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Abstract: Power system operation will encounter numerous voltage variabilities as the proliferation of renewable energy
continues. Real-time monitoring and communication technologies can potentially improve voltage stability by enabling the rapid
detection of voltage deviations and the implementation of corrective actions. These corrective actions will only be effective in
restoring stability if they are chosen in a timely and scalable manner. This study considers the problem of power systems’ load
voltage control in order to simultaneously address both magnitude and time voltage specifications. In order to comply with grid
codes and avoid unnecessary relay protection actions, a model predictive control-based control strategy employing temporal
logic specifications (TLSs) is proposed. The TLSs strategy is introduced as a formalism to control the voltage variation at a
critical load bus against operational bounds over time. The control objective is to schedule optimal control input signals from the
available supportive energy storage systems, which provide reactive power injections, leading to satisfying the specified finite-
time restoration described by the TLSs with minimal control efforts. The simulation results display that the TLSs strategy for
power systems’ voltage control synthesis is extremely significant.

1 Introduction
Voltage stability refers to the ability of a power system to maintain
acceptable voltage under normal conditions and after disturbances.
Voltage instability occurs when a power system is unable to meet
the reactive power demand and is usually corrected by injecting
reactive power at some critical buses using energy storage devices
[1]. Since the coordinating actions in power systems taken over
large networks are complex, the corrective actions are traditionally
performed as local controls to limit complexity [1]. With the
incorporation of renewable energy in the ancillary services, energy
storage systems (ESSs), such as flywheels, capacitors, and
batteries, serve as buffers for the power system to restore critical
bus voltages to the allowable ranges [2].

In recent years, power systems have increasingly been utilising
diversified power resources to provide more reliable and efficient
ancillary services [3, 4]. Note that ESSs perform better than
traditional generators and operating reserves with their quicker
responsive capabilities [5]. The question for load voltage control is
how to keep the system voltage within a permissible level through
the local control of each bus [6]; this is usually represented as a set
of range (magnitude) specifications and constraints. Many works
have been devoted to such specifications of power systems control
design with only range constraints [7, 8]. However, realistic power
system operations are based on range-valued mappings and on
temporal properties. A typical example is relay settings, since an
underfrequency relay will be triggered if the frequency stays within
the triggering zone for a few cycles. Moreover, sophisticated grid
codes that include voltage and frequency temporal properties have
been proposed for distributed energy resources (DERs) [8]
according to the many recent standards, such as the IEEE 1547
standard. A natural outcome of these characteristics is the
development of a tool that can specify both time and range
(magnitude) requirements in the control design. Furthermore,
different DERs have different response times, and thus, their
voltage supports have different time restoration properties. These
realistic operational requirements have motivated us to develop

grid support controllers based on temporal logic specifications
(TLSs) that can be integrated into DERs to satisfy more
sophisticated time and range specifications. TLSs allow addressing
both range and time specifications simultaneously.

Secondary voltage control of critical buses is important to
regulate equipment operation at nominal values, especially under
intermittent renewable generations and constantly changing load
demands [6]. Note that, in a well-maintained power system, the
voltage magnitude typically varies within 5% of the nominal value.
Many works have been devoted to this area [4, 6–14], where most
specifications of system control design are only focused on range
constraints, in which the voltage level must be kept within
specified limits. In order to avoid unnecessary relay actions and
comply with grid codes and different response times of DERs,
constraints of dwell times on specified ranges need consideration.
Notice that failure to consider such critical time constraints may
lead to cascading outages [4]. Thus, finite-time restoration and
dwell time constraints are pressing and require a novel control
paradigm and algorithm. Inspired by that, the TLSs strategy is
introduced in this paper as a formalism to control voltage
variations at a critical load bus against operational bounds over
time.

In this paper, we investigate the control synthesis from TLSs,
based on a model predictive control (MPC) framework, to yield an
optimal control policy. The main advantage of MPC is that it
optimises the current operation while taking into account the
predicted behaviour of the state variables over a future time
horizon, and the optimal controller is designed based on the system
model and the predicted behaviour. The controller uses the
knowledge of the future behaviour and chooses the best actuation
that will meet the predefined optimisation. Advances in MPC
optimisation algorithms have enabled this control strategy for new
classes of systems such as very large-scale systems and systems
with fast dynamics. Another advantage of MPC is its ability to
approximate and solve most optimal control problems numerically
with much lower computational effort than the classical approaches
like dynamic programming. MPC can handle much bigger
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problems and also has a unique ability to handle system limitations
simply by adding them as constraints in the optimisation
formulation. In MPC, a cost function is minimised over a short-
time horizon using the predicted information, and only the first step
control strategy is implemented. Such a process repeats at every
time step yielding new control strategies. This ability and the
greater coordination in multivariate systems frequently lead to
greater profits and improved performance.

The objective in this work is that during a disturbance, the
voltage is required to be restored back above a certain value within
a required time utilising the support of the ESSs. The controller
locally measures the voltage, estimates the size of disturbance, and
computes the reactive power input for the ESS to be injected to the
bus, such that the voltage variation satisfies the TLSs. The optimal
control input is computed iteratively based on a finite horizon
optimisation over the system in order to minimise the reactive
power input from the ESS (control effort) using the MPC
technique. At any given time t, the current system state is observed,
and an optimal control strategy is computed for some finite time
horizon in the future, [t, t + H]. An online calculation is performed
to explore system trajectories originating from the current state,
and an optimal control is computed up to time t + H. The MPC is
designed by taking into consideration the limitations of the system,
which are the ESS capacity, the maximum charge power available,
and the permissible voltage deviation. Note that the ESS, which
can meet voltage restoration using MPC design, has a precise time-
related performance measure, which can create economic benefit
and affect the lifetime of the ESS.

When a fault or disturbance occurs in the power grid, the
control objective in this work is to schedule optimal control input
signals to the supportive ESSs, which provide reactive power
injections, such that the voltages at the critical buses are restored to
permissible levels within a specified time duration (satisfying the
specified finite-time restoration described by the TLS) with
minimal control efforts. To illustrate the effectiveness of this
approach, the results are compared to that of control without TLSs,
where it is observed that the voltage may take more time to restore
to the desired level (violate the finite-time voltage restoration).

The pioneering works in [15, 16] introduce the TLSs for
controller synthesis of ESSs, where a finite-time restoration is
satisfied, by employing the control auto-bisimulation function and
feedback linearisation control methods. Xu et al. [16] derive a
provable probabilistic guarantee in the stochastic environment of a
wind power generation. In [17, 18], a numerical optimal control
(NOC)-based control synthesis approach is proposed to schedule a
controller for frequency and voltage support, respectively, to
satisfy the TLSs. In this paper, a mixed-integer programming
(MIP) approach based on [17] is adopted. The MIP-based methods
attain sub-optimal solutions at the cost of higher computational
demand. From the problem-solving perspective, we introduce this
framework to a new class of problems, namely, the voltage
restoration in microgrids that is highly time-sensitive and includes
control logics. The temporal logic constraints are imposed on the
algebraic variables. Most linearisation and model reduction
techniques will eliminate the algebraic variables, and thus are not
applicable. On the other hand, the non-linear MIP is
computationally expensive, therefore, linearised output models are
derived to address this issue.

Temporal logic can be introduced to provide time-related
specifications, such as after a fault, the voltage at a critical bus
should be restored to a specified magnitude within a specified time
duration. The TLSs approach was originally developed in order to
specify and monitor the expected behaviour of physical systems,
including temporal constraints between events. It allows richer
descriptions of specifications including set, logic, and time-related
properties [19–21]. There is a lot of literature on the control of
ESSs in power systems for voltage support, while incorporating
temporal logic constraints into the control synthesis problem is
novel.

2 Preliminaries on TLSs

The TLS approach is a formal math's language for describing time
propositions. TLS provides a particularly useful set of operators to
construct time properties without specifying sets. It uses formal
logical manipulations to show that a property is satisfied for a
given system model. The TLS language can be expressed with two
kinds of operators: logical connectives (conjunction ( ∧ ),
disjunction ( ∨ ), negation (¬), application ( → ), and equivalence
(↔)), and temporal modal operators (eventually (♢), always ◻ ,
and until U ). An atomic proposition ϕ describes a feature of the
system variables and maps on the Boolean domain
B = {True, False}. The validity of a formula ϕ with respect to
signal x is defined as x ⊨ ϕ. Informally, ♢ϕ := true Uϕ (i.e. ϕ will
become true at some point in the future), ◻ϕ := ¬♢¬ϕ (i.e. ϕ is
always true (never eventually ¬ϕ )). Additionally, we define
x ⊨ ♢[t1, t2]ϕ if the property defined by ϕ holds at some time step
between t1 and t2, and we define x ⊨ ◻[t1, t2]ϕ if ϕ holds at every
time step between t1 and t2. An example of a TLS is
ϕ = ◻¬(x1 > 10) ∧ ◻[1, 3](x2 > 5), which reads that ‘x1 is always less
than 10, and x2 is always greater than 5 at each time step between
the time interval from 1 to 3 s’

2.1 System dynamics

We consider the continuous-time state-space system of the form

ẋ = f (x, u, w)
y = g(x, u, w) (1)

where x ∈ X ⊆ ℝn is the system state vector, u ∈ U ⊆ ℝm is the
control input, w ∈ W ⊆ ℝl is the perturbation, and y ∈ Y ⊆ ℝr is
the system output. Given a sampling time Δt = tk + 1 − tk, where
k ∈ I = {0, 1, …} is the time index set, assume that the system (1)
admits a discrete-time representation of the form

x(tk + 1) = f (x(tk), u(tk), w(tk))
y(tk) = g(x(tk), u(tk), w(tk)) . (2)

Given an integer N > 0, x0 ∈ X, and the sequences
xN = x0x1, …, xN − 1 ∈ XN, uN = u0u1, …, uN − 1 ∈ UN and
wN = w0w1, …, wN − 1 ∈ WN, where xk = x(tk), uk = u(tk) and
wk = w(tk), for k ∈ I. The resulting horizon-N run of (2) is a
sequence

φ(x0, uN, wN) = (x0u0w0)(x1u1w1), …, (xNuNwN)

satisfying the equations in (2), which is unique (see [22]).

2.2 Control synthesis

In this section, we formally state the TLSs control synthesis and its
MPC formulation. Given a TLS proposition ϕ, and a cost function
of the form J(x0, u, w, ϕ) ∈ ℝ. We are interested in this paper by the
closed-loop synthesis which can be stated as follows: Given a
horizon 0 < L < N, for all 0 ≤ k ≤ N − L, compute the first
element of the sequence uk

L = uk
Luk + 1

L , …, uk + L − 1
L  satisfying

uk
L = arg min

uk
L ∈ UL

J x0, uk
L, wN ,

s . t . φ(x0, uk
L, wN) ⊨ ϕ .

(3)

The closed-loop formulation corresponds to an MPC scheme. Note
that a TLS ϕ is bounded time, and the bound is the maximum over
the summation of all nested upper bounds on the temporal
operators. For example, if φ = ♢[0, 15]◻[0, 7]ϕ, then, we should require
N ≥ 15 + 7 = 22 in order to determine whether the formula ϕ is
feasible. This provides a conservative maximum trajectory
reference length required to decide the feasibility of ϕ.
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3 Voltage control with TLSs
3.1 Problem statement and system modelling

We consider the distribution system model shown in Fig. 1. Notice
that diesel generators are combustion engine driven synchronous
generators (SGs). So, a scaled-down SG is employed to describe
the behaviour. ESSs are widely deployed in distribution systems
and microgrids to compensate for fluctuations of renewable
sources. Therefore, it is reasonable and sufficient to consider only
the dispatchability of ESSs. Isolated microgrids are generally
formed by disconnecting the distribution systems from the main
grid. Such distribution systems (or isolated microgrids) are radial
with backup diesel generators at the upstream grid and ESSs at the
downstream grid. Based on this feature, any large-scale distribution
system can be represented by the lumped grid shown in Fig. 1.
Although the model is simplified, it does represent and describe the
key behaviours of a typical diesel generator fed isolated microgrid.
Note that in industrial practices, diesel generators are the major
sources to power isolated microgrids as shown in [23, 24]. The
system considered here represents a distribution bus fed through a
transmission system equivalent. To increase transfer limits, the
distribution system has been compensated by an ESS at the critical
load bus. The perturbation is considered as a net load change at the
critical bus (bus 2). Such a disturbance may represent a sudden
change in renewable generation at the load side due to either the
intermittency of renewable generation at the load side (due to the
stochastic nature of renewable generation) or a sudden change in
demand (due to big loads switch on/off at the same time).

The objective is to optimally control the reactive power input
injected from the ESS, such that when a disturbance occurs, the
voltage at the critical bus is restored to a permissible level within a
specified time duration. The TLSs strategy is introduced to adopt
this additional time constraint in order to avoid any unnecessary
protective relay actions. To illustrate the effectiveness of this
approach, the MPC is also designed for the system without TLSs as
a base case, and the results are compared.

A one-axis flux-decay model dynamic circuit for the SG, as
shown in Fig. 2, is considered. The overall system dynamic and
algebraic equations, in addition to the load and transmission line
characteristics, are presented next.

3.1.1 Generator model: The dynamic circuit for the flux-decay
model of the SG in Fig. 2 is considered. The full state differential-
algebraic equations are given by

δ̇ = ω − ωs

ω̇ = ωs
2H [Pm − (E′qIq + (Xq − X′d)IdIq + D(ω − ωs))]

Ė′q = −1
Td0

[E′q + (Xd − X′d)Id − Efd]

Ėfd = −1
TA

[Efd − K(Vref − V1)]

Ṗm = −1
Tτ

[Pm − Pv]

Ṗv = −1
Tg

Pv − Pref − 1
R

ω
ωs

− 1

(4)

ReId − (Xq + Xe)Iq + V2sin(δ − θ2) = 0,
ReIq + (X′d + Xe)Id − E′q + V2cos(δ − θ2) = 0, (5)

Vd = V1sin(δ − θ1) = XqIq,
Vq = V1cos(δ − θ1) = E′q − X′dId, (6)

where δ, ω, ωs, Eq′, Efd, Pm, Pv are the generator angle, frequency,
synchronous frequency, q-axis transient voltage, field voltage,
mechanical power, and steam valve position of the prime mover,
respectively. θ1 and θ2 are the voltage phase angles at buses 1 and 2,
respectively. Id, Iq and Vd, Vq are the d-axis, q-axis currents and d-
axis and q-axis voltages, respectively. Xd, Xq, Xd′ are, respectively,

the d-axis reactance, q-axis reactance, and d-axis transient
reactance. Re and Xe are the external resistance and reactance,
respectively.

The terminal voltage and the current are given by
V1e jθ1 = (Vd + jVq)e j δ − π

2  and I = (Id + jIq)e j δ − π
2 , respectively.

The linearisation of the algebraic equations in (5) around the
steady-state operating point is given by

ΔId = α1ΔV2 + α2[Δδ − Δθ2] + α5ΔE′q

ΔIq = α3ΔV2 + α4[Δδ − Δθ2] + α6ΔE′q
(7)

Similarly, by linearising the equations in (6), we get

ΔId = α7ΔV1 + α8[Δδ − Δθ1] + α9ΔE′q

ΔIq = α10ΔV1 + α11[Δδ − Δθ1]
(8)

From (7) and (8), we derive the expressions of ΔV1 and Δθ1 as
follows:

ΔV1 = β1ΔV2 + β2[Δδ − Δθ2] + β5ΔE′q,
Δθ1 = β3ΔV2 + (β4 + 1)Δδ − β4Δθ2 + β6ΔE′q . (9)

The constants α1 − α11 and β1 − β6 are determined in the Appendix.
Suppose that the frequency is normalised as ωr = ω/ωs .

Linearising the dynamic equations in (4) by considering the
expressions of ΔId and ΔIq in (7), and ΔV1 in (9), we get the
following linearised system:

Δδ̇ = ωsΔωr

Δω̇r = 1
2H [ΔPm − (K1Δδ + K2ΔE′q + K3ΔV2) − DΔωr]

ΔĖ′q = −1
Td0

[K4Δδ + K5ΔE′q + K6ΔV2 − ΔEfd]

ΔĖfd = −1
TA

[ΔEfd − K[ΔVref

−(β1ΔV2 + β2Δδ + β5ΔE′q)]]

ΔṖm = −1
Tτ

[ΔPm − ΔPv]

ΔṖv = −1
Tg

[ΔPv − ΔPref + 1
RΔωr],

(10)

where K1 − K9 are also derived in the Appendix.

3.1.2 Load model: Bus 2 is considered as a load bus, where PL
and QL are the active and reactive load powers, respectively. A
sudden net load change in the active power at bus 2 is considered
as a disturbance and denoted by ΔPg. The objective is to control
the voltage deviation ΔV2 by controlling the reactive power output

Fig. 1  Distribution system model
 

Fig. 2  Synchronous machine one-axis dynamic circuit
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of the ESS injected to bus 2, denoted by ΔQin. Note that in this
study, only reactive power support is considered.

3.1.3 Power flow network: Consider the line impedance
Z = Re + jXe. The power flow across the transmission line from
bus 2 to bus 1 is denoted by S21 = P21 + jQ21 and follows from
Kirchhoff's laws as

S21 = V2e jθ2I∗ = V2e jθ2 V2e jθ2 − V1e jθ1

Z

∗

, (11)

which leads to the following non-linear algebraic equations:

P21 = G21V2
2 − V1V2(G21cos(θ2 − θ1) − B21sin(θ2 − θ1))

Q12 = B21V2
2 − V1V2(G21sin(θ2 − θ1) + B21cos(θ2 − θ1))

(12)

where

G21 + jB21 = 1
Z∗ = Re

Re
2 + Xe

2 + j
Xe

Re
2 + Xe

2 .

The power balance at bus 2 is given by P21 + PL + ΔPg = 0, and
Q21 + QL − ΔQin = 0. The linearised power flow equations are
given by the following equation:

ΔP21 = c1ΔV2 + c2ΔV1 + c3[Δθ2 − Δθ1] = − ΔPg

ΔQ21 = c4ΔV2 + c5ΔV1 + c6[Δθ2 − Δθ1] = ΔQin
(13)

Substituting ΔV1 and Δθ1 by their values from (9) into (13), we get

ΔV2 = γ1Δδ + γ2ΔEq′ + γ3ΔQin + γ4ΔPg . (14)

The constants c1 − c6 and γ1 − γ4 are determined in the Appendix.
Substituting ΔV2 into (10) yields the final linearised system

Δδ̇ = ωsΔωr

Δω̇r = 1
2H [ΔPm − (K′1Δδ + K′2ΔE′q + K′3ΔQin + K′4ΔPg)

−DΔωr]

ΔĖq = −1
Td0

[K′5Δδ + K′6ΔE′q + K′7ΔQin + K′8ΔPg − ΔEfd]

ΔĖfd = −1
TA

[ΔEfd − K(ΔVref − (K′9Δδ + K′10ΔE′q

+K′11ΔQin + K′12ΔPg))]

ΔṖm = −1
Tτ

[ΔPm − ΔPv]

ΔṖv = −1
Tg

ΔPv − ΔPref + 1
RΔωr

(15)

ΔV2 = γ1Δδ + γ2ΔEq′ + γ3ΔQin + γ4ΔPg . (16)

Define the state vector as

X = [Δδ Δωr ΔEq ΔEfd ΔPm ΔPv]T,

and consider that ΔVref = ΔPref = 0. The simplified model in state-
space form can be expressed as follows:

Ẋ = AX + BuΔQin + BwΔPg

ΔV2 = CX + DuΔQin + DwΔPg
(17)

where

A =

0 ωs 0 0 0 0
−K′1

2H
−D
2H

−K′2

2H 0 1
2H 0

−K′5

Td0
0 −K′6

Td0

1
Td0

0 0

−KK′9

TA
0 −KK′10

TA

−1
TA

0 0

0 0 0 0 −1
Tτ

1
Tτ

0 −1
RTg

0 0 0 −1
Tg

(18)

Bu = 0 −K′3

2H
−K′7

Td0

−KK′11

TA
0 0

T
(19)

Bw = 0 −K′4

2H
−K′8

Td0

−KK′12

TA
0 0

T
(20)

C = [γ1 0 γ2 0 0 0], Du = γ3, Dw = γ4 . (21)

See the Appendix for the expressions of constants K1′ − K12′ .

3.2 Control diagram

In order to achieve the control policy with TLSs, the size of the
disturbance will be estimated using the voltage measurement at bus
2. The estimated disturbance is sent to the online controller, where
the derived model in (17) is embedded, as shown in the control
diagram in Fig. 3. With both information on the disturbance and
model, the controller in a receding horizon fashion computes a
sequence of inputs at each time step, and only the first input value
is used for the next time step, and the process iterates. The
approach is based on encoding the system dynamics, the TLS
constraints, and the cost function together in mixed-integer linear
programming (MILP) [25], which is solved using an MPC
framework by MILP solvers, yielding an optimal control policy.
The encoding problem as a MILP formulation consists of system
constraints, loop constraints, and TLS constraints.

3.3 MPC formulation with TLS

Let the analytical model in (17) be expressed compactly as follows:

X(tk + 1) = AdX(tk) + Bd1u(tk) + Bd2d
^(tk),

ΔV2(tk + 1) = CdX(tk) + Dd1u(tk) + Dd2d
^(tk),

(22)

for k ∈ ℕ, where the control input u = ΔQin and the perturbation
d
^ = ΔPg. The objective is to design an optimal control u such that
the following temporal constrain is satisfied:

ϕ := ◻[¬( ΔV2(tk) ≤ ΔV) ⇒ ♢[0, ta]◻( ΔV2(tk) ≤ ΔV)] . (23)

Fig. 3  Voltage control diagram with TLS satisfaction
 

4 IET Energy Syst. Integr.
This is an open access article published by the IET and Tianjin University under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



The above TLS states that when the deviation of the voltage V2
following the perturbation is larger than ΔV , it should become less
than ΔV  within ta seconds, for always. Since the ESS has limited
capacity, the control input should be bounded and not exceeds a
certain limit, i.e. u(tk) ≤ Ulim.

Similar to the control synthesis in (3), let the scheduling horizon
0 < L < N and denote T = [0, …, H], such that H = N − L is a
finite horizon provided as a user input. The objective is to
minimise the total control effort, which can be represented as the
summation of all decision variables in the cost function given by

J(x0, uk
L, wk

N) = ∑
k = 1

H
u(tk)L , (24)

where the voltage is required to satisfy the TLS constraints
described by ϕ in (23), ∀k ∈ T.

The scheduling problem can be summarised as follows:

u = arg min
u(tk)L

J(x0, uk
L, wk

N),

s . t . ∀k ∈ T
X(tk + 1) = AdX(tk) + Bd1u(tk) + Bd2d

^(tk)

ΔV2(tk + 1) = CdX(tk) + Dd1u(tk) + Dd2d
^(tk)

u(k) ≤ Ulim, ∀k ∈ T
ΔV2(tk) ⊨ ϕ, ∀k ∈ ℋ

ϕ = ◻[¬( ΔV2(k) ≤ ΔV) ⇒ ♢[0, ta]◻( ΔV2(k) ≤ ΔV)]

(25)

The control u is the horizon-H control input computed at each time
step tk, ∀k ∈ T, such that u is computed as the first element of the
sequence uk

L = u(tk)Lu(tk + 1)L, …, u(tk + L − 1)L.
In this study, the TLSs are encoded into a MILP using the

toolbox BluSTL [26], and the overall problem is converted into a
MILP and solved by the relevant solvers in Gurobi [27].

3.4 Case studies

3.4.1 System parameters: Consider the linearised system (17).
Note that all the following system parameters are in (p.u.) with
values:

ωs = 377rad/s, H = 6s, D = 0, TA = 0.05 s, Tg = 0.2 s,
Tτ = 0.5 s, R = 0.05, Td0 = 5 s, K = 50, Xd = 1.2,

X′d = 0.3, Xq = 1.1.

Equilibrium points of the algebraic variables

V1 = 1.05 V, V2 = 0.983 V, Id = 0.6319 A, Iq = 0.4489 A,
θ1 = 0°, θ2 = − 6.596° .

Operating points of the state variables are

δ = 28.0522°, Eq′ = 1.1162, Efd = 1.5846, Pv = 1.

The line impedance is given by

Z = 0.02 + j0.1728.

The load active and reactive power, in steady-state, are given by
PL = 0.716 and QL = 0.26, respectively. The generator supplies
electrical power SG = 0.728 + j0.3639. The perturbation is
considered as a step-change in load demand and is given by
ΔPg = 0.5.

3.4.2 MPC without TLSs: Before introducing the TLSs
constraint, the MPC without TLSs is designed by considering that
the objective is to minimise the control effort and the voltage
deviation. Consider the state-space model (17) with the above
parameters. The total control effort and the voltage deviation can
be expressed by

JU = ∑
k = 1

T
[ u(tk)L + ΔV2(tk) ] . (26)

Similar to (25), scheduling is summarised as follows:

min JU

s . t . ∀k ∈ T
X(tk + 1) = AdX(tk) + Bd1u(tk) + Bd2d

^(tk)
ΔV2(tk + 1) = CdX(tk) + Dd1u(tk) + Dd2d

^(tk)
u(k) ≤ Ulim, ∀k ∈ T .

(27)

The simulation results in Fig. 4 represent the voltage deviation with
control (without TLS) and without control, while Fig. 5 shows the
control input. We remark that the voltage restoration takes more
than 5s, and the problem is feasible for a control limit bound
Ulim = 0.2.

3.4.3 MPC with TLSs: Consider now the state-space model (17)
with the above parameters. Let the scheduling problem be

Fig. 4  Voltage deviation response without TLS
 

Fig. 5  Input signal for voltage control without TLS
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arg min
u(tk)L

J(x0, u(tk)L, w) = arg min
u(tk)L

∑
k = 1

H
u(tk)L ,

s . t . ∀k ∈ T
X(tk + 1) = AdX(tk) + Bd1u(tk) + Bd2d

^(tk)
ΔV2(tk + 1) = CdX(tk) + Dd1u(tk) + Dd2d

^(tk)
u(k) ≤ Ulim, ∀k ∈ T
ΔV2(tk) ⊨ ϕ, ∀k ∈ T

(28)

with Ulim = 0.4. We propose to constrain the voltage deviation to
satisfy the following TLS for a finite-time voltage restoration:

ϕ = ◻(¬( ΔV2 ≤ 0.01)) ⇒ (♢[0, 2]◻( ΔV2 ≤ 0.01)), (29)

which reads that ‘when ΔV2  is larger than 0.01, it should become
less than 0.01 in less than 2s for always.’ The simulation results for
this TLS scenario are illustrated in Figs. 6 and 7. Note that the
prediction horizon is given by H = 4s. It can be observed in Fig. 6
that the voltage response satisfies the required TLS in (29).

Now, we want to design the input control for voltage restoration
using the ‘eventually’ TLS scenario. Figs. 8 and 9 show the voltage
deviation and the control input, respectively, according to the
following TLS:

ϕ = ◻(¬( ΔV2 ≤ 0.01)) ⇒ (♢[0, 2]( ΔV2 ≤ 0.01)) . (30)

The difference here from the TLS in (29) is that there is no
specification of always (i.e. ◻), that is, ‘whenever ΔV2  is larger
than 0.01, it should become less than 0.01 in less than 2s
eventually.’ Results show that the controls with TLS in Figs. 6 and
8 were able to satisfy the required temporal specifications, while
the control without TLS in Fig. 4 was unable to satisfy the
specified temporal constraint. In summary, the proposed controller
with TLSs guarantees to satisfy the temporal voltage specifications
(finite-time restorations). While the control without TLSs may or
may not satisfy the temporal voltage specifications; it is based on
trial and error procedure.

3.5 Generalisation to multi-machine systems

In this section, we generalise the proposed control approach to a
multi-machine system by considering a microgrid consisting of an
M-generator and N-load bus network. The dynamics of the overall
system can be described by the following equations:

A. The linearised dynamic equations of each generator

Δδ̇i = ωsiΔωri

Δω̇r = 1
2H [ΔPmi − IqiΔE′qi − (E′qi + (Xqi − X′di)Idi)ΔIqi

−(Xqi − X′di)IqiΔIdi − DiΔωsi]

ΔĖ′qi = −1
Td0

[ΔE′qi + (Xdi − X′di)ΔIdi − ΔEfdi]

ΔĖfd = −1
TA

[ΔEfdi − Ki(ΔVrefi − ΔVi)]

ΔṖm = −1
Tτ

[ΔPmi − Pvi]

ΔṖv = −1
Tg

ΔPvi − ΔPrefi − 1
RΔωri

(31)

Define the state of each generator as

Xi = [δi ωri Eqi Efdi Pmi Pvi]T, i = 1, …, M (32)

Then the dynamical system (31) can be written as

ΔẊi = A1iΔXi + B1iIgi + B2iΔVgi + E1iΔTi1, (33)

where

ΔIgi =
ΔIdi

ΔIqi
, ΔVgi =

ΔVi

Δθi
, ΔT1i =

ΔPrefi

ΔVrefi
. (34)

B. Stator equations of each generator

XqiIqi = Visin(δi − θi),
Eqi − X′di = Vicos(δi − θi) . (35)

Fig. 6  Voltage deviation response for the “always” TLS scenario in (29)
 

Fig. 7  Input signal for the “always” TLS scenario in (29)
 

Fig. 8  Voltage deviation response for the “eventually” TLS scenario in
(30)
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By linearising the equations in (35), we get

ΔIgi = D1iΔVgi + D2iΔXi, (36)

C. Network equations: The power flow equations for each
generator bus are given by

IdiVisin(δi − θi) + IqiVicos(δi − θi) + PLi

= ∑
k = 1

m
ViVkYikcos(θi − θk − αik)

i = 1, …, M,

(37)

IdiVicos(δi − θi) − IqiVisin(δi − θi) + QLi

= ∑
k = 1

m
ViVkYiksin(θi − θk − αik)

i = 1, …, M .

(38)

The power flow equations at the load buses are given by

∑
k = 1

m
ViVkYik(θi − θk − αik) = PLi − Pdi

∑
k = 1

m
ViVkYik(θi − θk − αik) = QLi + Qui

i = 1, …, N .

(39)

where Pdi is the perturbation (power change at bus i) and Qui is the
control input from the ESS (the reactive power input).

From the linearisation of (37) and (38), we get

ΔIgi = C1iΔVgi + C2iΔXi + C3iΔVli . (40)

where ΔVli =
ΔVi

Δθi
 are the voltage and angle variations of the load

buses, for i = 1, …, N.
From the linearisation of (39), we get the expression of the

voltage deviation as

ΔVli = C^
1iΔVgi + C^

2iΔPdi + C^
3iΔQui, (41)

For an M-generator and N-load bus system, we can express (33),
(36), (40) and (41) in a compact form as

ΔẊ = A1ΔX + B1Ig + B2ΔVg + E1ΔT1

ΔIg = D1ΔVg + D2ΔX
ΔIg = C1ΔVg + C2ΔX + C3ΔVl

ΔVl = C^
1ΔVg + C^

2ΔPd + C^
3ΔQu,

(42)

where A1, B1, B2, T1 are block-diagonal matrices. By combining all
the equations in (42), we get the following final state equation for
the system:

Ẋ = A^ X + B^
uΔUin + B^

wΔPd

ΔVl = C^ X + D^
uΔUin + D^

wΔPd .
(43)

Now, the proposed control approach can be applied to this multi-
machine system in a similar way, as described in Section 3.3.

4 Conclusion
In this paper, a new synthesising closed-loop controller for power
grid systems subject to TLSs is presented. The controller
formulation corresponds to an MPC scheme by introducing a time
constraint. The power system model considered contains an SG
connected to a critical load bus. To maintain the voltage within
range and time constraints simultaneously following a perturbation,
an ESS that is connected to the critical load bus supports the
voltage restoration by injecting reactive power. The optimal
reactive power input signal is computed from a MILP, where the
TLSs are encoded, such that the voltage admits a restricted finite-
time restoration. Future work will be devoted to multiple actuators
scheduling using both active and reactive powers. Islanded
microgrids with dynamic motor loads will be considered as well,
where the delay in voltage recovery for an induction motor load
under temporal constraints will be investigated.
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7 Appendix
 
Denote by θ1

0, θ2
0, δ0, V1

0, and V2
0 the steady-state parameters of

θ1, θ2, δ, V1, and V2, respectively. Define

δ0 − θ2
0 = γ0, Λ = det

−Re (Xq + Xe)
−(Xe + X′d) −Re

The constants used in this paper are given as follows:

α1 = 1
Λ [ − Resin(γ0) − (Xq + Xe)cos(γ0)]

α2 = V2
0

Λ [ − Recos(γ0) + (Xq + Xe)sin(γ0)]

α3 = 1
Λ [(X′d + Xe)sin(γ0) − Recos(γ0)]

α4 = V2
0

Λ [Resin(γ0) + (X′d + Xe)cos(γ0)]

α5 = 1
Λ [Xq + Xe], α6 = Re

Λ

α7 = −cos(δ0 − θ1
0)

X′d
, α8 = V1sin(δ0 − θ1

0)
X′d

, α9 = 1
X′d

α10 = sin(δ0 − θ1
0)

Xq
, α11 = V1cos(δ0 − θ1

0)
Xq

.

Let Λ′ = det α7 α8

α10 α11
, we have

β1 = 1
Λ′ [α11α1 − α8α3], β2 = 1

Λ′ [α11α2 − α8α4]

β3 = 1
Λ′ [α10α1 − α7α3], β4 = 1

Λ′ [α10α2 − α7α4]

β5 = 1
Λ′ [α11(α5 − α9) − α8α6]

β6 = 1
Λ′ [α10(α5 − α9) − α7α6]

Introducing the above identities in the linearised equations of the
SG, we get

K1 = Eqα4 + (Xq − X′d)(Idα4 + Iqα2)
K2 = Iq + Eqα6 + (Xq − X′d)(Idα6 + Iqα5)
K3 = Eqα3 + (Xq − X′d)(Idα3 + Iqα1)
K4 = (Xd − X′d)α2, K5 = 1 + α5(Xd − X′d)
K6 = (Xd − X′d)α1

Let θ21
0 = θ2

0 − θ1
0. From the linearisation of the power flow

equations, we have

c1 = 2V2G12 − V1[G21cos(θ21
0 ) − B21sin(θ21

0 )]
c2 = − V2[G21cos(θ21

0 ) − B21sin(θ21
0 )]

c3 = V1V2[ − G21sin(θ21
0 ) − B21cos(θ21

0 )]
c4 = 2V2B21 − V1[G21sin(θ21

0 ) + B21cos(θ21
0 )]

c5 = − V2[G21sin(θ21
0 ) + B21cos(θ21

0 )]
c6 = V1V2[G21cos(θ21

0 ) − B21sin(θ21
0 )] .

Let γ = (c3c4 − c1c6) + β1(c3c5 − c6c2). And the constants γ1 − γ4 are
given by

γ1 = −β2

γ (c3c5 − c6c2), γ2 = −β5

γ (c3c5 − c6c2),

γ3 = c3

γ , γ4 = c6

γ .

The constants K1′ − K12′  of the linearised system (18) are given by

K′1 = K1 + K3γ1, K′2 = K2 + K3γ2, K′3 = K3γ3

K′4 = K3γ4, K′5 = K4 + K6γ1, K′6 = K5 + K6γ2

K′7 = K6γ3, K′8 = K6γ4, K′9 = β1γ1 + β2

K′10 = β1γ2 + β5, K′11 = β1γ3, K′12 = β1γ4
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