.05∠0◦,
Xd = 2.5, Xq = 2.1, X ′

d = 0.39, Vt = 1∠15◦,
T ′
d0 = 9.6, H = 3.2, D = 0, ωs = 377,

TA = 0.02,KA = 100, V max
s = −V min

s = 0.05,

where V max
s = −V min

s = 0.05 are the saturation limit consid-
ered for the control signal. In case of generator supplementary
damping controller (SDCs), saturation limit should be consid-
ered in the supplementary control input signal and are usually
in the range of ±0.05 to ±0.1 per unit. These limits allow
an acceptable control rang in the excitation system to prevent
undesirable tripping of the equipments protection initiated by
over-excitation or under-excitation of generators. The above
nonlinear model can be linearized around the nominal oper-
ating point and expressed in the following fourth order state-
space representation, such that x = [Δδ Δωr ΔE ′

q ΔE ′
fd]

Fig. 7. System performance of the closed loop and open loop SMIB power
system with ideal network communication.

Fig. 8. Stability criteria for SMIB power system.

and ẋ(t) = Ax(t) +Bsat(Vs), with Vs = Kx(t).

A =

⎡
⎢⎢⎢⎢⎣

0 ωs 0 0

−K1

2H −Dωs

2H −K2

2H 0

− K4

T ′
d0

0 − 1
K3T ′

d0

1
T ′
d0

−KAK5

TA
0 −KAK6

TA
− 1

TA

⎤
⎥⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎣

0

0

0
KA

TA

⎤
⎥⎥⎥⎦
(33)

and K1 −K6 are the well-known linearization constants based
on the system parameters [29]. Eigenvalue analysis shows that
the open loop system has unstable complex eigenvalues of
+0.2423± 7.6064i with frequency of 1.21 Hz and damping of
−3.18%. Using LQR control design method, the following state-
feedback damping controller is designed in [30] to enhance the
damping performance by regulating the exciter of SMIB system.

K = [−0.22 7.75 − 0.28 − 0.0006]. (34)

The controller is designed such that, a domain of attraction (DA)
is estimated to guarantee a safety region and the state trajectories
must remain inside the (DA) to guarantee the stability. In prac-
tice, these controllers can be implemented based on dynamic
state estimation using PMUs measurement. For ideal network
communications, the performance of the closed-loop system is
shown in Fig. 7. Consider now the case where communication
fails, for some time variable durationμ and assume that the dura-
tion of the ideal communication is τ = 0.2 s. Using the stability
criteria (21), two intervals can be found analytically (without
any simulations) to determine the time of interruptions to be re-
spected in order to maintain the stability of the system, as shown
in Fig. 8. In Table I, these intervals are compared with the real
values found using trial and error simulations. Compared to the
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TABLE I
COMMUNICATION FAILURE DURATION FOR SMIB SYSTEM

Fig. 9. Speed deviation of the closed loop SMIB power system in case of ideal
and non-ideal (τ = 0.2 and μ = 0.23) communication network which is stable.

Fig. 10. Speed deviation of the closed loop SMIB power system in case of
ideal and non-ideal (τ = 0.2 and μ = 0.35) communication which is instable.

developed stability criteria, excessive effort is needed to identify
the unstable regions.

From Table I it can be seen that the stability condition is
conservative but reasonably characterizes the limits. The sys-
tem response for the case of ideal communication time duration
τ = 0.2 s and communication failure μ = 0.23 s is also shown
in Fig. 9, where the conditions of stability is respected and the
system is stable. It is shown in Fig. 10, that if the controller is
blocked for duration μ = 0.35 s, then the system will be unsta-
ble. It can be seen that the performance of damping controller
with non-ideal communication network has been degraded sig-
nificantly. In practice, in case these intervals are violated (e.g.
having a longer communication failure), they can be used as
thresholds to activate remedial action schemes [21].

B. Case Study II: Kundur’s Two-Area System

In this subsection, the developed stability condition is applied
to a modified Kundur two-area system [31], shown in Fig. 11.

Fig. 11. A two-area Kundur power system.

TABLE II
CRITICAL MODES OF TWO-AREA SYSTEM

Area 1 is transferring 550 MW of active power to area 2. Genera-
tors are represented by a fourth-order model and equipped with a
high-gain excitation system. Generator G1 and G3 are equipped
with IEEE standard speed-based PSS to damp the local modes.
More details of the parameters can be found in [31].

The modal analysis summarized in Table II, show that the
system without a controller has a negatively damped inter-area
mode at 0.666 Hz with damping ratio of −1.68% and two
damped local modes. The generator supplementary excitation
control and speed deviation are chosen as candidates for the ac-
tuator and measurement signals of WADC system, respectively.
G1 is chosen as the nominal actuator and measurement signals of
WADC system, respectively. G1 is chosen as the nominal actua-
tor for damping controller. Based on the controllability measure,
speed deviation ofG3 is identified as the best candidate measure-
ment signals for the controller, as it has the highest geometric
observability over the first critical mode [32].

Hankel norm approximation [33] can be used to obtain the
reduced-order model where the order of the model reduction can
be determined by examining the Hankel singular values. The lin-
ear model is reduced to a second-order model and the following
output feedback controller, shown as follows, is designed using
multi-objective optimization to meet or exceed 11% damping
over all inter-area and local mode, and optimize the H2/H∞
performance to limit the control efforts and avoid high gains in
the WADC, since, large gain can lead the system to saturation,
more details can be found in [32]. For the ideal communication
network, the performance of the closed loop system is shown in
Fig. 12. Assuming the maximum time duration of perfect com-
munication as τ = 0.2 s and using stability criteria (25), two
intervals can be found analytically (without simulations) for the
time of interruption in the control signal as shown in Fig. 13.
In Table III, these intervals are compared with the real values
using try and error simulations. It can be seen that the stability
condition is again conservative but reasonably characterizes the
limits. Compared to the analytical stability condition (25), ex-
cessive efforts are needed to explore huge numbers thresholds
through simulation. The system response for the cases of perfect
communication duration τ = 0.2 s and communication failure
μ = 0.16 s is shown in Fig. 14, where the condition of stability
is respected. For μ = 0.32 s is shown in Fig. 15. It is shown in
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Fig. 12. Speed deviation of the closed loop and open loop two-area Kundur
power system in case of ideal communication network.

Fig. 13. Stability criteria for two-area Kundur power system.

TABLE III
COMMUNICATION FAILURE DURATION FOR KUNDUR’S TWO-AREA SYSTEM

Fig. 14. Speed deviation of the closed loop two-area Kundur power system in
case of ideal and non ideal (τ = 0.2 s and μ = 0.16 s) communication network
which is stable.

Fig. 16, that if the controller is blocked for duration μ = 0.35 s,
the system will become unstable. It can be seen that the perfor-
mance of the damping controller with non-ideal communication
network has been degraded significantly. In Table III, these in-
tervals are compared with the real values using try and error
simulations. It can be seen that the stability condition is again
conservative but reasonably characterizes the limits.

Fig. 15. Speed deviation of the closed loop two-area Kundur power system in
case of ideal and non ideal (τ = 0.2 s and μ = 0.32 s) communication network
which is stable.

Fig. 16. Speed deviation of the closed loop two-area Kundur power system in
case of ideal and non ideal (τ = 0.2 s and μ = 0.35) communication which is
unstable.

V. CONCLUSION

In this paper, the problem for power systems with intermittent
information transmissions is analyzed using time scale theory.
This problem is proposed as a particular problem of switched
linear system which consists of a set of linear continuous-time
and linear discrete-time subsystem on a specific time scale. Us-
ing the derived stability criteria, bounds of the communication
loss duration, which guarantees the stability of the system, has
been computed in case of state-feedback and output-feedback
controllers. Numerical results show the effectiveness of the pro-
posed scheme. It is also found that the results based on the linear
model are reasonably accurate for the nonlinear system. Further
research is needed to model randomness of intermittent trans-
mission and random packet losses.

APPENDIX A

Proof: Consider the switched system (11). Let Ac = A+
BK and Ad = [

(
eAμ−I

μ

)
(I+A−1BK)]. Using the generalized

exponential function in time scale theory, the solution of
the switched system (11), for σ(tk) ≤ t ≤ tk+1, is given by
(see [25])

x(t) = eAc(t−σ(tk))(I + μ(tk)Ad)e
Ac(tk−σ(tk−1))

× · · · (I + μ(t1)Ad)e
Act1 x0. (35)
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So, for t = tk+1, we have

x(tk+1) =
k∏

i=0

eAc(tk+1−i−σ(tk−i))(I + μ(tk−i)Ad) x0

=

k∏
i=0

e(A+BK)(tk+1−i−σ(tk−i))

×
[
I + μ(tk−i)

(
eAμ(tk−i)−I

μ(tk−i)

)
(I+A−1BK)

]
x0

=

k∏
i=0

e(A+BK)(tk+1−i−σ(tk−i))

×
[
I +

(
eAμ(tk−i) − I

)
(I +A−1BK)

]
x0. (36)

Let 0 < a < 1 such that, ∀0 ≤ i ≤ k and τi = ti − σ(ti−1),∥∥∥e(A+BK)τi
[
I +

(
eAμ(ti) − I

)
(I +A−1BK)

]∥∥∥ ≤ a.

(37)
So, the upper bound of x(tk+1) is given by

‖x(tk+1)‖

≤
k∏

i=0

∥∥∥e(A+BK)τi
[
I +

(
eAμ(ti) − I

)
(I +A−1BK)

]∥∥∥ ‖x0‖

≤ ak+1 ‖x0‖ = e(k+1) log(a) ‖x0‖. (38)

Since log(a) < 0, so the solution x(t) of (11) converges expo-
nentially to zero when t → ∞ (i.e., k → ∞). �
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