Succinct Non-Interactive Secure Computation®

Andrew Morgan Rafael Passf Antigoni Polychroniadou®
Cornell University Cornell Tech J.P. Morgan AI Research
asmorgan@cs.cornell.edu rafael@cs.cornell.edu antigonipoly@gmail.com

February 20, 2020

Abstract

We present the first maliciously secure protocol for succinct non-interactive secure two-party
computation (SNISC): Each player sends just a single message whose length is (essentially)
independent of the running time of the function to be computed. The protocol does not require
any trusted setup, satisfies superpolynomial-time simulation-based security (SPS), and is based
on (subexponential) security of the Learning With Errors (LWE) assumption. We do not rely
on SNARKSs or “knowledge of exponent”-type assumptions.

Since the protocol is non-interactive, the relaxation to SPS security is needed, as standard
polynomial-time simulation is impossible; however, a slight variant of our main protocol yields
a SNISC with polynomial-time simulation in the CRS model.

* A preliminary version of this paper will appear in the proceedings of EUROCRYPT 2020; this is the full version.

tSupported in part by NSF Award SATC-1704788, NSF Award RI-1703846, and AFOSR Award FA9550-18-1-0267.
This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI, TARPA, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

#This paper was prepared in part for information purposes by the Artificial Intelligence Research group of JPMor-
gan Chase & Co and its affiliates (“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy
or reliability of the information contained herein. This document is not intended as investment research or invest-
ment advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction
or to such person would be unlawful. (© 2020 JPMorgan Chase & Co. All rights reserved

1 Introduction

Protocols for secure two-party computation (2PC) allow two parties to compute any function (f)
of their private inputs (z and y) without revealing anything more than the output f(z,y) of the
function. Since their introduction by Yao [Yao82] and Goldreich, Micali and Wigderson [GMWS8T7],
they have become one of the most central tools in modern cryptography. In this work, our focus is
on 2PC in a setting with a non-interactivity requirement: each player sends just a single message.
The first player—typically referred to as the receiver (or R)—computes some message m; based on
its input x and sends m; to the second player. The second player—referred to as the sender (S)—
next computes a response my (based on its input y and the message m; it received) and sends it
back to the receiver. Upon receiving the response mg, the receiver can finally compute and output
f(x,y). (Note that in such a non-interactive scenario, it is essential that only the receiver obtains
the output—in other words, that the functionality is “one-sided”; otherwise, since the protocol
only has two rounds, the sender will be able to compute the output given only m;, meaning that
it could obtain f(z,y*) on any number of inputs y* of its choice.)

SNISC: Succinct Non-Interactive Secure Computation. As far as we know, this notion
of non-interactive 2PC was first formally studied in [IKO*11] under the name non-interactive
secure computation (NISC); however, informal versions of it became popular in connection with
Gentry’s breakthrough result on fully homomorphic encryption (FHE) [Gen09]. One of the original
applications of FHE was the private outsourcing of some computation to a remote party: for
instance, consider a scenario where a client (the receiver) has some secret input z and wishes a
powerful server (the sender) to compute some potentially time-consuming function f on z (and
potentially another input y belonging to the server). Using FHE, the client /receiver simply lets my
be an FHE encryption of z; the server/sender can next use homomorphic evaluation to obtain an
encryption meo of f(x,y) to send back, which can be decrypted by the client/receiver. Indeed, an
FHE scheme not only directly yields a NISC, but it also yields a succinct NISC (SNISC)—where
both the communication complexity of the protocol and the running time of an honest receiver are
“essentially” independent of the running time of f. More formally, we define a SNISC as a NISC
where the communication complexity and receiver running time depend only on the length of the
inputs and outputs, and polylogarithmically on the running time of the function f to be computed
(where we assume that f is given as a Turing machine).

The problem with this folklore approach towards private outsourcing/succinct NISC is that
using FHE alone only satisfies semi-honest security, as opposed to fully malicious security. For
instance, a malicious sender could decide to compute any other function of its choice instead
of the correct f! Of course, we could always extend the protocol using ZK-SNARKSs (succinct
non-interactive arguments of knowledge) [Mic94, Grol0, BCCT13, BCI*13, GGPR13] to prove
correctness of the messages m1 and mo, but doing so comes at a cost. First, we now need to assume
some trusted setup, such as a common reference string (CRS). Additionally, all known constructions
of SNARKS are based on knowledge- or extractability-type assumptions, which in general are known
to be problematic with respect to arbitrary auxiliary input [BCPR14, BP15].! Thus, the question
as to whether succinct non-interactive secure computation with malicious security is possible in

'Finally, even forgetting about the issues with extractability assumptions, formalizing this approach requires
dealing with some subtle issues, which we will discuss later on. Works where this has been done (in the orthogonal
setting of “laconic” function evaluation) include [CDGT17, QWW18].

the plain model remains open:

Does there exist a succinct non-interactive secure computation protocol without any
trusted setup (and without using extractability assumptions)?

NISC protocols in models with trusted setup have been extensively studied. There exist known
constructions of NISC in the OT-hybrid model [IKO"11], in the CRS model based on cut-and-
choose [AMPRI14, MR17], assuming stateful [GIST10] and stateless [HPV16, BJOV18] tamper-
proof hardware tokens, and in the global random oracle model [CJS14]. As far as we know, none
of the above protocols are succinct.

The plain model, however, presents additional complications: Goldreich-Oren’s [GO94]| clas-
sic impossibility result for two-round zero-knowledge proofs immediately shows that even a non-
succinet (let alone succinet) NISC with malicious security cannot satisfy the standard polynomial-
time simulation-based notion of security.? Thus, to get any NISC, let alone a succinct one,
we need to use some relaxed notion of simulatability for the definition of secure computation.
Superpolynomial-time simulation-based security (SPS) [Pas03, PS04] has emerged as the stan-
dard relaxation of simulation-based security: under SPS security, the attacker is restricted to
be a non-uniform polynomial time algorithm, but the simulator (in the definition of secure com-
putation) is allowed to run in (slightly) superpolynomial time (e.g., in quasi-polynomial time).
Non-succinct NISC protocols with SPS simulation are known under various standard assumptions
[Pas03, SU11, BGI*17]. Most notably, the work of [BGI"17] constructs a maliciously secure (non-
succinet) NISC with quasi-polynomial simulation in the plain model which can securely compute
any functionality based on the subexponential security of various standard hardness assumptions;
we return to this result in more detail later on. However, all previous works only construct NISC
protocols that are non-succinct.

Towards achieving succinctness for NISC, a very recent work by Brakerski and Kalai [BK18]
takes us a step on the way: they focus on a notion of “private delegation” where the receiver’s/
client’s input x is publicly known (and thus does not need to be kept hidden) but the input y of
the sender/server is considered private. The authors present a delegation protocol that achieves
witness indistinguishability (WI) for the sender—as shown in [Pas03], WI is a strict relaxation of
SPS security.> While their protocol achieves the desired notion of succinctness, it still falls short of
the goal of producing a succinct NISC protocol due to the fact that its only considers privacy for
one of the players (namely, the sender); this significantly simplifies the problem. Additionally, their
notion of privacy (witness indistinguishability) is also weaker than what we are aiming to achieve
(i.e., simulation-based SPS security).

1.1 Our Results

In this work, we provide an affirmative answer to the above question, presenting the first SNISC
for general functionalities. Our protocol is in the plain model (i.e., no trusted setup), and we do
not rely on any extractability-based assumptions.

2Furthermore, if we restrict to black-box simulation, [KOO04] proved that four rounds are necessary and sufficient
for secure one-sided 2PC in the plain model.

3In the context of interactive proofs, WI is equivalent to a relaxed form of SPS security where the simulator’s
running time is unbounded (as opposed to some “small” superpolynomial time).

Theorem 1 (Informally stated). Assuming subezponential security of the LWE assumption, there
exists a maliciously SPS-secure SNISC' for any efficient functionality. Furthermore, the simulator
of the protocol runs in quasi-polynomaial time.

Our protocol relies on three primitives:

e A (leveled) FHE scheme [Gen09] with quasi-polynomial security. For our purposes, we ad-
ditionally require the FHE to satisfy perfect correctness. Such schemes can be based on the
(quasi-polynomial security of the) LWE (Learning With Errors) assumption [Reg05], as shown
in [BGV12, GKP*13].

e A (non-private) delegation scheme for polynomial time computations with quasi-polynomial
security. For our purpose, we require a scheme that satisfies perfect completeness and allows
the sender to adaptively choose the functionality (i.e., we need what is referred to as an
“adaptive delegation scheme”). Such schemes can in fact be based on the above notion
of quasi-polynomial FHE, and hence in turn on the quasi-polynomial security of the LWE
assumption [BHK17].

e A (non-succinct) SPS-secure NISC for general functionalities f with a quasi-polynomial sim-
ulator. Such a scheme exists based on the existence of a subexponentially-secure “weak
oblivious transfer” protocol* [BGI*17]°, which in turn can be based on the subexponential
security of any one of the DDH [NP01], Quadratic Residuosity, or N*® Residuosity [HK12]
assumptions, or (as shown in [BD18]) on subexponential security of the LWE assumption.

More precisely, if the underlying NISC protocol has a T'(n) - poly(n)-time simulator, and if all
the other primitives are secure against 1'(n) - poly(n) time attackers, the final protocol is secure and
has a T'(n) - poly(n)-time simulator:

Theorem 2 (Informally stated). Assuming the existence of a T'(n)-time simulatable NISC protocol,
a subexponentially sound adaptive delegation scheme for polynomial-time computations with perfect
completeness, and a subexponentially secure leveled FHE scheme with perfect correctness, there
exists T'(n) - poly(n)-time simulatable SNISC for any efficient functionality.

As a corollary, we can directly instantiate our protocol using a NISC with polynomial-time
simulation in the CRS model (see Appendix A) based on a two-round universally composable OT
protocol (in the CRS model), which [PVWO08| shows can be based on the polynomial security of
LWE. Hence:

Corollary 1 (Informally stated). Assuming the polynomial security of the LWE assumption, there
exists a maliciously-secure SNISC' (with a polynomial-time simulator) in the CRS model for any
efficient functionality.

4Roughly speaking, a weak oblivious transfer protocol is an OT protocol that satisfies SPS-security against a
malicious receiver, but only indistinguishability-based (“game-based”) security against a malicious sender.

®While [BGIT17] claim a construction of SPS NISC from just the existence of a weak OT protocol, their security
proof additionally relies on the existence of an onto one-way function. As far as we know, onto one-way functions are
not known based on the existence of Weak OT. Consequently, in Appendix A we present a variant of their protocol
that dispenses of this additional assumption.

1.2 Technical Overview

At a high level, our approach begins with the semi-honestly secure approach of using FHE (which
we detailed in the introduction) and attempts to compile it to become secure with respect to
malicious attackers. Instead of using ZK-SNARKSs (which rely on non-standard assumptions and
trusted setup), we will instead use an adaptive delegation scheme and a non-succinct NISC. For our
approach to work, we will strongly rely on perfect correctness/completeness properties of both the
FHE and the delegation scheme; as far as we know, perfect correctness of these types of primitives
has not previously been used to enable applications (where the goal itself isn’t perfect correctness).C.
Despite this, though, recent constructions (or slight variants) of both FHE and delegation protocols

fortunately do provide these guarantees.

Adaptive Delegation: A Starting Point. To explain the approach, we shall start from a
(flawed) candidate which simply combines an FHE scheme and an adaptive delegation scheme.
In an adaptive delegation scheme (as given in [BHK17]), a verifier generates a public/secret key-
pair (pk,sk) and sends pk to the prover. The prover next picks some statement & and function g,
computes the output § = ¢(Z), and produces a “short” proof 7 of the validity of the statement
that § = g(Z). The prover finally sends (Z, g, 9, m) to the verifier, who can use its secret key sk to
check the validity of the proof. We will rely on an adaptive delegation scheme satisfying perfect
completeness—that is, for all public keys in the range of the key generation algorithm, the prover
can convince the verifier with probability 1.

The candidate SNISC leverages delegation to “outsource” the computation of the homomor-
phic evaluation to the sender: specifically, the receiver first generates a public/secret key-pair
(PkeyEe, skpne) for the FHE, encrypts its input x using the FHE (obtaining a ciphertext ct;), gener-
ates a public/secret key pair (pkpe, Skpel) for the delegation scheme, and finally sends (cty, pkpye,
pkpe) to the sender. The sender in turn encrypts its input y, obtaining a ciphertext cty; next, it
lets g be the function for homomorphically evaluating f on two ciphertexts, computes g(ct,,cty)
(i.e., homomorphically evaluates f on ct, and ct,) to obtain a ciphertext ctoy, and computes a
delegation proof m (with respect to pkpe) of the validity of the computation of g. Finally, the sender
sends (cty, Ctout, ™) to the receiver, who verifies the proof and, if the proof is accepting, decrypts
ctout and outputs it.

Intuitively, this approach hides the input x of the receiver, but clearly fails to hide the input
y of the sender, as the receiver can simply decrypt ct, to obtain y. So, rather than providing ct,
and 7 in the clear (as even just the proof 7 could leak things about ct,), we instead use the (non-
succinet) NISC to run the verification procedure of the delegation scheme. That is, we can add
to the protocol a NISC instance where the receiver inputs skpe, the sender inputs ct,, cty, ctout, 7,
and the functionality runs the verification algorithm for the delegation scheme, outputting either
L if verification fails or, otherwise, ctoyt (which can be decrypted by the receiver).

Input Independence: Leveraging Perfect Correctness of FHE. The above approach in-
tuitively hides the inputs of both players, and also ensures that the function is computed correctly.
But there are many problems with it. For instance, while it guarantees that the sender does not
learn the receiver’s input x, it does not guarantee “input independence”, or that the sender’s input

5The only work we are aware that uses perfect correctness of a FHE is a very recent work [AEKP19] which uses
perfectly correct FHE as a tool to get perfectly correct iO.

does not depend on the receiver’s somehow: for instance, the sender can easily maul ct, into, say,
an encryption cty of x 4+ 1 and use that as its input. On a more technical level, simulation-based
security requires the simulator to be able to extract the inputs of malicious players, but it is not
clear how this can be done here—in fact, a simulator cannot extract the sender’s input y due to
the above malleability attack.

To overcome this issue, we again leverage the non-succinct NISC to enable extractability: we
add = and the randomness, r,, needed to generate ct, as an input from the receiver, and we add
ct, (i.e., the ciphertext obtained from the receiver), y, and the randomness needed to generate
cty as input from the sender. The functionality additionally checks that the ciphertexts ct,, ct,
respectively are valid encryptions of the inputs x,y using the given randomness. (It is actually
essential that the sender includes the ciphertext ct, from the receiver as part of its input, as
opposed to having the receiver input it, as otherwise we could not guarantee that the receiver
is sending the same ciphertext to the sender as it is inputting to the NISC). If we have perfect
correctness for the underlying FHE scheme with respect to the public-keys selected by the receiver,
this approach guarantees that we can correctly extract the inputs of the players. The reason that we
need perfect correctness is that the NISC only guarantees that the ciphertexts have been honestly
generated using some randomness, but we have no guarantees that the randomness is honestly
generated. Perfect correctness ensures that all randomness is “good” and will result in a “well-
formed” ciphertext on which homomorphic computation, and subsequently decryption, will always
lead to the correct output.

Dealing with a Malicious Receiver: Interactive Witness Encryption and Perfectly
Correct Delegation. While the above protocol suffices to deal with a malicious sender (although,
as we shall discuss later on, even this is not trivial due to the potential for “spooky interactions”
[DLNT04]), it still does not allow us to deal with a malicious receiver. The problem is that the
receiver could send invalid public keys, either for the FHE or for the delegation scheme. For
instance, if the public key for the FHE is invalid, perfect correctness may no longer hold, and we
may not be able to extract a correct input for the receiver. Likewise, if the public key for the
delegation scheme is invalid, we will not be able to determine whether the verification algorithm
of the delegation scheme will be accepting, and thus cannot carry out a simulation. Typically,
dealing with a malicious receiver would require adding a zero-knowledge proof of well-formedness
of its messages; however, given that the receiver is sending the first message, this seems problematic
since, even with SPS-security, one-message ZK is impossible (with respect to non-uniform attackers
[Pas03, BP04)).

To explain our solution to this problem, let us first assume that we have access to a witness
encryption scheme [GGSW13]. Recall that a witness encryption scheme enables encrypting a
message m with a statement & so that anyone having a witness w to & can decrypt the message;
if the statement is false, however, the encryption scheme conceals the message m. If we had
access to such a witness encryption scheme, we could have the functionality in the NISC compute
a witness encryption of ctyy,t with the statement being that the public keys have been correctly
generated. This method ensures that the receiver does not get any meaningful output unless it
actually generated the public keys correctly. Of course, it may still use “bad” randomness—we
can only verify that the public keys are in the range of the key generating function. But, if the
delegation scheme also satisfies a “perfect correctness” property (specifically, both correctness of
the computation and perfect completeness of the generated proof), this enables us to simulate the

verification of the delegation scheme (as once again, in this case, perfect correctness guarantees
that there is no “bad” randomness).

We still have an issue: perfect correctness of the FHE will ensure that the decryption of the out-
put is correct, but we also need to ensure that we can simulate the ciphertext output by the NISC.
While this can be handled using an FHE satisfying an appropriate rerandomizability /simulatability
property (also with respect to maliciously selected ciphertext), doing so introduces additional com-
plications. Furthermore, while we motivated the above modification using witness encryption,
currently known constructions of witness encryption rely on non-standard, and less understood,
hardness assumptions; as such, we would like to altogether avoid using it as an underlying primi-
tive.

So, to circumvent the use of witness encryption—while at the same time ensuring that the out-
put of the NISC is simulatable—we realize that in our context, it in fact suffices to use a two-round
version of witness encryption, where the receiver of the encryption chooses the statement and can
first send a message corresponding to the statement. And such a non-interactive version of witness
encryption can be readily implemented using a NISC! As we are already running an instance of
a NISC, we can simply have the NISC also implement this interactive witness encryption. More
precisely, we now additionally require the receiver to provide its witness—i.e., the randomness for
the key generation algorithms—as an input to the NISC, while the sender additionally provides the
public keys pkpyg and pkpe which it receives. The functionality will now only release the output
Ctout if it verifies that the keys input by the sender are correctly generated from the respective ran-
domness input by the receiver. Better still, since the randomness used to generate the public/secret
key-pair is now an input to the functionality, the functionality can also recover the secret key for
the FHE, and next also decrypt cto,t and simply output plain text corresponding to cteyt. This
prevents the need for rerandomizing ctoyt, since it is now internal to the NISC instance (and is no
longer output). With all of the above modifications, we can now prove that the protocol satisfies
SPS security.

The Final Protocol. For clarity, let us summarize the final protocol.

e The Receiver generates (pkpyg, sSkrne) and (pkpey, Skpel) using randomness rpne and 7pe (re-
spectively) and generates an encryption ct, of its input = using randomness r,.. It then sends
(PkenEs PKper; Ctz) and the first message msg; of a NISC using the input 2’ = (x, reng, 7Del; Tz)
(for a functionality to be specified shortly).

e The Sender, upon receiving pkpyg, pkpej, msg; generates an encryption ct, of its input y using
randomness 7, applies the homomorphic evaluation of f to ct;, and ct, to obtain a ciphertext
ctout = g(cts,cty), generates a proof 7 using the delegation scheme (w.r.t. pkpg) of the
correctness of the computation that ctour = g(cty, cty), and finally sends the second message
msg, of the NISC using the input y’ = (y, pkryg, PKpels Cta, Cty, Ctout, 7, 7).

e Finally, the receiver, upon getting msg,, computes the output z of the NISC protocol and
outputs it.

e The functionality computed by the NISC on input 2’ = (z, "fHE, Del; 72) and ¥’ = (y, pkpne,
PKpel, Cta, Cty, Ctout, T, 7y) does the following: it checks that:

1. the public keys pkeyg, Pkpe Were respectively generated using randomness rgHE, TDel;

Sender(y) Receiver(x)

(Pkenes SkrHE) <= GenpHe (TFHE)
(Pkpels Skpel) — Genpel(7pel)

ct, + Encrye(pk T
PKFHE, PKpels Ctas Msgy ‘ (Phene, 2372

msg, < NISCy(z, 7FHE, TDel, z)
cty < Encrue(Pkppe, ¥ 7y)

(7T’ Ctout) < Comppy (kaeh g, Ctg, Cty) msg
msgy ¢~ NISCa(y, Pkepe: PKpers Ctas Cty, 2 z < NISCs(msg,) ; output z

Ctout, , Ty)

Figure 1: The final SNISC protocol. (NISCq, NISCy, NISC3) denotes the underlying (non-succinct)
NISC protocol and and the functionality g denotes the homomorphic evaluation g(ci,c3) =

Evalrhe (Pkepe; f) c1, c2)-

2. the ciphertexts ct,, cty are respectively encryptions of x,y using randomness r,, ry; and,

3. mis a valid proof of ctoye = g(cts, cty) w.r.t. (pkpe, skpel) (as generated from rpey).

If the checks pass, it decrypts ctoye (by first generating skpyg from rpyg), obtaining the
plaintext z, and finally outputs z. (If any of the checks fail, it instead outputs L.)

A summary of the message flow can be found in Figure 1.

A Subtlety in the Security Proof One subtle point that arises in the proof of security is
that, to simulate a malicious sender, we need to simulate the ciphertext ct, without knowledge of
z. But the functionality of the underlying NISC takes as input the randomness used for both the
key generation of pkpyg and for encrypting ct,, and thus the functionality implicitly knows how to
decrypt ct;. A similar issue has arisen in the related context of constructing delegation schemes
from FHE and related primitives (see [DLNT04]), where it was shown that so-called “spooky
interactions” can arise, where a malicious sender (even though it does not how to decrypt the
ciphertext) can in fact use this dependence to make the receiver output values that correlate in
undesirable ways with the input z (in particular, in ways that would not have been possible if
using an “idealized” FHE). Fortunately, in our context, we are able to overcome this issue by using
the perfect correctness of the FHE scheme and soundness of our underlying delegation scheme to
perform a carefully designed hybrid argument.

A bit more precisely, the key point is that when simulating a malicious sender in communica-
tion with an honest receiver, the receiver’s public key and ciphertext ct, will always be correctly
generated (as such, we do not have to perform the checks involving the receiver to simulate the
underlying NISC’s output); furthermore, by soundness of delegation and the perfect correctness of
the FHE, the decryption of ctoy must equal f(x,y) (with overwhelming probability) if 7 is accept-
ing, so we can use this fact to show that decrypting ctoyt is actually also unnecessary. As such, we
do not need to use either rpye or r, to emulate the experiment for a malicious sender, and we can
create (and prove security in) a hybrid functionality for the underlying NISC which is independent
of this randomness (and only depends on pkgyg).

2 Preliminaries

Notation. Let N denote the set of natural numbers (positive integers), and let [n] denote the
set of natural numbers at most n, or {1,2,...,n}. For n € N, we denote by 1" the string of
n ones, which will be used to provide a security parameter as input to an algorithm (this is by
convention, so that the input length is bounded below by the security parameter). We assume the
reader is familiar with polynomial-time and probabilistic polynomial time (PPT) algorithms. We
say a function €(-) is negligible if, for any polynomial p(-), e(n) < 1/p(n) for all sufficiently large
n € N—that is, if €(-) is asymptotically smaller than any inverse polynomial.

2.1 Fully Homomorphic Encryption

Intuitively, a fully homomorphic encryption (FHE) scheme [Gen09] is an encryption scheme with
the additional property that computations may, using the public key, be performed on ciphertexts
for respective inputs in such a way that the result will be a ciphertext for the correct output. We
formalize this as follows:

Definition 1 (based on [Gen09]). A fully homomorphic encryption (FHE) scheme consists
of a tuple of algorithms (Gen, Enc, Eval, Dec), where Gen, Enc are PPT and Eval, Dec are (deter-
ministic) polynomial-time algorithms, such that:

o (pk,sk) < Gen(1™; p): takes the security parameter n as input and outputs a public key pk
and secret key sk.

o ct < Enc(pk,m;p): takes as input a public key pk and a message m € {0,1}, and outputs a
ciphertext ct. (For multi-bit messages m € {0,137 we let ct < Enc(pk,) be such that
ct; = Enc(pk,m;).)

e ct’ = Eval(pk, C, ? takes as input o list of ciphertexts ot and a circuit description C of
some function to evaluate and outputs a ciphertext ct’.

e m/ + Dec(sk,ct): takes as input a ciphertext ct and outputs a message m'.

We furthermore require that the following properties are satisfied:

1. Full homomorphism: There exist sets of boolean circuits {Cy, }nen, negligible function e(n),
and polynomial p(-) such that C = |J,, Cp, includes the set of all arithmetic circuits over GF(2)7,
and, for any n € N, we have that, for all C € C,, and m e {0, 1}7’(”) :

Priz # C(m) : (pk, sk) < Gen(1™), ct « Enc(pk, 1),
2 < Dec(sk, Eval(C, pk, ct))] < e(n

Furthermore, if this probability is identically zero, we refer to the scheme as having perfect
correctness.

2. Compactness: There exists a polynomial q(-) such that the output length of Eval given (any
number of) inputs generated with security parameter n is at most q(n).

"GF(2) is the set of arithmetic circuits consisting only of 4+ and x gates over the field Fs.

Definition 2 (based on [GM84]). We say that an FHE (Gen, Enc, Eval, Dec) is secure if, for all
non-uniform PPT D, there exists a negligible €(-) such that for any n € N:

|Pr{D(1", pk, Enc(pk,0)) = 1] — Pr{D(1", pk, Enc(pk, 1)) = 1]| < €(n)

over (pk,sk) <— Gen(1™). If this condition holds also with respect to subexponential-size distinguish-
ers D (i.e., algorithms implemented by circuits of size poly(2™°) for some ¢ > 0), we refer to the
scheme as being subexponentially secure.

We have the following consequence for encryptions of poly(n)-bit messages 770, mi:

Fact 1. If an FHE scheme (Gen, Enc, Eval,Dec) is secure (resp., subexponentially secure), then,
for any polynomial p(-) and for any non-uniform PPT (resp., subexponential-size) (A, D) where A
outputs messages mg, mj € {0,137 for polynomial p(-), there exists a negligible (-) such that for
any n € N:

| Pr{D(1", pk, Enc(pk, m{)) = 1] — Pr{D(1", pk, Enc(pk, m1)) = 1]| < €(n)

where
(pk, sk) < Gen(1™), (ing, m1) < A(1"™, pk)

We can construct an FHE scheme with all of the above properties based on the Learning With
Errors (LWE) assumption:

Theorem 3 ([BGV12, GKP"13, AEKP19]). Based on computational (resp., subexponential) hard-
ness of the Learning With Errors assumption, there exists a secure (resp., subexponentially secure)
fully homomorphic encryption scheme satisfying perfect correctness.

2.2 Adaptive Delegation Schemes

A delegation scheme allows for the effective “outsourcing” of computation from one party to an-
other; that is, using delegation, the sender can compute both the correct result of some (possibly
expensive) computation on a receiver’s input and a (short) proof which can convince the receiver
of the correctness of the computation without requiring the receiver to perform the computation
themselves. We consider a notion of delegation with the additional property, formalized in [BHK17],
that the functionality f(-) whose computation is to be delegated can be decided adaptively after the
keys pk, sk are computed (i.e., the key-generation algorithm Gen is independent from f). Formally:

Definition 3 (based on [BHK17]). An adaptive delegation scheme is given by a triple of
algorithms (Gen, Comp, Ver), where Comp and Ver are (deterministic) polynomial-time algorithms
and Gen is PPT, such that:

o (pk,sk) < Gen(1™;p) takes as input a security parameter n and probabilistically outputs a
public key pk and secret key sk.

o (y,m,17) < Comp(pk, f, 7) takes as input a Turing machine description of the functionality
f to be computed, as well as the inputs 7 to f, and produces a result y which the sender
claims to be the result of the computation, a poly(n)-size proof m of its correctness, and the
running time T of the computation in unary.

10

o {Accept, Reject} <« Ver(sk, f,?,y,ﬂ',T) takes as input the functionality f to be computed,

inputs 7, result y, proof w, and running time T, and returns Accept or Reject depending on
whether m is a valid proof of f(?) =y.

Furthermore, we require the following properties:

1. Completeness: There exists a negligible function €(-) such that, for any n € N, any f
computable by a Turing machine that runs in time at most 2", and any T in the domain of

I
Pr [(pk,sk) — Gen(1™); (m,y,17) = Comp(pk, f, ?) : Ver(sk, f, ?,ﬂ,y,T) = Reject] < €(n)

In addition, if the above probability is identically zero, we say that the adaptive delegation
scheme satisfies perfect completeness.

2. Correctness: For anyn € N, any f computable by a Turing machine that runs in time at
most 2", and any 7 in the domain of f:

Pr|(pk,sk) < Gen(1™) : Comp(pk, f, 2) = (f(Z),-,-)] =1

3. Soundness: For any non-uniform PPT adversary A, there exists a negligible function €(-)
such that, for any n € N:

Pr [(pk,sk) + Gen(1"), (f,?,yl,yg,m,m, 17, 1T2) +— A(1", pk) :
T < 2" A Ver(sk, f, ?,yl,m,Tl) = Accept
AVer(sk, f, @, yo, m2, Th) = Accept A y1 # ya] < €(n)

Furthermore, if this condition holds with respect to subexponential-size adversaries, we say
that the scheme is subexponentially sound.

A construction of an adaptive delegation scheme with perfect completeness can be found in the
work of Brakerski et al. [BHK17], and is based on a secure private information retrieval (PIR)
scheme, which in turn can be constructed based on a leveled FHE scheme (including the one
presented in Theorem 3). Hence:

Theorem 4 ([BGV12, GKP'13, BHK17, AEKP19]). Based on computational (resp., subexponen-
tial) hardness of the Learning With Errors assumption, there exists a sound (resp., subexponentially
sound) adaptive delegation scheme satisfying perfect completeness.

2.3 Non-Interactive Secure Computation

Definition 4 (based on [Yao82, GMWS87, BGI"17]). A non-interactive two-party computa-
tion protocol for computing some functionality f(-,-) (where f is computable by a polynomial-time
Turing machine) is given by three PPT algorithms (NISCy, NISCy, NISC3) defining an interaction
between a sender S and a receiver R, where only R will receive the final output. The protocol will

have common input 1™ (the security parameter); the receiver R will have input x, and the sender
will have input y. The algorithms (NISCy, NISCy, NISC3) are such that:

11

o (msg;,0) < NISC; (1", x) generates R’s message msg, and persistent state o (which is not
sent to S) given the security parameter n and R’s input x.

e msg, < NISCy(msg,,y) generates S’s message msgy given S’s input y and R’s message msg; .

e out < NISC3(o, msg,) generates R’s output out given the state o and S’s message msgs.

Furthermore, we require the following property:

e Correctness. For any parameter n € N and inputs x,y:

Pr{(msgy, o) <= NISC; (1", x) : NISC3(0, NISCa(msg;,v)) # f(z,y)] < €(n)

Defining non-interactive secure computation will require us to add a security definition, which
we formalize as follows:

Security. We adopt a standard notion of simulation-based security, with the relaxation that we
allow superpolynomial-time simulation (as pioneered by [Pas03, PS04]). We define security by
comparing two experiments conducted between the sender and receiver, either of whom may be
corrupted and act arbitrarily (while the other is honest and follows the protocol). In the real
experiment, the two parties will perform the actual protocol; in the ideal experiment, the two
parties will instead send their inputs to a “trusted third party” who performs the computation and
returns the result only to, in this case (because the protocol is one-sided), the receiver. Informally,
we say that a protocol is secure if, for any adversary A against the real experiment, acting either as
the sender or receiver, there is a simulated adversary S in the ideal experiment which produces a
near-identical (i.e., computationally indistinguishable) result; intuitively, if this is the case, we can
assert that the real adversary cannot “learn” anything more than they could by interacting with a
trusted intermediary. Let us formalize this notion for the case of SNISC:

e Let the real experiment be defined as an interaction between a sender S with input y and a
receiver R with input x, defined as follows:

— R computes (msg;, o) < NISC; (1™, x), stores o, and sends msg; to S.
— S, on receiving msg;, computes msg, < NISCy(msg;,y) and sends msg, to R.

— R, on receiving msg, computes out < NISC3(o, msg,) and outputs out.

In this interaction, one party I € {S, R} is defined as the corrupted party; we additionally
define an adversary, or a polynomial-time machine .4, which receives the security parameter
1™, an auxiliary input z, and the inputs of the corrupted party I, and sends messages (which
it may determine arbitrarily) in place of I.

Letting IT denote the protocol to be proven secure, we shall denote by Outr 4,7(1", z,y, 2)
the random variable, taken over all randomness used by the honest party and the adversary,
whose output is given by the outputs of the honest receiver (if I = S) and the adversary
(which may output an arbitrary function of its view).

e Let the ideal experiment be defined as an interaction between a sender S, a receiver R, and
a trusted party Ty, defined as follows:

12

— R sends z to Ty, and S sends y to Ty.
— T¢, on receiving x and y, computes out = f(x,y) and returns it to R.

— R, on receiving out, outputs it.

As with the real experiment, we say that one party I € {S, R} is corrupted in that, as before,
their behavior is controlled by an adversary .A. We shall denote by Outg}’ A, (1™, 2y, z) the
random variable, once again taken over all randomness used by the honest party and the
adversary, whose output is again given by the outputs of the honest receiver (if I =) and
the adversary.

Given the above, we can now formally define non-interactive secure computation:

Definition 5 (based on [Yao82, GMWS87, Pas03, PS04, BGI"17]). Given a function T(-), a non-
interactive two-party protocol II = (NISCq, NISCq, NISC3) between a sender S and a receiver R,
and functionality f(-,-) computable by a polynomial-time Turing machine, we say that I securely
computes f with T(-)-time simulation, or that Il is a non-interactive secure computation
(NISC) protocol (with T(-)-time simulation) for computing f, if Il is a non-interactive two-
party computation protocol for computing f and, for any polynomial-time adversary A corrupting
party I € {S, R}, there exists a T (n)-poly(n)-time simulator S such that, for any T'(n)-poly(n)-time
algorithm D : {0,1}* — {0,1}, there exists negligible €(-) such that for any n € N and any inputs
x,y €{0,1}", z € {0,1}*, we have:

Pr[D(Outr 4,7(1", z,y,2)) = 1] — Pr [D(Out;[—’;’&[(ln,x,y, z)) = 1} ‘ < €(n)

where the experiments and distributions Out are as defined above.
Furthermore, if I1 securely computes f with T(-)-time simulation for T(n) = n'°¢°™) for some
constant ¢, we say that 11 securely computes f with quasi-polynomial simulation.

Succinctness. The defining feature of our construction will be a notion of succinctness; specifi-
cally, for functionality f(-,-) with Turing machine description A and running time bounded by 7%,
we show the existence of a NISC protocol IT = (NISCy, NISCq, NISC3) for computing f whose mes-
sage length (i.e., the combined output length of NISC; and NISCs) and total receiver running time
on input 1" are relatively short and essentially independent of the running time of f. Formally:

Definition 6. We say that a NISC protocol II = (NISCy,NISCy, NISC3) has communication
complexity p(-) if, for anyn € N, z,y € {0,1}", and z € {0,1}*, the outputs of NISCy (1™, x) and
NISCy(1™,y, z) contain at most p(n) bits.

We shall define a NISC protocol which, given functionality f : {0,1}" x {0,1}" « {0,1}¢(™
computable by a Turing machine M with running time T¢(n), features communication complex-
ity and receiver running time bounded above by p(n,log(Tr(n)),|M|,4(n)) for an a priori fixed
polynomial p.

There exist non-succinct non-interactive secure computation protocols in the standard model
based on a notion of “weak oblivious transfer” ([BGI*17]), which in turn can be based on subex-
ponential security of the Learning With Errors assumption [BD18]:

13

Theorem 5 ([BGIT17, BD18|, see also Appendix A). Assuming subezponential hardness of the
Learning With Errors assumption, for any functionality f(-,-) computable by a polynomial-time
Turing machine there ezists a (non-succinct) non-interactive secure computation protocol for com-
puting f with quasi-polynomial simulation.

We note that this theorem essentially follows from [BGIT17, BD18]|; however, [BGI*17] required
as an additional assumption the existence of an onto one-way function. In Appendix A, we present
a variant which demonstrates how to prove Theorem 5 without this added assumption.

3 Protocol

We state our main theorem:

Theorem 6. Assuming subexponential hardness of the Learning With Errors assumption, there
exists polynomial p(-,-,-,-) such that, for any polynomials T¢(-) and £(-) and any Turing machine
M with running time bounded by T¢(-) computing functionality f(-,-) : {0,1}"x{0,1}" < {0, 1},
there exists a non-interactive secure computation protocol for computing [with quasi-polynomial
simulation which is additionally succinct in that both its communication complexity and the running
time of the honest receiver are at most p(n, log(Tf(n)), | M|, £(n)).

We propose the protocol II given in Figure 2 for secure non-interactive secure computation of
a function f(x,y) given a receiver input x and sender input y, where II shall use the following
primitives:

e Let m = (NISCy, NISCy, NISC3) be a non-succinct NISC protocol with T'(n)-time simulation for
T(n) = n'°2°™ (ie., quasi-polynomial simulation), whose functionality h will be determined
in the first round of the protocol. (The existence of such a primitive is guaranteed by Theorem
5 under subexponential LWE.)

e Let (Genpyg, Encpue, Decpng, Evalpye) be a fully homomorphic encryption scheme satisfying
perfect correctness, compactness, and subexponential security (in particular, with respect to
T'(n) - poly(n)-time adversaries). (The existence of such a primitive is guaranteed by Theorem
3 under subexponential LWE.)

e Let (Genpel, Compp,, Verpe) be an adaptive delegation scheme with perfect completeness,
correctness, and subexponential soundness (in particular, with respect to T'(n) - poly(n)-time
adversaries). (The existence of such a primitive is guaranteed by Theorem 4 under subexpo-
nential LWE.)

4 Proof

Overview. After first proving the succinctness and correctness of the protocol, we turn to proving
its security. We do this in two steps. In the first step, we consider a “hybrid” model in which the
underlying NISC protocol is replaced by an “ideal” third party Tj. If the underlying protocol were
universally composable [Can01], this step would be trivial; unfortunately, it is not, so we need to

14

Input: The receiver R and the sender S are given input z,y € {0, 1}", respectively, and
both parties have common input 17.
Output: R receives f(z,y).

Round 1: R proceeds as follows:

1.

2.

4.

5.

Generate random coins rpyg < {0,1}* and compute (pkpyg,SkFne) =
Genpre(1"; FHE)-

Let T, denote the running time of the functionality g(ci,c2) =
Evalrhe (pkpne, frc1,¢c2), and let A = max(n,log(7y,)). Generate random coins
rpet <= {0, 1}* and compute (pkper, skper) = Genper(1%; 7pel)-

Generate random coins 7Tgnc;y ¢+ {0,1}* and compute ct, =
Encene(PKEHE: 5 TEnc(z))-

Generate message msg; < NISCy(x, PFHE, TDel; TEnc(z)) t0 compute the functionality
h described in Figure 3.

Send (pkene, PKpel; Ctz, Msg;) to S.

Round 2: S proceeds as follows:

1.

4.

Generate random coins Tgpc(y) «— {0,1}* and compute ct, =
Encene(PKEHE: U5 TEnc(y))-

. Compute (Ctout, mpel, 17) = Comppe(pkper, gs Ctz,cty) for the functionality

g(c1, c2) = Evalppe(pkepe, £, c1, ¢2)-

Generate message msgy < NISCa(y, pkpng, PKpels Cta; Cty, Ctout; TDel, TEnc(y)» 1) tO
compute the functionality h described in Figure 3.

Send msg, to R.

Output phase: R proceeds as follows:

1.

Compute out = NISCz(msg,) and return the result.

Figure 2: Protocol II for succinct non-interactive secure computation.

15

Input: The receiver R has input (,7FHE, TDel, TEnc(z)), and the sender S has input

(ya PKEHES kae|7 Cty, Cty, Clout, TDel, TEnc(y)> T)
Output: Either a message out or the special symbol L.

Functionality:

1. Verify that all of the following checks hold. If any fail, return L.

(a) (Pkpne,-) = Genppe(1™; TFHE)
(b) (pkper;) = Genper(1*; 7pel)

(C) ct, = EnCFHE(kaHEa xZ; TEnc(:I:))
(d) cty = Encrre(PKrHe: Y5 TEnc(y))

2. Compute (',SkFHE) = GenFHE(ln; TFHE) and (',SkDe|) = GenDe|(1)‘; TDeI)~

3. If Verpei(skpel, 9, Ctz, Cty, Ctout, Tpel, I) = Reject for the functionality g(ci,c2) =
Evalpne(pkene, f, c1, ¢2), then return L.

4. Compute out = Decpye(skpyE, Ctout) and return the result.

Figure 3: Functionality A used for the underlying 2PC protocol .

take care to formally reduce this transformation to the simulation-based security of the underlying
protocol. Crucially, this will rely on the fact that we restrict our attention to two-round protocols.

Next, in the second step, we can create and prove the respective simulators for a corrupted
sender and corrupted receiver in the 7p,-hybrid model. The corrupted receiver case follows in a fairly
straightforward way, relying on the perfect correctness and completeness of the delegation and FHE
schemes. The corrupted sender case, however, has some interesting subtleties in the reduction, and
in fact will require another hybrid with a slightly different third party 7/ to complete; we discuss
these subtleties in more detail when they arise during the proof.

We begin the formal proof by proving that the protocol II is succinct:

Lemma 1. There exists polynomial p(-,-,-,-) such that, for any polynomials T¢(-) and £(-) and any
Turing machine M with running time bounded by T¢(-) computing functionality f(-,-) : {0,1}" x
{0,117 « {0,1}"), the respective non-interactive secure computation protocol II has communi-
cation complexity and honest receiver running time bounded above by p(n,log(T¢(n)), | M|, €(n)).

Proof. To lead, we point out that, while T¢(n) and ¢(n) are given to be poly(n), we deliberately
quantify them after p(n) in order to treat them separately in the analysis below, as we specifically
wish to show that the communication complexity of II is at most polylogarithmic in the running
time T¢(n) for any possible polynomial-time Turing machine computable functionality f(-,-). Fur-
thermore, we assume without loss of generality that the input lengths provided to sub-algorithms
are correct, as in the event that an adversary provides incorrectly sized inputs the algorithms may
simply abort.

We begin by analyzing the communication complexity, as succinctness of the receiver’s running
time will follow immediately from this analysis. Aside from messages msg; and msg, for the
underlying NISC 7, the only communication consists of the public keys pkpyg and pkpg and the

16

ciphertext ct,. pkpyg has length poly(n) since Gengyg is a polynomial-time algorithm running on
input 1", and the ciphertext ct, (which consists of a ciphertext for each bit in z € {0,1}") also has
length poly(n) since Encgye is polynomial-time and is run on inputs of length poly(n). pkpe will
have length poly(n,log(7)); specifically, its length is given to be poly(\) = poly(n,log(Ty)), where
Ty is the running time of the functionality g(c1, c2) = Evalpne(pkpne, f, ¢1, ¢2) with inputs generated
from common input 1". However, since pkgyg has poly(n) length, the input ciphertexts both have
poly(n) length by the efficiency of Encppg, and f in this case is given as a circuit description, which
will have size poly(Tt(n)), we have by the efficiency of Evalpug that Ty, = poly(n,T¢(n)), implying
poly(A) = poly(n, log(T¢(n))).

So it suffices now to bound the length of the NISC messages msg; and msg,. Specifically, even
for a non-succinct NISC protocol 7, the honest sender and receiver must be efficient, and so the
message length is still at most polynomial in the input length and running time of the functionality
h. We argue that these are poly(n,log(Tt(n)), |M]|,£(n)) to complete the proof of the claim:

e The input length to 7 is given as the size of the inputs (z, 7FHE, TDel; TEnc(x)) from the receiver
and (Y, Pkpng, PKpels Cta; Cty;s Clout, TDels TEnc(y)> 1') from the sender. x and y have length n by
assumption. pkeyg, ctg, and ct, have length poly(n) as argued above, and ctoy (Which consists
of a ciphertext output from Evalgyg for each bit of f(z,%) € {0,1}*") has length poly(n, £(n))
by the compactness of the underlying FHE scheme. pkpe has length poly(n,log(Tr(n)))
as argued above, and mpe also has length poly(\) = poly(n,log(T(n))); T will have size
A = poly(n,log(T¢(n))) as T < 2* is required by the properties of the delegation scheme.
Lastly, the randomness reyEg, TDels TEnc(x), TEnc(y) Cannot have length greater than the running
times of the respective algorithms Gengyg, Genpel, Encpyg, all of which we have already noted
are at most poly(n,log(T¢(n))).

e To bound the running time of the functionality h, notice that it consists of the following;:

— Gengpe (run twice), Encpye (run 2n times, once for each bit of x and y), Evalpyg (run
£(n) times, once for each bit of out), all of which are efficient algorithms run on inputs
of at most length poly(n) (and hence have running time poly(n));

— Decppe (run £(n) times), which has inputs skpyg with size poly(n) and ctoyr with size
poly(n, £(n)), and hence has running time poly(n, £(n));

— Genpg (run twice), which runs in time poly(\) = poly(n,log(Tr(n)));

— Verpel (run once), which, given inputs skpel, pel of size poly(A) = poly(n,log(Tt(n))),
cty, cty of size poly(n), ctoyt of size poly(n, £(n)), g (the description of g(c1, c2) = Evalpyg(
Pkeyes fs €1, c2), where we here interpret f as the Turing machine M) of size poly(|M|),
and T < 2* of size at most A = poly(n,log(T}(n))), has running time which is at most

poly(n, log(T't(n)), | M|, £(n));

and a poly(n) number of comparisons between input values and function outputs which have
already been established to have at most poly(n,log(T(n))) length.

The above shows that the communication complexity of II is succinct. Furthermore, as the
honest receiver runs only Gengyg, Genpe, Encepe, and the (efficient) receiver protocol for the
underlying NISC on the aforementioned inputs, and as we have already established that all of
these algorithms have running time poly(n,log(T¢(n)),|M|,¢(n)), the receiver will inherit the same
running time bound. O

17

Towards proving security for II, let Out 4,7(1", 2,y,2) denote the random variable, taken
over all randomness used by the honest party and the adversary, of the outputs of the honest
receiver (if I = S) and the adversary in the execution of protocol II given adversary A controlling
corrupted party I € {S, R}, receiver input x, sender input y, and adversary auxiliary input z. Let
Execrr 4,7(1", ,y, 2) denote the respective experiment.

Let us also define the “ideal” execution by letting 7 denote the ideal functionality corresponding
to the computation target f(zx,y) and letting IT; be the “ideal” version of the protocol where R
sends x to Ty, S sends y to Ty, and then R finally outputs the result out output by 7;. We want
to show the following theorem:

Theorem 7. Assume, given functionality f(-,-), the respective protocol I1 described in Figure 2 and
the assumptions required in Theorem 6, and let T'(-) be such that the underlying NISC m is secure
with T'(-)-time simulation. For any efficient adversary A corrupting party I € {S, R}, there exists
a T'(n) - poly(n)-time simulator S such that, for any non-uniform polynomial-time distinguisher D,
there exists a negligible function €(+) such that, for alln € N, z,y € {0,1}", and auziliary input z, D

distinguishes the distributions Out 4. 71(1", 2, y, 2) and Outgff s (1", 2y, z) with at most probability

e(n).

Notice that correctness of IT holds trivially from the perfect correctness of the underlying FHE,
the correctness and perfect completeness of the underlying adaptive delegation scheme, and the
correctness of the underlying NISC protocol m; hence, Theorem 7, which proves security, and
Lemma 1, which proves succinctness, will in conjunction directly imply Theorem 6 (where quasi-
polynomial simulation results from our use of an underlying NISC protocol with quasi-polynomial
simulation, as given in Theorem 5). The remainder of the section, then, is devoted to proving
Theorem 7.

4.1 Comparing Real and Hybrid Executions

We begin by defining a “trusted third party” 75, which executes the ideal functionality for h—
that is, given the corresponding sender and receiver inputs, 7; outputs the correct value of h
computed on those inputs. Our first task is to show, then, that the “real” experiment’s outputs
Outy,a,7(1", z,y, z) cannot be distinguished from those of a “hybrid” experiment, which we shall
denote by OutlTI’;“A,J(ln,:r:,y, z).

Formally, we let II;, denote a protocol which is identical to IT with the exception that, in rounds
1 and 2, rather than generating msg; and msg,, R and S instead send the respective inputs to 7y,
and, in the output phase, R receives and returns the output from 7, rather than unpacking msg,.
We then prove the following lemma:

Lemma 2. For any efficient adversary A corrupting party I € {S, R}, there ezists a T'(n)- poly(n)-
time adversary A’ such that, for any non-uniform polynomial-time distinguisher D, there exists a
negligible function €(-) such that, for alln € N, z,y € {0,1}", and auziliary input z, D distinguishes
the distributions Outry 4 7(1", z,y, z) and OutI%“A,J(l", x,y, z) with at most probability €(n).

Proof. We separate into two cases, based on whether I = R (the receiver is corrupted) or I = §
(the sender is corrupted).

18

Corrupted Receiver. In this case we begin by, given some adversary A against the real ex-
periment Execry 4 r(1", 2,9,), defining an adversary A, against the underlying 2PC protocol 7.
Without loss of generality, let A be a deterministic algorithm which uses the auxiliary input z as
its source of randomness for 7FHE, TDel, aNd Tgnc(z)- An(1",2) will behave identically to A(1", z)
(acting as the corrupted receiver), with the exception that A;, will only send msg; in round 1. On
receiving msgy from the honest sender, Aj; will run the output phase of A once again, using msg,
as the input from the second round, to determine A’s final output out 4 and return the result.
Now, consider the following adversary Ag., (1", z) in the real experiment, which runs Ay:

1. Run Ay (1™, z), which will start by producing a message msg; for m. Also run A(1",z2) to
produce a message (pkpye, PKpel; Ctz, <), and send (pkeyg, PKpers Ctz, msgy) to the sender S.

2. S will return a message msg, for 7. Run the output phase of A;, on this message.
3. Ajp, will output outy, ; return it.

Also consider a T'(n) - poly(n)-time adversary A’ in the hybrid experiment Execg’; v (1" m,y, 2)
which runs the (T'(n) - poly(n)-time) simulator Sy, corresponding to the adversary A;, (as guaranteed
by the definition of simulation-based security for 7). A’(1", z) will do as follows:

1. Run Sy (1™, z), which will start by producing a message my to send to the ideal functionality
Th; forward this message. Also run A(1", z) to produce a message (pkpng, PKpel, Ctz, Msgy),
and send (pkpyg, PKpel, Ctz) to the sender S.

2. S will provide its input to 7p, and subsequently 7; will return a result out. Forward out to
Sh.

3. 8y, will return a simulated message outs; return it.

We can use these adversaries to show that Outy 4 r(1", 2, v, z) and Outg; v r(1™, 2,y,2) cannot
be distinguished with non-negligible probability, based on the following two claims:

Claim 1. Outp 4 r(1", 2,y,2) and Outh&ea“R(l”,x,y, z) are identically distributed.

Proof. ITmportantly, recall that the adversaries A and Ay are deterministic and use z as their source
of randomness. We begin by reproducing the experiment Execyy 4 r(1", z,y, 2) for clarity:

1. Run A(1™, 2) to produce a message (pkpyg, PKpel, Ctz, Msg;), and send it to the sender S.
2. S will return a message msg, for 7. Run the output phase of A on this message.
3. A will output outy; return it.

There are two semantic differences between the two experiments. Namely, Ag.,, uses Ap(17,2)
rather than A(1",z) to produce msg;, as well as to produce the final output. However, by the
definition of Ay, for any auxiliary input z it is clearly the case that A (1™, 2) and A(1", 2) compute
msg; and their final output in an identical way; hence, the full experiments are completely identical.
O

So it is equivalent to compare Outyy 42 r(1",2,y, z) and Out;lr’;“A,R(l”,x,y, z). The following

Real’

claim, then, yields the desired conclusion:

19

Claim 2. For any polynomial-time non-uniform distinguisher D, there exists negligible €(-) such
that, for anyn € N and inputs x,y, z, the distributions Outmv%ealﬁ(l", x,y,z) and Outf—l—’; g1,
Y, z) cannot be distinguished by D with probability greater than e(n).

Proof. This will intuitively follow from the simulation-based security of the underlying protocol .

Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-
guisher D and polynomial p(-) such that, for infinitely many n € N, there are inputs z,y, z such
that D is able to distinguish the two distributions OUtH,Agea,,R(ln» x,y, z) and O“tgl—};,A',R(ln7 x,Y,2)
with probability 1/p(n). In this case, for each such n, there must exist some assignment r* of
the (honest) sender’s randomness rgnc(y) such that D distinguishes Outy 42 r(1",7,y, 2)|,+ and

Real’

Out%";“A/7R(1",a:,y,z)|r* (which denote the respective experiments with 7g,(,) fixed to r*) with
probability at least 1/p(n).

Given fixed ,y,2 and fixed rgne) = r*, recall the inputs @’ = (2, 7FHE, TDel; TEnc(z)) and
Y = (Y, PKepE, PKpel, Cte,s Cty, Ctout, TDel, Enc(y), 1) Provided by the receiver and sender (respectively)
to the protocol 7; all randomness used to generate these inputs is now fixed (since 7gHE, Del, TEnc(z)
are given by z), which means that each assignment of inputs z,y, z,7* for II corresponds uniquely
to fixed inputs z’,/, z for the underlying protocol .

This implies that we can use the distinguisher D directly to break the simulation-based secu-
rity of the underlying protocol w. Specifically, given the previously fixed x,y, z, 7", consider the
distributions Out, 4, r(1",2',v/,2) and Outy, s, r(1",2,V/, 2), where 7y, is the idealized version of
7 (as executed in II;) where both parties send their respective inputs 2/, 4y to the functionality Ty,
which computes h(z',y/).

Since, by definition, the outputs of Ag.,, and A’ (fixing inputs z,y,z,7*) are given by the
outputs of Aj and Sy, (fixing the corresponding inputs 2/,y/, z) in the respective experiments m and
7y, we have that

Outyy 4y R(1", 2,9, 2) |+ = Outr 4, (1", 2" ¥/, 2)
and

OUtg;,A’,R(lnv z,Y,2)|r+ = Outr, s, r(1", 2.y, 2)

But, since D distinguishes OutH’A&ealjR(ln,x,y,z)\r* and Outg’;,A,ﬁ(l”,x,y,z) ~ with probabil-
ity 1/p(n), it must also distinguish Out, 4, r(1",2',v/,2) and Out,, s, r(1", 2.y, z) with the
same probability. And, as this holds for infinitely many n € N, it follows that D contradicts
the simulation-based security of the underlying protocol 7 (w.r.t. non-uniform polynomial-time
distinguishers), which is a contradiction. O

Corrupted Sender. Given an adversary A against the real experiment Execyy 4 5(1", 2, v, 2), let
Ap, as before be the respective adversary against simulation-based security of the 2PC protocol
m. Now A receives message msg; from the honest receiver and must generate msg, using .A;
however, A also requires the public parameters (pkpyg, PKpes Ctz) from the receiver’s first-round
message as input. As such, we concatenate these parameters with the auxiliary input z provided to
Ap,. Formally, we let Ay, (1", (pkpye, PKpel, Ctz, 2)) given message msg; run A(1", z) given message
(PKFHE, PKpel, Ctz, msgy). Then let Ag., (17, 2) in the real experiment proceed as follows:

1. Receive a message (pkeyg, PKpel; Ctz, msg;) from the receiver R.

2. Run A, (1", 2" = (pkene, PKper, Ctz, 2)) with msg; as the input from the receiver; forward the
message msg, from A to the sender.

20

3. Output whatever Aj outputs.

By simulation-based security, then, there is also a simulator S, in the idealized experiment for m
which sends the relevant inputs to the ideal functionality 77 but returns no output to the receiver.
Let A'(1",2) be a T'(n) - poly(n)-time adversary in the hybrid experiment Exec%7A,7S(1",m,y,z)
which does the following:

1. Receive a message (pkpyg, Pkpel; Ctz) from the receiver R.

2. Run Sp(1™, 2" = (pKkpne, PKpels Ctzs 2)). Sp will produce a message mo to send to the ideal
functionality 7j; forward it to 7p,.

3. Output whatever Sp, outputs.

We must show that, given this A’, both (1) the outputs of the adversary and (2) the out-
puts of the honest receiver R between Execry 4 5(1", x,y, 2) and Exec7H7;“A,’S(1",:B,y, z) cannot be
distinguished. The following claims imply the desired conclusion:

Claim 3. Outy 4,5(1", 2,9y, 2) and OutH7A/Rea|7S(1”, x,y, z) are identically distributed.

Proof. This follows directly from the fact that the adversaries A and Aj, are deterministic and use
z as their source of randomness, and the fact that A (1", (pkpne, PKpel, Ctz, 2)) given message msg;
behaves identically to A(1", z) given message (pkpng, PKpel, Ctz, msgy), implying that msg, and the
output of A (resp. Aj) are identically distributed between the experiments. O

So it suffices to compare O”tH,A{?ea.,S(lnﬁU’ y,z) and Out%’A/,S(ln,x,y, z), which we do as fol-
lows:

Claim 4. For any polynomial-time non-uniform distinguisher D, there exists negligible €(-) such
that, for any n € N and inputs x, vy, z, the distributions OUtH,Agea“S(lna x,y,z) and OutlTﬁL a1z,
Y, z) cannot be distinguished by D with probability greater than e(n).

Proof. Once again this will intuitively follow from the simulation-based security of the underlying
protocol 7.

Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-
guisher D and polynomial p(-) such that, for infinitely many n € N, there are inputs z,y, z such
that D is able to distinguish the two distributions OUtH»A'ReawS(ln’ x,y,z) and Outg;“A,’S(ln, x,Y,2)

with probability 1/p(n). As with the corrupted receiver case, for each such n, there must exist
some assignment r* of the (honest) receiver’s randomness g = (TFHE, "Del; TEnc(z)) Such that D

distinguishes Outh/Real’S(l”,a:,y, Z)|r+ and Out%’A,S(l",w,y, z)|r+ (which once again denote the
respective experiments with rg fixed to 7*) with probability at least 1/p(n).
Given z, y, z, and rgp = r* fixed, we must argue as before that this corresponds uniquely to
fixed inputs 2/, 4/, 2’ for the underlying protocol 7. In this case, this will follow from the fact that
Reat and A’ run Aj, and Sj, (respectively) on the input (17, 2’), where 2z’ = (pkgyg, Pkpers Cta, 2)
is fully determined by z, z, and the randomness rr consumed by the receiver in the first round
(notice that this holds because (pkpyg, PKpel, Ctz) is part of the honest receiver’s first message in
the protocol II). Furthermore, 2’ is uniquely determined by x and rg, and %/, the sender’s input,
is uniquely determined by 2’, y, and the sender’s randomness (which, since the sender is malicious,

is given by z).

21

As before, consider the distributions Out, 4, r(1",2,y/, 2') and Outy, s, r(1", 2’9/, 2"), where
7y, is the idealized version of 7 (as executed in IIj,) where both parties send their respective inputs
z',y" to the functionality 7j,. As before, the outputs of Ay, and A’ (fixing inputs z,y, z,7*) are
given by the outputs of A and S, (fixing the corresponding inputs z’,%/,2') in the respective
experiments 7 and 7p,; furthermore, by the definition of the protocols IT and Piy, the (honest)
receiver’s outputs are given by the outputs of 7 and 7, (respectively). So we once again determine
that

Outyy 4 s(1",2,y,2)|;+ = Outr 4, s(1", 2,4, 2")

Real’

and

T A
OUtH’;’AQS(lna x,Y, Z) r* = OUtﬂh,Sh,S(lnvx Y, 2)

which, since D distinguishes OUtH’A'ReapS(ln’ x,y,z) |~ and Out7H—hh,A,75(1”, x,y, z)|~ with probability
1/p(n), implies that it must also distinguish Outr 4, (1", 2’,y/,2") and Out,, s, s(1",2', 9/, 2’) with
the same probability. Thus, since the above implies that there exist z’,%/, 2’ for infinitely many
n € N such that D distinguishes the respective distributions, it follows that D contradicts the
simulation-based security of 7 (w.r.t. non-uniform polynomial-time distinguishers), a contradiction.

O
O

4.2 Comparing Hybrid and Ideal Executions

Next, we need to compare the hybrid execution Execg’; w (1", z,y, 2) to the “ideal” execution
Exec;i’&[(l”, x,y, z) to finish the proof of Theorem 7.
Lemma 3. For any T(n) - poly(n)-time adversary A’ corrupting party I € {S, R}, there exists a

T(n) - poly(n)-time simulator S such that, for any non-uniform polynomial-time distinguisher D,
there exists a negligible function €(-) such that, for allm € N, z,y € {0,1}", and auziliary input

z, D distinguishes the distributions Outg’z (A" z,y,2) and Outgf}SI(ln,m,y,z) with at most
probability e(n).

Proof. We again separate into two cases, based on whether I = R (the receiver is corrupted) or
I = S (the sender is corrupted).

Corrupted Receiver. In this case, define a T'(n) - poly(n)-time simulator Sp which does as
follows:

1. Run the corrupted receiver A’. A’, in the first round, will output a message (x, reHg, TDel, "Enc)
to be sent to 75. Send z to the ideal functionality 7j.

2. Receive an output message out from the ideal functionality 7;. If out is L, return L to A’
(as the output of Tp,).

3. Verify the following. If any checks fail, return L to A’

(a) (Pkene,-) = Genppe(1™; 7FHE)
(b) (Pkpel> -) = Genpel (1%; rper)

22

(C) Cty = EnCFHE(kaHEax;TEnc(x))

4. If all checks in the previous step pass, return out to A’. Finally, output whatever A’ outputs.

It suffices here to argue that the output which Sg returns to A’ in the ideal experiment is
identically distributed to the output which 7; would return to A’ in the hybrid experiment, as
this, combined with the observation that the only input A’ receives (aside from the auxiliary input
z) is the output from 7j, allows us to conclude that A”’s views in ExeclTﬁ“ e r(1", 2,y,2) and

Execlz[”; sp.r(1" 2,9, 2) (and hence A”’s outputs) are likewise identically distributed. We can argue
this using the following claims:

Claim 5. If S is honest, then, given messages (x,TEHE, TDels TEnc) and (PKrnEs PKpels Ctz) from A,
step (4) of Sr succeeds (i.e., does not return L) in Il; if and only if all checks in step (1) of the
functionality h described in Figure 3 succeed in the respective instance of 11

Proof. The “if” direction is trivial since the checks in step (4) of Sg are a strict subset of the checks
in step (1) of h.

The “only if” direction follows from the assumption that S is honest, and will hence compute
cty = EncrHE (PKEHE, U3 TEnc(y)) correctly using the correct inputs. O

Claim 6. If S is honest and all checks in step (1) of the functionality h described in Figure 3
succeed in Iy, then, with probability 1, step (3) of the functionality h will not return L.

Proof. Since step (1) is successful, we know that (pkpe, skpel) = Genpel(1*, 7per); moreover, since
S is honest, we know that it must have computed (Ctout,mpel, 17) = Comppe(PKpels 95 Ctas Ctyy)
correctly (and using the correct pkpe and ct,, since the checks in step (1) passed). It follows by
perfect completeness of the delegation scheme (Genpej, Compp,, Verpel) that

VerDe| (SkDe|7 gv CtZ‘) Cty; Ctouta 7TDeI7 T) = Accept

as desired. O

Claim 7. If S is honest and, in Iy, all checks in step (1) of the functionality h described in Figure
3 succeed, and step (3) of the functionality h does not return L, then the value of out returned by
step (4) of h will be equal to f(x,y) with probability 1.

Proof. Since S is honest and step (1) is successful, we know, as in the previous claim, that
(Pkpel, Skpel) = Genpel (17, per) and (ctoyt, Tel, 17) = Comppe(Pkpels g5 Cta, cty). It follows by cor-
rectness of the delegation scheme (Genpe, Compp,, Verper) that

Ctout = g(Cts, ctyy) = Evalrne(PkenE, f, cte, cty)

It suffices to show that this will decrypt to the correct output out = f(x,y). This holds due
to perfect correctness of the FHE scheme (Genpyg, Encpye, Decpne, Evalpue); specifically, since ct,
and ct, are encryptions of x and y, respectively:

DecrHE (SkrHE; Ctout) = Decrre (skrnEe, Evalrre (PkenE, f, cte, cty)) = f(z,y)

23

Chaining together Claims 5, 6, and 7 leads us to the conclusion that (by Claim 5), Sg returns L
in Execgff sp.r(1": @,y 2) if and only if 7, would return L (from step (1)) in the respective execution

of Exec7H—’;l o r(1", 2,9, 2), and furthermore, if this event does not occur, then (by Claims 6 and 7 as
well as the definition of Sg) both S (in Exec;’; sp.r(1" @,y,2)) and T, (in the respective execution

of ExecgvA,vR(ln,x,y,z)) will return an output out that is precisely equal to f(z,y), where x is
the value sent by the adversary to 7, and y is the (honest) sender’s input. This completes the
argument for the case I = R.

Corrupted Sender. In the case I =S, define a T'(n) - poly(n)-time simulator Sg which does as
follows:

1. Generate TFHE, TDel; TEnc(z) < 10, 1}*
and (pkpye, -) = GenpHe (1™ TrHE), (Pkpels -) = Genpel (1% 7pel), cte = Encrne (Pkengs 05 TEnc())

2. Run the corrupted sender A’ using input (pkgyg, PKpe, Ctz). A’ will generate a message
(%', PKEHE, PKDel> Ctlys Cty, Cloyes Thers T‘/Enc(y), T") to send to Tp,. Perform the following checks to

verify this message, and return L to Ty (causing it to output L) if any of them fail.

(a) Pkene = PKerEs PKpel = PKpels Cta = Ct.
/ / /
(b) ct, = Encrre(PKrHE: ¥ TEnc(y))
(c) Verpel(skpel, g, Cta, Cty, Ctoye, Thep, 1) = Accept
for the functionality g(c1,ca) = Evalpue(pkene, f, 1, ¢2).

3. Otherwise (if the above checks pass), send ¢’ to T;. Finally, output whatever A’ outputs.

As this case has interesting subtleties, we lead the formal proof with a brief overview. Recall
that, for this case, we need not only to verify that the adversary A’’s views in the experiments
Exec%’A,ﬁ(l”, x,y,z) and Execgffyss’s(ln, x,y, z) (and hence A”’s outputs) cannot be distinguished,
but also that the honest receiver R’s outputs cannot be distinguished between the two experiments.

The natural way to do this would be to begin by creating a hybrid protocol IIj where the
receiver, instead of sending a ciphertext of their input x in the first round, sends the corresponding
ciphertext of 0 (as the simulator does when running A’ in II¢). Ostensibly, this would allow us
to show that the output distributions between IIj, and IIj are close by using the CPA-security
of the underlying FHE protocol to assert that the ciphertexts, and hence the views of A’, are
indistinguishable between the two experiments. And while this does indeed directly imply that the
adversary’s outputs are close, we run into an issue the moment we consider the receiver’s output;
specifically, the receiver’s output is the output from the ideal functionality 7, which among other
things depends on the secret key skpyg and the randomness reye used to generate it. In fact, this
makes a reduction from IT} to the security of the FHE scheme impossible (using current techniques),
since a hypothetical adversary simulating this functionality would only know pkgyg.

Instead we will have to consider an alternate functionality A’ which only depends on the public
key pkpyg and does not use the randomness or secret key. Specifically, rather than decrypting the
final result ctoyt, A’ will instead simply return f(z,y’). We then show that the output distribution
of Iy is statistically close to that of 1. Specifically, they are identical except when the adversary
A’ can force the ideal functionality k' to verify a proof mpe of an incorrect ciphertext cto,—this

24

implies that their statistical distance must be at most the (negligible) soundness error of delegation.®
Now, given IIj/, we can finally consider a protocol II}, where the receiver uses a ciphertext of 0;
now that A’ no longer depends on skgyg, the reduction to the CPA-security will go through (for
both the adversary’s and receiver’s outputs), and we can lastly compare Execg,;” e S(l”, x,y, z) and

Execlz[—’; Ss (1™, 2,3, 2) to show that, actually, the output distributions are identically distributed.

We continue to the formal proof. Let A’ be the functionality defined as h, but with four key
differences:

e 1/, instead of taking input 7gye from the receiver, takes input pkgye.

e In step (1), instead of verifying that (pkpug, -) = Gengpe(1™, rene), A/ verifies that the sender’s
and receiver’s inputs pkpyg match.

e In step (2), A’ no longer computes (-, skepe) = Gengpe(1™; TEHE).-
e In step (4), b/ returns f(z,y) rather than Decpye(skrHE, Ctout)-

Let II;, be defined identically to II; except that both parties use the ideal functionality 7/ in
place of 7;, and the receiver inputs pkpyg to 7 instead of reye as specified above. We state the
following claim:

Claim 8. There exists negligible €(-) such that, for all n € N and inputs z,y, z, the output distri-
butions Outg;“A,’S(ln, x,y,z) and OutZI’};:“A/’S(l”,x,y, z) are €(n)-statistically close.

Proof. Intuitively, this will follow from the soundness of the delegation scheme (Genpe|, Compp,,
VerDe|).

First, observe that the adversary’s views in Exec;lr’;“A,S(l",x, y,z) and EXGCQ;:,,_AQS(ln’ x,Y,z),
and thus the adversary’s outputs, are identically distributed; hence, it suffices to argue about the
honest receiver’s output, i.e., the output of 73 or 7.

Second, since the receiver R is honest, the fact that A’ verifies that the sender’s and receiver’s
inputs pkpyg match is equivalent to the verification in h of the sender’s pkpye (that (pkpyg,:) =
Gengpe(1™, 7HE)), since the receiver’s input pkpye will always be equal to Genppg (1™, 7gnE). So the
only change that can possibly affect the output of 7, compared to 7 in the corrupted sender case
is the fact that A’ returns f(x,y) rather than Decpyg(skrnEg, Ctout)-

Now, assume for the sake of contradiction that there is some polynomial p(-) such that, for
infinitely many n € N, there exist z, y, z so that the ideal functionality’s output is different between
ExecE7A,’S(1”,a:,y,z) and Execg};:/’A,ﬁ(l”,:n,y,z) with probability 1/p(n). We shall use this to
construct a T'(n) - poly(n)-time adversary Ape to break the soundness of the delegation scheme
with probability 1/p(n).

Specifically, let Ape do as follows on input (17, pkpe):

1. Generate rgyg, TEnc(z) {0,1}*
and (pkpyg, -) = Genppe(1"; 7FHE), Cte = Encrpe(PKenE: 75 TEnc(2))-

8 An attentive reader might wonder at this point why, in doing this, we are not simply backing ourselves into the
same corner, since indeed 7}, and even T/ are very much dependent on the randomness rpe and secret key skpei. The
intuitive answer is that, unlike with the reduction to FHE, we are able to “outsource” the dependence on skpe in 7
to the security game for the soundness of delegation, allowing us to effectively emulate h’ without said secret key in
the adversary we construct.

25

2. Run the corrupted sender A’ with sender input y, auxiliary input z, and first-round message
(PKeHE, PKpers Ctz). A’ will generate a message (', pkipg, PKpel, Cty, Ct, CtouthDelaTEnc(X ,T")
to send to the ideal functionality (7, or Tp).

3. Run (CtOUta TDels 1T) <~ CompDeI(kaeh g, Cty, Ctle)
for the functionality g(c1, ca) = Evalpue(pkene, f, 1, ¢2)

4. Verity the following and abort if any are false.

(a) Pkrne = PKEHE, PKpel = PKDels Cte = ct,
(b) ct}, = Encrre(PkeuE: ¥ Tenc(y))

. !
5. Otherwise, return (g, cty, cty, Ctout, Ctoyrs TDels Thes 17,17,

We claim that Ape returns a tuple (g,ctx,ct’y,ctout,ctgut,ﬂDe|,7T’De|, 17, lT/) such that ctoys #
Ctoyr but Verpe(skpel, g, Cta, €ty Ctout; Tpel, T') = Verpel(skpel, 9 Cta, Cty, Ctoyy, Tpeps I7) = Accept—
that is, Ape breaks soundness of the delegation scheme—precisely when h decrypts a ciphertext
that is not equal to ctoyt as returned by Comppg (pkpers 9, Cta, cty) for the corresponding functionality
and inputs; furthermore, we claim that this is the only case where h and h’ may not be identically
distributed.

To verify this, we start by observing that the input to A" in step (2) of Ape is identically
distributed to the inputs in the experiments Execg’ AS (1", z,y,2) and Execg AS (1™ z,y,2),
since pkpg is honestly generated and the receiver is honest Furthermore, given the message from
A’ to the ideal functionality, as well as the fact that R is honest, we can assert that the checks
in step (4) of Ape are equivalent to the checks in step (1) of h or I/, since the receiver’s inputs
PKEHE, PKpel, Ctz are guaranteed to be honestly generated. So, comparing 73, and Tj for a particular
interaction, there are four possible outcomes, which we shall analyze:

1. Step (1) of h or A’ fails, in which case both return L (and Ape will abort).

2. Step (1) succeeds, but the verification in step (3) fails, in which case both will return L (and
Apel will produce output (g, cts, cty, Ctout, Ctoyt, TDels Tpels 17,1™") which is rejected because
(cthut, The) fails to verify).

3. Steps (1) and (3) succeed, and ctl,, given by the adversary is the same as the correct
(Ctout, -, *) = CompDe|(kae|,g,ctgc,cty), in which case the outputs of A and h' are identical
and not | by perfect correctness of Enc and Eval, as well as correctness of the delegation
scheme.

Specifically, considering the inputs to h, we know by correctness of delegation that, since

(Ctout) = Comppe(Pkpel; 9s Cta, €ty), Ctoye = g(Cty, cty) = Evalrne(pkeng, f, cta, cty). Fur-
thermore, by perfect correctness of the FHE scheme and the fact that ct, and ct; are encryp-
tions of x and y, respectively:

Decrre (SKFHE, Ctout) = Decphe (skrne, Evalrue (Pkenes f, cta, cty)) = f(z,y')

that is, the output of h will be identical to the output f(z,3’) of A'. In this case, Ape|
will produce output (g, ct,, cty, Ctouts Ctout, TDels Thel» 17T) which is rejected because ctl,, =
Ctout.

26

4. Steps (1) and (3) succeed, and ct,, given by the adversary is not the same as the correct
(Ctout, ;) = Comppg(pkpel; g5 Cta, cty), in which case the outputs of h and b’ may be differ-
ent (and Ape will produce output (g, cts, cty, Ctout; Ctoyts TDel, Tpers 17.17") which is accepted

because ctl,, # Ctour and (Cthy,, Thy, 17) verifies successfully).

The above implies that the probability over possible interactions that the outputs of A and A’
are different—which, as we have argued above, is equal to the statistical distance between the
distributions Out7H—’;“A,7S(1”, x,y, z) and Outg;:/’A,’S(ln, r,1, z)—is no greater? than the probability
with which Ape/’s output is accepted. In particular, by our assumption that, for infinitely many
n € N, there were x,y, z such that this statistical distance was greater than 1/p(n), this implies
that the probability that Ape/’s output is accepted (for the corresponding inputs) must be greater
than 1/p(n) for infinitely many n € N. But this contradicts the soundness of delegation, so the
claim is proven. O

Now let IT}, be identical to IIj/, with the sole exception that the receiver’s first-round message
to the sender replaces the correctly generated ct; = Encrue(PkpnEg, 75 "Enc(z)) With the correspond-
ing encryption ct, = EncpHe(pkene, 05 7Enc(z)) Of 0. We present the following claim comparing

EXECE,A/,S(l”,x,y,Z) and ExecH*,:L/”A,S(ln,x,y,z):
Claim 9. For any polynomial-time non-uniform distinguisher D, there exists negligible €(-) such

771’ (1717337

that, for any n € N and inputs x,y, z, the distributions OUtZI’h,:/,A’,S(lm x,y, z) and OUtH;,,A’,S

y,z) cannot be distinguished by D with probability greater than e(n).

Proof. Intuitively, this follows from the CPA-security of the FHE scheme with respect to T'(n) -
poly(n)-time adversaries and the fact that both A’ and the view of A" are independent of reyg and

SKFHE-
Formally, assume for contradiction that there exists a non-uniform polynomial-time distin-

guisher D and polynomial p(-) such that, for infinitely many n € N, there are inputs x, y, z such that
D is able to distinguish Out7H";:, v s(1™ 2y, 2) and Out7H'*," .s(1", 2, y, 2) with probability 1/p(n).
K K h/’ K

We define a tuple of T'(n) - poly(n)-time algorithms (Afng, D) that can break the CPA-security of
the FHE scheme (Gengpg, Encepg, Evalpye, Decpyg) with probability 1/p(n) as follows:

e Apryg, on input 1", outputs (0, x).

e D’ on input (1", pkpyg, ct,), where c is either ct = Encppe(pkepe, 0)
1_ T
or ct; = Encrye(pkepg,), does the following:
1. Generate rpel < {0,1}* and (pkpey, skpel) = Genpel (1%; 7pel)-

2. Run the corrupted sender A’ with sender input y, auxiliary input z, and first-round mes-
/

sage (pKepe, PKpel, Ctz). A’ will generate a message (3, pkpg, PKpels Ctl, Cty, Cloyes Thers
T’Enc(y), T") to send to Ty, and output out 4. Store out 4.
3. Verify the following and set outgp = L if any are false. Otherwise, set outp = f(x,7/).

(a) Pkrne = PKEHE, PKpel = PKDels Cte = ctl,

9Note that equality is not guaranteed, as h could possibly accept a ciphertext ctl, # ctou that still decrypts to
fz,y).

27

(b) ct, = Encrre(PKrHE: ¥ TEnc(y))
(c) Verpei(skpel, g, Cta, Cty), Ctoye, Thes T') = Accept

out»
for the functionality g(c1, c2) = Evalpye(pkene, f, €1, ¢2)

4. Return D(1™, (outy,outRg)).

First, notice that (given that the inputs pkpyg and ct, = Encpue(pkeyg, m) for either m = 0 or
m = x are generated correctly) the inputs to A’ in step (2) of D’ are identically distributed to
either the inputs in EXGCZI—}L}:“A/’S(l”,x,y, z) (if m =) or the inputs in Execgz:“A,,S(lnvm,y,z) (if

m = 0). Hence, the view of A’ in D’ is identically distributed to the corresponding view in the
respective experiment, which implies that the output outy must be as well, as must the message
sent to Tp.

It remains to argue about the receiver’s output outg; recall that the honest receiver’s output
in either experiment is given by the output of the ideal functionality 7. However, outr as de-
fined in step (3) of D’ can easily be seen to be identically distributed to the output of A’ in the
respective experiment Execé—’L}:“A,’S(ln, x,y,z) (if m=z) or ExecQ}'ﬁA,S(l”, x,y,z) (if m = 0). This
holds because, since R is honest, R’s inputs (pkeyg, PKpels Ctz) a}ll"e honestly generated and so the
verifications in steps (3a) and (3b) are identical to the respective checks in step (1) of h. Further-
more, the verification in step (3c) of D’ is identical to the verification in step (3) of h, so it follows
that outgp = L exactly when A’ in the respective experiment would return L, and that, otherwise,
outr = f(z,y"), which by the definition of h’ is identical to what A’ would return if not outputting
1.

So we have argued that the distribution (out 4/, outpg) is identical to O”tE’Z,,A/,S(ln’ x,y, z) when

Tyt

41" @y, 2) when m = 0. But we have assumed that for infinitely many
h/’ El

. C e T T
n € N there exist x,y, z so that D can distinguish OutH’;“A,vs(ln, x,y, z) and OutHZ”A,S(ln,x?y, 2)

m = x and to Out

with probability 1/p(n), i.e., that there is at least a 1/p(n) difference between the probability that
D(1™, (out 4/, 0utr)) returns 1 in the m = x case and the respective probability in the m = 0 case.
But, since D’ returns precisely D (1", (out 4/, 0utg)), this gives us

[Pr[D(1", pkeng, Encrre (Pkene, 0)) = 1] — Pr[D(1", pkppe, Encrue(pkene, 2)) = 1]] > 1/p(n)

which, since Appye always returns (0, z), means that (Apyg, D’) is able to break the CPA-security
of the underlying FHE scheme (w.r.t. T'(n) - poly(n)-time adversaries) with probability 1/p(n) for
infinitely many n € N, a contradiction. O

It remains to compare O”tEZ,,A’,S(ln7 x,y, z) and Out17%7557s(1”, x,y, z); however, we claim that
in fact these distributions are already identical. First, observe that the input provided to A’ in
Ss is identically distributed to the input provided to A’ in Execg/“ A,,S(ln,:ﬂ,y, z); in both cases
this consists of an honestly generated pkpyg, Pkpel, €t such that ct; is the respective encryption of
0. So it follows that the adversary’s output, as well as the message sent by the adversary to the
ideal functionality, must be identically distributed between the two experiments. Demonstrating
that the receiver’s outputs are identical—that is, that the output of A’ in EXGCEZ/ ,A’,S(ln’ x,y,z) is

always equal to the output f(z,y) in Execgff Ss (1™, 2, y, z)—will follow from the following claim,
to which we have already alluded in the previous two reductions:

28

Claim 10. If R is honest, then, given messages (x, pKeng, "Dels TEnc) Sent to Trnr, (PKrnEs PKDels Cta)
sent to A', and (y', pkrye, pkbel,ctgg,ct;,ctgut,W{De',r’Enc(y),T’) sent by A’ to Ty, the checks in step

2) of Sg succeed if and only if all checks in steps (1) and (3) of the functionality h' succeed.
(2) of Y y

Proof. If R is honest, it must be the case that (pkpey,) = Genpei(1*; 7pel) and ct, = Encene (Pkpne, ©
s TEnc(z)); hence step (2a) of Sg is equivalent to verifying PkEne = PKene, (PKbers -) = Genpel (12 7pel),
and ct, = Enceye(pkeye, 7; TEnc(z))s 1-€., the first three checks of step (1) of A'. Step (2b) is trivially
equivalent to the last check in step (1) of b’ and step (2¢) is trivially equivalent to the check in step
(3) of A/, completing the argument. O

This implies that the receiver in Execgﬁ' y S(l”,x,y,z) will return L as the output from A’
precisely when Sg will return L to the ideal functionality (based on the checks in step (2)) and
cause the receiver in Execg’;, S, (1™, z,y,2) to return L. However, when 7; does not output L,
it will always output f(x,y’) on the respective inputs x from the honest receiver and y’ from
Sg; similarly, when 75 does not return L, it will, by definition, also always output f(x,y’) on
the respective input = from the honest receiver and 3’ from A’. The above, then, is sufficient to
conclude that the distributions Outg’}}; ,A/,S(lnv x,y,z) and O“tgff,ss,s(ln, x,y, z) are identical.

We conclude the proof of the lemma with a standard hybrid argument; specifically, if there
exists some non-uniform polynomial-time distinguisher D and polynomial p(-) such that, for in-
finitely many n € N, there are inputs x, ¥y, z so that D can distinguish Outg”h v s(1", 2y, 2) and

Outgj;’s’s(ln,x,y, z) with probability 1/p(n), then D must likewise be able to distinguish one of
the following pairs with probability 1/p’(n) for some polynomial p/(-):

7 T,
e Outy! , ¢(1",2,y,2) and Outn’;:“A,ﬁ(ln’q;,y, z)

T T
o OutH*;/’A,VS(ln,x,y, z) and OUtHZ,,A’,S(lnvx’y’z)
Tt

H;llz

e Out A,7S(1",1:,y, z) and Outay&s(ln,x,y, 2)

The first case would contradict Claim 8, the second case would contradict Claim 9, and the third case
is impossible because we showed the distributions to be identical. Therefore, such a distinguisher
D cannot exist. 0

By the same logic, a standard hybrid argument shows that Lemmas 2 and 3 imply Theorem
7: if there were some non-uniform polynomial-time distinguisher D and polynomial p(-) such that,
for infinitely many n € N, there were inputs z,y, z so that D could distinguish Outyy 4 7 (1", z, v, 2)

and Out;}f s (1", x,y, z) with probability 1/p(n), then D would be able to distinguish either:

e Outyy 4 7(1", 2,y,2) and Outg’;“A,J(ln,m,y,z), or
Ti T
° OutH’;“A,,I(ln,x,y,z) and OutH’;S,I(l",x,y, 2)

with probability 1/p’(n) for some polynomial p/(-). The first case would contradict Lemma 2 and
the second Lemma 3; hence, Theorem 7 is proven.

29

References

[AEKP19]

[ATKO6]

[AMPR14]

[BCCT13]

[BCI*13]

[BCPR14]

[BD18]

[BGI™17]

[BGV12]

[BHHI10]

[BHK17]

Gilad Asharov, Naomi Ephraim, [lan Komargodski, and Rafael Pass. On perfect cor-
rectness without derandomization. Cryptology ePrint Archive, Report 2019/1025, 2019.
https://eprint.iacr.org/2019/1025.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15:115-162,
01 2006.

Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, FUROCRYPT 2014, volume 8441 of LNCS, pages 387-404. Springer, Heidelberg,
May 2014.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111-120. ACM
Press, June 2013.

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2018, volume 7785 of LNCS, pages 315-333. Springer, Heidelberg, March 2013.

Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages
505-514. ACM Press, May / June 2014.

Zvika Brakerski and Nico Dottling. Two-message statistically sender-private OT from
LWE. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume
11240 of LNCS, pages 370-390. Springer, Heidelberg, November 2018.

Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wa-
dia. Two-message witness indistinguishability and secure computation in the plain
model from new assumptions. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 275-303. Springer, Heidelberg,
December 2017.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages
309-325. ACM, January 2012.

Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-dependent
message security. In Henri Gilbert, editor, FEUROCRYPT 2010, volume 6110 of LNCS,
pages 423-444. Springer, Heidelberg, May / June 2010.

Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages 474-482.
ACM Press, June 2017.

30

https://eprint.iacr.org/2019/1025

[BJIOV1S]

[BK18]

[BPO4]

[BP15]

[Can01]

[CDG+17]

[CJS14]

[DLN*04]

[Gen09]

[GGPR13]

[GGSW13]

[GIS*10]

Saikrishna Badrinarayanan, Abhishek Jain, Rafail Ostrovsky, and Ivan Visconti. Non-
interactive secure computation from one-way functions. In Thomas Peyrin and Steven
Galbraith, editors, ASTACRYPT 2018, Part 111, volume 11274 of LNCS, pages 118-138.
Springer, Heidelberg, December 2018.

Zvika Brakerski and Yael Tauman Kalai. Monotone batch np-delegation with ap-
plications to access control. Cryptology ePrint Archive, Report 2018/375, 2018.
https://eprint.iacr.org/2018/375.

Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 121-132. Springer,
Heidelberg, February 2004.

Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part II, volume 9453 of LNCS, pages 236-261. Springer, Heidelberg, November / De-
cember 2015.

Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136-145. IEEE Computer Society Press, October
2001.

Chongwon Cho, Nico Déttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10402 of LNCS, pages 33-65.
Springer, Heidelberg, August 2017.

Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM
CCS 2014, pages 597-608. ACM Press, November 2014.

Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct Proofs for NP and Spooky Interactions. 2004.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169-178. ACM Press, May / June 2009.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, FUROCRYPT 2013, volume 7881 of LNCS, pages 626-645. Springer,
Heidelberg, May 2013.

Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467-476. ACM Press, June 2013.

Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 308-326. Springer, Heidelberg, February
2010.

31

https://eprint.iacr.org/2018/375

[GKP'13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and

[GM84]

[GMW87]

[GOY4]

[Grol0]

[Hai08]

[HK12]

[HPV16]

[IKO*11]

[IPS08]

(Kil88]

[KMOB9]

[KOO4]

Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555-564. ACM Press, June 2013.

Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of computer and
system sciences, 28(2):270-299, 1984.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218-229. ACM Press, May 1987.

Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1-32, 1994.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321-340.
Springer, Heidelberg, December 2010.

Iftach Haitner. Semi-honest to malicious oblivious transfer - the black-box way. In Ran
Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 412—426. Springer, Heidelberg,
March 2008.

Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message
oblivious transfer. J. Cryptology, 25(1):158-193, 2012.

Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubrama-
niam. Composable security in the tamper-proof hardware model under minimal com-
plexity. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, volume 9985
of LNCS, pages 367-399. Springer, Heidelberg, October / November 2016.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 406-425. Springer, Heidelberg, May
2011.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572-591. Springer, Heidelberg, August 2008.

Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20-31. ACM Press, May 1988.

Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge
proofs (extended abstract). In 30th FOCS, pages 474-479. IEEE Computer Society
Press, October / November 1989.

Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Matthew Franklin, editor, CRYPTO 200/, volume 3152 of LNCS, pages 335-354.
Springer, Heidelberg, August 2004.

32

[Mic94]

[MR17]

[Nao91]

[NPO1]

[Pas03]

[PS04]

[Ps05]

[PVWOS]

[QWW18]

[Reg05]

[SU11]

[Yao82]

[Yao86]

Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436-453. IEEE
Computer Society Press, November 1994.

Payman Mohassel and Mike Rosulek. Non-interactive secure 2PC in the offline/online
and batch settings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 425-455. Springer, Heidelberg,
April / May 2017.

Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151-158,
1991.

Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448-457, 2001.

Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Eli Biham, editor, FUROCRYPT 2003, volume 2656 of LNCS, pages
160-176. Springer, Heidelberg, May 2003.

Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving universal
composability without trusted setup. In Laszlé Babai, editor, 86th ACM STOC, pages
242-251. ACM Press, June 2004.

Rafael Pass and Abhi shelat. Unconditional characterizations of non-interactive zero-
knowledge. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
118-134. Springer, Heidelberg, August 2005.

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 554-571. Springer, Heidelberg, August 2008.

Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and appli-
cations. In Mikkel Thorup, editor, 59th FOCS, pages 859-870. IEEE Computer Society
Press, October 2018.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 87th ACM STOC, pages 84-93. ACM
Press, May 2005.

Dominique Schréder and Dominique Unruh. Round optimal blind signatures. Cryptol-
ogy ePrint Archive, Report 2011/264, 2011. https://eprint.iacr.org/2011/264.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160-164, 1982.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162-167, 1986.

33

https://eprint.iacr.org/2011/264

A Non-succinct NISC Protocols

Here, we state our candidate non-succinct NISC protocols for use in our main theorem. Specifi-
cally, while [BGI"17] claims that NISC with superpolynomial-time simulation can be constructed
from just a notion of “weak oblivious transfer” (see Appendix A.1 for a formal definition), their
construction requires an onto one-way function, which cannot necessarily be constructed just from
weak OT. While this distinction is unimportant in the context of their major results, we wish to
show that our construction of succinct NISC can be based solely on subexponential LWE; hence,
in Figure 4, we present an adaptation of their protocol which can be based solely on weak OT. The
key difference is that, while [BGI*17] relies on a witness-indistinguishable argument and the afore-
mentioned onto one-way function, we instead discard the one-way function and rely on a two-round
zero-knowledge argument with superpolynomial-time simulation, showing that this is sufficient via
complexity leveraging and a careful sequence of hybrids.

Consider some quasi-polynomial functions Tot(n), TexoT(n), Tsim(n), Tec(n), TextCom(n),
Tcom(n) satisfying:

Tec(n) > Texot(n) > ToT(n) > Textcom(n) > Tcom(n) > Tsim(n)

where we write T'(n) > T'(n) to indicate that T'(n) > T'(n) - p(n) for any polynomial p(-) and
sufficiently large n € N. Specifically, we can achieve quasi-polynomial simulation by letting each
function be given by n'°8°(") for some different constant c. II will use the following primitives:

e Let (OT1,0T9,0Tj3) be a 1-0f-2 oblivious transfer scheme satisfying the definition of “(To7(-),
TextoT(+))-weak OT” given in Appendix A.1 with respective TgoT1(n) - poly(n)-time extractor
Extor (for TexoT(n) > ToT(n), as otherwise Extot would trivially break chooser’s security).

o Let (ZKy,ZKy,ZK3) be a two-message zero-knowledge protocol with Tsj,(n) - poly(n)-time
simulation; let Simzk be the respective simulator. [BGI*T17] shows that such schemes can be
constructed from the above notion of “weak OT”.

e Let (Garble, Eval) be a garbled circuit scheme secure against Tgc(n) - poly(n)-time adversaries
which satisfies perfect correctness (see Appendix A.2); let Simgc be the respective simulator
in the definition of security.

e Let (Setupc,,,, Com) be a secure two-round commitment scheme with Te.com(n) - poly(n)-
time extraction which satisfies statistical binding and hiding against Tcom(n) - poly(n)-time
adversaries (where Tgytcom (1) > Tcom(n), as otherwise Extcom would trivially break hiding);
let Extcom denote the respective extractor.

As we notice that there exist constructions of both garbled circuit schemes [BHHI10] and two-round
commitment schemes [Nao91] based on one-way functions, and as (even semi-honest) OT implies
one-way functions [Hai08], this yields the following theorem:

Theorem 8 (Adapted from [BGIT17]). Assuming the existence of weak oblivious transfer, then,
for any functionality f(-,-) computable by a polynomial-time Turing machine, there exists a non-
interactive secure computation protocol 11 for f with quasi-polynomial simulation.

Furthermore, since weak OT can be based on subexponential LWE [BD18], we have as a corollary:

34

Corollary 2 (Theorem 5). Assuming subezponential hardness of the Learning With Errors assump-
tion, then, for any functionality f(-,-) computable by a polynomial-time Turing machine, there exists
a non-interactive secure computation protocol 11 for f with quasi-polynomial simulation.

The proof of Theorem 8 follows analogously to the original in [BGIT17]; we provide a slightly
abbreviated version here.

Proof. We separate into two cases based on whether the sender or receiver is corrupted.

Corrupted Sender. In the case where the sender is corrupted, we present the simulator given in
Figure 5, which will run in time Tgycom(n) - poly(n) = poly(n)n!°2“(™ for constant c. It suffices to
show that, between the real and ideal experiments, the outputs of the adversary and of the honest
receiver (which simply outputs the result of the ideal functionality) are indistinguishable.

First, consider a hybrid experiment H where R, after receiving the malicious sender’s second-
round message, computes y* by using Extcom after verifying zks and then computes and outputs
f(z,y*), rather than computing an output by evaluating GC as in the real experiment. We claim
that R’s and the adversary’s outputs are statistically close between the real experiment and H. The
adversary’s output is trivially identical as their view does not change. To reason about R’s output
in H, notice that the two experiments return | under precisely the same conditions; furthermore,
by security of the underlying ZK protocol, the experiments, with overwhelming probability, return
something besides L if and only if (32, GC,¢y) € L.

If (QQ,GC,cy) € L, there exists a witness w = (31,?,7ﬁ,rgc,cl,y,rcom) demonstrating
that (ots, GC, ¢,) is properly generated given some randomness (7?%, TGCsTCom) and the malicious
sender’s input y. In the real protocol, we know that, by perfect correctness of the OT protocol, the
honest receiver will always recover the keys corresponding to their input « when 32 is correctly
generated. Furthermore, by perfect correctness of the garbled circuit scheme, using the respective
keys on a (correctly formed) garbled circuit GC will always result in the correct output C(z) =
f(x,y), where y is as given in the witness w. However, by statistical binding and extractability of
Com, this y must with overwhelming probability (i.e., unless binding fails) be the same one as the
y* returned by Extcom(cy), and so in this case the output C(z) = f(x,y) in the real experiment
must always be equal to the output f(x,y*) of the ideal functionality in the ideal experiment, since
the honest receiver will always provide the same x. Thus, the outputs of R and the adversary are
statistically close between the real experiment and H whenever (ag,GC,cy) € L, implying that
they are statistically close overall (since it is overwhelmingly likely that either (32, GC,cy) € L or
both protocols return).

So it suffices to compare H to the ideal experiment. The only difference between H and the ideal
experiment is the way in which the message ot is generated; hence, by Tot(n)-chooser’s security of
the OT protocol (see Appendix A.1), we can show that the joint distribution of the adversary’s and
receiver’s output is indistinguishable between H and the ideal experiment. Specifically, assume
for the sake of contradiction that there exists some non-uniform polynomial-time distinguisher
D that can successfully distinguish between the respective joint distributions; we can construct
a TextCom(n) - poly(n)-time distinguisher D’ that breaks chooser’s security of the underlying OT
scheme (note that the OT is assumed secure against ToT(n)-poly(n)-time adversaries and ToT(n) >
Textcom(m)) by, given some OT message ot}, running the receiver protocol and respective adversarial
sender in the experiment using ot} (note that the experiment must run Extcom, hence the running
time bound) to generate the respective output distribution and subsequently returning the output

35

Input: The receiver R and the sender S are given input z,y € {0, 1}", respectively, and
both parties have common input 1.
Output: R receives f(z,y).

Round 1: R proceeds as follows:

1. Generate ot1,a07 by, for i € [n], taking ((ot1)s, (Got):) < OT1 (17, ;).
2. Generate (zky,ozk) < ZK1(1™).

3. Generate ¢ < Setupcom(1™).

4. Send (al,zkl,cl) to S.

Round 2: S proceeds as follows:

1. Compute ¢, = Com(c1,y; 7com) using randomness rcom < {0, 1}".

2. Generate keys K = {Kjp}ic[n)pefo,1}, Where K;p < {0,1}" for each i € [n] and
be{0,1}.

3. Generate garbled circuit GC = GarbIe(I_g,C; rgc), where C(-) is the circuit that
computes f(-,y).

4. Compute oty and 7ot by, for i € [n], taking (fof); + {0,1}* and (ag)i =
OTa((of1)i, Kio, iy (7ot):)-

5. Compute zky + ZKo (1", zkq, (32, GC, ¢y), (31, ?,TEZ,T’GO €1,Y,TCom)) for the lan-
guage L consisting of tuples = (otp, GC,¢y) such that there exists a witness

w = (al,?,ﬁ,rec,cl,y,r@m) satisfying:
(a) (32)1' = OTy(a1)1',Ki,o,Kz',1; (7ot)s) for all i € [n].
(b) GC = Garble(K, C;rgc), where C(+) is the circuit that computes f(-,y).
(¢) ¢y = Com(c1,y;rcom)-
6. Send (zks, of2, GC,c,) to R.

Output phase: R proceeds as follows:

1. Verify that_Z>K3(zk2, (32, GC, ¢y),0zk) = Accept; if not, output L.
2. Compute K* by taking K = OT3((32)Z~, (507):) for each i € [n].
3. Output EvaI(ﬁ,GC).

Figure 4: Protocol II for (non-succinct) non-interactive secure computation.

36

Simulator Sg
Generate oty, 501 by, for i € [n], taking ((071)2-, (Got)i) « OT1(17,0).
Generate (zky, ozk) « ZK{(1™).
Generate ¢1 < Setupcom (17).
Send (al,zkl,cl) to the (malicious) sender S.
Receive output (zks, ote, GC, ¢,) from S.
Verify that ZKs(zks, (32, GC, ¢y), 0zx) = Accept; if not, output L.
Use the extractor Extcom to compute y* <— Extcom(cy), and send y* to the ideal functionality ;.

N G o

Figure 5: Simulator for a malicious sender.

of D on the distribution. Since the experiments are identical aside from the first OT message,
D being able to distinguish the ideal experiment (with OT input 0) from H (with a non-zero
OT input) would imply D’ successfully distinguishing between OT;(1™,0) and OT;(1™,1), hence
contradicting the OT’s security and completing the argument for the malicious sender case.

Corrupted Receiver. Otherwise, if the receiver is corrupted, we use the TgxoT(n) - poly(n)-time
simulator given in Figure 6; once again we note that the running time is given by poly(n)nlogc(”)
for constant c. It suffices to show that the output of the malicious receiver is indistinguishable
between the two experiments, which we can do by showing that the views of the adversary R are
likewise indistinguishable.

To argue that this is the case, we introduce the following sequence of hybrids:

1. Let hybrid Hy denote the real experiment.

2. Let H; be identical to Hp, except that zks, rather than being computed honestly by ZKs, is
computed as zky < Simzk(zki, (ag, GC,¢y)).

3. Let Hy be identical to Hp, except that the commitment ¢, is generated as ¢, = Com(cy,0)
rather than Com(cy,y).

4. Let Hj3 be identical to Hs, except that Hs now uses the extractor Extor to recover z* and
generates the inputs K, to OTy (for any ¢, b such that z] # b) uniformly at random rather
than using the respective keys.

5. Let Hy be identical to Hs, except that Hy additionally computes z = f(z*, y), and furthermore
the garbled circuit GC, rather than being computed honestly by Garble, is generated as GC =

Sich(,Z).

Notice that Hy is now identical to the behavior of Sk in the ideal world; hence, it suffices to
argue that the above sequence of hybrids are indistinguishable by the non-uniform polynomial-time
adversary A in order to show that the adversary’s view (and hence their output) must likewise be
indistinguishable between the real and ideal experiments.

Hj is (non-uniform polynomial-time) indistinguishable from H; by simulation-based security
of the zero-knowledge protocol (ZKi,ZKsy,ZK3): since (RQ,GC,cy) € L (i.e., they are honestly
generated, and hence there exists a valid witness w), the definition of security implies that zke <
SimZK(zkl,(ag,GC,cy)) and zky <+ ZKg(l”,zkl,(ag,GC,cy),w) (for some valid witness w) are
indistinguishable by any non-uniform polynomial-time adversary.

37

Simulator Si
Run the malicious receiver R to receive a first-round message (31, zkq, c1).
Use the extractor Extor to compute z* by taking =] < ExtOT((al)i) for each i € [n].
Send z* to the ideal functionality 7; and receive an output z.
Compute ¢, = Com(cq,0).
Generate keys K= {Kib}icn)pefo,1}, where Ky < {0,1}" for each i € [n] and b € {0, 1}.
Generate garbled circuit GC = Simgc (K, 2).
Compute of by, for i € [n], taking (32)1 = OT2((al)i,Ki7o,Ki71).
Compute zky + Simzgk (zky, (32, GC,¢y)).
Send (zks, ots, GC,¢,) to R.

© PN oW

Figure 6: Simulator for a malicious receiver.

H, is indistinguishable from H; by the hiding property of the underlying commitment scheme
Com (i.e., that, for any adversarially chosen first message ¢; and messages mg, m1, the respective
commitments are indistinguishable by Tcom(n) - poly(n)-time adversaries). The only difference
between H; and H is how the commitment c, is generated; hence, if there were a non-uniform
polynomial-time distinguisher D able to distinguish the adversary’s view between the experiments
H; and Hy, then it would be possible to construct a Ts;m(n) - poly(n)-time distinguisher D’ between
Com(c1,0) and Com(cy,y). Specifically, D’ could run the adversary to obtain the first message
c1, request a commitment ¢, of one of the two values (0 or y) under the message ci, use ¢,
in place of the respective commitment while emulating the rest of the experiment in Tgim(n) -
poly(n) time, and return the output of D on the resulting view. If D distinguishes between the
respective experiments H; and Hs, then D’ would distinguish between Com(cy,0) and Com(eq,y),
contradicting the hiding of Com since we assumed it to have security against Tcom(n) - poly(n)-time
adversaries and Tcom(n) > Tsim(n). (Note that D" does indeed run in time Tsim(n) - poly(n); while
the final simulator Sg uses the extractor ExtoT, which requires far more time, none of the hybrids
before Hj use this extractor.)

H, is indistinguishable from Hj by sender’s security of the weak OT protocol (OT1,0Ty,0Ts3)
(see Appendix A.l). Specifically, the only difference between the adversary’s view in Hy and
Hj is in how the OT message £2 is generated. If the adversary’s view of the experiments were
distinguishable by some non-uniform polynomial-time distinguisher D, it would be possible to
create a TeoT(n) - poly(n)-time distinguisher D’ (note that the running time is significantly higher
than distinguishing H; and Hs as we now need to run Extor) between OTg((al)i7Ki,0,Ki71)
and OTy run on the same inputs but with a different K;; corresponding to b # Extor((ot1)s),
directly contradicting (statistical) sender’s security of the OT. The distinguisher would use the
respective OTo output in place of a randomly chosen one of the OT messages, emulate the rest of
the experiment in TgwoT(n) - poly(n) time (specifically, in TexoT1(n) + Tsim(n) + poly(n) time, since
the experiment runs both Simzk and ExtoT; however, we collect the terms due to the observation
that Tsim(n) < TexoT(n)), and return the output of D on the resulting view. If D’ were able to
distinguish between the respective experiments, then D would be able to distinguish between the
respective OT messages, breaking statistical sender’s security.

Lastly, Hj is indistinguishable from Hy by security of the garbled circuit scheme (Garble, Eval)
with respect to the simulator Simgc. The only difference between the adversary’s views in Hj
and Hjy is in how the garbled circuit GC is generated, so, as before, if we had some non-uniform
polynomial-time distinguisher D between the respective views in experiments H; and Hy, we could

38

construct a TeioT1(n) - poly(n)-time distinguisher between real and simulated garbled circuits by
running the experiment while using Extot to recover x* and z = f(x*,y), obtaining a (real or
simulated) garbled circuit for the respective inputs and output, substituting the circuit for GC,
emulating the rest of the experiment (again, in time TgxoT(n) + Tsim(n) + poly(n) = TexoT(n) -
poly(n)), and returning the output of D on the resulting view. If D successfully distinguishes
between H3 and Hy, then D’ would in turn distinguish between the real and simulated circuits.
This, however, would contradict security of (Garble, Eval), since we have assumed it secure against
Tec(n) - poly(n)-time adversaries for Tge(n) > TewoT(n). O

Extension to the CRS model. A NISC protocol from any UC-secure OT is claimed in ([IPS08],
Appendix B), which can be instantiated with the OT protocol in the CRS model of [PVWO08] to
get a NISC protocol in the CRS model (with simulation based security). As their protocol is a bit
complicated (and only informally analyzed), we point out that the above SPS protocol can be easily
modified (and the proof directly extends) to give a NISC in the CRS model from any UC-secure
OT in the CRS model, as follows:?

e We now require (OT1,0T2,0T3) to be a maliciously secure and fully simulatable oblivious
transfer protocol (which, in the CRS model, can still be based on LWE [PVWO08]), and we
require (ZKi,ZKsq,ZK3) to be a two-round zero-knowledge protocol with polynomial-time
simulation in the CRS model, which is implied by OT [Kil88, KMO89, Ps05].

e We can relax the security on all underlying primitives to hold against polynomial-time ad-
versaries, rather than 7'(n) - poly(n)-time adversaries.

e We remove the commitment scheme Com from the protocol (and remove ci, ¢y, Tcom, and
the respective check from the language L) and let the simulators extract the inputs from
the malicious party by using the respective (polynomial-time) simulators for the OT protocol
instead of the superpolynomial-time extractors for weak OT and Com, so that the simulators
will run in polynomial time.

Aside from these differences, the protocol and proof proceed identically to the above, yielding the
following theorem:

Theorem 9. Assuming polynomial security of the Learning With Errors assumption, then, for any
functionality f(-,-) computable by a polynomial-time Turing machine, there exists a non-interactive
secure computation protocol 11 for f with polynomial-time simulation in the CRS model.

A.1 Definition of Weak Oblivious Transfer

For completeness, we present the definition of “weak OT” given in [BGI*17].

Definition 7 ([BGI*17]). A two-round 1-of-2 weak oblivious transfer protocol is given by three
algorithms, (OT1,0T4,0T3), defining an interaction between a sender S and a chooser (receiver)
R as follows:

0Qur protocol is simpler but this is only because we rely on the underlying OT protocol in a non-black-bozx way
whereas [IPS08] relies on it only in a black-boz way.

39

OT1(1™,b) — (oty,0) generates R’s message oty and persistent state o (which is not sent to
S) given the security parameter n and R’s choice bit b € {0, 1}.

OTy(oty, g, z1) — otz generates S’s message oty given S’s messages xg,x1 and R’s message
oty.

OT3(ote,0) — x; generates R’s output xj given the state o and S’s message oty.

such that the following properties hold:

1.

Perfect correctness: For any n € N, any choice bit b € {0,1}, and any inputs xo,x1 €

{0, 1}
PT’[(Otl,O') < OTl(ln,b) Ty = OT3(O’, OTQ(:L‘U,.Il,Otl))] =1

Chooser’s security: For any non-uniform polynomial-time distinguisher D, there exists a
negligible €(-) such that, for any n € N:

|Pr[D(0T1(1",0)) = 1] — Pr[D(OT;(1",1)) = 1] | < €(n)

If the above holds with respect to T (n) - poly(n)-time distinguishers D, we say that the protocol
satisfies T'(-)-chooser’s security, or alternatively that it is T(-)-secure.

Statistical sender’s security: There exists an extractor Extor that, on input oty, outputs 0
if Pr{OT1(1™,0) = ot1] > 0 and 1 otherwise, and, for any (unbounded) distinguisher D, there
exists negligible €(-) such that, for any ot1 and any Ko, K1, Ky, Ky for which K (o) =

/
Extor(ot1)
|P7‘[D(OT2(O'€1,K0,K1)) = 1] — Pr [D(OTQ(Otl,Ké,Ki)) = 1] | < E(H)

We say that the protocol is T'(-)-extractable if there exists an Extor satisfying the above
that runs in time T'(n) - poly(n).

Lastly, for some T(-) < T'(-), we call a weak OT protocol a (T'(n),T'(n))-weak OT protocol if it
is T'(+)-secure and T'(-)-extractable.

We state the following theorem for the existence of weak OT:

Theorem 10 ([BD18]). Assuming subexponential security of the Learning With Errors assumption,

then, for every ¢ < , there exists a (T(-),T'(-))-weak OT protocol for T(n) = n'°9" (™) T'(n) =
log®' ()

n :

A.2 Definition of Garbled Circuit Schemes

Definition 8 (based on [Yao86, BHHI10]). A garbled circuit scheme consists of a pair of
algorithms (Garble, Eval) such that:

. Garble(?, C) — GC: given security parameter n, takes as input a circuit C' with input size n

and labels K = {Ky;}e(0,1},ic[n) corresponding to each assignment (0 or 1) for each input
wire, and outputs a garbled circuit GC.

40

° Eval(I?7 GC) — y: takes as input a garbled circuit GC and a garbled input x represented by
the corresponding labels K* = { Ky, i}ic[n), and outputs y.

We consider garbled circuit schemes having the following properties:

1. Perfect correctness: For any security parameter n € N, any circuit C' with input length
[n], any labels K = {Kb,i}veqo1y,iein) € ({0, 1}™)2" (such that Ko; # K1, for each i), and
any input x = 21| ... |[zn € {0, 1}, letting K* = { Kz, i }igjn)-

Pr[EvaI(I?Z, Garble(?(), C))=C(x)] =1

2. Security: There exists an efficient simulator Sim such that, for all non-uniform polynomial-
time distinguishers D, there exists a negligible function €(-) such that, for all n € N, for

any circuit C with input length n and any input © = z1||...||lz, € {0,1}", letting K =
{Kyitoeqoy,icin) < ({0,1}™)?" be uniformly random and K* = {Ka, i }icp:
| Pr[D(Garble(K, C), K) = 1] — Pr[D(Sim(EK, C(2)), K¥) = 1]| < €(n)

If the above holds for T(n)poly(n)-time distinguishers D, we say that the scheme is T(-)-
secure.

We state the following theorem for existence:

Theorem 11 ([AIK06, BHHI10]). Assuming the existence of subexponentially secure one-way func-
tions, then, for constant c, there exists a T(-)-secure garbled circuit scheme satisfying perfect cor-
rectness for T'(n) = nlos"(n)

41

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Fully Homomorphic Encryption
	Adaptive Delegation Schemes
	Non-Interactive Secure Computation

	Protocol
	Proof
	Comparing Real and Hybrid Executions
	Comparing Hybrid and Ideal Executions

	Non-succinct NISC Protocols
	Definition of Weak Oblivious Transfer
	Definition of Garbled Circuit Schemes

