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Abstract11

Reaching a global view of brain organization requires assembling evidence on widely di↵erent12

mental processes and mechanisms. The variety of human neuroscience concepts and terminology13

poses a fundamental challenge to relating brain imaging results across the scientific literature.14

Existing meta-analysis methods perform statistical tests on sets of publications associated with a15

particular concept. Thus, large-scale meta-analyses only tackle single terms that occur frequently.16

We propose a new paradigm, focusing on prediction rather than inference. Our multivariate model17

predicts the spatial distribution of neurological observations, given text describing an experiment,18

cognitive process, or disease. This approach handles text of arbitrary length and terms that are19

too rare for standard meta-analysis. We capture the relationships and neural correlates of 7 54720

neuroscience terms across 13 459 neuroimaging publications. The resulting meta-analytic tool,21

neuroquery.org, can ground hypothesis generation and data-analysis priors on a comprehensive22

view of published findings on the brain.23

1 Introduction: pushing the envelope of meta-analyses24

Each year, thousands of brain-imaging studies explore the links between brain and behavior: more25

than 6 000 publications a year contain the term “neuroimaging” on PubMed. Finding consistent trends26

in the knowledge acquired across these studies is crucial, as individual studies by themselves seldom27

have enough statistical power to establish fully trustworthy results [Button et al., 2013, Poldrack28

et al., 2017]. But compiling an answer to a specific question from this impressive number of results29

is a daunting task. There are too many studies to manually collect and aggregate their findings. In30

addition, such a task is fundamentally di�cult due to the many di↵erent aspects of behavior, as well31

as the diversity of the protocols used to probe them.32

Meta-analyses can give objective views of the field, to ground a review article or a discussion of33

new results. Coordinate-Based Meta-Analysis (CBMA) methods [Laird et al., 2005, Wager et al., 2007,34

Eickho↵ et al., 2009] assess the consistency of results across studies, comparing the observed spatial35

density of reported brain stereotactic coordinates to the null hypothesis of a uniform distribution.36

Automating CBMA methods across the literature, as in NeuroSynth [Yarkoni et al., 2011], enables37

large-scale analyses of brain-imaging studies, giving excellent statistical power. Existing meta-analysis38

methods focus on identifying e↵ects reported consistently across the literature, to distinguish true39

discoveries from noise and artifacts. However, they can only address neuroscience concepts that are40

easy to define. Choosing which studies to include in a meta-analysis can be challenging. In principle,41

studies can be manually annotated as carefully as one likes. However, manual meta-analyses are not42
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Cognitive Atlas 100% 14% 0% 3% 14% 68%

MeSH 1% 100% 3% 4% 1% 9%

NeuroNames 0% 9% 100% 29% 1% 10%

NIF 0% 12% 30% 100% 1% 10%

NeuroSynth 9% 14% 5% 5% 100% 98%

NeuroQuery 8% 25% 9% 9% 17% 100%

Table 1: Diversity of vocabularies: there is no established lexicon of neuroscience, even in hand-curated
reference vocabularies, as visible across CognitiveAtlas [Poldrack and Yarkoni, 2016], MeSH [Lipscomb, 2000],
NeuroNames [Bowden and Martin, 1995], NIF [Gardner et al., 2008], and NeuroSynth [Yarkoni et al., 2011]. Our
dataset, NeuroQuery, contains all the terms from the other vocabularies that occur in more than 5 out of 10 000
articles. “MeSH” corresponds to the branches of PubMed’s MEdical Subject Headings related to neurology,
psychology, or neuroanatomy (see Section 4.4.2). Many MeSH terms are hardly or never used in practice –
e.g. variants of multi-term expressions with permuted word order such as “Dementia, Frontotemporal”, and
are therefore not included in NeuroQuery’s vocabulary.

scalable, and the corresponding degrees of freedom are di�cult to control statistically. In what follows,43

we focus on automated meta-analysis. To automate the selection of studies, the common solution is to44

rely on terms present in publications. But closely related terms can lead to markedly di↵erent meta-45

analyses (Fig. 6). The lack of a universally established vocabulary or ontology to describe mental46

processes and disorders is a strong impediment to meta-analysis [Poldrack and Yarkoni, 2016]. Indeed,47

only 30% of the terms contained in a neuroscience ontology or meta-analysis tool are common to48

another (see Table 1). In addition, studies are diverse in many ways: they investigate di↵erent mental49

processes, using di↵erent terms to describe them, and di↵erent experimental paradigms to probe them50

[Newell, 1973]. Yet, current meta-analysis approaches model all studies as asking the same question.51

They cannot model nuances across studies because they rely on in-sample statistical inference and52

are not designed to interpolate between studies that address related but di↵erent questions, or make53

predictions for unseen combinations of mental processes. A consequence is that, as we will show, their54

results are harder to control outside of well-defined and frequently-studied psychological concepts.55

Currently, an automated meta-analysis cannot cover all studies that report a particular functional56

contrast (contrasting mental conditions to isolate a mental process, Poldrack et al. [2011]). Indeed, we57

lack the tools to parse the text in articles and reliably identify those that relate to equivalent or very58

similar contrasts. As an example, consider a study of the neural support of translating orthography59

to phonology, probed with visual stimuli by Pinho et al. [2018]. The results of this study build upon60

an experimental contrast labeled by the authors as “Read pseudo-words vs. consonant strings”, shown61

in Fig. 2. Given this description, what prior hypotheses arise from the literature for this contrast?62

Conversely, given the statistical map resulting from the experiment, how can one compare it with63

previous reports on similar tasks? For these questions, meta-analysis seems the tool of choice. Yet, the64

current meta-analytic paradigm requires the practitioner to select a set of studies that are included65

in the meta-analysis. In this case, which studies from the literature should be included? Even with a66

corpus of 14 000 full-text articles, selection based on simple pattern matching –as with NeuroSynth–67

falls short. Indeed, only 29 studies contain all 5 words from the contrast description, which leads68

to a noisy and under-powered meta-analytic map (Fig. 2). To avoid relying on the contrast name,69

which can be seen as too short and terse, one could do a meta-analysis based on the page-long task70

description1. However, that would require combining even more terms, which precludes selecting71

studies that contain all of them. A more manual selection may help to identify relevant studies, but72

it is far more di�cult and time-consuming. Moreover, some concepts of interest may not have been73

1https://project.inria.fr/IBC/files/2019/03/documentation.pdf
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investigated by themselves, or only in very few studies: rare diseases, or tasks involving a combination74

of mental processes that have not been studied together. For instance, there is evidence of agnosia in75

Huntington’s disease [Sitek et al., 2014], but it has not been studied with brain imaging. To compile a76

brain map from the literature for such queries, it is necessary to interpolate between studies only partly77

related to the query. Standard meta-analytic methods lack an automatic way to measure the relevance78

of studies to a question, and to interpolate between them. This prevents them from answering new79

questions, or questions that cannot be formulated simply.80

Many of the constraints of standard meta-analysis arise from the necessity to define an in-sample81

test on a given set of studies. Here, we propose a new kind of meta-analysis, that focuses on out-of-82

sample prediction rather than hypothesis testing. The focus shifts from establishing consensus for a83

particular subject of study to building multivariate mappings from mental diseases and psychological84

concepts to anatomical structures in the brain. This approach is complementary to classic meta-85

analysis methods such as Activation Likelihood Estimate (ALE) [Laird et al., 2005], Multilevel Kernel86

Density Analysis (MKDA) [Wager et al., 2007] or NeuroSynth [Yarkoni et al., 2011]: these perform87

statistical tests to evaluate trustworthiness of results from past studies, while our framework predicts,88

based on the description of an experiment or subject of study, which brain regions are most likely89

to be observed in a study. We introduce a new meta-analysis tool, NeuroQuery, that predicts the90

neural correlates of neuroscience concepts – related to behavior, diseases, or anatomy. To do so, it91

considers terms not in isolation, but in a dynamic, contextually-informed way that allows for mutual92

interactions. A predictive framework enables maps to be generated by generalizing from terms that are93

well studied (“faces”) to those that are less well studied and inaccessible to traditional meta-analyses94

(“prosopagnosia”). As a result, NeuroQuery produces high-quality brain maps for concepts studied95

infrequently in the literature and for a larger class of queries than existing tools – including, e.g., free96

text descriptions of a hypothetical experiment. These brain maps predict well the spatial distribution97

of findings and thus form good grounds to generate regions of interest or interpret results for studies98

of infrequent terms such as prosopagnosia. Yet, unlike with conventional meta-analysis, they do not99

control a voxel-level null hypothesis, hence are less suited to asserting that a particular area is activated100

in studies, e.g. of prosopagnosia.101

Our approach, NeuroQuery, assembles results from the literature into a brain map using an arbitrary102

query with words from our vocabulary of 7 547 neuroscience terms. NeuroQuery uses a multivariate103

model of the statistical link between multiple terms and corresponding brain locations. It is fitted using104

supervised machine learning on 13 459 full-text publications. Thus, it learns to weight and combine105

terms to predict the brain locations most likely to be reported in a study. It can predict a brain106

map given any combination of terms related to neuroscience – not only single words, but also detailed107

descriptions, abstracts, or full papers. With an extensive comparison to published studies, we show in108

Section 2.5 that it indeed approximates well results of actual experimental data collection. NeuroQuery109

also models the semantic relations that underlie the vocabulary of neuroscience. Using techniques from110

natural language processing, NeuroQuery infers semantic similarities across terms used in the literature.111

Thus, it makes better use of the available information, and can recover biologically plausible brain112

maps where other automated methods lack statistical power, for example with terms that are used in113

few studies, as shown in Section 2.4. This semantic model also makes NeuroQuery less sensitive to114

small variations in terminology (Fig. 6). Finally, the semantic similarities captured by NeuroQuery115

can help researchers navigate related neuroscience concepts while exploring their associations with116

brain activity. NeuroQuery extends the scope of standard meta-analysis, as it extracts from the117

literature a comprehensive statistical summary of evidence accumulated by neuroimaging research.118

It can be used to explore the domain knowledge across sub-fields, generate new hypotheses, and119

construct quantitative priors or regions of interest for future studies, or put in perspective results of120

an experiment. NeuroQuery is easily usable online, at neuroquery.org, and the data and source code121

can be freely downloaded. We start by briefly describing the statistical model behind NeuroQuery122

in Section 2.1, then illustrate its usage (Section 2.2) and show that it can map new combinations of123

concepts in Section 2.3. In Section 2.4 and 2.5, we conduct a thorough qualitative and quantitative124

assessment of the new possibilities it o↵ers, before a discussion and conclusion.125
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2 Results: The NeuroQuery tool and what it can do.126

2.1 Overview of the NeuroQuery model.127

NeuroQuery is a statistical model that identifies brain regions related to an arbitrary text query – a128

single term, a few keywords, or a longer text. It is built on a controlled vocabulary of neuroscience129

terms and a large corpus containing the full text of neuroimaging publications and the coordinates130

that they report. The main components of the NeuroQuery model are an estimate of the relatedness131

of terms in the vocabulary, derived from co-occurrence statistics, and a regression model that links132

term occurrences to neural activations using supervised machine learning techniques. To generate a133

brain map, NeuroQuery first uses the estimated semantic associations to map the query onto a set134

of keywords that can be reliably associated with brain regions. Then, it transforms the resulting135

representation into a brain map using a linear regression model (Fig. 1). This model can thus be136

understood as a reduced rank regression, where the low-dimensional representation is a distribution of137

weights over keywords selected for their strong link with brain activity. We emphasize the fact that138

NeuroQuery is a predictive model. The maps it outputs are predictions of the likelihood of observation139

brain location (rescaled by their standard deviation). They do not have the same meaning as ALE,140

MKDA or NeuroSynth maps as they do not show a voxel-level test statistic. In this section we describe141

our neuroscience corpus and how we use it to estimate semantic relations, select keywords, and map142

them onto brain activations.143

NeuroQuery relies on a corpus of 13 459 full-text neuroimaging publications, described in Section 4.1.144

This corpus is by far the largest of its kind; the NeuroSynth corpus contains a similar number of145

documents, but uses only the article abstracts, and not the full article texts. We represent the text146

of a document with the (weighted) occurrence frequencies of each phrase from a fixed vocabulary, i.e.,147

Figure 1: Overview of the NeuroQuery model: two examples of how association maps are constructed
for the terms “grasping” and “visual”. The query is expanded by adding weights to related terms. The
resulting vector is projected on the subspace spanned by the smaller vocabulary selected during supervised
feature selection. Those well-encoded terms are shown in color. Finally, it is mapped onto the brain space
through the regression model. When a word (e.g., “visual”) has a strong association with brain activity and
is selected as a regressor, the smoothing has limited e↵ect. Details: the first bar plot shows the semantic
similarities of neighboring terms with the query. It represents the smoothed Term Frequency · Inverse Document
Frequency (TFIDF) vector. Terms that are not used as features for the supervised regression are shown in
gray. The second bar plot shows the similarities of selected terms, rescaled by the norms of the corresponding
regression coe�cient maps. It represents the relative contribution of each term in the final prediction. The
coe�cient maps associated with individual terms are shown next to the bar plot. These maps are combined
linearly to produce the prediction shown on the right.
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Term Frequency · Inverse Document Frequency (TFIDF) features [Salton and Buckley, 1988]. This148

vocabulary is built from the union of terms from several ontologies (shown in Table 1) and labels from149

12 anatomical atlases (listed in Table 4 in Section 4.4.2). It comprises 7 547 terms or phrases related150

to neuroscience that occur in at least 0.05% of publications. We automatically extract 418 772 peak151

activations coordinates from publications, and transform them to brain maps with a kernel density152

estimator. Coordinate extraction is discussed and evaluated in Section 4.1.3. This preprocessing step153

thus yields, for each article: its representation in term frequency space (a TFIDF vector), and a brain154

map representing the estimated density of activations for this study. The corresponding data is also155

openly available online.156

The first step of the NeuroQuery pipeline is a semantic smoothing of the term-frequency represen-157

tations. Many expressions are challenging for existing automated meta-analysis frameworks, because158

they are too rare, polysemic, or have a low correlation with brain activity. Rare words are problematic159

because peak activation coordinates are a very weak signal: from each article we extract little infor-160

mation about the associated brain activity. Therefore existing frameworks rely on the occurrence of161

a term in hundreds of studies in order to detect a pattern in peak activations. Term co-occurrences,162

on the other hand, are more consistent and reliable, and capture semantic relationships [Turney and163

Pantel, 2010]. The strength of these relationships encode semantic proximity, from very strong for syn-164

onyms that occur in statistically identical contexts, to weaker for di↵erent yet related mental processes165

that are often studied one opposed to the other. Using them helps meta analysis: it would require166

hundreds of studies to detect a pattern in locations reported for “aphasia”, e.g. in lesion studies. But167

with the text of a few publications we notice that it often appears close to “language”, which is indeed168

a related mental process. By leveraging this information, NeuroQuery recovers maps for terms that are169

too rare to be mapped reliably with standard automated meta-analysis. Using Non-negative Matrix170

Factorization (NMF), we compute a low-rank approximation of word co-occurrences (the covariance171

of the TFIDF features), and obtain a denoised semantic relatedness matrix (details are provided in172

Section 4.2.3). These word associations guide the encoding of rare or di�cult terms into brain maps.173

They can also be used to explore related neuroscience concepts when using the NeuroQuery tool.174

The second step from a text query to a brain map is NeuroQuery’s text-to-brain encoding model.175

When analyzing the literature, we fit a linear regression to reliably map text onto brain activations.176

The intensity (across the peak density maps) of each voxel in the brain is regressed on the TFIDF177

descriptors of documents. This model is an additive one across the term occurrences, as opposed to178

logical operations traditionally used to select studies for meta-analysis. It results in higher predictive179

power (Section 4.4.1).180

One challenge is that TFIDF representations are sparse and high-dimensional. We use a reweighted181

ridge regression and feature selection procedure (described in Section 4.2.2) to prevent uninformative182

terms such as “magnetoencephalography” from degrading performance. This procedure automatically183

selects around 200 keywords that display a strong statistical link with brain activity and adapts184

the regularization applied to each feature. Indeed, mapping too many terms (covariates) without185

appropriate regularization would degrade the regression performance due to multicolinearity.186

To make a prediction, NeuroQuery combines semantic smoothing and linear regression of brain187

activations. To encode a new document or query, the text is expanded, or smoothed, by adding188

weight to related terms using the semantic similarity matrix. The resulting smoothed representation189

is projected onto the reduced vocabulary of selected keywords, then mapped onto the brain through190

the linear regression coe�cients (Fig. 1). The rank of this linear model is therefore the size of the191

restricted vocabulary that was found to be reliably mapped to the brain. Compared with other latent192

factor models, this 2-layer linear model is easily interpretable, as each dimension (both of the input193

and the latent space) is associated with a term from our vocabulary. In addition, NeuroQuery uses194

an estimate of the voxel-level variance of association (see methodological details in Section 4.2), and195

reports a map of Z statistics. Note that this variance represents an uncertainty around a prediction196

for a TFIDF representation of the concept of interest, which is treated as a fixed quantity. Therefore,197
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the resulting map cannot be thresholded to reject any simple null hypothesis. NeuroQuery maps have198

a di↵erent meaning and di↵erent uses than standard meta-analysis maps obtained e.g. with ALE.199

Figure 2: Illustration: studying the contrast “Read pseudo words vs. consonant strings”. Left:
Group-level map from the IBC dataset for the contrast “Read pseudo-words vs. consonant strings” and contour
of NeuroQuery map obtained from this query. The NeuroQuery map was obtained directly from the contrast
description in the dataset’s documentation, without needing to manually select studies for the meta-analysis
nor convert this description to a string pattern usable by existing automatic meta-analysis tools. The map from
which the contour is drawn, as well as a NeuroQuery map for the page-long description of the Rapid-Serial-
Visual-Presentation (RSVP) language task, are shown in Section 4.3.1, in Section 4.3.1c and Section 4.3.1d
respectively. Right: ALE map for 29 studies that contain all terms from the IBC contrast description. The
map was obtained with the GingerALE tool [Eickho↵ et al., 2009]. With only 29 matching studies, ALE lacks
statistical power for this contrast description.

2.2 Illustration: using NeuroQuery for post-hoc interpretation200

After running a functional Magnetic Resonance Imaging (fMRI) experiment, it is common to compare201

the computed contrasts to what is known from the existing literature, and even use prior knowledge to202

assess whether some activations are not specific to the targeted mental process, but due to experimental203

artifacts such as the stimulus modality. It is also possible to introduce prior knowledge earlier in the204

study and choose a Region of Interest (ROI) before running the experiment. This is usually done based205

on the expertise of the researcher, which is hard to formalize and reproduce. With NeuroQuery, it is206

easy to capture the domain knowledge and perform these comparisons or ROI selections in a principled207

way.208

As an example, consider again the contrast from the RSVP language task [Pinho et al., 2018,209

Humphries et al., 2006] in the Individual Brain Charting (IBC) dataset, shown in Fig. 2. It is described210

as “Read pseudo-words vs. consonant strings”. We obtain a brain map from NeuroQuery by simply211

transforming the contrast description, without any manual intervention, and compare both maps by212

overlaying a contour of the NeuroQuery map on the actual IBC group contrast map. We can also obtain213

a meta-analytic map for the whole RSVP language task by analyzing the free-text task description214

with NeuroQuery (Section 4.3.1).215

2.3 NeuroQuery can map new combinations of concepts216

To study the predictions of NeuroQuery, we first demonstrate that it can indeed give good brain217

maps on combinations of terms that have never been studied together. For this, we leave out from our218

corpus of studies all the publications that simultaneously mention two given terms, we fit a NeuroQuery219

model on the resulting reduced corpus, and evaluate its predictions on the left out publications, that220

did actually report these terms together. Fig. 3 shows an example of such an experiment: excluding221

publications mentioning simultaneously “distance” and “color”. The figure compares a simple meta222

analysis of the combination of these two terms – contrasting the left-out studies with the remaining223

ones – with the predictions of the model fitted excluding studies that include the term conjunction.224

Qualitatively, the predicted maps comprise all the brain structures visible in the simultaneous studies225

of “distance” and “color”: on the one hand, the intra-parietal sulci, the frontal eye fields, and the226
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Published studies

“distance color”

NeuroQuery predictions from studies without simultaneously distance & color

“distance color” “distance” “color”

Figure 3: Mapping an unseen combination of terms Left The di↵erence in the spatial distribution of
findings reported in studies that contains both “distance” and “color” (n = 687), and the rest of the studies. –
Right Predictions of a NeuroQuery model fitted on the studies that do not contain simultaneously both terms
“distance” and “color”.

anterior cingulate / anterior insula network associated with distance perception, and on the other227

hand, the additional mid-level visual region around the approximate location of V4 associated with228

color perception. The extrapolation from two terms for which the model has seen studies, “distance”229

and “color”, to their combination, for which the model has no data, is possible thanks to the linear230

additive model, combining regression maps for “distance” and “color”.231

To assert that the good generalization to unseen pairs of terms is not limited to the above pair,232

we apply quantitative experiments of prediction quality (introduced later, in Section 2.5) to 1 000233

randomly-chosen pairs. We find that measures of how well predictions match the literature decrease234

only slightly for studies with terms already seen together compared to studies with terms never seen235

jointly (details in Section 4.3.2). Finally, we gauge the quality of the maps with a quantitative experi-236

ment mirroring the qualitative evaluation of Fig. 3: for each of the 1 000 pairs of terms, we compute the237

Pearson correlation of the predicted map for the unseen combination of terms with the meta-analytic238

map obtained on the left-out studies. We find a median correlation of 0.85 which shows that the239

excellent performance observed on Fig. 3 is not due to a specific choice of terms.240

2.4 NeuroQuery can map rare or di�cult concepts241

We now we compare the NeuroQuery model to existing automated meta-analysis methods, investi-242

gate how it handles terms that are challenging for the current state of the art, and quantitatively243

evaluate its performance. We compare NeuroQuery with NeuroSynth [Yarkoni et al., 2011], the best244

known automated meta-analytic tool, and with Generalized Correspondence Latent Dirichlet Alloca-245

tion (GCLDA) [Rubin et al., 2017]. GCLDA is an important baseline because it is the only multivariate246

meta-analytic model to date. However, it produces maps with a low spatial resolution because it mod-247

els brain activations as a mixture of Gaussians. Moreover, it takes several days to train and a dozen of248

seconds to produce a map at test time, and is thus unsuitable to build an online and responsive tool249

like NeuroSynth or NeuroQuery.250

By combining term similarities and an additive encoding model, NeuroQuery can accurately map251

rare or di�cult terms for which standard meta-analysis lacks statistical power, as visible on Fig. 4.252

Quantitatively comparing methods on very rare terms is di�cult for lack of ground truth. We253

therefore conduct meta-analyses on subsampled corpora, in which some terms are made artificially254

rare, and use the maps obtained from the full corpus as a reference. We choose a set of frequent255

and well-mapped terms, such as “language”, for which NeuroQuery and NeuroSynth (trained on a256

full corpus) give consistent results. For each of those terms, we construct a series of corpora in which257

the word becomes more and more rare: from a full corpus, we erase randomly the word from many258

documents until it occurs at most in 213 = 8912 articles, then 212 = 4096, and so on. For many terms,259

NeuroQuery only needs a dozen examples to produce maps that are qualitatively and quantitatively260

close to the maps it obtains for the full corpus – and to NeuroSynth’s full-corpus maps. NeuroSynth261

typically needs hundreds of examples to obtain similar results, as seen in Fig. 5. Document frequencies262
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n=1139 n=147 n=967 n=2779 n=346 n=1158 n=377 n=93

Figure 4: Examples of maps obtained for a given term, compared across di↵erent large-scale meta-analysis frameworks.
“GCLDA” has low spatial resolution and produces inaccurate maps for many terms. For relatively straightforward terms like “psts”
(posterior superior temporal sulcus), NeuroSynth and NeuroQuery give consistent results. For terms that are more rare or di�cult
to map like “dyslexia”, only NeuroQuery generates usable brain maps.

0.1% 1% 10% 100%
relative term frequency

0.0

0.5

1.0 Pearson correlation
w. full corpus map

NeuroQuery
NeuroSynth
GCLDA

Figure 5: Learning good maps from few studies. left: maps obtained from subsampled corpora, in which
the encoded word appears in 16 and 128 documents, and from the full corpus. NeuroQuery needs less examples
to learn a sensible brain map. NeuroSynth maps correspond to NeuroSynth’s Z scores for the “association test”
from neurosynth.org. NeuroSynth’s “posterior probability” maps for these terms for the full corpus are shown
in Fig. 19. Each tool is trained on its own dataset, which is why the full-corpus occurrence counts di↵er. right:
convergence of maps toward their value for the full corpus, as the number of occurrences increases. Averaged
over 13 words: “language”, “auditory”, “emotional”, “hand”, “face”, “default mode”, “putamen”, “hippocampus”,
“reward”, “spatial”, “amygdala”, “sentence”, “memory”. On average, NeuroQuery is closer to the full-corpus map.
This confirms quantitatively what we observe for the two examples “language” and “reward” on the left. Note that
here convergence is only measured with respect to the model’s own behavior on the full corpus, hence a high value
does not indicate necessarily a good face validity of the maps with respect to neuroscience knowledge. The solid
line represents the mean across the 13 words and the error bands represent a 95% confidence interval based on 1 000
bootstrap repetitions.

roughly follow a power law [Piantadosi, 2014], meaning that most words are very rare – half the terms in263

our vocabulary occur in less than 76 articles (see ?? in Section 4.4.1). Reducing the number of studies264

required to map well a term (a.k.a. the sample complexity of the meta-analysis model) therefore greatly265

widens the vocabulary that can be studied by meta-analysis.266

8

neurosynth.org


Figure 6: Taming query variability
Maps obtained for a few words related to
mental arithmetic. By correctly capturing
the fact that these words are related, Neu-
roQuery can use its map for easier words
like “calculation” and “arithmetic” to en-
code terms like “computation” and “addi-
tion” that are di�cult for meta-analysis.

Capturing relations between terms is important because the literature does not use a perfectly con-267

sistent terminology. The standard solution is to use expert-built ontologies [Poldrack and Yarkoni,268

2016], but these tend to have low coverage. For example, the controlled vocabularies that we use dis-269

play relatively small intersections, as can be seen in Table 1. In addition, ontologies are typically even270

more incomplete in listing relations across terms. Rather than ontologies, NeuroQuery relies on distri-271

butional semantics and co-occurrence statistics across the literature to estimate relatedness between272

terms. These continuous semantic links provide robustness to inconsistent terminology: consistent273

meta-analytic maps for similar terms. For instance, “calculation”, “computation”, “arithmetic”, and274

“addition” are all related terms that are associated with similar maps by NeuroQuery. On the contrary,275

standard automated meta-analysis frameworks map these terms in isolation, and thus su↵er from a276

lack of statistical power and produce empty, or nearly empty, maps for some of these terms (see Fig. 6).277

278

NeuroQuery improves mapping not only for rare terms that are variants of concepts widely studied,279

but also for some concepts rarely studied, such as “color” or “Huntington” (Figure 4). The main reason280

is the semantic smoothing described in Section 2.1. Another reason is that working with the full text281

of publications associates many more studies to a query: 2779 for “color”, while NeuroSynth matches282

only 236 abstracts, and 147 for “huntington”, a term not known to NeuroSynth. Full-text matching283

however requires to give unequal weight to studies, to avoid giving too much weight to studies weakly284

related to the query. These weights are computed by the supervised-learning ridge regression: in its285

dual formulation, ridge regression is seen as giving weights to training samples [Bishop, 2006, sec 6.1].286

2.5 Quantitative evaluation: NeuroQuery is an accurate model of the lit-287

erature.288

Unlike standard meta-analysis methods, which compute in-sample summary statistics, NeuroQuery is289

a predictive model, that can produce brain maps for out-of-sample neuroimaging studies. This enables290

us to quantitatively assess its generalization performance. Here we check that NeuroQuery captures291

reliable links from concepts to brain activity – associations that generalize to new, unseen neuroimaging292

studies. We do this with 16-fold shu✏e-split cross-validation. After fitting a NeuroQuery model on293

90% of the corpus, for each document in the left-out test set (around 1 300), we encode it, normalize294

the predicted brain map to coerce it into a probability density, and compute the average log-likelihood295

of the coordinates reported in the article with respect to this density. The procedure is then repeated296

16 times and results are presented in Fig. 7. We also perform this procedure with NeuroSynth and297

GCLDA. NeuroSynth does not perform well for this test. Indeed, the NeuroSynth model is designed298

for single-phrase meta-analysis, and does not have a mechanism to combine words and encode a full299

document. Moreover, it is a tool for in-sample statistical inference, which is not well suited for out-of300

sample prediction. GCLDA performs significantly better than chance, but still worse than a simple301

ridge regression baseline. This can be explained by the unrealistic modelling of brain activations as a302

mixture of a small number of Gaussians, which results in low spatial resolution, and by the di�culty303

to perform posterior inference for GCLDA. Another metric, introduced in Mitchell et al. [2008] for304
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Figure 7: Explaining coordinates reported in unseen studies. – Left: log-likelihood for coordinates
reported in test articles, relative to the log-likelihood of a naive baseline that predicts the average density
of the training set. NeuroQuery outperforms GCLDA, NeuroSynth, and a ridge regression baseline. Note
that NeuroSynth is not designed to make encoding predictions for full documents, which is why it does not
perform well on this task. – Right: how often the predicted map is closer to the true coordinates than to the
coordinates for another article in the test set [Mitchell et al., 2008]. The boxes represent the first, second and
third quartiles of scores across 16 cross-validation folds. Whiskers represent the rest of the distribution, except
for outliers, defined as points beyond 1.5 times the IQR past the low and high quartiles, and represented with
diamond fliers.

encoding models, tests the ability of the meta-analytic model to match the text of a left-out study305

with its brain map. For each article in the test set, we draw randomly another one and check whether306

the predicted map is closer to the correct map (containing peaks at each reported location) or to the307

random negative example. More than 72% of the time, NeuroQuery’s output has a higher Pearson308

correlation with the correct map than with the negative example (see Fig. 7 right).309

2.6 NeuroQuery maps reflect well other meta-analytic maps310

The above experiments quantify how well NeuroQuery captures the information in the literature, by311

comparing predictions to reported coordinates. However, the scores are di�cult to interpret, as peak312

coordinates reported in the literature are noisy and incomplete with respect to the full activation313

maps. We also want to quantify the quality of the brain maps generated by NeuroQuery, extending314

the visual comparisons of Fig. 4. For this purpose, we compare NeuroQuery predictions to a few315

reliable references.316

First, we use a set of diverse and curated Coordinate-Based Meta-Analysis (IBMA) maps available317

publicly [Varoquaux et al., 2018]. This collection contains 19 IBMA brain maps, labelled with cognitive318

concepts such as “visual words”. For each of these labels, we obtain a prediction from NeuroQuery and319

compare it to the corresponding IBMA map. The IBMA maps are thresholded. We evaluate whether320

thresholding the NeuroQuery predicted maps can recover the above-threshold voxels in the IBMA,321

quantifying false detections and misses for all thresholds with the Area Under the Receiver Operating322

Characteristic (ROC) Curve [Fawcett, 2006]. NeuroQuery predictions match well the IBMA results,323

with a median Area Under the Curve (AUC) of 0.80. Such results cannot be directly obtained with324

NeuroSynth, as many labels are missing from NeuroSynth’s vocabulary. Manually reformulating the325

labels to terms from NeuroSynth’s vocabulary gives a median AUC of .83 for NeuroSynth, and also326

raises the AUC to .88 for NeuroQuery (details in Section 4.3.5 and Fig. 13).327

We also perform a similar experiment for anatomical terms, relying on the Harvard-Oxford struc-328
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tural atlases [Desikan et al., 2006]. Both NeuroSynth and NeuroQuery produce maps that are close329

to the atlases’ manually segmented regions, with a median AUC of 0.98 for NeuroQuery and 0.95 for330

NeuroSynth, for the region labels that are present in NeuroSynth’s vocabulary. Details are provided331

in Section 4.3.6 and Fig. 14.332

For frequent-enough terms, we consider NeuroSynth as a reference. Indeed, while the goal of333

NeuroSynth is to reject a voxel-level association test, and not to predict a activation distribution like334

NeuroQuery, it would still be desirable that NeuroQuery predicts few observations where an association335

statistic is small. We threshold NeuroSynth maps by controlling the False Discovery Rate (FDR) at 1%336

and select the 200 maps with the largest number of activations. We compare NeuroQuery predictions337

to NeuroSynth activations by computing the AUC. NeuroQuery and NeuroSynth maps for these well-338

captured terms are very similar, with a median AUC of 0.90. Details are provided in Section 4.3.7 and339

Fig. 15.340

2.7 NeuroQuery is an openly available resource341

NeuroQuery can easily be used online: https://neuroquery.org. Users can enter free text in a342

search box (rather than select a single term from a list as is the case with existing tools) and discover343

which terms, neuroimaging publications, and brain regions are related to their query. NeuroQuery344

is also available as an open-source Python package that can be easily installed on all platforms:345

https://github.com/neuroquery/neuroquery. This will enable advanced users to run extensive346

meta-analysis with Neuroquery, integrate it in other applications, and extend it. The package allows347

training new NeuroQuery models as well as downloading and using a pre-trained model. Finally, all348

the resources used to build NeuroQuery are freely available at https://github.com/neuroquery/349

neuroquery_data. This repository contains i) the data used to train the model: vocabulary list and350

document frequencies, word counts (TFIDF features), and peak activation coordinates for our whole351

corpus of 13 459 publications, ii) the semantic-smoothing matrix, that encodes relations across the ter-352

minology. The corpus is significantly richer than NeuroSynth, the largest corpus to date (see Table 3353

for a comparison), and manual quality assurance reveals more accurate extraction of brain coordinates354

(Table 2).355

3 Discussion and conclusion356

NeuroQuery makes it easy to perform meta-analyses of arbitrary questions on the human neuroscience357

literature: it uses a full-text description of the question and the studies and it provides an online query358

interface with a rich database of studies. For this, it departs from existing meta-analytic frameworks359

by treating meta-analysis as a prediction problem. It describes neuroscience concepts of interest by360

continuous combinations of terms rather than matching publications for exact terms. As it combines361

multiple terms and interpolates between available studies, it extends the scope of meta-analysis in362

neuroimaging. In particular, it can capture information for concepts studied much less frequently than363

those that are covered by current automated meta-analytic approaches.364

3.1 Related work365

A variety of prior works have paved the way for NeuroQuery. Brainmap [Laird et al., 2005] was the first366

systematic database of brain coordinates. NeuroSynth [Yarkoni et al., 2011] pioneered automated meta-367

analysis using abstracts from the literature, broadening a lot the set of terms for which the consistency368

of reported locations can be tested. These works perform classic meta-analysis, which considers terms369

in isolation, unlike NeuroQuery. Topic models have also been used to find relationships across terms370

used in meta-analysis. Nielsen et al. [2004] used a non-negative matrix factorization on the matrix of371

occurrences of terms for each brain location (voxel): their model outputs a set of seven spatial networks372

associated with cognitive topics, described as weighted combinations of terms. Poldrack et al. [2012]373

used topic models on the full text of 5 800 publications to extract from term cooccurrences 130 topics374

on mental function and disorders, followed by a classic meta-analysis to map their neural correlates375
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in the literature. These topic-modeling works produce a reduced number of cognitive latent factors376

–or topics– mapped to the brain, unlike NeuroQuery which strives to map individual terms and uses377

their cooccurences in publications only to infer the semantic links. From a modeling perspective, the378

important di↵erence of NeuroQuery is supervised learning, used as an encoding model [Naselaris et al.,379

2011]. In this sense, the supervised learning used in NeuroQuery di↵ers from that used in Yarkoni et al.380

[2011]: the latter is a decoding model that, given brain locations in a study, predicts the likelihood of381

neuroscience terms without using relationships between terms. Unlike prior approaches, the maps of382

NeuroQuery are predictions of its statistical model, as opposed to model parameters. Finally, other383

works have modelled co-activations and interactions between brain locations [Kang et al., 2011, Wager384

et al., 2015, Xue et al., 2014]. We do not explore this possibility here, and except for the density385

estimation NeuroQuery treats voxels independently.386

3.2 Usage recommendations and limitations387

We have thoroughly validated that NeuroQuery gives quantitatively and qualitatively good results388

that summarize well the literature. Yet, the tool has strengths and weaknesses that should inform its389

usage. Brain maps produced by NeuroQuery are predictions, and a specific prediction may be wrong390

although the tool performs well on average. A NeuroQuery prediction by itself therefore does not391

support definite conclusions as it does not come with a statistical test. Rather, NeuroQuery will be392

most successfully used to produce hypotheses and as an exploratory tool, to be confronted with other393

sources of evidence. To prepare a new functional neuroimaging study, NeuroQuery helps to formulate394

hypotheses, defining ROIs or other formal priors (for Bayesian analyses). To interpret results of a395

neuroimaging experiment, NeuroQuery can readily use the description of the experiment to assemble396

maps from the literature, which can be compared against, or updated using, experimental findings.397

As an exploratory tool, extracting patterns from published neuroimaging findings can help conjecture398

relationships across mental processes as well as their neural correlates [Yeo et al., 2014]. NeuroQuery399

can also facilitate literature reviews: given a query, it uses its semantic model to list related studies400

and their reported activations. What NeuroQuery does not do is provide conclusive evidence that401

a brain region is recruited by a mental process or a↵ected by a pathology. Compared to traditional402

meta-analysis tools, NeuroQuery is particularly beneficial i) when the term of interest is rare, ii) when403

the concept of interest is best described by a combination of multiple terms, and iii) when a fully404

automated method is necessary and queries would otherwise need cumbersome manual curation to be405

understood by other tools.406

Understanding the components of NeuroQuery helps interpreting its results. We now describe in407

details potential failures of the tool, and how to detect them. NeuroQuery builds predictions by408

combining brain maps each associated with a keyword related to the query. A first step to interpret409

results is to inspect this list of keywords, displayed by the online tool. These keywords are selected410

based on their semantic relation to the query, and as such will usually be relevant. However, in rare411

cases, they may build upon undesirable associations. For example, “agnosia” is linked to “visual”,412

“fusiform”, “word” and “object”, because visual agnosia is the type of agnosia most studied in the413

literature, even though “agnosia” is a much more general concept. In this specific case, the indirect414

association is problematic because “agnosia” is not a selected term that NeuroQuery can map by itself,415

as it is not well-represented in the source data. As a result, the NeuroQuery prediction for “agnosia”416

is driven by indirect associations, and focuses on the visual system, rather than areas related to, e.g.,417

auditory agnosia. By contrast, “aphasia” is an example of a term that is well mapped, building on418

maps for “speech” and “language”, terms that are semantically close to aphasia and well captured in419

the literature.420

A second consideration is that, in some extreme cases, the semantic smoothing fails to produce421

meaningful results. This happens when a term has no closely related terms that correlate well with422

brain activity. For instance, “ADHD” is very similar to “attention deficit hyperactivity disorder”,423

“hyperactivity”, “inattention”, but none of these terms is selected as a feature mapped in itself,424

because their link with brain activity is relatively loose. Hence, for “ADHD”, the model builds its425
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prediction on terms that are distant from the query, and produces a misleading map that highlights426

mostly the cerebellum2. While this result is not satisfying, the failure is detected by the NeuroQuery427

interface and reported with a warning stating that results may not be reliable. To a user with general428

knowledge in psychology, the failure can also be seen by inspecting the associated terms, as displayed429

in the user interface.430

A third source of potential failure stems from NeuroQuery’s model of additive combination. This431

model is not unique to NeuroQuery, and lies at the heart of functional neuroimaging, which builds upon432

the hypothesis of pure insertion of cognitive processes [Ulrich et al., 1999, Poldrack, 2010]. An inevitable433

consequence is that, in some cases, a group of words will not be well mapped by its constituents. For434

example, “visual sentence comprehension” is decomposed into two constituents known to Neuroquery:435

“visual” and “sentence comprehension”. Unfortunately, the map corresponding to the combination is436

then dominated by the primary visual cortex, given that it leads to very powerful activations in fMRI.437

Note that “visual word comprehension”, a slightly more common subject of interest, is decomposed438

into “visual word” and “comprehension”, which leads to a more plausible map, with strong loadings439

in the visual word form area.440

A careful user can check that each constituent of a query is associated with a plausible map, and441

that they are well combined. The NeuroQuery interface enables to gauge the quality of the mapping442

of each individual term by presenting the corresponding brain map as well as the number of associated443

studies. The final combination can be understood by inspecting the weights of the combination as444

well as comparing the final combined map with the maps for individual terms. Such an inspection445

can for instance reveal that, as mentioned above, “visual” dominates “sentence comprehension” when446

mapping “visual sentence comprehension”.447

We have attempted to provide a comprehensive overview of the main pitfalls users are likely to448

encounter when using NeuroQuery, but we hasten to emphasize that all of these pitfalls are infrequent.449

NeuroQuery produces reliable maps for the typical queries, as quantified by our experiments.450

3.3 General considerations on meta-analyses451

When using NeuroQuery to foster scientific progress, it is useful to keep in mind that meta-analyses452

are not a silver bullet. First, meta-analyses have little or no ability to correct biases present in the453

primary literature (e.g., perhaps confirmation bias drives researchers to overreport amygdala activation454

in emotion studies). Beyond increased statistical power, one promise of meta-analysis is to a↵ord a455

wider perspective on results—in particular, by comparing brain structures detected across many dif-456

ferent conditions. However, claims that a structure is selective to a mental condition need an explicit457

statistical model of reverse inference [Wager et al., 2016]. Gathering such evidence is challenging:458

selectivity means that changes at the given brain location specifically imply a mental condition, while459

brain imaging experiments most often do not manipulate the brain itself, but rather the experimental460

conditions it is placed in [Poldrack, 2006]. In a meta-analysis, the most important confound for re-461

verse inferences is that some brain locations are reported for many di↵erent conditions. NeuroQuery462

accounts for this varying baseline across the brain by fitting an intercept and reporting only di↵er-463

ences from the baseline. While helpful, this is not a formal statistical test of reverse inference. For464

example, the NeuroQuery map for “interoception” highlights the insula, because studies that mention465

“interoception” tend to mention and report coordinates in the insula. This, of course, does not mean466

that interoception is the only function of the insula. Another fundamental challenge of meta-analyses467

in psychology is the decomposition of the tasks in mental processes: the descriptions of the dimensions468

of the experimental paradigms are likely imperfect and incomplete. Indeed, even for a task as simple469

as finger tapping, minor variations in task design lead to reproducible variations in neural responses470

[Witt et al., 2008]. However, quantitatively describing all aspects of all tasks and cognitive strategies471

is presently impossible, as it would require a universally-accepted, all-encompassing psychological on-472

tology. Rather, NeuroQuery grounds meta-analysis in the full-text descriptions of the studies, which473

in our view provide the best available proxy for such an idealized ontology.474

2https://neuroquery.org/query?text=adhd
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3.4 Conclusion475

NeuroQuery stems from a desire to compile results across studies and laboratories, an essential endeavor476

for the progress of human brain mapping [Yarkoni et al., 2010]. Mental processes are di�cult to isolate477

and findings of individual studies may not generalize. Thus, tools are needed to denoise and summarize478

knowledge accumulated across a large number of studies. Such tools must be usable in practice479

and match the needs of researchers who exploit them to study human brain function and disorders.480

NeuroSynth took a huge step in this direction by enabling anyone to perform, in a few seconds, a481

fully automated meta-analysis across thousands of studies, for an important number of isolated terms.482

Still, users are faced with the di�cult task of mapping their question to a single term from the483

NeuroSynth vocabulary, which cannot always be done in a meaningful way. If the selected term is not484

popular enough, the resulting map also risks being unusable for lack of statistical power. NeuroQuery485

provides statistical maps for arbitrary queries – from seldom-studied terms to free-text descriptions486

of experimental protocols. Thus, it enables applying fully-automated and quantitative meta-analysis487

in situations where only semi-manual and subjective solutions were available. It therefore brings an488

important advancement towards grounding neuroscience on quantitative knowledge representations.489
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4 Materials and methods619

We now expose methodological details: first the constitution of the NeuroQuery data, then the statis-620

tical model, the validation experiments in details, and the word-occurrence statistics in the corpus of621

studies.622

4.1 Building the NeuroQuery training data623

4.1.1 A new dataset624

The dataset collected by NeuroSynth [Yarkoni et al., 2011] is openly available3. In July, 2019, Neu-625

roSynth contains 448 255 unique locations for 14 371 studies. It also contains the term frequencies for626

3228 terms (1335 are actually used in the NeuroSynth online tool4), based on the abstracts of the627

studies. However, it only contains term frequencies for the abstracts, and not the articles themselves.628

This results in a shallow description of the studies, based on a very short text (around 20 times smaller629

than the full article). As a result, many important terms are very rare: they seldom occur in abstracts,630

and can be associated with very few studies. For example, in our corpus of 13 459 studies, “hunting-631

ton disease” occurs in 32 abstracts, and “prosopagnosia” in 25. For such terms, meta-analysis lacks632

statistical power. When the full text is available, many more term occurrences – associations between633

a term and a study – are observed (Fig. 16). This means that more information is available, terms634

are better described by their set of associated studies, and meta-analyses have more statistical power.635

Moreover, as publications cannot always be redistributed for copyright reasons, NeuroSynth (and any636

dataset of this nature) can only provide term frequencies for a fixed vocabulary, and not the text they637

were extracted from. We therefore decided to collect a new corpus of neuroimaging studies, which638

contains the full text. We also created a new peak activation coordinate extraction system, which639

achieved a higher precision and recall than NeuroSynth’s on a small sample of manually annotated640

studies.641

3https://github.com/neurosynth/neurosynth-data
4http://neurosynth.org
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4.1.2 Journal articles in a uniform and validated format642

We downloaded around 149 000 full-text journal articles related to neuroimaging from the PubMed643

Central5 [Sayers, 2009] and Elsevier6 APIs. We focus on these sources of data because they provide644

many articles in a structured format. It should be noted that this could result in a selection bias, as645

some scientific journals – mostly paid journals – are not available through these channels. The arti-646

cles are selected by querying the ESearch Entrez utility [Sayers, 2009] either for specific neuroimaging647

journals or with query strings such as “fMRI”. The resulting studies are mostly based on fMRI exper-648

iments, but the dataset also contains Positron Emission Tomography (PET) or structural Magnetic649

Resonance Imaging (MRI) studies. It contains studies about diverse types of populations: healthy650

adults, patients, elderly, children.651

We use eXtensible Stylesheet Language Transformations (XSLT) to convert all articles to the652

Journal Article Tag Suite (JATS) Archiving and Interchange XML language7 and validate the result653

using the W3C XML Schema (XSD) schemas provided on the JATS website. From the resulting XML654

documents, it is straightforward to extract the title, keywords, abstract, and the relevant parts of the655

article body, discarding the parts which would add noise to our data (such as the acknowledgements656

or references).657

4.1.3 Coordinate extraction658

We extract tables from the downloaded articles and convert them to the XHTML 1.1 table model (the659

JATS also allows using the OASIS CALS table model). We use stylesheets provided by docbook8 to660

convert from CALS to XHTML. Cells in tables can span several rows and columns. When extracting661

a table, we normalize it by splitting cells that span several rows or columns and duplicating these662

cells’ content; the normalized table thus has the shape of a matrix. Finally, all unicode characters that663

can be used to represent “+” or “-” signs (such as &#x2212; “MINUS SIGN”) are mapped to their664

ASCII equivalents, “+” (&#x2b; “PLUS SIGN”) or “-” (&#x2d; “HYPHEN MINUS”). Once tables665

are isolated, in XHTML format, and their rows and columns are well aligned, the last step is to find666

and extract peak activation coordinates. Heuristics find columns containing either single coordinates667

or triplets of coordinates based on their header and the cells’ content. A heuristic detects when the668

coordinates extracted from a table are probably not stereotactic peak activation coordinates, either669

because many of them lie outside a standard brain mask, or because the group of coordinates as a670

whole fits a normal distribution too well. In such cases the whole table is discarded. Out of the 149 000671

downloaded and formatted articles, 13 459 contain coordinates that could be extracted by this process,672

resulting in a total of 418 772 locations.673

All the extracted coordinates are treated as coordinates in the Montreal Neurological Institute674

(MNI) space, even though some articles still refer to the Talairach space. The precision of extracted675

coordinates could be improved by detecting which reference is used and transforming Talairach co-676

ordinates to MNI coordinates. However, di↵erences between the two coordinate systems are at most677

of the order of 1 cm, and much smaller in most of the brain. This is comparable to the size of the678

Gaussian kernel used to smooth images. Moreover, the alignment of brain images does not only de-679

pend on the used template but also on the registration method, and there is no perfect transformation680

from Talairach to MNI space [Lancaster et al., 2007]. Therefore, treating all coordinates uniformly is681

acceptable as a first approximation, but better handling of Talairach coordinates is a clear direction682

for improving the NeuroQuery dataset.683

Coordinate extraction evaluation. To evaluate the coordinate extraction process, we focused684

on articles that are present in both NeuroSynth’s dataset and NeuroQuery’s, and for which the two685

coordinate extraction systems disagree. Out of 8 692 articles in the intersection of both corpora, the686

extracted coordinates di↵er (for at least one coordinate) in 1 961 (i.e. in 23% of articles). We selected687

5https://www.ncbi.nlm.nih.gov/pmc/, https://www.ncbi.nlm.nih.gov/books/NBK25501/
6https://dev.elsevier.com/api_docs.html
7https://jats.nlm.nih.gov/archiving/
8https://docbook.org/tools/
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Table 2: Number of extracted coordinate sets that con-
tain at least one error of each type, out of 40 manually
annotated articles. The articles are chosen from those on
which NeuroSynth and NeuroQuery disagree – the ones
most likely to contain errors.

False positives False negatives
NeuroSynth 20 28
NeuroQuery 3 8

the first 40 articles (sorted by PubMed ID) and manually evaluated the extracted coordinates. As688

shown in Table 2, our method extracted false coordinates from fewer articles: 3 / 40 articles have at689

least one false location in our dataset, against 20 for NeuroSynth. While these numbers may seem690

high, note that errors are far less likely to occur in articles for which both methods extract exactly the691

same locations.692

4.1.4 Density maps693

For each article, the coordinates from all tables are pooled, resulting in a set of peak activation694

coordinates. We then use Gaussian Kernel Density Estimation (KDE) [Silverman, 1986, Scott, 2015]695

to estimate the density of these activations over the brain. The chosen bandwidth of the Gaussian696

kernel yields a Full Width at Half Maximum (FWHM) close to 9mm, which is in the range of smoothing697

kernels that are typically used for fMRI meta-analysis [Wager et al., 2007, 2004, Turkeltaub et al., 2002].698

For comparison, NeuroSynth uses a hard ball of 10mm radius.699

One benefit of focusing on the density of peak coordinates (which is `1-normalized) is that it does700

not depend on the number of contrasts presented in an article, nor on other analytic choices that cause701

the number of reported coordinates to vary widely, ranging from less than a dozen to several hundreds.702

4.1.5 Vocabulary and TFIDF features703

We represent the text of our articles by TFIDF features [Salton and Buckley, 1988]. These simple704

representations are popular in document retrieval and text classification because they are very e�cient705

for many applications. They contain the (reweighted) frequencies of many terms in the text, discarding706

the order in which words appear. An important choice when building TFIDF vectors is the vocabulary:707

the words or expressions whose frequency are measured. It is common to use all words encountered in708

the training corpus, possibly discarding those that are too frequent or too rare. The vocabulary is often709

enriched with “n-grams”, or collocations: groups of words that often appear in the same sequence,710

such as “European Union” or “default mode network”. These collocations are assigned a dimension of711

the TFIDF representations and counted as if they were a single token. There are several strategies to712

discover such collocations in a training corpus [Mikolov et al., 2013, Bouma, 2009].713

We do not extract the vocabulary and collocations from the training corpus, but instead rely on714

existing, manually-curated vocabularies and ontologies of neuroscience. This ensures that we only715

consider terms that are relevant to brain function, anatomy or disorders, and that we only use mean-716

ingful collocations. Moreover, it helps to reduce the dimensionality of the TFIDF representations.717

Our vocabulary comprises five important lexicons of neuroscience, based on community e↵orts: the718

subset of Medical Subject Headings (MeSH) (https://www.ncbi.nlm.nih.gov/mesh) dedicated to719

neuroscience and psychology, detailed in Section 4.4.2 (MeSH are the terms used by PubMed to index720

articles), Cognitive Atlas (http://www.cognitiveatlas.org/), NeuroNames (http://braininfo.721

rprc.washington.edu/NeuroNames.xml) and NIF (https://neuinfo.org/). We also include all the722

terms and bigrams used by NeuroSynth (http://neurosynth.org). We discard all the terms and723

expressions that occur in less than 5 / 10 000 articles. The resulting vocabulary contains 7 547 terms724

and expressions related to neuroscience.725

4.1.6 Summary of collected data726

The data collection described in this section provides us with important resources: i) Over 149K full-727

text journal articles related to neuroscience – 13.5K of which contain peak activation coordinates – all728
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translated into the same structured format and validated. ii) Over 418K peak activation coordinates729

for more than 13.5K articles. iii) A vocabulary of 7547 terms related to neuroscience, each occurring730

in at least 6 articles from which we extracted coordinates. This dataset is the largest of its kind. In731

what follows we focus on the set of 13.5K articles from which we extracted peak locations.732

Some quantitative aspects of the NeuroQuery and NeuroSynth datasets are summarized in Table 3.733

NeuroSynth NeuroQuery
Dataset size
articles 14 371 13 459
terms 3 228 (1 335 online) 7 547
journals 60 458
raw text length (words) ⇡ 4 M ⇡ 75 M
unique term occurrences 1 063 670 5 855 483
unique term occurrences in voc intersection 677 345 3 089 040
coordinates 448 255 418 772
Coordinate extraction errors on conflicting articles
articles with false positives / 40 20 3
articles with false negatives / 40 28 8

Table 3: Comparison with NeuroSynth. “voc intersection” is the set of terms present in both NeuroSynth’s
and NeuroQuery’s vocabularies. The “conflicting articles” are papers present in both datasets, for which the
coordinate extraction tools disagree, 40 of which were manually annotated.

Text. In terms of raw amount of text, this corpus is 20 times larger than NeuroSynth’s. Combined734

with our vocabulary, it yields over 5.5M occurrences of a unique term in an article. This is over 5 times735

more than the word occurrence counts distributed by NeuroSynth9. When considering only terms in736

NeuroSynth’s vocabulary, the corpus still contains over 3M term-study associations, 4.6 times more737

than NeuroSynth. Using this larger corpus results in denser representations, higher statistical power,738

and coverage of a wider vocabulary. There is an important overlap between the selected studies: 8 692739

studies are present in both datasets – the Intersection Over Union is 0.45.740

Coordinates. The set of extracted coordinates is almost the size of NeuroSynth’s (which is 7% larger741

with 448 255 coordinates after removing duplicates), and is less noisy. To compare coordinate extrac-742

tions, we manually annotated a small set of articles for which NeuroSynth’s coordinates di↵er from743

NeuroQuery’s. Compared with NeuroSynth, NeuroQuery’s extraction method reduced the number of744

articles with incorrect coordinates (false positives) by a factor of 7, and the number of articles with745

missing coordinates (false negatives) by a factor of 3 (Table 2). Less noisy brain activation data is746

useful for training encoding models.747

Sharing data. We do not have the right to share the full text of the articles, but the vocabulary,748

extracted coordinates, and term occurrence counts for the whole corpus are freely available online10.749

4.2 Mathematical details of the NeuroQuery statistical model750

Notation We denote scalars, vectors and matrices with lower-case, bold lower-case, and bold-upper751

case letters respectively: x, x, X. We denote the elements of X by xi,j , its rows by xi, and its752

columns by x⇤,i. We denote p the number of voxels in the brain, v the size of the vocabulary, and n753

the number of studies in the dataset. We use indices i, j, k to indicate indexing samples (studies),754

features (terms), and outputs (voxels) respectively. We use a hat to denote estimated values, e.g. B̂.755

hx,yi is the vector scalar product.756

9https://github.com/neurosynth/neurosynth-data
10https://github.com/neuroquery/neuroquery_data/training_data
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4.2.1 TFIDF feature extraction757

We represent a document by its TFIDF features [Salton and Buckley, 1988], which are reweighted758

Bag-Of-Words features. A TFIDF representation is a vector in which each entry corresponds to the759

(reweighted) frequency of occurrence of a particular term. The term frequency, tf, of a word in760

a document is the number of times the word occurs, divided by the total number of words in the761

document. The document frequency, df, of a word in a corpus is the proportion of documents in which762

it appears. The inverse document frequency, idf, is defined as:763

idf(w) = � log(df) + 1 = � log
| { i | w occurs in document i } |

n
+ 1 , (1)

where n is the number of documents in the corpus and | · | is the cardinality. Term frequencies are764

reweighted by their idf, so that frequent words, which occur in many documents (such as “results” or765

“brain”), are given less importance. Indeed, such words are usually not very informative.766

Our TFIDF representation for a study is the uniform average of the normalized TFIDF vectors for767

its title, abstract, full text, and keywords. Therefore, all parts of the article are taken into account,768

but a word that occurs in the title is more important than a word the article body (since the title is769

shorter).770

TFIDF features exploit a fixed vocabulary – each dimension is associated with a particular word.771

The vocabulary we consider comprises 7 547 terms or phrases related to neuroscience that occur in772

at least 0.05% of publications. These terms are extracted from manually curated sources shown in773

Table 1 and Table 4.774

4.2.2 Reweighted ridge matrix and feature (vocabulary) selection775

Here we give some details about the feature selection and adaptive ridge regularization. After extract-776

ing TFIDF features and computing density estimation maps, we fit a linear model by regressing the777

activity of each voxel on the TFIDF descriptors (Section 2.1). We denote p the number of voxels,778

v the size of the vocabulary, and n the number of documents in the corpus. We construct a design779

matrix X 2 Rn⇥v containing the TFIDF features of each study, and the dependent variables Y 2 Rn⇥p
780

representing the activation density at each voxel for each study. The linear model thus writes:781

Y = XB⇤ +E, (2)

where E is Gaussian noise and B⇤ 2 Rv⇥p are the unknown model coe�cients. We use ridge regression782

(least-squares regression with a penalty on the `2 norm of the model coe�cients). Some words are much783

more informative than others, or have a much stronger correlation with brain activity. For example,784

“auditory” is well correlated with activations in the auditory areas, whereas “attention” has a lower785

signal-to-noise ratio, as it is polysemic and, even when used as a psychological concept, has a weaker786

link to reported neural activations. Therefore it is beneficial to adapt the amount of regularization for787

each word, to strongly penalize (or even discard) the most noisy features.788

Many existing methods for feature selection are not adapted to our case, because: i) the design789

matrix X is very sparse, and more importantly ii) we want to select the same features for ⇡ 28 000790

outputs (each voxel in the brain is a dependent variable). We therefore introduce a new reweighted791

ridge regression and feature selection procedure.792

Our approach is based on the observation that when fitting a ridge regression with a uniform793

regularization, the most informative words are associated with large coe�cients for many voxels. We794

start by fitting a ridge regression with uniform regularization. We obtain one statistical map of the795

brain for every feature (every term in the vocabulary). The maps are rescaled to reduce the importance796

of coe�cients with a high variance. We then compute the squared `2 norms of these brain maps across797

voxels. These norms are a good proxy for the importance of each feature. Terms associated with large798

norms explain well the activity of many voxels and tend to be helpful features. We rely on these brain799

map norms to determine which features are selected and what regularization is applied. The feature800

selection and adaptive regularization are described in detail in the rest of this section.801
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Z scores for ridge regression coe�cients Our design matrix X 2 Rn⇥v holds TFIDF features802

for v terms in n studies. There are p dependent variables, one for each voxel in the brain, which form803

Y 2 Rn⇥p. The first ridge regression fit yields coe�cients B̂(0) 2 Rv⇥p:804

B̂(0) = argmin
B2Rv⇥p

||Y �XB||2F + � ||B||2F, (3)

where � 2 R>0 is a hyperparameter set with Generalized Cross-Validation (GCV) [Rifkin and Lippert,805

2007]. We then compute an estimate of the variance of these coe�cients. The approach is similar to806

the one presented in Gaonkar and Davatzikos [2012] for the case of SVMs. A simple estimator can807

be obtained by noting that the coe�cients of a ridge regression are a linear function of the dependent808

variables. Indeed, solving Eq. (3) yields:809

B̂(0) = (XTX + �I)�1XTY . (4)

Defining810

M = (XTX + �I)�1XT 2 Rv⇥n , (5)

for a voxel k 2 {1, . . . , p}, and a feature j 2 {1, . . . v},811

b̂(0)j,k = hmj , y⇤,ki , (6)

where mj 2 Rn is the ith row of M and y⇤,k 2 Rn is the kth column of Y . The activations of voxel k812

across studies are considered to be independent identically distributed (i.i.d), so813

Var(y⇤,k) = Var(y1,k) In , s2k In . (7)

An estimate of this variance can be obtained from the residuals:814

ŝ2k , 1

n

nX

i=1

(ŷ(0)i,k � yi,k)
2 =

1

n

nX

i=1

((XB̂(0))i,k � yi,k)
2 . (8)

A simple estimate of the coe�cients’ variance is then:815

�̂2
j,k , dVar(b̂(0)j,k) = ŝ2k hmj , mji = ŝ2k

nX

i=1

m2
j,i (9)

We can thus estimate the standard deviation of each entry of B̂(0). We obtain a brain map of Z scores816

for each term in the vocabulary: for term j 2 {1, . . . , v} and voxel k 2 {1 . . . p},817

ẑj,k ,
b̂(0)j,k

�̂j,k
. (10)

We denote �̂j = (�̂j,1, . . . , �̂j,p) 2 Rp; and the Z-map for term j: ẑj = (ẑj,1, . . . , ẑj,p) 2 Rp .818

Reweighted ridge matrix Once we have a Z-map for each term, we summarize these maps by819

computing their squared Euclidean norm. In practice, we smooth the Z scores: ẑj,k in Eq. (10) is820

replaced by821

⇣̂j,k =
b̂(0)j,k

�̂j,k + �
, (11)

where � is a constant o↵set. The o↵set � allows us to interpolate between basing the regularization on822

the Z scores, or on the raw coe�cients, i.e. the �-maps. We obtain better results with a large value823

for �, such as the mean variance of all the regression coe�cients. This prevents selecting terms only824

because they have a very small estimated variance in some voxels. Note that this o↵set � is only used825
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to compute the regularization, and not to compute the rescaled predictions produced by NeuroQuery826

as in Eq. (17).827

We denote ⇣̂j = (⇣̂j,1, . . . , ⇣̂j,p) 2 Rp, 8j 2 {1, . . . , v}. Next, we compute the mean µ and standard828

deviation e of { ||⇣̂j ||22, j = 1 . . . v }, and set an arbitrary cuto↵829

c = µ+ 2 e . (12)

All features j such that ||⇣̂j ||22  c+ ✏, where ✏ is a small margin to avoid division by zero in Eq. (14),830

are discarded. In practice we set ✏ to 0.001. The value of ✏ is not important, because features that831

are not discarded but have their ⇣ norm close to c get very heavily penalized in Eq. (14) and have832

coe�cients very close to 0.833

We denote u < v the number of features that remain in the selected vocabulary. We denote834

� : {1 . . . u} ! {1 . . . v} the strictly increasing mapping that reindexes the features by keeping only the835

u selected terms: �({1 . . . u}) is the set of selected features. We denote P 2 Ru⇥v the corresponding836

projection matrix:837

pT
⇤,j = e�(j) , 8j 2 {1 . . . u} , (13)

where {ej , j = 1 . . . v} is the natural basis of Rv. The regularization for the selected features is then838

set to839

wj =
1

||⇣̂�(j)||22 � c
. (14)

Finally, we define the diagonal matrix W 2 Ru⇥u such that the jth element of its diagonal is wj and840

fit a new set of coe�cients B̂ 2 Ru⇥p with this new ridge matrix.841

Fitting the reweighted ridge regression The reweighted ridge regression problem writes:842

B̂ = argmin
B2Ru⇥p

||Y �XP T B||2F + � Tr(BT W B) , (15)

Where � 2 R>0 is a new hyperparameter, that is again set by Generalized Cross-Validation (GCV).843

With a change of variables this becomes equivalent to solving the usual ridge regression problem:844

�̂ = argmin
�

||Y � X̃ �||2F + � ||�||2F , (16)

where X̃ = XP T W� 1
2 and we recover B̂ as B̂ = W� 1

2 �̂ .845

The variance of the parameters B̂ can be estimated as in Eq. (9) – without applying the smoothing846

of Eq. (11). NeuroQuery can thus report rescaled predictions847

ẑ =
xT B̂

⇣
dVar(xT B̂)

⌘ 1
2

(17)

One benefit of this rescaling is to provide the user a natural value to threshold the maps. As visible848

on figures 4, 5, and 6, thresholding e.g. at ẑ ⇡ 3 selects regions typical of the query, that can be used849

for instance in a region of interest analysis.850

Summary of the regression with adaptive regularization The whole procedure for feature851

selection and adaptive regularization is summarized in Algorithm 1.852

In practice, the feature selection keeps u ⇡ 200 features. It has a very low computational cost853

compared to other feature selection schemes. The computational cost is that of fitting two ridge854

regressions (and the second one is fitted with a much smaller number of features). Moreover, the855

feature selection also reduces computation at prediction time, which is useful because we deploy an856

online tool based on the NeuroQuery model11.857

11https://neuroquery.saclay.inria.fr
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Algorithm 1: Reweighted Ridge Regression

input: TFIDF features X, brain activation densities Y , regularization hyperparameter grid
⇤, variance smoothing parameter �

use GCV to compute the best hyperparameter � 2 ⇤ and
B̂(0) = argminB ||Y �XB||2F + �||B||2F;
compute variance estimates �̂2

j as in Eq. (9);

⇣̂j  
b̂(0)
j

�̂j+� 8j 2 {1 . . . v};
compute c according to Eq. (12) ;

define � the reindexing that selects features j such that ||⇣̂j ||22 > c+ ✏ ;
define P 2 Ru⇥v the projection matrix for � as in Eq. (13) ;
wj  1

||⇣̂�(j)||22�c
8j 2 {1 . . . u};

W  diag(wj , j = 1 . . . u);
use GCV to compute the best hyperparameter � 2 ⇤ and
B̂ = argminB ||Y �XP TB||2F + � Tr(BTWB) ;

return B̂, dVar(B̂), �, P , W

4.2.3 Smoothing: regularization at test time858

In order to smooth the sparse input features, we exploit the covariance of our training corpus. We rely859

on Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999]. We use a NMF of X 2 Rn⇥v to860

compute a low-rank approximation of the covariance XT X 2 Rv⇥v. Thus, we obtain a denoised term861

co-occurrence matrix, which measures the strength of association between pairs of terms. We start by862

computing an approximate factorization of the corpus TFIDF matrix X:863

U ,V = argmin
U2Rn⇥d

�0

V 2Rd⇥v
�0

||X �U V ||2F + �(||U ||2F + ||V ||2F) + �(||U ||1,1 + ||V ||1,1) , (18)

where d < v is a hyperparameter and || · ||1,1 designates the sum of absolute values of all entries of a864

matrix. Computing this factorization amounts to describing each document in the corpus as a linear865

mixture of d latent factors, or topics. In natural language processing, similar decomposition methods866

are referred to as topic modelling [Deerwester et al., 1990, Blei et al., 2003].867

The latent factors, or topics, are the rows of V 2 Rd⇥v: each topic is characterized by a vector of868

positive weights over the terms in the vocabulary. U 2 Rn⇥d contains the weight that each document869

gives to each topic. For each term in the vocabulary, the corresponding column of V is a a d-dimensional870

embedding in the low-dimensional, latent space: this embedding contains the strength of association871

of the term with each topic. These embeddings capture semantic relationships: related terms tend to872

be associated with embeddings that have large inner products.873

The hyperparameters d = 300, � = 0.1 and � = 0.01 are set by evaluating the reconstruction error,874

sparsity of the similarity matrix, and extracted topics (rows of V ) on an unlabelled (separate) corpus.875

We find that the NeuroQuery model as a whole is not very sensitive to these hyperparameters and we876

obtain similar results for a range of di↵erent values.877

Eq. (18) is a well-known problem. We solve it with a coordinate-descent algorithm described
in Cichocki and Phan [2009] and implemented in scikit-learn [Pedregosa et al., 2011]. Then, let
N 2 Rd⇥d be the diagonal matrix containing the Euclidean norms of the columns of U , i.e. such that
nii = ||u⇤,i||2 and let Ṽ = N V . We define the word similarity matrix A = Ṽ T Ṽ 2 Rv⇥v. This
matrix is a denoised, low-rank approximation of the corpus covariance. Indeed,

XT X ⇡ (U V )T U V (19)

= V T NT
�
U N�1

�T
U N�1 N V (20)

⇡ Ṽ T Ṽ . (21)
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The last approximation is justified by the fact that the columns of U 2 Rn⇥d are almost orthogonal,878

and UT U is almost a diagonal matrix. This is what we observe in practice, and is due to the fact that879

n ⇡ 13 000 is much larger than d = 300, and that to minimize the reconstruction error in Eq. (18) the880

columns of U have an incentive to span a large subspace of Rn.881

The similarity matrix A contains the inner products of the low-dimensional embeddings of the882

terms in our vocabulary. We form the matrix T by dividing the rows of A by their `1 norm:883

ti,j =
ai,j

||ai ||1
8 i = 1 . . . v, j = 1 . . . v . (22)

This normalization ensures that terms that have many neighbors are not given more importance in884

the smoothed representation. The smoothing matrix that we use is then defined as:885

S = (1� ↵) I + ↵T , (23)

with 0 < ↵ < 1 (in our experiments ↵ is set to 0.1). This smoothing matrix is a mixture of the886

identity matrix and the term associations T . The model is not very sensitive to the parameter ↵ as887

long as it is chosen small enough for terms actually present in the query to have a higher weight than888

terms introduced by the query expansion. This prevents degrading performance for documents which889

contain well-encoded terms, which obtain good prediction even without smoothing. This explains why890

in Fig. 1, the prediction for “visual” relies mostly on the regression coe�cient for this exact term,891

whereas the prediction for “agnosia” relies on coe�cients of terms that are related to “agnosia” –892

“agnosia” itself is not kept by the feature selection procedure.893

The smoothed representation for a query q becomes:894

x = STq 2 Rv (24)

where q 2 Rv is the TFIDF representation of the query in large vocabulary space, and S 2 Rv⇥v is895

the smoothing matrix. And the prediction for q is:896

ŷ = B̂ P STq, (25)

where P 2 Ru⇥v is the projection onto the useful vocabulary (selected features), B̂ 2 Rp⇥u are the897

estimated linear regression coe�cients, ŷ 2 Rp is the predicted map.898

4.3 Validation experiments: additional details899

4.3.1 Example Meta-analysis results for the RSVP language task from the IBC dataset.900

Here we provide more details on the meta-analyses for “Read pseudo-words vs consonant strings” shown901

in Fig. 2. the PMIDS of the studies included in the GingerALE meta-analysis are: 15961322, 16574082,902

16968771, 17189619, 17884585, 17933023, 18272399, 18423780, 18476755, 18778780, 19396362, 19591947,903

20035884, 20600985, 20650450, 20961169, 21767584, 22285025, 22659111, 23117157, 23270676, 24321558,904

24508158, 24667455, 25566039, 26017384, 26188258, 26235228, 28780219. Representing a total of 29905

studies and 2025 peak activation coordinates. They are the studies from our corpus (the largest ex-906

isting corpus of text and peak activation coordinates, with ⇡ 14 000 studies) which contain the terms:907

“reading”, “pseudo”, “word”, “consonant” and “string”. The map shown on the right of Fig. 2 was908

obtained with GingerALE, 5000 permutations and the default settings otherwise. Note that an un-909

realistically low threshold is used for the display because the map would be empty otherwise. Fig. 8910

displays more maps with di↵erent analysis strategies: the details of the original contrasts and the dif-911

ference between running NeuroQuery the contrast definition or the task definition. The task definition912

leads to predicted activations in the early visual cortex, as in the actual group-level maps from the913

experiment but unlike the predictions from the contrast definition, as the later contains no information914

on the stimulus modality.915
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(a) Group-level map from IBC dataset (b) ALE on contrast definition

(c) NeuroQuery on contrast definition (d) NeuroQuery on task description

Figure 8: Using meta-analysis to interpret fMRI maps. Example of the “Read pseudo-words
vs. consonant strings” contrast, derived from the RSVP language task in the IBC dataset. (a): the group-
level map obtained from the actual fMRI data from IBC. (b): ALE map using the 29 studies in our corpus
that contain all 5 terms from the contrast name. (c): NeuroQuery map obtained from the contrast name.
(d): NeuroQuery map obtained from the page-long RSVP task description in the IBC dataset documentation:
https://project.inria.fr/IBC/files/2019/03/documentation.pdf

Figure 9: Quantitative evaluations on unseen pairs A quantitative comparison of prediction on random
unseen studies (i.i.d. cross-validation) to prediction on studies containing pairs of terms never seen before,
using the two measures of predictions performance (as visible on Fig. 7 for standard cross-validation).

4.3.2 NeuroQuery performance on unseen pairs of terms916

Fig. 3 shows in a qualitative way that NeuroQuery can produce useful brain maps on a combination917

of terms that have not been studied together. To give a quantitative evaluation that is not limited918

to a specific pair of terms, we perform a systematic experiment, studying prediction on many unseen919

pairs of term. For this purpose, we chose pairs of terms in our full corpus and leave out all the studies920

where both of these terms appear. We train a NeuroQuery model on the reduced corpus of studies921

obtained by excluding studies with both terms, and evaluate its predictions on the left-out studies.922

We choose terms that appear simultaneously in studies frequently (more than 500) to ensure a good923

estimation of the combined locations for these terms in the test set, but not too frequently (less than924

1000), to avoid depleting the training set too much. Indeed, removing the studies for both terms from925

the corpus not only decreases the statistical power to map these terms but also, more importantly, it926

creates a negative correlation between these terms. Out of these terms, we select 1000 out random as927

a left-out and run the experiment 1000 times.928
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Figure 10: Consistency between prediction of
unseen pairs and meta-analysis The Pearson cor-
relation between the map predicted by NeuroQuery on
a pair of unseen terms and the average density of lo-
cations reported on the studies containing this pair of
terms (hence excluded from the training set of Neuro-
Query).

To evaluate NeuroQuery’s prediction on these unseen pairs of terms, we first use the same metrics929

as in Section 2.5. Fig. 9-left shows the log-likelihood of coordinates reported in a publication evaluated930

on left-out studies that contain the combination of terms excluded from the train set. Compared to931

testing on a random subset of studied, identically distributed to the training, there is a slight decrease932

in likelihood but it is small compared to the variance between cross-validation runs. Fig. 9-right shows933

results for our other validation metric [adapted from Mitchell et al., 2008]: matching 1 publication out934

of 2 to its observed locations. The decrease in performance is more marked. However, it should be935

noted that the task is more di�cult when the test set is made only of publications that all contain936

two terms, as these publications are all more similar to each other than random publications from the937

general corpus.938

To gauge the quality of the maps on unseen pairs, and not only how well the corresponding pub-939

lications are captured, Fig. 10 shows the Pearson correlation between the predicted brain map and940

the average density of the reported locations in the left-out studies. The excellent median Pearson941

correlation of .85 shows that the predicted brain map is indeed true to what a meta-analysis of these942

studies would reveal.943

4.3.3 NeuroQuery prediction performance without anatomical terms944

In Fig. 11, we present an additional quantitative measure of prediction performance. We delete all945

terms that are related to anatomy in test articles, to see how NeuroQuery performs without these highly946

predictive features, which may be missing from queries related to brain function. As the GCLDA and947

Figure 11: Explaining coordinates reported in unseen studies. left: log-likelihood of reported co-
ordinates in test articles. right: how often the predicted map is closer to the true coordinates than to the
coordinates for another article in the test set [Mitchell et al., 2008]. The boxes represent the first, second and
third quartiles of scores across 16 cross-validation folds. Whiskers represent the rest of the distribution, except
for outliers, defined as points beyond 1.5 times the IQR past the low and high quartiles, and represented with
diamond fliers.
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NeuroSynth tools are designed to work with NeuroSynth data, they are only tested on NeuroSynth’s948

TFIDF features, which represent the articles’ abstracts.949

4.3.4 Variable terminology950

In Fig. 12, we show predictions for some terms related to mental arithmetic. NeuroQuery’s semantic951

smoothing produces consistent results for related terms.952

Figure 12: Taming arbitrary query variability Maps obtained for a few words related to mental arith-
metic. By correctly capturing the fact that these words are related, NeuroQuery can use its map for easier
words like “calculation” and “arithmetic” to encode terms like “computation” and “addition” that are di�cult
for meta-analysis.

4.3.5 Comparison with the BrainPedia IBMA study953

To compare maps produced by NeuroQuery with a reliable ground truth, we use the BrainPedia study954

[Varoquaux et al., 2018], which exploits IBMA to produce maps for 19 cognitive concepts. Indeed,955

when it its feasible, IBMA of manually selected studies produces high-quality brain maps and has been956

used as a reference for CBMA methods [Salimi-Khorshidi et al., 2009]. We download the BrainPedia957

maps and their cognitive labels from the NeuroVault platform12. BrainPedia maps combine forward958

and reverse inference, and are thresholded to identify regions that are both recruited and predictive959

of each cognitive process. We treat these maps as a binary ground truth: above-threshold voxels are960

relevant to the map’s label. For each label, we obtain a brain map from NeuroQuery, NeuroSynth961

and GCLDA. We compare these results to the BrainPedia thresholded maps and measure the Area962

Under the ROC Curve. This standard classification metric measures the probability that a voxel that963

is active in the BrainPedia reference map will be given a higher intensity in the NeuroQuery prediction964

than a voxel that is inactive in the BrainPedia map.965

We consider two settings. First, we use the original labels provided in the NeuroVault metadata.966

However, some of these labels are missing from the NeuroSynth vocabulary. In a second experiment,967

we therefore replace these labels with the most similar term we can find in the NeuroSynth vocabulary.968

These replacements are shown in Fig. 13.969

When replacing the original labels with less specific terms understood by NeuroSynth, both Neu-970

roQuery and NeuroSynth perform well: NeuroQuery’s median AUC is 0.9 and NeuroSynth’s is 0.8.971

When using the original labels, NeuroSynth fails to produce results for many labels as they are missing972

from its vocabulary. NeuroQuery still performs well on these uncurated labels with a median AUC of973

12https://neurovault.org/collections/4563/
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0.8. Finally, we can note that although the BrainPedia maps come from IBMA conducted on carefully974

selected fMRI studies, they also contain some noise. As can be seen in Fig. 13, BrainPedia maps that975

qualitatively match the domain knowledge also tend to be close to the CBMA results produced by976

NeuroQuery and NeuroSynth.977
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Figure 13: Comparison of CBMA maps with IBMA maps from the BrainPedia study. We use
labelled and thresholded maps resulting from a manual IBMA. The labels are fed to NeuroQuery, NeuroSynth
and GCLDA and their results are compared to the reference by measuring the Area under the ROC Curve.
The black vertical bars show the median. When using the original BrainPedia labels, NeuroQuery performs
relatively well but NeuroSynth fails to recognize most labels. When reformulating the labels, i.e. replacing them
with similar terms from NeuroSynth’s vocabulary, both NeuroSynth and NeuroQuery match the manual IBMA
reference for most terms. On the top, we show the BrainPedia map (first row) and NeuroQuery prediction
(second row) for the quartiles of the AUC obtained by NeuroQuery on the original labels. A lower AUC for
some concepts can sometimes be explained by a more noisy BrainPedia reference map.

4.3.6 Comparison with Harvard-Oxford anatomical atlas978

Here, we compare CBMA maps to manually segmented regions of the Harvard-Oxford anatomical atlas979

[Desikan et al., 2006]. We feed the labels from this atlas to NeuroQuery, NeuroSynth and GCLDA980

and compare the resulting maps to the atlas regions. This experiment provides a sanity check that981

relies on an excellent ground truth, as the atlas regions are labelled and segmented by experts. For982

simplicity, atlas labels absent from NeuroSynth’s vocabulary are discarded. For the remaining 18983
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labels, we compute the Area Under the ROC Curve of the maps produced by each meta-analytic tool.984

This experiment is therefore identical to the one presented in Section 4.3.5, except that the reference985

ground truth is a manually segmented anatomical atlas, and that we do not consider reformulating the986

labels. GCLDA is not used in this experiment as the trained model distributed by the authors does987

not recognize anatomical terms. We observe that both NeuroSynth and NeuroQuery match closely the988

reference atlas, with a median AUC above 0.9, as seen in Fig. 14.989

Figure 14: Comparison of predictions with regions of the Harvard-Oxford anatomical atlas.
Labels of the Harvard-Oxford anatomical atlas present in NeuroSynth’s vocabulary are fed to NeuroSynth and
NeuroQuery. The meta-analytic maps are compared to the manually segmented reference by measuring the
Area Under the ROC Curve. The black vertical bars show the median. Both NeuroSynth and NeuroQuery
achieve a median AUC above 0.9. On the top, we show the atlas region (first row) and NeuroQuery prediction
(second row) for the quartiles of the NeuroQuery AUC scores.

4.3.7 Comparison with NeuroSynth on terms with strong activations990

As NeuroSynth performs a statistical test, when a term has a strong link with brain activity and is991

popular enough for NeuroSynth to detect many activations, the resulting map is trustworthy and can be992

used as a reference. Moreover, it is a well-established tool that has been adopted by the neuroimaging993

community. Here, we verify that when a term is well captured by NeuroSynth, NeuroQuery predicts994

a similar brain map. To identify terms that NeuroSynth captures well, we compute the NeuroSynth995

maps for all the terms in NeuroSynth’s vocabulary. We use the Benjamini-Hochberg procedure to996

threshold the maps, controlling the FDR at 1%. We then select the 200 maps with the largest number997

of active (above-threshold) voxels. We use these activation maps as a reference to which we compare the998

NeuroQuery prediction. For each term, we compute the Area Under the ROC Curve: the probability999

that a voxel that is active in the NeuroSynth map will have a higher value in the NeuroQuery prediction1000

than an inactive voxel. We find that NeuroQuery and NeuroSynth’s maps coincide well, with a median1001
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Figure 15: Comparison with
NeuroSynth. NeuroSynth maps
are thresholded controlling the FDR
at 1%. The 200 words with the
largest number of active voxels are
selected and NeuroQuery predictions
are compared to the NeuroSynth ac-
tivations by computing the Area Un-
der the ROC Curve. The distribu-
tion of the AUC is shown on the
top. The vertical black line shows
the median (0.90). On the bot-
tom, we show the NeuroQuery maps
(first row) and NeuroSynth activa-
tions (second row) for the quartiles
of the NeuroQuery AUC scores.

AUC of 0.90. The distribution of the AUC and the brain map corresponding to each quartile are1002

shown in Fig. 15.1003

4.4 The NeuroQuery publication corpus and associated vocabulary1004

4.4.1 Word occurrence frequencies across the corpus1005

The challenge: most words are rare. As shown on Fig. 16 right, most words occur in very few1006

documents, which is why correctly mapping rare words is important. The problem of rare words is1007

more severe in the NeuroSynth corpus, which contains only the abstracts. As the NeuroQuery corpus1008

contains the full text of the articles (around 20 times more text), more occurrences of a unique term1009

in a document are observed, as shown in Fig. 16 left, and in Fig. 17 for a few example terms.1010

Document set intersections lack statistical power. For example, “face perception” occurs in 4131011

articles, and “dementia” in 1312. 1703 articles contain at least one of these words and could be used for1012

a multivariate regression’s prediction for the query “face perception and dementia”. Indeed, denoting1013

c the dual coe�cients of the ridge regression and X the training design matrix, the prediction for a1014

query q is qtXtc, and any document that has a nonzero dot product with the query can participate in1015

the prediction. However, only 22 documents contain both terms and would be used with the classical1016

meta-analysis selection, which would lack statistical power and fail to produce meaningful results.1017

Exact matches of multi-word expressions such as “creative problem solving”, “ facial trustworthiness1018

recognition ”, “positive feedback processing”, “potential monetary reward”, “visual word recognition”1019

(all cognitive atlas concepts, all occurring in less than 5 / 10 000 full-text articles), are very rare –1020

and classical meta-analysis thus cannot produce results for such expressions. In Fig. 18, we compare1021

the frequency of multi-word expressions from our vocabulary (such as “face recognition”) with the1022

frequency of their constituent words. Being able to combine words in an additive fashion is crucial to1023

encode such expressions into brain space.1024

4.4.2 The choice of vocabulary1025

Details on the Medical Subject Headings The Medical Subject Headings (MeSH) are concerned1026

with all of medicine. We only included in NeuroQuery’s vocabulary the parts of this graph that are1027
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Figure 16: Right: benefit of using full-text articles. Document frequencies (number of documents in
which a word appears) for terms from the NeuroSynth vocabulary, in the NeuroSynth corpus (x axis) and the
NeuroQuery corpus (y axis). Words appear in much fewer documents in the NeuroSynth corpus because it only
contains abstracts. Even when considering only terms present in the NeuroSynth vocabulary, the NeuroQuery
corpus contains over 3M term-study associations – 4.6 times more than NeuroSynth. Left: Most terms
occur in few documents Plot of the document frequencies in the NeuroQuery corpus, for terms in the
vocabulary, sorted in decreasing order. While some terms are very frequent, occurring in over 12 000 articles,
most are very rare: half occur in less than 76 (out of 14 000) articles.

Figure 17: Document fre-
quencies for some example
words, in NeuroQuery’s and
NeuroSynth’s corpora.
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Figure 18: Occurrences of phrases ver-
sus its constituents How often a phrase
from the vocabulary (e.g. “face recogni-
tion”) occurs, versus at least one of its con-
stituent words (e.g. “face”). Expressions in-
volving several words are typically very rare.

relevant for neuroscience and psychology. Here we list the branches of Medical Subject Headings1028

(MeSH) that we included in our vocabulary:1029

Neuroanatomy: ’A08.186.211’1030

Neurological disorders: ’C10.114’, ’C10.177’, ’C10.228’, ’C10.281’, ’C10.292’, ’C10.314’, ’C10.500’,1031

’C10.551’, ’C10.562’, ’C10.574’, ’C10.597’, ’C10.668’, ’C10.720’, ’C10.803’, ’C10.886’, ’C10.900’1032

Psychology: ’F02.463’, ’F02.830’, ’F03’, ’F01.058’, ’F01.100’, ’F01.145’, ’F01.318’, ’F01.393’, ’F01.470’,1033

’F01.510’, ’F01.525’, ’F01.590’, ’F01.658’, ’F01.700’, ’F01.752’, ’F01.829’, ’F01.914’1034

Many MeSH terms are too rare to be part of NeuroQuery’s vocabulary. Some are too specific,1035

e.g. “Di↵use Neurofibrillary Tangles with Calcification”. More importantly, many terms are absent1036

because for each heading, MeSH provides many Entry Terms – various ways to refer to a concept,1037

some of which are almost never used in practice in the text of publications. For example Neuro-1038

Query recognizes the MeSH Preferred Term “Frontotemporal Dementia” but not some of its varia-1039

tions (https://meshb.nlm.nih.gov/record/ui?ui=D057180) such as “Dementia, Frontotemporal”,1040

“Disinhibition-Dementia-Parkinsonism-Amyotrophy Complex”, or “HDDD1”. Note that even when1041

absent from the vocabulary as single phrases, many of these variations can be parsed as a combination1042

of several terms, resulting in a similar brain map as the one obtained for the preferred term.1043

Atlas labels included in the vocabulary The labels from the 12 atlases shown in Table 4 were1044

included in the NeuroQuery vocabulary.1045

4.5 NeuroSynth posterior probability maps1046

The NeuroSynth maps shown in Fig. 5 are the NeuroSynth “association test” maps. For completeness,1047

here we show the other kind of map that NeuroSynth can produce, called “posterior probability” maps.1048
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name url

talairach http://www.talairach.org/talairach.nii
harvard oxford http://www.nitrc.org/frs/download.php/7700/HarvardOxford.tgz
destrieux https://www.nitrc.org/frs/download.php/7739/destrieux2009.tgz
aal http://www.gin.cnrs.fr/AAL-217
JHU-labels https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#JHU-labels
Striatum-Structural https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Striatum-Structural
STN https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#STN
Striatum-
Connectivity-7sub

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#
Striatum-Connectivity-7sub

Juelich https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Juelich
MNI https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#MNI
JHU-tracts https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#JHU-tracts
Thalamus https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases#Thalamus

Table 4: Atlases included in NeuroQuery’s vocabulary

Figure 19: NeuroSynth posterior probability maps for “language” (top) and “reward” (bottom), using the
full corpus.
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