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Abstract

We introduce the notion of a continuous verifiable delay function (cVDF): a function g which
is (a) iteratively sequential—meaning that evaluating the iteration g(t) of g (on a random input)
takes time roughly t times the time to evaluate g, even with many parallel processors, and (b)
(iteratively) verifiable—the output of g(t) can be efficiently verified (in time that is essentially
independent of t). In other words, the iterated function g(t) is a verifiable delay function (VDF)
(Boneh et al., CRYPTO ’18), having the property that intermediate steps of the computation
(i.e., g(t

′) for t′ < t) are publicly and continuously verifiable.
We demonstrate that cVDFs have intriguing applications: (a) they can be used to construct

public randomness beacons that only require an initial random seed (and no further unpredictable
sources of randomness), (b) enable outsourceable VDFs where any part of the VDF computation
can be verifiably outsourced, and (c) have deep complexity-theoretic consequences: in particular,
they imply the existence of depth-robust moderately-hard Nash equilibrium problem instances,
i.e. instances that can be solved in polynomial time yet require a high sequential running time.

Our main result is the construction of a cVDF based on the repeated squaring assumption
and the soundness of the Fiat-Shamir (FS) heuristic for constant-round proofs. We highlight
that when viewed as a (plain) VDF, our construction requires a weaker FS assumption than
previous ones (earlier constructions require the FS heuristic for either super-logarithmic round
proofs, or for arguments).
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1 Introduction

A fundamental computational task is to simulate “real time” via computation. This was first sug-
gested by Rabin [Rab83] in 1983, who introduced a notion called randomness beacon to describe an
ideal functionality that publishes unpredictable and independent random values at fixed intervals.
This concept has received a substantial amount of attention since its introduction, and even more
so in recent years due to its many applications to more efficient and reliable consensus protocols in
the context of blockchain technologies.

One natural approach, which is the focus of this work, is to implement a randomness beacon
by using an iteratively sequential function.1 An iteratively sequential function g inherently takes
some time ` to compute and has the property that there are no shortcuts to compute sequential
iterations of it. That is, computing the t-wise composition of g for any t should take roughly time
t · `, even with parallelism. Using an iteratively sequential function g with an initial seed x, we can
construct a randomness beacon where the output at interval t is computed as the hash of

g(t)(x) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
t times

(x).

After t · ` time has elapsed (at which point we know the first t values), the beacon’s output
should be unpredictable sufficiently far in the future.2 The original candidate iteratively sequential
function is based on (repeated) squaring in a finite group of unknown order [CLSY93, RSW96]. It
is also conjectured that any secure hash function (such as SHA-256) gives an iteratively sequential
function; this was suggested in [Kal00] and indeed, as shown in [MMV13], a random oracle is
iteratively sequential.

Continuous VDFs. The downside of using an iteratively sequential function as a randomness
beacon is that to verify the current value of the beacon, one needs to recompute its entire history
which is time consuming by definition. In particular, a party that joins late will never be able
to catch up. Rather, we would like the output at each step to be both publicly and efficiently
verifiable. It is also desirable for the randomness beacon to be generated without any private state
so that anyone can compute it, meaning that each step can be computed based solely on the output
of the preceding step. Indeed, if we have an iteratively sequential function that is also (iteratively)
verifiable—in the sense that one can efficiently verify the output of g(t)(x) in time polylog(t)—then
such a function could be used to obtain a public randomness beacon. In this paper, we introduce
and construct such a function and refer to it as a continuous verifiable delay function (cVDF).
As the name suggests, it can be viewed as enabling continuous evaluation and verification of a
verifiable delay function (VDF) [BBBF18] as we describe shortly.3

Continuous VDFs are related to many previously studied time-based primitives. One classical
construction is the time-lock puzzle of Rivest, Shamir, and Wagner [RSW96]. Their construction
can be viewed as an iteratively sequential function that is privately verifiable with a trapdoor—
unfortunately, this trapdoor not only enables quickly verifying the output of iterations of the
function, but in fact also enables quickly computing the iterations. New publicly verifiable time-
based primitives have since emerged, including proofs of sequential work (PoSW) [MMV13, CP18,

1We use the terminology from [BBBF18]; these have also been referred to as sequential functions [MMV13].
2If g is perfectly iteratively sequential, meaning that t iterations cannot be computed in time faster than exactly

t · `, then after t steps of g the next value would be unpredictable. However, if t iterations cannot be computed in
time faster than (1− ε) · t · `, we can only guarantee that the (ε · t)-th value into the future is unpredictable.

3Our notion of a cVDF (just like the earlier notion of a “plain” VDF) also allows for the existence of some trusted
public parameters.
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DLM19] and verifiable delay functions (VDF) [BBBF18, Pie19, Wes19, BBF18, FMPS19]. While
these primitives are enough for many applications, they fall short of implementing a public random-
ness beacon (on their own). In more detail, a PoSW enables generating a publicly verifiable proof
of some computation (rather than a specific function with a unique output) that is guaranteed to
have taken a long time. This issue was overcome through the introduction of VDFs [BBBF18],
which are functions that require some “long” time T to compute (where T is a parameter given to
the function), yet the answer to the computation can be efficiently verified given a proof that can
be jointly generated with the output (with only small overhead). In fact, one of the motivating
applications for constructing VDFs was to obtain a public randomness beacon. A natural approach
toward this goal is to simply iterate the VDF at fixed intervals. However, this construction does
not satisfy our desired efficiency for verifiability. In particular, even though the VDF enables fast
verification of each invocation, we still need to store all proofs for the intermediate values to verify
the final output of the iterated function, and thus the proof size and verification time grow linearly
with the number of invocations t. While a recent construction of Wesolowski [Wes19] enables ag-
gregating these intermediate proofs to obtain a single short proof, the verification time still grows
linearly with t (in contrast, a cVDF enables continuously iterating a function such that the output
of t iterations can be efficiently verified in time essentially independent of t, for any t). While a VDF
does not directly give a public randomness beacon, it does, however, enable turning a “high-entropy
beacon” (e.g., continuous monitoring of stock market prices) into an unbiased and unpredictable
beacon as described in [BBBF18]. In contrast, using a cVDF enables dispensing altogether with
the high-entropy beacon—we simply need a single initial seed x.

Continuous VDFs are useful not only for randomness beacons, but also for standard applications
of VDFs. Consider a scenario where some entity is offering a $5M reward for evaluating a single
VDF with time parameter 5 years (i.e., it is supposed to take five years to evaluate it). Alice
starts evaluating the VDF, but after two years runs out of money and can no longer continue the
computation. Ideally, she would like to sell the work she has completed for $2M. Bob is willing
to buy the intermediate state, verify it, and continue the computation. The problem, however, is
that there is no way for Bob to verify Alice’s internal state. In contrast, had Alice used a cVDF,
she would simply be iterating an iteratively sequential function, and we would directly have the
guarantee that at any intermediate state of the computation can be verified and Alice can be
compensated for her effort. In other words, cVDF enable verifiably outsourcing VDF computation.

Finally, as we show, cVDFs are intriguing also from a complexity-theoretic point of view. The
existence of cVDFs imply that PPAD [Pap94] (the class for which the task of finding a Nash
equilibrium in a two-party game is complete) is hard—in fact, the existence of cVDFs imply the
existence of a relaxed-SVL [CHK+19a, AKV04] instance with tight hardness (which yields improved
hardness results also for PPAD). Additionally, the existence of cVDFs imply that there is a constant
d such that for large enough c, there is a distribution over Nash equilibrium problem instances of size
n that can be solved in time nc but cannot be solved in depth nc/d (and arbitrary polynomial size)—
that is, the existence of “easy” Nash equilibrium problem instances that requires high sequential
running time. In other words, cVDFs imply that it is possible to sample “moderately-hard” Nash
equilibrium problem instances that require a large time to solve, even with many parallel processors.

1.1 Our Results

Our main result is the construction of a cVDF based on the repeated squaring assumption in a
finite group of unknown order and a variant of the Fiat-Shamir (FS) heuristic for constant-round
proof systems. Informally, the iteratively sequential property of our construction comes from the
repeated squaring assumption which says that squaring in this setting is an iteratively sequential
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function. We use the Fiat-Shamir assumption to obtain the continuous verifiability property of our
construction. More precisely, we apply the Fiat-Shamir heuristic on a constant-round proof system
where the verifier may be inefficient. We note that by the classic results of [GK90] this holds in
the random oracle model.

Theorem 1.1 (Informal, see Corollary 6.3). Under the repeated squaring assumption and the Fiat-
Shamir assumption for constant-round proof systems with inefficient verifiers, there exists a cVDF.

We remark that to obtain a plain VDF we only need the “standard” Fiat-Shamir assumption
for constant-round proof systems (with efficient verifiers).

A cVDF readily gives a public randomness beacon. As discussed above, the notions of cVDFs
and public randomness beacons are closely related. The main difference between the two is that the
output of a randomness beacon should not only be unpredictable before a certain time, but should
also be indistinguishable from random. Thus, we obtain our public randomness beacon by simply
“hashing” the output of the cVDF. We show that this indeed gives a public randomness beacon
by performing the hashing using a pseudo-random generators (PRGs) for unpredictable sources
(which exist either in the random oracle model or from extremely lossy functions [Zha16]).

Theorem 1.2 (Informal). Assuming the existence of cVDFs and PRGs for unpredictable sources,
there exists a public randomness beacon.

Comparison with (plain) VDFs. The two most related VDF constructions are that of Pietrzak [Pie19]
and that of Wesolowski [Wes19], as these are based on repeated squaring. In terms of assumptions,
Pietrzak’s protocol [Pie19] assumes the Fiat-Shamir heuristic for a proof system with a super-
constant number of rounds and Wesolowski’s [Wes19] assumes the Fiat-Shamir heuristic for a
constant-round argument system. It is known that, in general, the Fiat-Shamir heuristic is not
true for super-constant round protocols (even in the random oracle model4), and not true for
constant-round arguments [Bar01, GK03]. As such, both of these constructions rely on somewhat
non-standard assumptions. In contrast, our VDF relies only on the Fiat-Shamir heuristic for a
constant-round proof system—no counter examples are currently known for such proof systems.

We additionally note that before applying the Fiat-Shamir heuristic (i.e., a VDF in the random
oracle model), our VDF satisfies computational uniqueness while Pietrzak’s satisfies statistical
uniqueness. He achieves this by working over the group of signed quadratic residues. We note that
we can get statistical uniqueness in this setting using the same idea. Lastly, we emphasize that the
concrete proof length and verification time are polynomially higher in our case than that of both
Pietrzak and Wesolowski. For a detailed comparison of the parameters between our (c)VDF and
their VDFs, see Section 2.3.

PPAD hardness. PPAD [Pap94] is an important subclass in TFNP [MP91] (the class of total
search problems), most notably known for its complete problem of finding a Nash equilibrium
in bimatrix games [DGP09, CDT09]. Understanding whether PPAD contains hard problems is
a central open problem and the most common approach for proving hardness was pioneered by
Abbot, Kane, and Valiant [AKV04]. They introduced a problem, which [BPR15] termed Sink-of-
Verifiable-Line (SVL), and showed that it reduces to End-Of-Line (EOL), a complete problem
for PPAD. In SVL, one has to present a function f that can be iterated and each intermediate
value can be efficiently verified, but the output of T iterations (where T is some super-polynomial
value, referred to as the length of the “line”) is hard to compute in polynomial time.

4Although, [Pie19] shows that it does hold in the random oracle model for his particular protocol.
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In a beautiful recent work, Choudhuri et al. [CHK+19a] defined the relaxed-Sink-of-Verifi-
able-Line (rSVL) problem, and showed that it reduces to EOL, as well. rSVL is a generalization
of SVL where one is required to find either the output after many iterations (as in SVL) or an
off-chain value that verifies. Choudhuri et al. [CHK+19a] gave a hard rSVL instance assuming the
security of the Fiat-Shamir transformation applied to the sum-check protocol [LFKN92] (which is
a polynomial-round protocol).

The notion of an (r)SVL instance is very related to our notion of a cVDF. The main differences
are that a cVDF requires that the gap between the honest computation and the malicious one is
tight and that security holds for adversaries that have access to multiple processors running in
parallel. As such, the existence of a cVDF (which handles super-polynomially many iterations)
directly implies an rSVL instances with “optimal” hardness—namely, one where the number of
computational steps required to solve an instance of the problem with a “line” of length T is
(1− ε) · T .

Theorem 1.3 (Informal). The existence of a cVDF supporting superpolynomially many iterations
implies an optimally-hard rSVL instance (which in turn implies that PPAD is hard (on average)).

Theorem 1.1 readily extends to give a cVDF supporting super-polynomially many iterations
by making a Fiat-Shamir assumption for ω(1)-round proof systems. As a consequence, we get an
optimally-hard instance of rSVL based on this Fiat-Shamir assumption for ω(1)-round proofs5 and
the repeated squaring assumption. By following the reductions from rSVL to EOL and to finding
a Nash equilibrium, we get (based on the same assumptions) hard PPAD and Nash equilibrium
instances. We remark that in comparison to the results of Choudhuri et al., we only rely on
the Fiat-Shamir assumption for ω(1)-round protocols, whereas they rely on it for a polynomial-
round, or at the very least an ω(log n)-round proof systems (if additionally assuming that #SAT is
sub-exponentially hard). On the other hand, we additionally require a computational assumption–
namely, the repeated squaring assumption, whereas they do not.6

Our method yields PPAD instances satisfying another interesting property: we can generate
PPAD (and thus Nash equilibrium problem) instances that can be solved in polynomial time, yet
they also require a high sequential running time—that is, they are “depth-robust” moderately-hard
instances. As far as we know, this gives the first evidence that PPAD (and thus Nash equilibrium
problems) requires high sequential running time to solve (even for easy instances!).

Theorem 1.4 (Informal). The existence of a cVDF implies a distribution of depth-robust moderately-
hard PPAD instances. In particular, there exists a constant d such that for all sufficiently large
constants c, there is a distribution over Nash equilibrium problem instances of size n that can be
solved in time nc but cannot be solved in depth nc/d and arbitrary polynomial time.7

Combining Theorems 1.1 and 1.4, we get a depth-robust moderately-hard PPAD instance based
on the Fiat-Shamir assumption for constant-round proof systems with inefficient verifiers and the
repeated squaring assumption.

5As mentioned above, in general, the Fiat-Shamir assumption is false for super-constant-round proofs. But we state
a restricted form of a Fiat-Shamir assumption for super-constant-round proofs with exponentially small soundness
error which holds in the random oracle model, due to the classic reduction from [GK90].

6We also note that Choudhuri et al. show how to instantiate the hash function in their Fiat-Shamir transformation
assuming a class of fully homomorphic encryption schemes has almost-optimal security against quasi-polynomial time
adversaries. We leave such instantiations in our context for future work.

7If we additionally assume that the repeated squaring assumption is sub-exponentially hard, then the resulting
instance cannot be solved in depth nc/d and sub-exponential time.
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1.2 Related Work

In addition to the time lock puzzle of [RSW96] mentioned above, an alternative construction is by
Bitansky et al. [BGJ+16] assuming a strong form of randomized encodings and the existence of
inherently sequential functions. While the time-lock puzzle of [RSW96] is only privately verifiable,
Boneh and Naor [BN00] showed a method to prove that the time-lock puzzle has a solution. Jer-
schow and Mauve [JM11] and Lenstra and Wesolowski [LW17] constructed iteratively sequential
functions based on Dwork and Naor’s slow function [DN92] (which is based on hardness of modular
exponentiations).

PPAD hardness. The complexity class PPAD (standing for Polynomial Parity Arguments on
Directed graphs), introduced by Papadimitriou [Pap94], is one of the central classes in TFNP. It
contains the problems that can be shown to be total by a parity argument. This class is famous
most notably since the problem of finding a Nash equilibrium in bimatrix games is complete for
it [DGP09, CDT09]. The class is formally defined by one of its complete problems End-Of-Line
(EOL).

Bitansky, Paneth, and Rosen [BPR15] introduced the Sink-of-Verifiable-Line (SVL) prob-
lem and showed that it reduces to the EOL problem (based on Abbot et al. [AKV04] who adapted
the reversible computation idea of Bennet [Ben89]). They additionally gave an SVL instance which
is hard assuming sub-exponentially secure indistinguishability obfuscation and one-way functions.
These underlying assumptions were somewhat relaxed over the years yet remain in the class of
obfuscation-type assumptions which are still considered very strong [GPS16, KS17, KNT18].

Hubáček and Yogev [HY17] observed that the Sink-of-Verifiable-Line actually reduces to
a more structured problem, which they termed End-Of-Metered-Line (EOML), which in turn
resides in CLS (standing for Continuous Local Search), a subclass of PPAD. As a corollary, all of
the above hardness results for PPAD actually hold for CLS.

In an exciting recent work, Choudhuri et al. [CHK+19a] introduced a relaxation of SVL, termed
relaxed-SVL (rSVL) which still reduces to EOML and therefore can be used to prove hardness
of PPAD and CLS. They were able to give a hard rSVL instance based on the sum-check protocol
of [LFKN92] assuming soundness of the Fiat-Shamir transformation and that #SAT is hard.

Verifiable delay functions. VDFs were recently introduced and constructed by Boneh, Bon-
neau, Bünz, and Fisch [BBBF18]. Following that work, additional constructions were given in
[Pie19, Wes19, FMPS19]. The constructions of Pietrzak [Pie19] and Wesolowski [Wes19] are based
on the repeated squaring assumption plus the Fiat-Shamir heuristic, while the construction of De
Feo et al. [FMPS19] relies on elliptic curves and bilinear pairings. We refer to Boneh et al. [BBF18]
for a survey.

VDFs have numerous applications to the design of reliable distributed systems; see [BBBF18,
Section 2]. Indeed, they are nowadays widely used in the design of reliable and resource efficient
blockchains (e.g., in the consensus mechanism of the Chia blockchain [Chi]) and there is a collabo-
ration [VDF] between the Ethereum Foundation [Eth], Protocol Labs [Pro], and various academic
institutions to design better and more efficient VDFs.

Proofs of sequential work. Proofs of sequential work, suggested by Mahmoody, Moran, and
Vadhan [MMV13], are proof systems where on input a random challenge and time parameter t one
can generate a publicly verifiable proof making t sequential computations, yet it is computationally
infeasible to find a valid proof in significantly less than t sequential steps. Mahmoody et al. [MMV13]
gave the first construction and Cohen and Pietrzak [CP18] gave a simple and practical construction
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(both in the random oracle model). A recent work of Döttling et al. [DLM19] constructs an
incremental PoSW based on [CP18]. The techniques underlying Döttling et al’s construction are
related in spirit to ours though the details are very different. See Section 2 for a comparison. All
of the above constructions of PoSWs do not satisfy uniqueness, which is a major downside for
many applications (see [BBBF18] for several examples). Indeed, VDFs were introduced exactly to
mitigate this issue. Since our construction satisfies (computational) uniqueness, we actually get
the first unique incremental PoSW.

Concurrent works. In a concurrent and independent work, Choudhuri et al. [CHK+19b] show
PPAD-hardness based on the Fiat-Shamir heuristic and the repeated squaring assumption. Their
underlying techniques are related to ours since they use a similar tree-based proof merging technique
on top of Pietrzak’s protocol [Pie19]. However, since they use a ternary tree (while we use a high
arity tree) their construction cannot be used to get a continuous VDF (and its applications). Also,
for PPAD-hardness, their construction requires Fiat-Shamir for protocols with ω(log λ) rounds
(where λ is the security parameter) while we need Fiat-Shamir for ω(1)-round protocols.

VDFs were also studied in two recent independent works by Döttling et al. [DGMV19] and
Mahmoody et al. [MSW19]. Both works show negative results for black-box constructions of VDFs
in certain regimes of parameters in the random oracle model. The work of Döttling et al. [DGMV19]
additionally shows that certain VDFs with a somewhat inefficient evaluator can be generically
transformed into VDFs where the evaluator has optimal sequential running time. Whether such a
transformation exists for cVDFs is left for future work.

2 Technical Overview

We start by informally defining a cVDF. At a high level, a cVDF specifies an iteratively sequential
function Eval where each iteration of the function gives a step of computation. Let x0 be any
starting point and xt = Eval(t)(x0) be the tth step or state given by the cVDF. We let B be an
upper bound on the total number of steps in the computation, and assume that honest parties have
some bounded parallelism polylog(B) while adversarial parties may have parallelism poly(B). For
each step t ≤ B, we require the following properties to hold:

• Completeness: xt can be verified as the tth state in time polylog(t).

• Adaptive Soundness: Any value x′t 6= xt computed by an adversarial party will not verify as
the tth state (even when the starting point x0 is chosen adaptively). That is, each state is
(computationally) unique.

• Iteratively Sequential: Given an honestly sampled x0, adversarial parties cannot compute
xt in time (1 − ε) · t · `, where ` is the time for an honest party to compute a step of the
computation.

We require adaptive soundness due to the distributed nature of a cVDF. In particular, suppose a
new party starts computing the cVDF after t steps have elapsed. Then, xt is the effective starting
point for that party, and they may compute for t′ more steps to obtain a state xt+t′ . We want
to ensure that soundness holds for the computation from xt to xt+t′ , so that the next party that
starts at xt+t′ can trust the validity of xt+t′ . Note that the above definition does not contain any
proofs, but instead the states are verifiable by themselves. In terms of plain VDFs, this verifiability
condition is equivalent to the case where the VDF is unique, meaning that the proofs are empty or
included implicitly in the output.
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To construct a cVDF, we start with a plain VDF. For simplicity in this overview, we assume
that this underlying VDF is unique.

A first attempt. The näıve approach for using a VDF to construct a cVDF is to iterate the
VDF as a chain of computations. For any “base difficulty” T , which will be the time to compute
a single step, we can use a VDF to do the computation from x0 to xT with an associated proof of
correctness π0→T . Then, we can start a new VDF instance starting at xT and compute until x2T
with a proof of correctness πT→2T . At this point, anyone can verify that x2T is correct by verifying
both π0→T and πT→2T . We can continue this process indefinitely.

This solution has the property that after t steps, another party can pick up the current value
xt·T , verify it by checking each of the proofs computed so far, and then continue the VDF chain. In
other words, there is no unverified internal state after t steps of the computation. Still, this näıve
solution has the following major drawback (violating completeness). The final proof π(t−1)·T→t·T
only certifies that computing a step from x(t−1)·T results in xt·T and does not guarantee anything
about the computation from x0 to x(t−1)·T . As such, we need to retain and check all proofs
π0→T , . . . , π(t−1)·T→t·T computed so far to be able to verify xt·T . Therefore, both the proof size and
verification time scale linearly with t. We note that this idea is not new (e.g., see [BBBF18]), but
nevertheless it does not solve our problem. Wesolowski [Wes19] partially addresses this issue by
showing how to aggregate proofs so the proof size does not grow, but the verification time in his
protocol still grows.

One possible idea to overcome the blowup mentioned above is to use generic proof merging
techniques. These can combine two different proofs into one that certifies both but whose size
and verification time are proportional to that of a single one. Such techniques were given by
Valiant [Val08] and Chung et al. [CLP13]. However, being generic, they rely on strong assumptions
and do not give the properties that we need (for example, efficiency and uniqueness). We next look
at a promising—yet failed—attempt to overcome this.

A logarithmic approach. Since we can implement the above iterated strategy for any fixed
interval T , we can simply run logB many independent iterated VDF chains in parallel at the
intervals T = 1, 2, 4, . . . , 2logB. Now say that we want to prove that x11 is the correct value eleven
steps from the starting point x0. We just need to verify the proofs π0→8, π8→10, and π10→11. For
any number of steps t, we can now verify xt by verifying only log(t) many proofs, so we have
resolved the major drawbacks! Furthermore, the prover can maintain a small state at each step of
the computation by “forgetting” the smaller proofs. For example, after completing a proof π0→2T

of size 2T , the prover no longer needs to store the proofs π0→T and πT→2T .
Unfortunately, we have given up the distributed nature of a continuous VDF. Specifically,

completeness fails to hold. Each “step” of the computation that the prover does to compute xt
with its associated proofs is no longer an independent instance of a single VDF computation.
Rather, upon computing xt, the current prover has some internal state for all of the computations
which have not yet completed at step t. Since a VDF only provides a way to prove that the output
of each VDF instance is correct, then a new party who wants to pick up the computation has no
way to verify the internal states of the unfinished VDF computations. As a result, this solution
only works in the case where there is one trusted party maintaining the state of all the current VDF
chains over a long period of time. In contrast, a cVDF ensures that there is no internal state at
each step of the computation (or equivalently that the internal state is unique and can be verified
as part of the output).

At an extremely high level, our continuous VDF builds off of this failed attempt when applied to
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the protocol of Pietrzak [Pie19]. We make use of the algebraic structure of the underlying repeated
squaring computation to ensure that the internal state of the prover is verifiable at every step and
can be efficiently continued.

2.1 Adapting Pietrzak’s VDF

We next give a brief overview of Pietrzak’s sumcheck-style interactive protocol for repeated squaring
and the resulting VDF. Let N = p · q where p and q are safe primes and consider the language

LN,B = {(x, y, t) | x, y ∈ Z?N and y = x2
t

mod N and t ≤ B}

that corresponds to valid repeated squaring instances with at most B exponentiations (where we
think ofB as smaller than the time to factorN). In order for the prover to prove that (x, y, t) ∈ LN,B
(corresponding to t steps of the computation), it first computes u = x2

t/2
. It is clearly enough to

then prove that u = x2
t/2

and that u2
t/2

= y. However, recursively proving both statements
separately is too expensive. The main observation of Pietrzak is that using a random challenge r
from the verifier, one can merge both statements into a single one ury = (xru)2

t/2
which is true

if and only if the original two statements are true (with high probability over r). We emphasize

that proving that ury = (xru)2
t/2

has the same form as our original statement, but with difficulty
t/2. This protocol readily gives a VDF by applying the Fiat-Shamir heuristic [FS86] on the log2B
round interactive proof.

From the above, it is clear that the only internal state that the prover needs to maintain in
Pietrzak’s VDF consists of the midpoint u = x2

t/2
and the output y = x2

t
. Thus, if we want

another party to be able to pick up the computation at any time, we need to simultaneously
prove the correctness of u in addition to y. Note that proving the correctness of u just requires
another independent VDF instance of difficulty t/2. This results in a natural recursive tree-based

structure where each computation of t steps consists of proving three instances of size t/2: u = x2
t/2

,

y = u2
t/2

, and ury = (xru)2
t/2

. Consequently, once these three instances are proven, it directly
gives a proof for the “parent” instance x2

t
= y. Note that this parent proof only need to consist

of u, y, and a proof that ury = (xru)2
t/2

(in particular, it does not require proofs of the first two
sub-computations, since they are certified by the proof of the third).

This suggests a high-level framework for making the construction continuous: starting at the
root where we want to compute x2

t
, recursively compute and prove each of the three sub-instances.

Specifically, each step of the cVDF will be a step in the traversal of this tree. At any point when all
three sub-instances of a node have been proven, merge the proofs into a proof of the parent node
and “forget” the proofs of the sub-instances. This has the two desirable properties we want for
a cVDF—first, at any point a new party can verify the state before continuing the computation,
since the state only contains the nodes that have been completed; second, due to the structure of
the proofs, the proof size at any node is bounded roughly by the height of the tree and hence avoids
a blowup in verification time.

Proof merging. The above approach heavily relies on the proof merging technique discussed
above, namely that proofs of sub-instances of a parent node can be efficiently merged into a proof
at that parent node. We obtain this due to the structure of the proofs in Pietrzak’s protocol. We
note that similar proof merging techniques for specific settings were recently given by Döttling et
al. [DLM19] (in the context of incremental PoSW) and Choudhuri et al. [CHK+19a] (in the context
of constructing a hard rSVL instance). While their constructions are conceptually similar to ours,
our construction for a cVDF introduces many challenges in order to achieve both uniquely verifiable
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states and a tight gap between honest and malicious evaluation. Döttling et al. [DLM19] build on
the Cohen and Pietrzak [CP18] PoSW and use a tree-based construction to make it incremental.
At a high level, [CP18] is a PoSW based on a variant of Merkle trees, where the public verification
procedure consists of a challenge for opening a random path in the tree and checking consistency.
The main idea of Döttling et al. is to traverse the tree in a certain way and remember a small
intermediate state which enables them to continue the computation incrementally. Moreover, they
provide a proof at each step by creating a random challenge which “merges” previously computed
challenges. The resulting construction is only a PoSW (where neither the output nor the proof
are unique) and therefore does not suffice for our purpose. Choudhuri et al. [CHK+19a] show how
to merge proofs in the context of the #SAT sum-check protocol. There, they modify the #SAT
proof system to be incremental by performing many additional recursive sub-computations, which
is sufficient for their setting but in ours would cause a large gap between honest and malicious eval-
uation. We note that our method of combining proofs by proving a related statement is reminiscent
of the approach of [CHK+19a].

Before discussing the technical details of our tree-based construction, we first go over modi-
fications we make to Pietrzak’s interactive protocol. Specifically, we discuss adaptive soundness,
and we show how to achieve tight sequentiality (meaning that for any T , computing the VDF with
difficulty T cannot be done significantly faster than T ) in order to use it for our cVDF.

Achieving adaptive soundness. In order to show soundness, we requires the verifier to be
able to efficiently check that the starting point of any computation is a valid generator of QRN . To
achieve this, we use the fact that there is an efficient way to test if x generates QRN given the square
root of x (see Fact A.1). As a result, we work with the square roots of elements in our protocol,
which slightly changes the language. Namely, x, y are now square roots and (x, y, t) ∈ LN,B
if (x2)2

t
= y2 mod N .8 We note that, following [Pie19], working in QR+

N , the group of signed
quadratic residues, would also give adaptive soundness (without including the square roots). This
holds as soundness of Pietrzak’s protocol can be based on the low order assumption, and QR+

N has
no low order elements [BBF18].9

Bounding the fraction of intermediate proofs. Recall that to compute y = x2
t

using the
VDF of Pietrzak for our proposed cVDF, the honest party recursively proves three different com-
putations of t/2 squarings, so that each step will be verifiable. This results in computing for at
least time tlog2 3, since it corresponds to computing the leaves of a ternary tree of depth log2(t),
and each leaf requires a squaring. Note that this does not even consider the overhead of computing
each proof, only the squarings. However, an adversary (even without parallelism) can shortcut this
method and compute the underlying VDF to prove that y = x2

t
by computing roughly t squarings

(and then computing the proof, which has relatively low overhead).
We deal with this issue by reducing the fraction of generating the intermediate proofs in

Pietrzak’s protocol. Our solution is to (somewhat paradoxically) modify Pietrzak’s protocol to
keep additional state, which we will need to verify. Specifically, we observe that t squarings can
be split into k different segments. To prove that y = x2

t
, the prover splits the computation into k

8Giving the square root x is the cause of our computational uniqueness guarantee, since a different square root
for x2 would verify. As mentioned, working over QR+

N would prevent this attack and give information theoretic
uniqueness, as in [Pie19].

9We thank the anonymous EUROCRYPT reviewers for pointing out that Pietrzak’s protocol satisfies adaptive
soundness using QR+

N .
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segments each with difficulty t/k:

x1 = x2
t/k
, x2 = x2

2t/k
, . . . , xk−1 = x2

(k−1)t/k
, xk = x2

t
= y.

Using a random challenge (r1, . . . , rk) from the verifier, we are able to combine these k segments into
a single statement (

∏k
i=1(xi−1)

ri)t/k =
∏k
i=1(xi)

ri (where x0 = x) which is true if and only if all of
the segments are true (with high probability over the challenge). We call the combined statement
the sketch.10 Now in the recursive tree-based structure outlined above, a computation of t steps
consists of proving k + 1 instances of size t/k. By choosing k to be proportional to the security
parameter λ, the total fraction of extra proofs in the honest computation of t steps is now sublinear
in t. As an additional benefit when k = λ, we note that the interactive protocol has logλB ∈ O(1)
rounds if B is a fixed polynomial in λ (as opposed to O(log λ) rounds when k = 2 corresponding
to Pietrzak’s protocol). Applying the Fiat-Shamir heuristic to a constant-round protocol is a more
standard assumption.11

Bounding the overhead of each step. Even though we have bounded the total fraction of ex-
tra nodes that the honest party has to compute, this does not suffice to achieve the tight gap
between honest and adversarial computation for our proposed cVDF. Specifically, the honest com-
putation has an additive (fixed) polynomial overhead λd—for example, to check validity of the
inputs and sometimes compute the sketch node—an adversary does not have to do so at each step.
To compensate for this, we make each base step of the cVDF larger: namely, we truncate the tree.
The effect of this is that a single step now takes time λd

′
for d′ > d.

2.2 Constructing a Continuous VDF

As outlined above, our main insight is designing a cVDF based on a tree structure where each
intermediate state of the computation can be verified and proofs of the computation can be effi-
ciently merged. More concretely, the steps of computation correspond to a specific traversal of a
(k+ 1)-ary tree of height h = logk B. Each node in the tree is associated to a statement (x, y, t, π)
for the underlying VDF, where y = x2

t
and π is the corresponding proof of correctness. We call

x the node’s input, y its output, π the proof, and t the difficulty. The difficulty is determined by
its height in the tree, namely, a node at distance l from the root has difficulty t = kh−l (so nodes
closer to the leaves take less time to compute).

In more detail, the tree is defined as follows. Starting at the root with input x0 and difficulty
t = kh, we divide it into k segments x1, . . . , xk, analogous to our VDF construction. These form
the inputs and outputs of its first k children: its ith child will have input xi−1 and output xi, and
requires a proof that (xi−1)

t/k = xi. Its (k + 1)-st child corresponds to the sketch, namely a node
where the k statements of the siblings are merged into a single statement. Recursively splitting
statements this way gives the statement at each node in the tree, until reaching the leaves where
squaring can be done directly. Note that with this structure, only the leaves require computation—
the statement of nodes at greater heights can be deduced from the statements of their children
(which gives us a way to efficiently merge proofs “up” the tree as we described above).

As a result, we would like each step of computation in the cVDF to correspond to computing
the statement of a single leaf. Accomplishing this requires being able to compute the input x of
the leaf from the previous state (from which y can be computed via squaring). By the structure

10The name sketch is inspired by the notion of a sketch in algorithms, which refers to a random linear projection.
11We are talking about an instantiation of the VDF in the plain model using a concrete hash function. The resulting

VDF is provably secure in the random oracle model for any k.
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of our tree, we observe that this only requires knowing a (small) subset of nodes that were already
computed, which we call the frontier. The frontier of a leaf s, denoted frontier(s), contains all
the left siblings of its ancestors, including the left siblings of s itself.12 Therefore, a state in the
computation contains a leaf label s and the statements associated with the nodes in frontier(s),
which contains at most k · logk(B) nodes. A single step of our continuous VDF, given a state
v = (s, frontier(s)), first verifies v and then computes the next state v′ = (s′, frontier(s′)) where s′

is the next leaf after s. See Figure 1 for an illustration of computing the next state.
This is the basic template for our continuous VDF. Next, we discuss some of the challenges that

come up related to efficiency and security.

Ensuring the iteratively sequential property. Recall that we want to obtain a tight gap
between honest and malicious evaluation of the continuous VDF for any number of steps. A
priori, it seems that computing a sketch for each node in the tree adds a significant amount of
complexity to the honest evaluation. To illustrate this, suppose a malicious evaluator wants to
compute the statement (x, y, t, π) at the root. This can be done by skipping the sketch nodes for
intermediate states and only computing a proof for the final output y = x2

t
, which in total involves

t squarings (corresponding to computing the leaves of a k-ary tree of height logk t) along with the
sketch node for the root. However, for an honest evaluator, this requires computing (k + 1)logk t

leaf nodes (corresponding to every leaf in a (k + 1)-ary tree of height logk t). Therefore, the ratio
is α = ((k + 1)/k)logk t. In order to get the tight gap, we choose k to be proportional to the
security parameter so that α = (1 + o(1)) · t. This change is crucial (as we eluded towards above),
as otherwise if k is a constant, the relative overhead would be significant. Indeed, in Pietrzak’s
protocol, k = 2 and computing the sketch node constitutes a constant fraction of the computation.

2.3 The Efficiency of our Construction

In this section, we briefly compare the efficiency of our constructions to previous ones which are
based on repeated squaring. Specifically, we discuss Wesolowki’s VDF [Wes19] (denoted WVDF),
Pietrzak’s VDF [Pie19] (denoted PVDF), in comparison to our cVDF using a tree of arity k (denoted
k-cVDF) and the VDF underlying it (denoted k-VDF), which is simply Pietrzak’s VDF with arity
k.

For proof length corresponding to t squares, the WVDF proof is just a single group element,
and the PVDF proof consists of log2(t) group elements. For the k-VDF, generalizing Pietrzak’s
VDF to use a tree with arity k results in a proof with (k− 1) · logk(t) group elements. Finally, the
k-cVDF output consists of a frontier with at most (k − 1) proofs for a k-VDF in each of logk(t)
levels of the tree, resulting in (k − 1)2(logk(t))

2 group elements. In all cases, verifying a proof
with n group elements requires doing O(n · λ) squares. For prover efficiency, the honest prover can
compute the proof in the time to do t(1 + o(t)) squares (when t ∈ poly(λ) and k ∈ Ω(log λ) for the
k-cVDF).

In the full cVDF construction, we set k to be equal to λ for simplicity, but as the above shows,
different values of k give rise to different efficiency trade-offs.
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Figure 1: The first six states of our continuous VDF with k = 3 and base difficulty D = kd
′

for
a constant d′. In each tree, the segment nodes are given by solid lines and the sketch nodes by
dashed lines. The yellow node is the current leaf, and the pink nodes are its frontier. The values
in blue are contain (x, y, π) for the corresponding node. The proofs π at leaf nodes with input

x and output y correspond to the underlying VDF proof that x2
D

= y, and the proofs at each
higher node consist of its segments (outputs of k first children) and of the proof of the sketch
node (the (k + 1)st child).

3 Preliminaries

Basic notation. For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. For a set X , we denote by x← X the process of sampling a value x from
the uniform distribution on X . Supp(X ) denotes the support of the distribution X. For an integer
n ∈ N we denote by [n] the set {1, 2, . . . , n}. We use null to denote the empty string. We use PPT
as an acronym for probabilistic polynomial time.

A function negl : N→ R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
indistinguishable if for any non-uniform PPT algorithmA there exists a negligible function negl such
that

∣∣Pr
[
A(1λ, Xλ) = 1

]
− Pr

[
A(1λ, Yλ) = 1

]∣∣ ≤ negl(λ) for all λ ∈ N. We say that an algorithm
runs in polynomial time if it runs in time polynomial in the length of its first input. For a language
L with relation RL, we let RL(x) denote the set of witnesses w such that (x,w) ∈ RL.

Boolean circuits. Boolean circuits are directed acyclic graphs where each node represents an
input gate, output gate, or Boolean gate, and each edge represents a wire in the circuit. The size
of a circuit is the number of wires in it. The depth of a circuit is the length of the longest path
from an input gate to an output gate. The width of a circuit with depth d is the maximum, over
all i ≤ d, of the number of gates at distance i from an input gate. For a circuit C, we let size(C),

12The term frontier is standard in the algorithms literature. Many other names have been used to describe this
notion, such as dangling nodes in [CLP13] and unfinished nodes in [DLM19].
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depth(C), and width(C) denote the size, depth, and width, respectively.

Number theory. Let N = p · q where p, q are safe primes in [2λ, 2λ+1) (a prime p is safe if
p = 2p′ + 1 and p′ is prime). We recall that Z?N consists of all integers in [N ] that are relatively
prime to N (namely, Z?N = {x ∈ ZN : gcd(x,N) = 1}). We define the subgroup QRN to be the
set of quadratic residues in Z?N , i.e., µ such that there exists a x ∈ Z?N where µ = x2 (namely,
QRN = {x2 : x ∈ Z?N}).

By the Chinese Remainder Theorem, each element x in Z?N can be uniquely represented by two
integers (a, b) where x = a mod p and x = b mod q. Let x, y ∈ Z?N with representations (a, b), (c, d),
respectively. It is straightforward to show that the unique representation of −x is (−a,−b), x+ y
is (a + c, b + d), and x · y is (a · c, b · d). We define 〈x〉 to be the cyclic group generated by x, i.e.,
〈x〉 = {x, x2, x3, . . .}. We say that x is a generator for a (sub-)group G if 〈x〉 = G.

3.1 Verifiable, Sequential, and Iteratively Sequential Functions

In this section, we define different properties of functions which will be useful in subsequent sections
when we define unique VDFs (Definition 5.1) and continuous VDFs (Definition 6.1). All of our
definitions will be in the public parameter model. We start by defining a verifiable function.

Definition 3.1 (Verifiable Functions). Let B : N→ N. A B-sound verifiable function is a tuple of
algorithms (Gen,Eval,Verify) where Gen is PPT, Eval is deterministic, and Verify is deterministic
polynomial-time, satisfying the following property:

• Perfect Completeness. For every λ ∈ N, pp ∈ Supp
(
Gen(1λ)

)
, and x ∈ {0, 1}∗, it holds that

Verify(1λ, pp, x,Eval(1λ, pp, x)) = 1.

• B-Soundness. For every non-uniform algorithm A = {Aλ}λ∈N such that size(Aλ) ∈ poly(B(λ))
for all λ ∈ N, there exists a negligible function negl such that for every λ ∈ N it holds that

Pr

[
pp← Gen(1λ)
(x, y)← Aλ(pp)

: Verify(1λ, pp, x, y) = 1 ∧ Eval(1λ, pp, x) 6= y

]
≤ negl(λ).

Next, we define a sequential function. At a high level, this is a function f implemented by an
algorithm Eval that takes input (x, t), such that computing f(x, t) requires time roughly t, even
with parallelism. Our formal definition is inspired by [BBBF18]. Intuitively, it requires that any
algorithm A0,λ which first pre-processes the public parameters cannot output a circuit A1 satisfying
the following. Upon receipt of a freshly sampled input x, A1 outputs a value y and a difficulty t,
where y is the output of Eval on x for difficulty t, where t is sufficiently larger than its depth. This
captures the notion that A1 manages to compute y in less than t time, even with large width.

Definition 3.2. Let D,B, ` : N → N and let ε ∈ (0, 1). A (D,B, `, ε)-sequential function is a
tuple (Gen, Sample,Eval) where Gen and Sample are PPT, Eval is deterministic, and the following
properties hold:

• Honest Evaluation. There exists a uniform circuit family {Cλ,t}λ,t∈N such that Cλ,t computes

Eval(1λ, ·, (·, t)), and for all sufficiently large λ ∈ N and D(λ) ≤ t ≤ B(λ), it holds that
depth(Cλ,t) = t · `(λ) and width(Cλ,t) ∈ poly(λ).
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• Sequentiality. For all non-uniform algorithms A0 = {A0,λ}λ∈N such that size(A0,λ) ∈ poly(B(λ))
for all λ ∈ N, there exists a negligible function negl such that for every λ ∈ N,

Pr


pp← Gen(1λ)
A1 ← A0,λ(pp)
x← Sample(1λ, pp)
(t, y)← A1(x)

:
Eval(1λ, pp, (x, t)) = y
∧ depth(A1) ≤ (1− ε) · t · `(λ)
∧ t ≥ D(λ)

 ≤ negl(λ).

Next, we define an iteratively sequential function. This is a function f implemented by an
algorithm Eval, such that the t-wise composition of f cannot be computed faster than computing
f sequentially t times, even using parallelism. We also require that the length of the output of f is
bounded, so that it does not grow with the number of compositions.

Definition 3.3 (Iteratively Sequential Function). Let D,B, ` : N → N be functions and let ε ∈
(0, 1). A tuple of algorithms (Gen, Sample,Eval) is a (D,B, `, ε)-iteratively sequential function if
Gen and Sample are PPT, Eval is deterministic, and the following properties hold.

• Length Bounded. There exists a polynomial m such that for every λ ∈ N and x ∈ {0, 1}∗, it
holds that

∣∣Eval(1λ, pp, x)
∣∣ ≤ m(λ). We define Eval(·) to be the function that takes as input

1λ, pp, and (x, T ) and represents the T -wise composition given by

Eval(T )(1λ, pp, x)
def
= Eval(1λ, pp, ·) ◦ . . . ◦ Eval(1λ, pp, ·)︸ ︷︷ ︸

T times

(x)

and note that this function is also length bounded.

• Iteratively sequential. The tuple (Gen,Sample,Eval(·)) is a (D,B, `, ε)-sequential function.

Remark 1 (Decoupling size and depth). We note that one can also consider a generalization of a
(D,B, `, ε)-sequential function to a (D,U,B, `, ε)-sequential function (and thus iteratively sequential
functions), where the size of A0,λ remains bounded by poly(B(λ)), but the parameter t output by
A1 must be at most U(λ).

3.2 Repeated Squaring Assumption

The repeated squaring assumption (henceforth, the RSW assumption13) roughly says that there is
no parallel algorithm that can perform t squarings modulo an RSA integer N significantly faster
than just performing t squarings sequentially. This implicitly assumes that N cannot be factored
efficiently. This assumption has been very useful for various applications (e.g., time-lock puz-
zles [RSW96], reliable benchmarking [CLSY93], and timed commitments [BN00, LPS17] and to
date there is no known strategy that beats the naive sequential one.

Define RSW = (RSW.Gen,RSW.Sample,RSW.Eval) as follows.

• N ← RSW.Gen(1λ):
Sample random primes p′, q′ from [2λ, 2λ+1) such that p = 2p′ + 1 and q = 2q′ + 1 are prime,
and output N = p · q.

• x← RSW.Sample(1λ, N):
Sample and output a random element g ← Z?N .

13The assumption is usually called the RSW assumption after Rivest, Shamir, and Wagner who used it to construct
time-lock puzzles [RSW96].
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• y ← RSW.Eval(1λ, N, g):
Output y = g2 mod N .

Assumption 3.4 (RSW Assumption). Let D,B : N → N. The (D,B)-RSW assumption is that
there exists a polynomial ` ∈ N → N and constant ε ∈ (0, 1) such that RSW is a (D,B, `, ε)-
iteratively sequential function.

Note that the RSW assumption implies that factoring is hard. Namely, no adversary can factor
an integer N = p · q where p and q are large “safe” primes (a prime p is safe if p−1 has two factors,
2 and p′, for some prime number p′ ∈ [2λ, 2λ+1)).

3.3 Interactive Protocols and the Fiat-Shamir Heuristic

We consider interactive Turing machines (ITM) and interactive protocols. Given a pair of ITMs P
and V , we denote by 〈P (x), V (y)〉(z) the random variable representing the output of V with common
input z and private input y, when interacting with P with private input x, when the random tape
of each machine is uniformly and independently chosen. We also let ViewV (P (x), V (y))(z) be
the random variable representing V ’s view in such an interaction, which consists of the prover’s
messages and its own random coins. The round complexity of a protocol 〈P (x), V (y)〉 is the number
of distinct messages sent between P and V . We say that a protocol is non-interactive if it consists
of one message from P to V and then V computes its output. Additionally, we say that a protocol
is public-coin if all of V ’s messages to P consist of random coins.

Definition 3.5 (δ-Sound Interactive Proof). A pair of ITMs (P, V ) where V is PPT is called an
interactive proof with soundness δ for a language L with witness relation RL if the following two
conditions hold:

• Completeness: For every λ ∈ N, x ∈ L, and every w ∈ RL(x),

〈P (w), V 〉(1λ, x) = 1.

• Soundness: For every (possibly inefficient) machine P ? = (P ?1 , P
?
2 ) and every λ ∈ N,

Pr[(x, z)← P ∗1 (1λ) : x 6∈ L ∧ 〈P ∗2 (z), V 〉(1λ, x) = 1] ≤ δ(λ).

If the soundness condition only holds against non-uniform PPT machines (P ?1 , P
?
2 ), the pair (P, V )

is called an interactive argument. Additionally, (P, V ) is an interactive proof or argument with an
inefficient verifier if V is allowed to be inefficient.

We omit the prefix δ-sound when there exists a negligible function negl such that the interactive
protocol is negl-sound. We also consider non-interactive protocols in the public parameters model,
where part of the common input is assumed to be generated honestly by a trusted third party and
the properties hold where the probabilities are also over the the trusted third party’s randomness.

The Fiat-Shamir heuristic. For any public-coin interactive protocol (P, V ) and a hash function
family H, the Fiat-Shamir (FS) transformation [FS86] relative to H replaces messages from V with
the hash of the transcript so far using a hash function hash ← H. Moreover, hash is specified in
the public parameters of the final protocol. This results in a non-interactive argument (PFS, VFS)
where PFS sends the final transcript to VFS, and VFS accepts if all of the messages sent by V in the
protocol were generated correctly using hash, and if V accepts.
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Assumption 3.6 (α-round FS). There exists a hash function family H such that for any α(λ)-
round public-coin interactive proof (P, V ) with negl(λα(λ))-soundness for some negligible function
negl, the non-interactive argument (PFS, VFS) obtained by applying Fiat-Shamir transformation to
(P, V ) relative to H has negl(λ)-soundness.

It follows from [GK90] that the α-round FS assumption holds when instantiating hash with
a random oracle. In particular, [GK90] shows that if you can break the soundness of the non-
interactive FS protocol with probability 1/p(λ) using q(λ) queries to the random oracle, then
you can break the interactive protocol with probability 1/(p(λ) · q(λ)α(λ)). For non-uniform PPT
adversaries, q(λ) ∈ poly(λ), so if the interactive protocol satisfies negl(λα(λ))-soundness, then the
non-interactive FS protocol satisfies negl(λ)-soundness.

Recent works presented concrete hash functions (in the plain model) which can be used to
instantiate the assumption for all public-coin interactive proof satisfying additional special proper-
ties (e.g., [CCRR18, CCH+19]). The n-round assumption FS assumption is known to be false for
general arguments, including constant-round ones (e.g., [Bar01, GK03]).

We additionally consider a stronger version of the FS assumption, which assumes that the FS
transformation preserves soundness even when the verifier may be inefficient.

Assumption 3.7 (α-round Strong FS). The α-round FS assumption holds also for any public-coin
interactive proof (P, V ) with an inefficient verifier.

The proof of [GK90] also shows that the strong FS assumption holds when instantiating hash
with a random oracle.

4 Interactive Proof for Repeated Squaring

In this section, we give an interactive proof for a language representing t repeated squarings. As
discussed in Section 2, this protocol is based on that of [Pie19]. We start with an overview. The
common input includes an integer t and two values x̂0, ŷ ∈ Z?N , where, for the purpose of this

overview, the goal is for the prover to convince the verifier that ŷ = (x̂0)
2t mod N . The protocol

is defined recursively.
Starting with a statement (x̂0, ŷ, t), where we assume for simplicity that t is a power of k,

the prover splits x0 into k “segments”, where each segment is t/k “steps” of the computation of

(x̂0)
2t mod N . The ith segment is recursively defined as the value (x̂i−1)

2t/k . In other words,

x̂i = (x̂0)
2i·t/k for all i ∈ {0, 1, . . . , k}. If one can verify the values of x̂1, . . . , x̂k, then one can

also readily verify that ŷ = (x̂0)
2t mod N . To verify the values of x̂1, . . . , x̂k efficiently we rely on

interaction and require the prover to convince the verifier that the values x̂1, . . . , x̂k are consistent
(in some sense) under a random linear relation. To this end, the prover and verifier engage in a
second protocol to prove a modified statement (x̂′0, ŷ

′, t/k) which combines all the segments and
should only be true if all segments are true (with high probability). The modified statement is
proved in the same way, where the exponent t/k is divided by k with each new statement. This
process is continued logk t times until the statement to verify can be done by direct computation.

For soundness of our protocol, we need to bound the probability of a cheating prover jumping
from a false statement in the beginning of the protocol to a true statement in one of the subsequent
protocols. One technical point is that to accomplish this, we work in the subgroup QRN of Z?N and
thus we want the starting point x̂0 to generate QRN . To accommodate this, we let the prover provide
a square root of every group element as a witness to the fact that it is in QRN (actually, by Fact A.3,
this will imply that all group elements generate QRN ). Therefore, rather than working with x̂0 and
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ŷ directly, we work with their square roots x0 and y, respectively. Hence, the common input consists
of an integer t and (x0, y), where the goal is actually to prove that y2 = (x20)

2t = x2
t+1

0 mod N .
Note that, in general, the square root x0 is not unique in Z?N for a given square x20. Indeed, there

are 4 square roots ±x0,±x′0. In our protocol, the computationally bounded prover can compute
only two of them, either ±x0 or ±x′0, as otherwise, by Fact A.2 we could use the prover to factor N .
Among the two square roots that the prover can compute, we canonically decide that the prover
must use the smaller one. This gives rise to our definition of a valid element x: x2 mod N generates
QRN and x = |x|N , formally defined in Definition 4.1.

4.1 Protocol

Before presenting the protocol, we first define the language. Toward that goal, we start with the
formal definition of a valid element.

Definition 4.1 (Valid element). For any N ∈ N and x ∈ {0, 1}∗, we say that x is a valid element
if x ∈ Z?N , 〈x2〉 = QRN , and x = |x|N . We say that a sequence of elements (x1, . . . , x`) is a valid
sequence if each element xi is a valid element.

By Fact A.1, whenever N is in the support of RSW.Gen(1λ), validity can be tested in polynomial
time by verifying that x = |x|N , and that gcd(x ± 1, N) = 1 (and outputting 1 if and only if all
checks pass). This algorithm naturally extends to one that receives as input a sequence of pairs
and verifies each separately.

The language for our interactive proof, LN,B, is parametrized by integersN ∈ Supp
(
RSW.Gen(1λ)

)
and B = B(λ), and it is defined as:

LN,B =

{
(x0, y, t) :

y2 = (x0)
2t+1

mod N if x0 is valid and t ≤ B,
y = ⊥ otherwise

}
.

Intuitively, LN,B should be thought of as the language of elements x0, y where x0 is valid and

x2
t+1

0 = y2 mod N . To be well-defined on any possible statement with x0, y ∈ Z?N and t ∈ N, we
include statements with invalid elements x0 in the language. Since the verifier can test validity
efficiently, this language still enforces that valid elements represent repeated squaring.

Our protocol Πλ,k,d, given in Figure 2, is parametrized by the security parameter λ, as well
as integers k = k(λ) and d = d(λ), where k is the number of segments into which we split each
statement and d is a “cut-off” parameter that defines the base of the recursive protocol.

4.2 Proofs

In this section we show that Πλ,k,d is an interactive proof for the language LN,B by showing
completeness and soundness. Furthermore, we prove an additional property which roughly shows
that any cheating prover cannot deviate in a specific way from the honest prover strategy even for
statements in the language.

Theorem 4.2. For any λ ∈ N, k = k(λ), d = d(λ), B = B(λ), and N ∈ Supp
(
RSW.Gen(1λ)

)
, the

protocol Πλ,k,d (given in Figure 2) is a (logk(B)− d) · 3/2λ-sound interactive proof for LN,B.

We prove Theorem 4.2 by showing completeness in Lemma 4.3 and soundness in Lemma 4.4,
respectively.

Lemma 4.3 (Completeness). 〈P, V 〉(x0, y, t) = 1 for any (x0, y, t) ∈ LN,B.
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Interactive Proof Πλ,k,d = (P, V ) on Common Input (x0, y, t)

Prover P → Verifier V :

1. If x0 is an invalid element (Definition 4.1), t ≤ kd, or t > B, send msgP = ⊥
to V .

2. Otherwise, for i ∈ [k − 1], compute xi = |x2i·t/k0 |N .

3. Send msgP = (x1, . . . , xk−1) to V .

Verifier V → Prover P :

1. If x0 is an invalid element or t > B, output 1 if msgP = y = ⊥ and 0 otherwise.

2. If |y|N is invalid, output 0.

3. If t ≤ kd, output 1 if both y2 = (x0)
2t+1

mod N and msgP = ⊥ and output 0
otherwise.

4. Output 0 if msgP is an invalid sequence.

5. Send msgV = (r1, . . . , rk)← [2λ]k to P .

Prover P ↔ Verifier V :

1. Let x′0 = |∏k
i=1 x

ri
i−1|N and y′ = |∏k

i=1 x
ri
i |N , where xk = y. Note that both

P and V can efficiently compute x′0, y
′ given msgP , msgV , and the common

inputs. If x′0 is invalid, let y′ = ⊥.

2. Output the result of Πλ,k,d on common input (x′0, y
′, t/k).

Figure 2: Interactive Proof Πλ,k,d for LN,B

Proof. First, note that if x0 is an invalid element or t > B, then y = ⊥. In this case, the honest
prover P sends ⊥ to V , so V outputs 1 and completeness holds. Therefore, it suffices to show the
case where x0 is valid and t ≤ B. Since (x0, y, t) ∈ LN,B this implies that y2 = (x0)

2t+1
mod N ,

and thus |y|N is valid by Fact A.3. We proceed to show this case by induction on t.
When t ≤ kd, the honest prover P sends ⊥ to V . V then outputs 1 since y2 = (x0)

2t+1
mod N ,

so completeness holds.
For t > kd, we inductively argue that completeness holds assuming it holds for all smaller values

of t. The honest prover P sends msgP = (x1, . . . , xk−1) where xi = |(x0)2i·t/k |N for all i ∈ [k − 1].
Since x0 is valid by assumption, all xi will be valid by Fact A.3. Then V will accept if and only
if it accepts in the recursive step, so it suffices to show that the randomly generated statement
(x′0, y

′, t/k) ∈ LN,B. First we note that there is some chance that x′0 is invalid, at which case the
statement is vacuously in LN,B since then y′ = ⊥. Otherwise, when x′0 is valid, then

(y′)2 =
k∏
i=1

x2rii =
k∏
i=1

(xi−1)
ri·2t/k+1

= (x′0)
2t/k+1

mod N,

so the recursive statement is in LN,B. Therefore completeness holds by our inductive hypothesis.

Lemma 4.4 (Soundness). For any unbounded cheating prover P ? and any (x0, y, t) 6∈ LN,B it holds
that

Pr [〈P ?, V 〉(x0, y, t) = 1] ≤ max(0, (logk(t)− d) · 3/2λ).
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Proof. Since (x0, y, t) 6∈ LN,B, if x0 is invalid or t > B, then y 6= ⊥. However, in this case V
rejects since y 6= ⊥. Therefore, suppose x0 is valid and t ≤ B. Then, it must be the case that
y2 6= (x0)

2t+1
mod N . We proceed by induction on t.

In the base case when t ≤ kd, V outputs 1 only if y2 = (x0)
2t+1

mod N , so the probability is
0. Now, consider t > kd and assume soundness holds for all values smaller than t. Let msgP ? =
(x1, . . . , xk−1), let xk = y, and let msgV = (r1, . . . , rk) be the output of V (msgP ?).

Since x0 is valid, then 〈x20〉 = QRN so there exist unique values ai ∈ [p′ · q′] such that x2i =
(x0)

2·ai mod N for all i ∈ {0, 1, . . . , k}. This implies that

(x′0)
2 =

k∏
i=1

(x0)
2·ai−1·ri = (x0)

2
∑k
i=1 ai−1·ri mod N

and

(y′)2 =
k∏
i=1

(x0)
2·ai·ri = (x0)

2
∑k
i=1 ai·ri mod N.

We want to bound the probability that (x′0, y
′, t/k) ∈ LN,B. Towards doing so, we split the

probability space into two separate events: (1) either x′0 is invalid, or (2) (y′)2 = (x′0)
2t+1

mod N .
We show in Claim 4.5 that (1) occurs with probability at most 2/2λ and in Claim 4.6 that (2) occurs
with probability at most 1/2λ. Given these events don’t occur, the probability that V outputs 1 is
at most 3 · (logk(t/k)− d)/2λ by the inductive hypothesis. So assuming these claims, V outputs 1
with probability at most 3/2λ + (logk(t/k)− d) · 3/2λ = (logk t− d) · 3/2λ.

Claim 4.5. For any instance (x0, y, t) with t > kd such that x0 is a valid element, it holds that

Pr
r1,...,rk

[
x′0 is invalid

]
≤ 2/2λ.

Proof. We start by bounding the probability that x′0 is invalid. By definition, x′0 = |x′0|N , so we
bound the probability that 〈(x′0)2〉 6= QRN .

Since x0 is valid, 〈(x0)2〉 = QRN , so there exist unique values ai ∈ [p′ · q′] such that x2i =
(x20)

ai mod N for all i ∈ {0, 1, . . . , k} (since x2i ∈ QRN by definition of QRN ). This implies that

(x′0)
2 =

k∏
i=1

(x20)
ai−1·ri = (x20)

∑k
i=1 ai−1·ri mod N.

Observe that 〈(x′0)2〉 6= QRN whenever its exponent (with respect to x20) is equal to 0 modulo p′ or
q′, i.e.,

∑k
i=1 ai−1 · ri = 0 mod p′ or q′. Since a0 = 1, this is equivalent to

r1 = −
k∑
i=2

ai−1 · ri mod p′ or q′.

For any values of r2, . . . , rk, this defines at most two unique values for r1 ∈ [2λ] satisfying the above
equation since p′, q′ ≥ 2λ. Thus, the probability over r1 ← [2λ] that r1 satisfies the above is at most
2/2λ.

Claim 4.6. For any instance (x0, y, t) 6∈ LN,B where x0 is a valid element and t > kd, it holds that

Pr
r1,...,rk

[
(y′)2 = (x′0)

2t+1
mod N

]
≤ 1/2λ.
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Proof. Recall that since x0 is valid then 〈(x0)2〉 = QRN . When we view (y′)2 and (x′0)
2t/k+1

as
powers of (x0)

2, the event of the claim occurs when the exponents are equivalent modulo the size

of the group |QRN | = p′ · q′. Namely, (y′)2 = (x′0)
2t/k+1

mod N if and only if

2

k∑
i=1

ai · ri = 2t/k+1
k∑
i=1

ai−1 · ri mod p′ · q′.

We are given that y2 6= (x0)
2t+1

mod N and y = xk, so we know that 2ak 6= 2t+1 mod p′ · q′. This
implies that there is some index j ∈ [k − 1] such that 2aj 6= 2t/k+1 · aj−1 mod p′ · q′ (otherwise we
would have that 2ak = 2t+1 mod p′ · q′). We separate this term out in the above equation to get

that if (y′)2 = (x′0)
2t/k+1

mod N , then

rj · (2aj − 2t/k+1 · aj−1) = −2
∑
i 6=j

ri · (ai − 2t/kai−1) mod p′ · q′.

We fix the values of ri for i 6= j. Let

S = {rj · (2aj − 2t/k+1aj−1) mod p′ · q′ : rj ∈ [2λ]}

be all possible values of the left-hand side. Given rj ≤ 2λ ≤ p′, q′ and (2aj − 2t/k+1 · aj−1) 6=
0 mod p′ · q′, we know that |S| = 2λ. If the right-hand side is in S, then the probability over the
choice of rj that the equation holds is at most 1/2λ and otherwise the probability is 0.

This completes the proof of Lemma 4.4.

Let L⊥ be the empty language. Let Ṽ be an inefficient verifier for L⊥ that interacts with P
(from Πλ,k,d for LN,B). On common input (x0, y, t), the verifier Ṽ outputs 1 if and only if (1) x0 is
valid and t ≤ B, (2) 〈P, V 〉(x0, y, t) = 1, (3) the first message from the prover satisfies msgP 6= ⊥,

and (4) when msgP = (x1, . . . , xk−1) it holds that x2i 6= x2
i·t/k+1

0 mod N for some i ∈ [k − 1].

Intuitively, for any cheating prover P ?, it holds that Ṽ accepts if P ? convinces V that a statement
is in LN,B even when P ? deviates from the protocol in a specific way. In particular, this holds
even for true statements in LN,B. We note that this can be viewed as a relaxation of the notion of
unambiguous soundness of Reingold, Rothblum, and Rothblum [RRR16].

We now show that (P, Ṽ ) is a interactive proof for L⊥. Completeness vacuously holds. We now
show soundness.

Lemma 4.7 (Soundness of (P, Ṽ )). For any unbounded cheating prover P ? for L⊥ and statement
(x0, y, t), it holds that

Pr
[
〈P ?, Ṽ 〉(x0, y, t) = 1

]
≤ (logk(t)− d) · 3/2λ.

Proof. Let msgP ? be the message from the prover P ? on common input (x0, y, t). First, note that
if msgP ? = ⊥, then Ṽ rejects. Thus, msgP ? 6= ⊥. Then, note that if x0 is an invalid element or
t > B, then Ṽ rejects. Henceforth we assume that msgP ? = (x1, . . . , xk−1), x0 is a valid element,
and t ≤ B.

At this point, Ṽ accepts if and only if V accepts and there exists an index i ∈ [k − 1] such

that x2i 6= x2
i·t/k+1

0 mod N . Therefore, we show that V rejects when x2i 6= x2
i·t/k+1

0 mod N .

Let statement′ = (x′0, y
′, t/k) where x′0 =

∏k
j=1 x

rj
j−1 mod N and y′ =

∏k
j=1 x

rj
j mod N . As
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in Lemma 4.4, it suffices to bound the probability of (1) x′0 is invalid, and (2) (x′0)
2t/k+1

=
(y′)2 mod N . By Claim 4.5, (1) happens with probability at most 2/2λ. We show below that
(2) occurs with probability at most 1/2λ, and thus conclude that V outputs 1 with probability at
most 3/2λ + 3(logk(t/k)− d)/2λ ≤ 3(logk(t)− d)/2λ by Lemma 4.4.

To bound the probability of (2), we observe that a similar argument to Claim 4.6 follows.

Specifically, we view each x2j for j ∈ {0, 1, . . . , k} as a power of x20, i.e., x2j = x
2aj
0 for a unique value

ai ∈ [p′ · q′]. By assumption, there exists some index i ∈ [k] such that 2ai 6= 2i·t/k+1 mod p′ · q′.
Note that if i = k, then the statement of Claim 4.6 holds, and otherwise, if i ≤ k − 1, then we can
apply the same logic as in the proof of Claim 4.6.

5 Unique Verifiable Delay Function

In this section, we use the Fiat-Shamir heuristic to transform the interactive proof for the language
LN,B corresponding to repeated squaring (given in Section 4) into a unique VDF.

Definition 5.1 (Unique Verifiable Delay Function). A (D,B, `, ε)-unique verifiable delay function
(uVDF) is a tuple (Gen, Sample,Eval,Verify) where Eval outputs a value y and a proof π, such that
(Gen,Sample,Eval) is a (D,B, `, ε)-sequential function and (Gen,Eval,Verify) is a B-sound verifiable
function.

5.1 Construction

For parameters k, d we define (PFS, VFS) to be the result of applying the Fiat-Shamir transformation
to the protocol Πλ,k,d for LN,B relative to some hash family H. At a high level, this construction
computes repeated squares and then uses PFS and VFS to prove and verify that this is done correctly.

We start by defining helper algorithms in Figure 3 based on the interactive protocol of Section 4.
For notational convenience, we explicitly write algorithms FS-Prove and FS-Verify, which take pp =
(N,B, k, d, hash) as input, as well as ((x0, t), y), where (N,B, k, d) correspond to the parameters of
the non-interactive protocol and language, hash is the hash function sampled from the hash family
H when applying the FS transform to Πλ,k,d, and ((x0, t), y) correspond to the statements of the
language. We additionally define an efficient algorithm Sketch that outputs the statement for the
recursive step in the interactive proof Πλ,k,d.

We emphasize that the algorithms in Figure 3 are a restatement of the interactive protocol
from Section 4 after applying the FS transform, given here only for ease of reading.

21



Sketch(pp, (x0, t), y,msg):

1. Parse msg = (x1, . . . , xk−1) and let xk = y.

2. Let (r1, . . . , rk) = hash(pp, (x0, t), y,msg).

3. Let x′0 = |∏k
i=1 x

ri
i−1|N and y′ = |∏k

i=1 x
ri
i |N .

4. If x′0 is invalid, let y′ = ⊥.

5. Output (x′0, y
′).

FS-Prove(pp, (x0, t), y):

1. If x0 is an invalid element (Definition 4.1), t ≤ kd, or t > B, output ⊥.

2. Let msg = (x1, . . . , xk−1) where xi = |(x0)2i·t/k |N .

3. Compute (x′0, y
′) = Sketch(pp, (x0, t), y,msg).

4. Output π = (msg, π′) where π′ = FS-Prove(pp, (x′0, t/k), y′).

FS-Verify(pp, (x0, t), y, π):

1. If x0 is an invalid element or t > B, output 1 if y = π = ⊥ and 0 otherwise.

2. If |y|N is an invalid element, output 0.

3. If t ≤ kd, output 1 if both y2 = (x0)
2t+1

mod N and π = ⊥ and output 0
otherwise.

4. Parse π as (msg, π′), and output 0 if msg is an invalid sequence.

5. Compute (x′0, y
′) = Sketch(pp, (x0, t), y,msg).

6. Output FS-Verify(pp, (x′0, t/k), y′, π′).

Figure 3: Helper Algorithms for VDF for pp = (N,B, k, d, hash).

Next, we give a construction uVDF of a unique VDF consisting of algorithms (uVDF.Gen,
uVDF.Sample, uVDF.Eval, uVDF.Verify) relative to a function B : N→ N.

• pp← uVDF.Gen(1λ):

Sample N ← RSW.Gen(1λ), hash ← H, let k = λ, B = B(λ), and let d be the constant
specified in the proof of Lemma 5.12, and output pp = (N,B, k, d, hash).

• x0 ← uVDF.Sample(1λ, pp):

Sample and output a random element x0 ← Z?N such that gcd(x0±1, N) = 1 and x0 = |x0|N .14

• (y, π)← uVDF.Eval(1λ, pp, (x0, t)):

If x0 is an invalid element, output (⊥,⊥). If t ≤ kd, compute y = |x2t0 |N and output (y,⊥).

Otherwise, compute xi = |(x0)i·t/k|N for i ∈ [k] and let msg = (x1, . . . , xk−1) and y = xk.
Let (x′0, y

′) = Sketch(pp, (x0, t), y,msg). Finally, output (y, π) where π = (msg, π′) and π′ =
FS-Prove(pp, (x′0, t/k), y′).

14We note that x0 uniformly from Z?N is sufficient due to the following. By Fact A.1, it holds that uVDF.Sample
will succeed whenever 〈x20〉 = QRN . Furthermore, x20 is a random element of QRN , and therefore is a generator with
probability 1− (p′ + q′)/(p′ · q′) ≥ 1− 4/2λ. Also note that x0 is distributed according to RSW.Sample(1λ, N).
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• b← uVDF.Verify(1λ, pp, (x0, t), (y, π)):

If x0 is an invalid element or t > B, output 1 if y = π = ⊥ and 0 if this is not the case. If y
is invalid, then output 0. Otherwise, output FS-Verify(pp, (x0, t), y, π).

5.2 Proofs

Theorem 5.2. Let D,B, α : N → N be functions satisfying D(λ) ∈ ω(λ2), B(λ) ∈ 2O(λ), and
α(λ) ≤ dlogλ(B(λ))e. Suppose that the α-round strong FS assumption holds and the (D,B)-RSW
assumption holds for polynomial ` : N→ N and constant ε ∈ (0, 1). Then, for any constants δ > 0
and ε′ > ε+δ

1+δ it holds that uVDF is a (D,B, (1 + δ) · `, ε′)-unique verifiable delay function.

We prove Theorem 5.2 by showing verifiability (consisting of completeness in Lemma 5.3 and
soundness in Lemma 5.4) and sequentiality (consisting of honest evaluation in Lemma 5.9 and
sequentiality in Lemma 5.12).

Lemma 5.3 (Completeness). For every λ ∈ N, pp ∈ Supp
(
uVDF.Gen(1λ)

)
, x0 ∈ {0, 1}∗, and

t ∈ N,
uVDF.Verify(1λ, pp, (x0, t), uVDF.Eval(1

λ, pp, (x0, t)) = 1.

Proof. Let pp = (N,B, k, d, hash) and (y, π) = uVDF.Eval(1λ, pp, (x0, t)). First, if x0 is invalid or
t > B, then y = π = ⊥ and uVDF.Verify(1λ, pp, (x0, t), (y, π)) outputs 1 as expected. Therefore,
suppose x0 is valid and t ≤ B. Then, since y = |(x0)2t |N , it holds that y is valid by Fact A.3.

Additionally, y2 = (x0)
2t+1

mod N , so (x0, y, t) ∈ LN,B. By Lemma 4.3, FS-Verify succeed since
π is computed using the honest prover’s strategy and the FS transformation preserves perfect
completeness.

Lemma 5.4 (Soundness). Assuming the (D,B, ε)-RSW assumption, then for every non-uniform
algorithm A = {Aλ}λ∈N where Aλ runs in time poly(B(λ)) for every λ ∈ N, there exists a negligible
function negl such that for every λ ∈ N it holds that

Pr

[
pp← uVDF.Gen(1λ)
(x0, t), (ŷ, π̂)← Aλ(pp)

:
uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) = 1
∧ (ŷ, π̂) 6= uVDF.Eval(1λ, pp, (x0, t))

]
≤ negl(λ).

Proof. Let pp = (N,B, k, d, hash) and (y, π) = uVDF.Eval(1λ, pp, (x0, t)). Note that if x0 is an
invalid element or t > B, then (ŷ, π̂) = (⊥,⊥) = (y, π) since this is the only accepting value of
(ŷ, π̂). Therefore, x0 is valid and t ≤ B. In this case, verification only succeeds when ŷ is valid,
and thus ŷ 6= ⊥.

Next, we define four events Event1, Event2, Event3, Event4 as follows. Event1 is the event that
verification succeeds when y2 6= ŷ2 mod N , and Event2 is the analogous event for y 6= ŷ given
y2 = ŷ2 mod N . We recall that the proof π is either equal to ⊥ when t ≤ kd or ((x1, . . . , xk−1), π

′)
when t > kd where each segment xi ∈ Z?N and π′ is a proof for t/k. For any proof π, we define π2

where we square each element of Z?N from π (and π2 = ⊥ if π = ⊥). Given this notation, we define
Event3 as the event that verification succeeds for π2 6= π̂2 given y = ŷ, and Event4 for π 6= π̂ given
y = ŷ and π2 = π̂2. In the following claims, we show that, for each i ∈ [4], there exists a negligible
function negli such that for all λ ∈ N, Pr[Eventi] ≤ negli(λ).

Claim 5.5. Assuming (logλ(t)− d)-round FS, Pr[Event1] ≤ negl1(λ).

Proof. Suppose there exists a non-uniform PPT algorithm Aλ such that Aλ(pp) outputs ŷ where
ŷ2 6= y2 and uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) = 1. This means that FS-Verify(pp, (x0, t), ŷ, π̂) = 1
for ŷ2 6= y2 = (x0)

2t+1
mod N , which can occur with at most negligible probability negl1(λ) by the

soundness of the non-interactive argument (PFS, VFS) assuming (logλ(t)− d)-round FS.
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Claim 5.6. Assuming the (D,B, ε)-RSW assumption, Pr[Event2] ≤ negl2(λ).

Proof. Suppose there exists a non-uniform PPT algorithm A such that Aλ(pp) outputs ŷ 6= y where
ŷ2 = y2 and uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) = 1. Since y = |x2t0 |N , then y = |y|N . Furthermore,
since uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) accepts, then ŷ = |ŷ|N , and hence ŷ 6= −y. Therefore
by Fact A.2 we can efficiently factor N given (y2, y, ŷ), which can occur with at most negligible
probability given the (D,B(λ), ε)-RSW assumption.

Claim 5.7. Assuming (logλ(t)− d)-round strong FS, Pr[Event3] ≤ negl3(λ).

Proof. Suppose there exists a non-uniform PPT algorithm A such that Aλ(pp) outputs π̂ such that
π̂2 6= π2 where ŷ = y and uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) accepts. First note that if t ≤ kd, π = ⊥
is the only accepting proof, so π̂2 and π2 must both be ⊥. As a result, we consider t > kd where
π and π̂ are non-trivial. Since ŷ = y = |(x0)2t |N , the adversary’s output (x0, ŷ) is in the language
LN,B defined for the interactive proof of Figure 2. By Lemma 4.7, any value for π̂2 6= π2 will be
accepted with negligible probability assuming (logλ(t)− d)-round strong FS.

Claim 5.8. Assuming the (D,B, ε)-RSW assumption, Pr[Event4] ≤ negl4(λ).

Proof. Suppose there exists a non-uniform PPT algorithm A such that Aλ(pp) outputs π̂ such that
π̂ 6= π where π̂2 = π2, ŷ = y, and uVDF.Verify(1λ, pp, (x0, t), (ŷ, π̂)) = 1. Again we note that if
t ≤ kd, π = ⊥ is the only accepting proof, so π̂ must also be ⊥. Otherwise, suppose t > kd.
Consider the first element x, x̂ ∈ Z?N that differ in π, π̂, respectively. Since verification accepts
and x0 is valid, this implies that x and x̂ must both be valid, unless both are ⊥, which cannot
occur by assumption. This implies that x̂ 6= −x, and by assumption we know that x2 = x̂2. Then
by Fact A.2, we can efficiently factor N given (x2, x, x̂), which can occur with at most negligible
probability given the (D,B, ε)-RSW assumption.

The lemma then follows by taking a union bound over the four events, which yields the negligible
function negl =

∑4
i=1 negli as required.

Lemma 5.9 (Honest Evaluation). Suppose that the (D,B)-RSW assumption holds for polynomial
` : N → N and constant ε ∈ (0, 1). Then, for any constant δ > 0, sufficiently large λ ∈ N, and
t ≥ D(λ), it holds that uVDF.Eval(1λ, ·, (·, t)) can be computed in time (1 + δ) · t · `(λ).

Proof. Fix any λ, t ∈ N, pp ∈ Supp
(
uVDF.Gen(1λ)

)
and x0 in the support of uVDF.Sample(1λ, pp).

To analyze the time to compute uVDF.Eval(1λ, pp, (x0, t)), we first analyze the running time of
Sketch and FS-Prove in Claims 5.10 and 5.11, respectively.

Claim 5.10. There exists a constant c1 such that the time to compute Sketch(pp, ·, ·, ·) for pp ∈
Supp

(
Gen(1λ)

)
is bounded by λc1.

Proof. Recall that Sketch first hashes its input to obtain the challenge values ri, which takes fixed
polynomial time in λ and k. Then, it raises elements xi−1, xi ∈ Z?N to the power ri for i ∈ [k],
and then takes two products over k of the resulting values. Since the values ri are in [2λ], each
exponentiation takes time at most O(λ3), and the k-products can be done in time O(kλ2). Putting
everything together and recalling that k = λ as defined by uVDF.Gen, we have that Sketch for
security parameter λ runs in time λc1 for some constant c1 which depends on the time of hash.
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Claim 5.11. There exists a constant c such that PT(t) ≤ λc + 2t · `(λ), where PT(t) is the time to
compute FS-Prove(·, (·, t)).

Proof. If t ≤ λd, then PT(t) ∈ O(λ2) since it is dominated by checking validity of x0, y. Otherwise,
FS-Prove computes the xi values for i ∈ [k] by performing t sequential squares in Z?N , which takes
t · ` time. Next it computes Sketch, which takes time λc1 by Claim 5.10. Lastly, FS-Prove takes
PT(t/k) time to compute the recursive evaluation of FS-Prove on input t/k. Let c′ be the constant
such computing Sketch and checking validity of x0 takes time at most λc

′
. Then, we have that

PT(t) ≤ PT(t/k) + t · `(λ) + λc
′

if t > kd and PT(t) ≤ λc′ if t ≤ kd. Solving for the recurrence, we
get

PT(t) ≤ (logk(t)− d) · λc′ + t`(λ)

(
1 +

1

k
+ · · ·+ 1

klogk(t)−d

)
.

Recalling that t ≤ B(λ) ∈ 2O(λ) gives the desired bound for some constant c.

Putting this together, we have that the time to compute uVDF.Eval when t ≤ kd is O(λ2) to
check validity and t ·`(λ) to compute y, and is therefore in (1+o(1)) ·t ·`(λ) since t ≥ D(λ) ∈ ω(λ2).

When t > kd, we take time t·`(λ) to compute msg and y, λc1 to compute the sketch, and PT(t/k)
to compute π′.15 In total, this takes time 2λc + t · `(λ) + PT(t/k) ≤ 3λc + t · `(λ) + 2(t/k) · `(λ).
Since t > kd, we can choose the base case depth d ≥ c+ 1 so that 2/k + (3λc)/(t · `(λ)) ∈ o(1). It
follows that the time to compute uVDF.Eval is again in (1 + o(1)) · t · `(λ).

In either case (t ≤ kd or t > kd), it holds that for any constant δ > 0 and sufficiently large
λ ∈ N, uVDF.Eval runs in time (1 + δ) · t · `(λ).

Lemma 5.12 (Sequentiality). Suppose that the (D,B)-RSW assumption holds for polynomial
` : N → N and constant ε ∈ (0, 1). Then, for any constants δ > 0 and ε′ > ε+δ

1+δ , uVDF satis-
fies (D,B, (1 + δ) · `, ε′)-sequentiality.

Proof. Let δ > 0 be the constant from honest evaluation and let ε′ be any constant greater than ε+δ
1+δ .

By way of contradiction, suppose there exists a non-uniform algorithm A0 = {A0,λ}λ∈N satisfying
size(A0,λ) ∈ poly(B(λ)) for all λ ∈ N and a polynomial p such that for infinitely many λ ∈ N,

Pr


pp← uVDF.Gen(1λ)
A1 ← A0,λ(pp)
x← uVDF.Sample(1λ, pp)
(t, y)← A1(x)

:

uVDF.Eval(1λ, pp, (x, t)) = y
∧ depth(A1)
≤ (1− ε′) · t · (1 + δ) · `(λ)
∧ t ≥ D(λ)

 ≥ 1

p(λ)
.

Using A0, we can create a non-uniform algorithm B0 = {B0,λ}λ∈N that contradicts the assumption
that RSW is a (D,B, `, ε)-iteratively sequential function.

For every λ ∈ N, the algorithm B0,λ on input pp runs A0,λ(pp) to obtain A1 and outputs B1
defined as follows. B1(x) computes (t, y)← A1(x) and outputs (t, y′) where y′ equals y or (N − y)
with equal probability.

For correctness, we observe that size(B0,λ) ∈ poly(size(A0,λ)), so size(B0,λ) ∈ poly(B(λ)). Fur-

thermore, whevener A0,λ succeeds, then y′ = (x0)
2t mod N with probability 1/2, so B1 outputs the

15We note that computing msg before running FS-Prove takes space O(kλ). We can improve this time/space
tradeoff smoothly as done in [Pie19] and compute the proof in approximately

√
t time and space.
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correct value with probability at least 1/(2p(λ)). To analyze the depth of B1, note that computing
N − y can be done in depth O(λ), so there exists a constant c such that

depth(B1) ≤ depth(A1) + cλ ≤ (1− ε′) · (1 + δ) · t · `(λ) + cλ.

Since t ∈ ω(λ), ε′ > ε+δ
1+δ + cλ

(1+δ)·t·` for sufficeintly large λ ∈ N, and depth(B1) ≤ (1 − ε) · t · `(λ).
Thus, it holds that for infinitely many λ ∈ N,

Pr


pp← RSW.Gen(1λ)
(B1)← B0,λ(pp)
x← RSW.Sample(1λ, pp)
(t, y′)← B1(x)

:
RSW.Eval(1λ, pp, (x, t)) = y
∧ depth(B1) ≤ (1− ε) · t · `(λ)
∧ t ≥ D(λ)

 ≥ 1/(2p(λ)),

contradicting that RSW is a (D,B, `, ε)-iteratively sequential function.

6 Continuous Verifiable Delay Function

In this section, we construct a cVDF. Intuitively, this is an iteratively sequential function where
every intermediate state is verifiable. Throughout this section, we denote by Eval(·) the composed
function which takes as input 1λ, pp, and (x, T ), and runs the T -wise composition of Eval(1λ, pp, ·)
on input x.

We first give the formal definition of a cVDF. In the following definition, the completeness
requirement says that if v0 is an honestly generated starting state, then the Verify will accept
the state given by Eval(T )(1λ, pp, v0) for any T . Note that when coupled with soundness, this
implies that completeness holds with high probability for any intermediate state generated by a
computationally bounded adversary.

Definition 6.1 (Continuous Verifiable Delay Function). Let B, ` : N → N and ε ∈ (0, 1). A
(B, `, ε)-continuous verifiable delay function (cVDF) is a tuple (Gen, Sample,Eval,Verify) such that
(Gen, Sample,Eval) is a (1, B, `, ε)-iteratively sequential function, (Gen,Eval(·),Verify) is a B-sound
function, and it satisfies the following completeness property:

• Completeness from Honest Start. For every λ ∈ N, pp in the support of Gen(1λ), v0 in the
support of Sample(1λ, pp), and T ∈ N, it holds that Verify(1λ, pp, (v0, T ),Eval(T )(1λ, pp, v0)) =
1.

The main result of this section is stated next.

Theorem 6.2 (Continuous VDF). Let D,B, α : N → N be functions satisfying B(λ) ≤ 2λ
1/3

,
α(λ) = dlogλ(B(λ))e, and D(λ) ≥ λd

′
for all λ ∈ N and for a specific constant d′. Suppose that

the α-round strong FS assumption holds and the (D,B)-RSW assumption holds for a polynomial
` : N → N and constant ε ∈ (0, 1). Then, for any constant δ > 0 and ε′ > ε+δ

1+δ , it holds that cVDF
is a (B, (1 + δ) ·D(λ) · `, ε′)-cVDF.

In the case where we want to have a fixed polynomial bound on the number of iterations, we
obtain the following corollary.

Corollary 6.3 (Restatement of Theorem 1.1). For any polynomials B,D where D(λ) ≥ λd
′

for
a specific constant d′, suppose the O(1)-round strong FS assumption holds and the (D,B)-RSW
assumption holds for a polynomial ` : N→ N and constant ε ∈ (0, 1). Then, for any constant δ > 0
and ε′ > ε+δ

1+δ , it holds that cVDF is a (B, (1 + δ) ·D(λ) · `, ε′)-cVDF.
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Remark 2 (Decoupling size and depth). The definition of a (B, `, ε)-cVDF naturally extends to
a (U,B, `, ε)-cVDF, where we require (Gen, Sample,Eval) to be a (1, U,B, `, ε)-iteratively sequential
function; see Remark 1. Our construction will satisfy this for all functions U such that U(λ) ≤ B(λ)
for all λ ∈ Nwhich will be used in Section 7.Moreover, in this case, the above corollary can be
based on the strong Fiat-Shamir assumption for dlogλ(U(λ))e rounds (rather than for dlogλ(B(λ))e
rounds).

We prove Theorem 6.2 by using the unique VDF uVDF from Section 5 as a building block. We
start with some definitions which will be helpful in the construction.

Definition 6.4 (Puzzle tree). A (ppuVDF, d
′, g)-puzzle tree for ppuVDF = (N,B, k, d, hash) is a

(k + 1)-ary tree that has the following syntax.

• Each node is labeled by a string s ∈ {0, 1, . . . , k}∗, where the root is labeled with the empty
string null, and for a node labeled s, its ith child is labeled s||i for i ∈ {0, 1, . . . , k}. We let
[s]i denote the ith character of s for i ∈ N.16

• We define the height of the tree as h = dlogk(B)e − d′ which determines difficulty at each
node. Specifically, each node s is associated with the difficulty t = kh+d

′−|s|.17

• Each node s has a value val(s) = (x, y, π), where we call x the input, y the output, and π the
proof.

The inputs, outputs, and proofs of each node are defined as follows:

• The root has input g. In general, for a node s with input x and difficulty t, its first k
children are called segment nodes and its last child is called a sketch node. Each segment
node s||i has input xi = |x2i·t/k |N and the sketch node s||k has input x′ where (x′, ∗) =
Sketch(ppuVDF, (x, t), xk, (x1, . . . , xk−1)) (given in Figure 3).

• For a node s with input x and difficulty t, its output and proof are given by (y, π) =
uVDF.Eval(ppuVDF, (x, t)).

We note that whenever we refer to a node s, we mean the node labeled by s, and when we
refer to a pair (s′, value), this corresponds to a node and associated value (where value may not
necessarily be equal to the true value val(s)).

Definition 6.5 (Left/Middle/Right Nodes). For a node with label s in a (ppuVDF, d
′, g)-puzzle tree

with s = s′||i for i ∈ {0, 1, . . . , k}, we call s a leftmost child if i = 0, a rightmost child if i = k,
and a middle child otherwise. Additionally, we define the left (resp. right) siblings of s to be the
set of nodes s′||j for 0 ≤ j < i (resp. i < j ≤ k).

Next, we define a frontier. At a high level, for a leaf s, the frontier of s will correspond to the
state of the continuous VDF upon reaching s. Specifically, it will contain all nodes whose values
have been computed at that point, but whose parents’ values have not yet been computed.

Definition 6.6 (Frontier). For a node s in a (ppuVDF, d
′, g)-puzzle tree, the frontier of s, denoted

frontier(s), is the set of pairs (s′, val(s′)) for nodes s′ that are left siblings of any of the ancestors
of s. We note that s is included as one of its ancestors.18

16For ease of notation, we store s as a (k + 1)-ary string and when doing integer operations, they are implicitly
done in base (k + 1).

17Note that since the tree has height h, this implies that each leaf has difficulty t = kd
′
.

18It may be helpful to observe that for a leaf node s = [s]1||[s]2|| · · · ||[s]h, the frontier contains [s]i nodes at level i
for i ∈ [h].
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Next, we define what it means for a set to be consistent. At a high level, for a set of nodes and
values, consistency ensures that the relationship of their given inputs and outputs across different
nodes is in accordance with the definition of a puzzle tree. If a set is consistent, it does not imply
that the input-output pairs are correct, but it implies that they “fit” together logically. Note that
consistency does not check proofs.

Definition 6.7 (Consistency). Let S be a set of pairs (s, value) for nodes s and values value in
a ((N,B, k, d, hash), d′, g)-puzzle tree. We say that (s′, (x, y)) is consistent with S if the following
hold:

1. The input x of s′ is (a) the output given for its left sibling if its left sibling is in S and s′ is a
middle child, (b) given by the sketch of its left siblings’ values if all of its left siblings are in
S and s′ is a rightmost child, or (c) defined recursively as its parent’s input if s′ is a leftmost
child (where the base of the recursion is the root with input g).

2. The output y of s′ is (a) given by the sketch of its left siblings’ values if all of its left siblings
are in S and s′ is a rightmost child, or (b) given recursively by its parent’s output if s′ is a
kth child (where, upon reaching the root recursively, we then accept any output for s′).

We say that S is a consistent set if every node in S is consistent with S.

6.1 Construction

Before giving the cVDF construction, we give a detailed overview. At a high level, the cVDF will
iteratively compute each leaf node in a (ppuVDF, d

′, g)-puzzle tree, where ppuVDF = (N,B, k, d, hash)
are the public parameters of the underlying uVDF and g is the starting point of the tree given by
uVDF.Sample.

The heart of our construction is the cVDF.Eval functionality which takes a state v corresponding
to a leaf s in the tree and computes the next state v′ corresponding to the next leaf. Each state v
will be of the form (g, s, F ), where s is the current leaf in the tree and F is the frontier of s. Then,
cVDF.Eval(1λ, pp, (g, s, frontier(s)) will output (g, s + 1, frontier(s + 1)). There are three phases of
the algorithm cVDF.Eval. First, it checks that its input is well-formed. It then computes val(s)
using frontier(s), and then computes frontier(s + 1) using both frontier(s) and val(s). These are
discussed next.

Checking that v is well-formed. Recall that v = (g, s, F ) corresponds to the node s in the
tree. This state v is correct if running cVDF.Eval for s steps (where s is interpreted as an integer
in base (k + 1)) starting at the leaf 0h results in (g, s, frontier(s)). Therefore, before computing
the next state, cVDF.Eval needs to verify that the state it was given is correct. To do this, we run
cVDF.Verify with input state (g, 0h,⊥) and output state (g, s, F ), and check that this is s steps of
computation.

Computing the value of s. To compute val(s), we have the following observation: for every
node, its input is a function of the input of its parent and the outputs of its left siblings. Indeed, if
s is a middle child, its input is the output of the sibling to its left (given in F ). If s is a rightmost
child, its input is the sketch of the values of its left siblings (also given in F ). If s is a leftmost
child, its input is input of its parent, defined recursively. Therefore, we compute its input based on
F in this manner. Then, we compute its output by running uVDF.Eval on its input.

Computing the frontier of s + 1. The final phase of cVDF.Eval is to compute the next frontier
using val(s) and frontier(s). To do this, we consider the closest common ancestor a of s and s+ 1
and note that by definition, frontier(a) ⊂ frontier(s+ 1). Moreover, its straightforward to see that
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s s+1

a?

· · ·
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s s+1

a?

· · ·

a?

Figure 4: An example of computing frontier(s+ 1) from frontier(s) for k = 2 with nodes s, s+ 1, a?, and a
given. In both graphs, the yellow node is the current node at that point in the computation, and the nodes
in gray are those whose proofs have already been merged to proofs at their parents. In the left graph, the
frontier of s is shown in pink. The right graph is the result of merging values to obtain the frontier of s′,
which is shown in blue.

frontier(s + 1) \ frontier(a) only contains a node a? and its left siblings, where a? is the child of a
along the path to s. Note that when s and (s+ 1) are siblings, then a? = s, and otherwise, it can
be shown that a? is the closest ancestor of s that is not a rightmost child.

Therefore, to compute frontier(s + 1), we start by computing the value of node a?. If a? = s,
then we have already computed it, and otherwise it’s input and output are known from its children’s
values in F . Specifically, its input is the input of its first child, and its output is the output of its
kth child. These are in F because of the definition of a?, which implies that each of its descendants
along the path to s must be rightmost children. To compute its proof, observe that the values of
s and its siblings are all known, so they can be efficiently merged into a proof of its parent. If the
parent is a?, then we are done. If not, we can similarly merge values into a proof of the grandparent
of s. We can continue this process until we reach a?. We show how to do this by traversing the path
from s up to a? and by iteratively ”merging” values up the tree. An example depicting s, s+1, a, a?

is given in Section 6.1.

Formal construction. Next, we give the formal details of our construction cVDF = (cVDF.Gen,
cVDF.Sample, cVDF.Eval, cVDF.Verify).

• pp← cVDF.Gen(1λ):

Sample ppuVDF ← uVDF.Gen(1λ) where ppuVDF = (N,B, k, d, hash). Let d′ be the constant
specified in Lemma 6.22, and set tree height h = dlogk(B)e− d′. Output pp = (ppuVDF, d

′, h).

• v ← cVDF.Sample(1λ, pp):

Sample g ← uVDF.Sample(1λ, ppuVDF) and output v = (g, 0h, ∅).

• v′ ← cVDF.Eval(1λ, pp, v):

Check that v is well-formed:
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1. Parse v as (g, s, F ), where s is a leaf label in a (ppuVDF, g)-puzzle tree and F is a frontier.
Output ⊥ if v cannot be parsed this way.

2. Run cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F )) to verify v. Output ⊥ if it rejects.

Compute the value of s:

1. Compute the input x of node s as the output of the sibling to its left (given in F ) if s is
a middle child, a sketch of its left siblings’ values (given in F ) if s is a rightmost child,
or recursively as its parent’s input if s is a leftmost child.

2. Compute its output and proof as (y, π) = uVDF.Eval(1λ, ppuVDF, (x, k
d′)).

Compute the frontier of s + 1:

1. Let a be the closest common ancestor of s and s+ 1, and let a? be the ancestor of s that
is a child a.

2. If a? = s, compute its value as (x?, y?, π?) = (x, y, π).

3. If a? is a strict ancestor of s, let x? be the input of its leftmost child in F , let y? be the
output of its kth child in F , and let π? be ⊥ if x? is invalid and otherwise the outputs
of its first k − 1 children in F along with the proof, computed recursively, of its child
along the path to s.

4. Form the next frontier F ′ by removing all descendants of a? from F , and adding
(a?, (x?, y?, π?)).

Finally, output (g, s+ 1, F ′).

• b← cVDF.Verify(1λ, pp, (v, T ), v′):

Check that v is well-formed:

Parse v as (g, s, F ) where g ∈ Z?N , s is a leaf node, and F is a frontier. If v cannot be parsed
this way, then output 1 if v′ = ⊥ and 0 otherwise.

If (g, s, F ) 6= (g, 0h, ∅), then verify the state v by recursively running this verification algo-
rithm, i.e., cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, F )). If this rejects, then output 1 if v′ = ⊥
and 0 otherwise.

Check that v′ is correct:

Output 1 if the following checks succeed, and 0 otherwise:

1. Parse v′ as (g, s+ T, F ′) where F ′ is a frontier.

2. Check that the set of nodes in F ′ is the set of nodes in frontier(s′) (considering only node
labels and not values).

3. Check that F ′ is a consistent set.19

4. For each element (s′, (x, y, π)) ∈ F ′, check that uVDF.Verify(1λ, ppuVDF, (x, t), (y, π))
accepts, where t = kh+d

′−|s′|.

19This can be done efficiently, since consistency of every element in F ′ can be checked by looking at k nodes in
each of the h levels of the tree and performing at most one sketch.
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6.2 Proofs

The main result of this section is stated next.

Theorem 6.8. Let D,B : N → N where B(λ) ≤ 2λ
1/3

, D(λ) = λd
′

for all λ ∈ N and specific
constant d′. Assume that (1) the (D,B)-RSW assumption holds for an ε ∈ (0, 1) and a polynomial
`, and (2) for any constants ε′, δ ∈ (0, 1), uVDF (given in Section 5) is a (D,B, (1+δ) · `, ε′)-unique
VDF. Then cVDF is a (B, (1 + δ′) ·D · `, ε′′)-cVDF for any ε′′ > ε+δ′

1+δ′ and δ′ > δ.

As a corollary, by combining Theorem 5.2 with Theorem 6.8, we obtain Theorem 6.2: a contin-
uous VDF under the Fiat-Shamir and the repeated squaring assumptions.

To show Theorem 6.8, we show that cVDF satisfies completeness from honest start in Lemma 6.9
and that (cVDF.Gen, cVDF.Eval(·), cVDF.Verify) satisfies B-soundness in Lemma 6.16. We then
show that (cVDF.Gen, cVDF.Sample, cVDF.Eval) is a (D,B, `, ε′′)-iteratively sequential function by
showing length bounded in Lemma 6.18, honest evaluation in Lemma 6.19, and sequentiality
in Lemma 6.22. Together, these complete the proof of Theorem 6.8.

Lemma 6.9 (Completeness from Honest Start). For all λ ∈ N, pp in the support of cVDF.Gen(1λ),
v0 in the support of cVDF.Sample(1λ, pp), and T ∈ N, it holds that

cVDF.Verify(1λ, pp, (v0, T ), cVDF.Eval(T )(1λ, pp, v0)) = 1.

Proof. Fix any pp = (ppuVDF, d
′, h) in the support of cVDF.Gen(1λ) where ppuVDF = (N,B, k, d,

hash), any v0 = (g, 0h, ∅) in the support of cVDF.Sample(1λ, pp), and T ∈ N. The lemma follows
from the following two claims:

Claim 6.10. For any leaf s, cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, frontier(s))) accepts.

Claim 6.11. For any leaf s, cVDF.Eval(1λ, pp, (g, s, frontier(s))) = (g, s+ 1, frontier(s+ 1)).

We first show how to use these claims to complete the proof of the lemma. Since v0 =
(g, 0h, frontier(0h)), it holds that T applications of Claim 6.11 imply that cVDF.Eval(T )(1λ, pp, v0) =
(g, T, frontier(T )) and thus by Claim 6.10, cVDF.Verify(1λ, pp, (v0, T ), (g, T, frontier(T ))) will accept,
which will complete the proof of the lemma.

It remains to prove Claims 6.10 and 6.11. Towards this goal, we define the following three
invariants relative a tuple (g, s, F ):

(a) The set of nodes in F is the set of nodes in frontier(s) (ignoring the values of the nodes).

(b) F is a consistent set.

(c) Each element (s′, (x, y, π)) in F is correct, that is, (y, π) = uVDF.Eval(1λ, ppuVDF, (x, k
h+d′−|s′|)).

We next prove Claim 6.10, i.e., cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, frontier(s))) accepts for any
leaf s.

Proof of Claim 6.10. Recall that the algorithm cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), (g, s, frontier(s)))
first checks that (g, 0h, ∅) is well-formed, which passes by definition of (g, 0h, ∅). Then, cVDF.Verify
checks that the first two invariants hold relative to (g, s, frontier(s)) and that uVDF.Verify accepts
on every element of frontier(s). We have that invariant (a) trivially holds. Invariant (b) follows
because the values of nodes in a puzzle tree are consistent (Definitions 6.4 and 6.7) and every
node s′ in frontier(s) has its real value val(s′) given. To show that uVDF.Verify accepts on every
element of frontier(s), we note that invariant (c) also holds by definition of val(s), namely, val(s) =
(x, y, π) implies that (y, π) = uVDF.Eval(1λ, ppuVDF, (x, t)) where t is the difficulty of s. Therefore,
uVDF.Verify accepts by perfect correctness of uVDF, concluding the proof of claim.
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Now we prove Claim 6.11, i.e., cVDF.Eval(1λ, pp, (g, s, frontier(s))) = (g, s + 1, frontier(s + 1))
for any leaf s.

Proof of Claim 6.11. Let v = (g, s, frontier(s)) and let v′ = cVDF.Eval(1λ, pp, v) (so our goal is to
prove v′ = (g, s + 1, frontier(s + 1))). Recall that cVDF.Eval(1λ, pp, v) first checks that v is well-
formed, meaning that v can be parsed appropriately and that cVDF.Verify(1λ, pp, ((g, 0h, ∅), s),
v) accepts. This holds by Claim 6.10, which also means the three invariants hold relative to
(g, s, frontier(s)). By definition of cVDF.Eval, this implies that its output v′ is of the form (g, s+1, F )
where F is a frontier. We first show that (g, s+ 1, F ) satisfies the above three invariants, and then
we conclude the claim by showing that this implies that F = frontier(s+ 1).

Proposition 6.12. The set of nodes in F is the set of nodes in frontier(s+ 1).

Proof. Let a be closest common ancestor of s and s + 1, and let a? be the child of a that is an
ancestor of s. The nodes in frontier(s + 1) can be partitioned as follows. All nodes in frontier(a)
are in both frontier(s) and frontier(s + 1) since a is a common ancestor. At the level of the tree
containing a?, frontier(s+1) contains a? and its left siblings, since the sibling to the right of a? must
be an ancestor of s+ 1. Finally, below this level, there are no left siblings of the ancestors of s+ 1,
since s and s+ 1 are adjacent leaves. Therefore, frontier(s+ 1) = frontier(a?) ∪{a?, val(a?)}. Since
cVDF.Eval forms F by removing the elements corresponding to descendants of a? from frontier(s)
and then adding a?, the claim follows.

Proposition 6.13. F is a consistent set.

Proof. We start with the following observations. For any node s′ and input-output pair (x, y), (1)
the checks required by consistency for s′ only involve nodes that are lexicographically smaller than
s′, and (2) if (s′, (x, y)) is consistent with some set S, then it is consistent with any S′ ⊆ S.

Note that every element in F is either in the intersection F ∩ frontier(s), or is (a?, (x?, y?, π?))
(where a? is the ancestor of s that is a child of the closest common ancestor of s and s+ 1). This
because cVDF.Eval does not make any changes to elements corresponding to nodes that are in
F ∩ frontier(s). We proceed to show that every element (s′, (x, y)) ∈ F is consistent with F .

First, let s′ be a node with input-output pair (x, y) in F ∩ frontier(s). By observation (2),
since (s′, (x, y)) is consistent with frontier(s), it is consistent with F ∩ frontier(s). Additionally,
F \ frontier(s) does not contain nodes lexicographically smaller than s′, so by observation (1) it
holds that (s′, (x, y)) is consistent with F .

Next, consider a? with input-output pair (x?, y?) in F . Note that a? is the closest ancestor of
s that is not a rightmost child because the sibling to its right is an ancestor of s + 1. We first
consider the case where a? is a strict ancestor of s, and then the case where a? = s. If a? is a strict
ancestor of s, then its input x? is the input of its leftmost child in frontier(s) and its output y? is
the output of its kth child in frontier(s). Both of these nodes appear in frontier(s) by definition
of a?. Therefore consistency of a? with frontier(s) follows from consistency of its leftmost and kth
children with frontier(s). Therefore a? is consistent with F ∩ frontier(s) by observation (2), and
hence is consistent with F by observation (1).

If a? = s, then its input x? is computed exactly to satisfy consistency. Its output y? is given by
uVDF.Eval(1λ, pp, (x?, kd

′
)). Observe that consistency only enforces a requirement on the output

of s if each ancestor of s is a kth child up until some ancestor a′ which is a rightmost child. By
definition of frontier(s), all the left siblings of these ancestors are in frontier(s). Let x′, y′ be the
sketch of the values of the left siblings of a′. We want to show that y? = y′.
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Toward this goal, suppose first that x′ and y′ are valid. We have that a′||0 has input x′ since
a′||0 is consistent with F . This implies that the output of a′||(k − 2) corresponds to t(k − 1)/k
squarings of x′ for t = kh+d

′−|a′| because frontier(s) is consistent and all elements of frontier(s) are
correct. By continuing to apply this argument and noting that each level i out of the h− |a′| levels
we have done (k−1) · t/ki squarings, it holds that after doing kd

′
squarings of x?, we obtain y′ = y?

by definition of Sketch.
To handle the case where x′ or y′ are not valid, note that it must hold that x′ is invalid and

y′ = ⊥. This follows since the left siblings of a′ are consistent with frontier(s) and are correct. In
this case, ⊥ will propagate down the tree so y? = ⊥ = y′, as desired.

Proposition 6.14. For every element (s′, (x, y, π)) in F , it holds that (y, π) = uVDF.Eval(1λ,
ppuVDF, (x, k

h+d′−|s′|)) .

Proof. Consider the elements of F ′. Recall from Proposition 6.12 that every element of F is either in
frontier(s) or is {(a?, (x?, y?, π?))}, where (x?, y?, π?) is the value computed by cVDF.Eval(1λ, pp, v)
for a?. Therefore, we need to show that (y?, π?) = uVDF.Eval(1λ, ppuVDF, (x

?, kh+d
′−|a?|)).

The proof π? is computed by traversing the path from s to a? and iteratively computing the
proof of each node along the way. Let b be an ancestor of s along this path and let (x, y, π) be the
value where:

1. If b = s, then x is the input computed for s by cVDF.Eval(1λ, pp, v) and (y, π) is computed
as uVDF.Eval(1λ, ppuVDF, (x, k

d′)).

2. If b is a strict ancestor of s, then x is the input of b||0 in frontier(s), y is the output of b||(k−1)
in F , and π is the proof computed for b by cVDF.Eval(1λ, pp, (g, s, frontier(s))).

Note that when b = a?, then (x?, y?, π?) = (x, y, π). We show by induction on the length of the path
from s to b that (y, π) is equal to uVDF.Eval(1λ, ppuVDF, (x, t)) where t = kh+d

′−|b| is the difficulty
of b. Note that whenever b 6= s, its rightmost child is an ancestor of s, so its first k children always
appear in F .

For the base case when the path has length 0, then b = s so this holds by definition of (y, π).
Suppose that the claim holds when the path has length j − 1 for j − 1 ≥ 0 consider the case when
the path has length j. Let

(yreal, πreal) = uVDF.Eval
(

1λ, ppuVDF, (x, t)
)
.

We want to show that (y, π) = (yreal, πreal). For the output y, since frontier(s) contains correct
elements corresponding to the first k children of b, it holds that y = yreal.

For the proof π, recall that π = (msg, π′). Let πreal = (msgreal, π
′
real). To show that msg = msgreal,

recall that msg consists of the outputs of the first k − 1 children of b from F and msgreal contains
the segments the (x1, . . . , xk−1) of x. Since frontier(s) is consistent and contains correct elements,
it holds that these segments correspond to the outputs of the first k − 1 children of b given by F ,
so msg = msgreal.

To show that π′ = π′real, recall that π′ is the proof computed at the previous iteration of the
induction. Let b′ be the rightmost child of b. If b′ = s, then π′ = π′real by definition. Otherwise, by
the inductive hypothesis,

(∗, π′) = uVDF.Eval
(

1λ, ppuVDF, (x
′, t/k)

)
,
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where x′ is the input of b′||0 from frontier(s). Let x′real be the true input of the sketch child of b,
i.e.,

(x′real, y
′
real) = Sketch(ppuVDF, (x, t), yreal,msgreal) = Sketch(ppuVDF, (x, t), y,msg).

By definition of uVDF.Eval, we have that

(∗, π′real) = uVDF.Eval(1λ, ppuVDF, (x
′
real, t/k)).

It follows that x′ = x′real by consistency of b′||0 with frontier(s), so the claim follows.

Proposition 6.15. If (g, s+1, F ) satisfies the three invariants defined above, then F = frontier(s+
1).

Proof. Suppose the three invariants hold for (g, s+1, F ). By invariant (a), the set of nodes in F and
frontier(s+ 1) are the same. Order the elements of F and frontier(s+ 1) lexicographically by node.
We show by induction on the ordering that for each node s′ in frontier(s+1), its value (x, y, π) in F
is equal to its value (xreal, yreal, πreal) in frontier(s+1). Let t be the difficulty of s′. For the base case,
we have that x = g = xreal by invariant (2), and (y, π) = uVDF.Eval(1λ, ppuVDF, (x, t)) = (yreal, πreal)
by invariant (3). Suppose that this holds for all nodes up until some node s′. By invariant (2),
it must be that x = xreal, since these can always be computed from the previous elements and
frontier(s + 1), which agree by assumption. Therefore, just like in the base case, we have that
(y, π) = uVDF.Eval(1λ, ppuVDF, (x, t)) = (yreal, πreal).

This gives Claim 6.11, which in turn completes the proof of Lemma 6.9.

Lemma 6.16 (Soundness). The tuple (cVDF.Gen, cVDF.Eval(·), cVDF.Verify) satisfies B-soundness.

Proof. Suppose for contradiction that there exists a non-uniform algorithm A = {Aλ}λ∈N with
size(Aλ) ∈ poly(B(λ)) for all λ ∈ N and a polynomial p such that for infinitely many λ ∈ N,

Pr

[
pp← cVDF.Gen(1λ)
((v, T ), v′)← A(pp)

:
cVDF.Verify(1λ, pp, (v, T ), v′) = 1

∧ v′ 6= cVDF.Eval(T )(1λ, pp, v)

]
≥ 1

p(λ)
.

Then, for every λ ∈ N we construct an adversary Bλ against the soundness of uVDF, as fol-
lows. Bλ receives ppuVDF from the challenger for uVDF, computes pp = (ppuVDF, d

′, h) as done by
cVDF.Gen(1λ), and runs ((v, T ), v′)← Aλ(pp).

Whenever Aλ succeeds, v must be well-formed. Specifically, v should be able to be parsed as
(g, s, F ) where cVDF.Verify(1λ, pp, ((g, 0h, ∅), s), v) = 1, because otherwise verification only accepts
the unique value ⊥ for v′.

Therefore it must be that v, v′ can be parsed appropriately as v = (g, s, F ) and v′ = (g, s+T, F ′).
Note that either F = frontier(s) or not. We proceed to describe the attack of Bλ assuming that
F = frontier(s) and show how to handle the case where this does not hold at the end of the claim.

Claim 6.17. Suppose F = frontier(s). Then, there exists an algorithm Bλ that breaks the soundness
of uVDF with probability 1/2p(λ).

Proof. Bλ first calculates (g, s + T, F̃ ) = cVDF.Eval(T )(1λ, pp, v). He then sorts the elements in
F̃ , F ′ lexicographically by node and finds the first elements (s′, (x, y, π)), (s′, (x̃, ỹ, π̃)) that differ
(which must exist by assumption). Then, Bλ and outputs ((x, t), y, π) and ((x̃, t), ỹ, π̃) with equal
probability, where t = kh+d

′−|s′| is the difficulty of s′.
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Before analyzing the success probability of Bλ, we note that the size of Bλ is dominated by
size(Aλ) ∈ poly(B(λ)) and the time to run cVDF.Eval(T ). Since v′ can be parsed appropriately,
then T is a valid node in the tree so T ≤ B2, and each iteration of cVDF.Eval takes poly(λ) time.
Therefore in total size(Bλ) ∈ poly(B(λ)).

To analyze the success probability of Bλ, note that by Claims 6.11 and 6.10, since F = frontier(s)
by assumption it holds that F̃ = frontier(s + T ), F̃ is consistent, and uVDF.Verify accepts on the
value of every node in F̃ . Similarly, since cVDF.Verify(1λ, pp, (v, t), v′) accepts, then the set of nodes
in F ′ is the set of nodes in frontier(s + T ), F ′ is a consistent set, and uVDF.Verify accepts on the
value of every element of F ′. We proceed by comparing (s′, (x, y, π)) and (s′, (x̃, ỹ, π̃)), and note
that they correspond to the same node s′ since the sets of nodes in F ′ and F̃ are the same. Let
S = F ′ ∩ F̃ i.e., S consists of all elements in F ′ and F̃ ′ with equal nodes and values. Note that S
contains all elements in F ′∪ F̃ with nodes that are lexicographically smaller than s′ by assumption.

By consistency, we claim that x = x̃. To see this, if s′ is a middle child, then x, x̃ are both the
output of the sibling to its left, which is in S. If s′ is a rightmost child, then x, x̃ both correspond
to the sketch of their left siblings’ values, again in S. If s′ is a leftmost child, then x, x̃ recursively
must be equal to their parent’s input. Since the base case of this recursion is at the root with
input g, then whichever type of node s′ is (leftmost, middle, or rightmost) it follows that its input
is found in S, so x = x̃. Therefore, we have that for (y, π) 6= (ỹ, π̃)

uVDF.Verify(1λ, ppuVDF, (x, t), (y, π)) = uVDF.Verify(1λ, ppuVDF, (x, t), (ỹ, π̃)).

Since the output of uVDF.Eval(1λ, ppuVDF, (x, t)) is unique, at least one of these must be different
to that value. Therefore, when Aλ succeeds, Bλ succeeds with probability 1

2 , so Bλ breaks the
soundness of uVDF with probability 1

2p(λ) , in contradiction.

It remains to analyze the case where F 6= frontier(s). We extend Bλ to also calculate (g, s, F̂ ) =
cVDF.Eval(s)(1λ, pp, (g, 0h, ∅)) and compare F̂ to F . Note that this only adds poly(B(λ)) time to
the running time of Bλ. Then, when F̂ 6= F , Bλ finds the first element that differs between F̂
and F , rather than F̃ and F ′ as done above. Since F̂ = frontier(s) by Claim 6.11, then the same
argument as in the above claim follows for this case.

Lemma 6.18 (Length Bounded). There exists a polynomial plen(λ) ∈ O(λ5) such that for λ ∈
N, (ppuVDF, d

′, h) ∈ Supp
(
cVDF.Gen(1λ)

)
and v ∈ {0, 1}∗, it holds that

∣∣cVDF.Eval(1λ, pp, v)
∣∣ ≤

plen(λ).

Proof. First, observe that if v is not well-formed, then cVDF.Eval outputs ⊥. Therefore, we focus
on the case where v is well formed, so v = (g, s, F ). Let v′ = cVDF.Eval(1λ, pp, v). By definition of
Eval, v′ = (g, s+ 1, F ′) where F ′ has length corresponding to a frontier.

To bound the length of v′, we have that |g| ≤ 2λ and |s+ 1| ≤ h, so we only need to bound the
length of F . Any frontier contains at most k nodes in each of the h levels. Moreover, each entry
(s′, (x, y, π)) satisfies that |s| ≤ h, x, y ∈ Z?N . For π, it is straightforward to see that it contains at
most k · h elements of Z?N . Using the fact that k, h ≤ λ, we obtain the desired bound.

Lemma 6.19 (Honest Evaluation). For all sufficiently large λ ∈ N, any pp = (ppuVDF, d
′, h) in the

support of cVDF.Gen(1λ), v ∈ {0, 1}∗, and T ∈ [D(λ), B(λ)], it holds that cVDF.Eval(T )(1λ, pp, v)
can be computed in time T · (1 + δ′) · kd′ · `(λ).
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Proof. Fix λ ∈ N, pp = (ppuVDF, d
′, h) in the support of cVDF.Gen(1λ) where ppuVDF = (N,B,

k, d, hash), v ∈ {0, 1}∗, and T ∈ N. Recall that Sketch(pp, ·, ·, ·) runs in time at most λc1 for
some constant c1 by Claim 5.10. In the following claims, we analyze the running time to compute
cVDF.Eval(1λ, pp, v).

Claim 6.20. There exists a polynomial p1 such that the running time of cVDF.Eval(1λ, pp, v) to
check that v is well-formed is at most p1(λ) · λd · `(λ).

Proof. The running time of this phase is dominated by the running time of cVDF.Verify(1λ, pp,
((g, 0h, ∅), s), v) after parsing v = (g, s, F ). It is easy to see that cVDF.Verify runs in time polynomial
in k, h, λ, and in the running time of uVDF.Verify(1λ, ppuVDF, (x, t), (y, π)) for elements (s′, (x, y, π))
in F and t = kh+d

′−|s′|. In particular, each call to uVDF.Verify checks the validity of its inputs in
time polynomial in λ, does kd squarings at the base case, and otherwise runs Sketch and calls itself
recursively at most logk(t) times. Therefore uVDF.Verify takes time poly(λ) · logk(t) + kd · `(λ) for
a fixed polynomial independent of d. Recalling that k = λ, t ≤ B(λ) ≤ 2λ, and that uVDF.Verify is
run at most k · h ≤ λ2 times gives the claim.

If v is not well-formed, then cVDF.Eval simply outputs ⊥, otherwise it continues to the next
phase, where we can assume that v = (g, s, F ).

Claim 6.21. There exists a polynomial p2 such that to compute frontier(s + 1) and val(s), the
running time of cVDF.Eval(1λ, pp, v) is at most p2(λ) + (1 + δ) · kd′ · `(λ).

Proof. Computing frontier(s + 1) consists of computing the input, output, and proof of s and a?,
where a? the child of the closest common ancestor of s and s+ 1 along the path to s.

The input of s is computed either as a sketch of its left siblings values in F , as the output of
the sibling to its left in F , or recursively as its parent’s input. Therefore, this takes time at most
O(k · h + h · λc1) where λc1 is the time to compute a sketch. Computing the output of s requires
running uVDF.Eval its input, which takes time (1 + δ) · kd′ · `(λ) by assumption. Finally, the proof
for s is ⊥.

If a? = s, then computing the input-output pair of a? does not take additional time. Otherwise,
the input and output are computed by looking them up in F , which takes time O(k · h). Finally,
computing its proof requires taking the outputs of the left siblings of a? along with the proof of its
rightmost child, computed recursively. Therefore, computing the proof given F takes time O(k ·h).

Therefore, computing the values of s and a? takes time p2(λ) + (1 + δ) · kd′ · `(λ) where p2(λ)
is a polynomial in O(λ2 + λc1+1).

Let c be a constant such that p1(λ) + p2(λ) ≤ λc for sufficiently large λ ∈ N. By Claims 6.20
and 6.21, the T -wise composition of cVDF.Eval can be done in time T · `(λ) · (λc+d + (1 + δ) · kd′).
Since k = λ, we can set d′ ≥ c+ d+ 1, so λc+d/kd

′ ≤ 1/λ ∈ o(1). It follows that the total running
time is at most T · (1 + δ + 1/λ) · kd′ · `(λ), so in particular for any constant δ′ > δ and sufficiently
large λ ∈ N, the total running time is at most T · (1 + δ′) · kd′ · `(λ).

Lemma 6.22 (Sequentiality). (cVDF.Gen, cVDF.Sample, cVDF.Eval(·)) satisfies sequentiality.

Proof. Let δ′ > δ be the constant from honest evaluation and let ε′′ > ε+δ′

1+δ′ . By way of contradiction,
suppose there exists a non-uniform algorithm A0 = {A0,λ}λ∈N where size(A0,λ) ∈ poly(B(λ)) for
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all λ ∈ N and a polynomial p such that for infinitely many λ ∈ N it holds that

Pr


pp← cVDF.Gen(1λ)
A1 ← A0,λ(pp)
(g, 0h, ∅)← cVDF.Sample(1λ, pp)
(T, v)← A1((g, 0

h, ∅))
:

cVDF.Eval(T )(1λ, pp, (g, 0h, ∅)) = v
∧ depth(A1)

≤ (1− ε′′) · T · (1 + δ′) · kd′ · `(λ)


≥ 1

p(λ)

We construct a non-uniform algorithm B0 = {B0,λ}λ∈N to break the sequential property of

RSW = (RSW.Gen,RSW.Sample,RSW.Eval(·)) as follows. For every λ ∈ N, B0,λ(N) first computes
pp = (N,B, k, d, hash, d′, h) distributed according to cVDF.Gen(1λ). It then runs A0,λ(pp) to receive
A1 and constructs a circuit B1 that expects an input g from RSW.Sample(1λ, N).

Overview of B1. At a high level, B1(g) first runs A1((g, 0
h, ∅)) to get some intermediate state

v = (g, T, F ) (note that g is distributed identically in both RSW.Sample and uVDF.Sample). When
A1 succeeds, then v = cVDF.Eval(T )(1λ, pp, (g, 0h, ∅)). B1 will use the partial computation done
by A1 on input g in order to efficiently compute an output y and an integer t such that g2

t
= y.

Consider the nodes in the frontier given by A1. If we look at the tree and remove all sketch nodes
and their sub-trees, then we are left with a k-ary tree, where the last node in this tree that appears
in F will have the output y such that y = g2

t
for some t (which is related to T ). We will use this

to break the sequential property of RSW. Just as done in the proof of sequentiality for the uVDF,
we show that the sketch nodes that are computed by A1 do not introduce too much overhead for
B1.

Formal definition of B1. The algorithm B1(g) does the following:

1. Compute (T, v)← A1((g, 0
h, ∅)) and parse v as (g, T, F ).

2. Let S ⊆ F be the set of elements corresponding to nodes that do not have any ancestors that
are rightmost children (i.e., remove all nodes in the sub-tree rooted at sketch nodes). Let mi

be the number of nodes in S at height i for i ∈ {0, . . . , h}.

3. Compute t =
∑h

i=0mi · ki+d′ (and note that ki+d
′

is the difficulty at height i by definition).20

4. Let y be the output of the rightmost node in S.

5. Output (t, y′) where y′ is equal to y or (N − y) with equal probability.

It remains to show that for all λ ∈ N, B0,λ as defined above succeeds at breaking the sequentiality
property of RSW whenever A1 succeeds as above. Namely, we will show that for infinitely many
λ ∈ N,

Pr


N ← RSW.Gen(1λ)
B1 ← B0,λ(N)
g ← RSW.Sample(1λ, N)
(t, y)← B1(g)

:
RSW.Eval(t)(1λ, N, g) = y
∧ depth(B1) ≤ (1− ε) · t · `(λ)
∧ t ≥ D(λ)

 ≥ 1

2p(λ)

Let H be the largest height of the tree with nodes contained in F (and therefore in S by
definition), i.e., H is the largest value such that T ≥ (k + 1)H + 1. First, we observe that the

20In general, when we refer to the height of a node, this is the height of the subtree rooted at that node.
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difficulty t that B1 outputs satisfies t ≥ mH · kH+d′ where mH ≥ 1 and H ≥ 0, so t ≥ D(λ) = λd
′

always holds since k = λ. In Claim 6.23, we show that either y or N − y is equal to x2
t

whenever
A1 computes the correct output v of cVDF.Eval(T )(1λ, pp, (g, 0h, ∅)), and in Claim 6.24, we show
that the circuit B1 computed by B0,λ has the correct depth whenever A1 as computed by A0,λ has
the correct depth.

Claim 6.23. Let (T, v) ← A1((g, 0
h, ∅)) and (t, y) ← B1(g). If cVDF.Eval(T )(1λ, pp, (g, 0h, ∅)) = v

then RSW.Eval(t)(1λ, N, g) ∈ {y,N − y}.

Proof. Let v = (g, T, F ) and H, S, and mi be as defined above for all i. By completeness (specifi-
cally Lemma 6.9 and Claim 6.11), it holds that F = frontier(T ).

Order the elements of S lexicographically by node, i.e., from left to right in the tree. Let
x(i,j), y(i,j) be the input and output, respectively, of the jth node at height i in S under this

ordering, where for a pair indexed by (i, j) it holds that j ∈ {1, . . . ,mi}. Let ti = ki+d
′

be the
difficulty at height i. We want to show that the rightmost node under this ordering has output
y = |g2t |N or N − y, where t =

∑H
i=0mi · ki+d′ .

Toward this goal, we first show by induction on j ∈ {1, . . . ,mi} that for every fixed height
i ∈ {1, . . . ,H }, it holds that y(i,j) = |(xi,1)2j·ti |N . For the base case, it follows by correctness of the

elements of F that y(i,1) = |(xi,1)2ti |N . Suppose this holds for the jth node at height i for some
j ∈ [1,mi). The (j+1)st node must be a middle child (since F does not contain rightmost children)
and hence this follows by the consistency and correctness of elements of F .

Next, we show by induction on the height i (decreasing from the node at height H down to the

leaf nodes) that y(i,mi) = |g2Li |N where Li =
∑H

i′=imi′ · ti′ is the sum of the difficulties so far, which
will give the claim. For the base case, when i = H it follows from the consistency of F that the
input x(H,1) of the first node is g, which by the above induction implies that y(H,mH) = |g2mH ·tH |N .
Suppose this holds for all nodes at heights from H through some height i ∈ (0, H], and consider
the node with input x(i−1,1), meaning the first node at height i− 1. By consistency of F , it holds
that x(i−1,1) = y(i′,mi′ ), where i′ is the closest level higher than i where mi′ 6= 0 (and note that the
mi′th node at height i′ must be in S if there is a node in S at height i + 1). Therefore, it follows
by the first induction that

y(i−1,mi−1) = | (x(i−1,1))2mi−1·ti−1 |N = | (y(i′,mi′ ))2mi−1·ti−1 |N
= |g2Li′+mi−1·ti−1 |N = |g2Li−1 |N ,

which completes the proof of the claim.

Claim 6.24. If ε′′ > ε+δ
1+δ′ and depth(A1) ≤ (1 − ε′′) · T · kd′ · (1 + δ′) · `(λ), then for sufficiently

large λ ∈ N,
depth(B1) ≤ (1− ε) · t · `(λ).

Proof. B1 first runs A1, which by assumption has depth at most (1 − ε′′) · T · kd′ · (1 + δ′) · `(λ).
Because the depth of B1 must be bounded by its output t and the depth of A1 depends on its
output T , we first relate the outputs of B1 and A1, t and T , respectively.

Toward that goal, we show that T ·kd′ ∈ t · (1+o(1)), meaning that t and the number of squares
done by A1 are almost the same. We split this into two cases, depending on the number of nodes
mH at height H.
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Case 1. In the first case, suppose mH < k and let H ′ be the next highest height with nodes that
appear in F (note that if there are no nodes below height H, then T = t so this follows trivially).
Then, it holds that

T ≤ mH · (k + 1)H + (mH′ + 1) · (k + 1)H
′
,

since T steps of cVDF correspond to all the leaf nodes necessary to compute the mH nodes at height
H, the mH′ nodes at height H ′, and then the remaining nodes at lower heights, where the latter is
upper bounded by (k + 1)H

′
. Additionally, since mH < k, then we have that

t ≥ mH · kH+d′ +mH′ · kH
′+d′

where here we used the fact that S includes mH nodes at height H and mH′ nodes at height H ′

(since there cannot be sketch nodes among these since mH < k). Therefore, noting that H ′ ≤ H−1,
we have that

T · kd′ ≤ kd′ ·
(
mH · (k + 1)H + (mH′ + 1) · (k + 1)H−1

)
≤ kd′ ·

(
mH · (kH +H2 · kH−1) + (mH′ + 1) · (kH−1 +H2 · kH−2)

)
≤ kd′ ·

(
mH · kH +mH · kH−1 ·H2

+mH′ · kH−1 +mH′ ·H2 · kH−2 + kH−1 +H2 · kH−2
)

≤ t
(

1 + 1/λ1/3
)

+ kH+d′−1 + λ2/3 · kH+d′−2

≤ t
(

1 + 1/λ1/3
)

+ 2 · kH+d′−1 ≤ t
(

1 + 1/λ1/3 + 1/λ
)
∈ t(1 + o(1)),

where we used that k = λ, that (k+ 1)H ≤ kH +H · kH−1 + . . .+HH ≤ kH +H2 · kH−1, and that

H ≤ logk+1 T ≤ λ1/3 since T ≤ B(λ) ≤ 2λ
1/3

.

Case 2. In the second case, suppose that mH = k. Then, we have that

T ≤ (mH + 1) · (k + 1)H = (k + 1)H+1,

and
t = kH+d′+1,

since if mH = k then all nodes in F below height H have an ancestor that is a rightmost child, so
they are not included in S. Therefore, we have that

T · kd′ ≤ kd′ · (k + 1)H+1

≤ kd′ · (kH+1 + (H + 1)2 · kH)

≤ kH+d′+1 + (2 · λ2/3) · kH+d′

≤ t(1 + 2/λ1/3) ∈ t(1 + o(1))

as above.

Putting it all together. After running A1, recall that B1 needs to compute t from the frontier
given by A and needs to find y in the frontier, which has some polynomial overhead λc

′
for some

constant c′. Setting d′ = c′+ c+ d+ 1, where c, d are the constant specified in Lemma 6.19, we get
that this overhead is λc ∈ o(t) since t ≥ λd′ .
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To conclude, let γ > 0 be any constant such that T · kd′ + λc ≤ t(1 + γ). We have that for
sufficiently large λ ∈ N,

depth(B1) ≤ depth(A1) + λc

≤ (1− ε′′) · T · kd′ · (1 + δ′) · `(λ) + λc

≤ (1− ε′′) · (1 + δ′) · `(λ) · (1 + γ) · t.

This is bounded by (1− ε) · `(λ) · t as long as ε′′ ≥ 1− 1−ε
(1+δ′)(1+γ) .

Furthermore, we can choose γ to be arbitrarily small, so we only require that ε′ is a constant
strictly greater than ε+δ′

1+δ which is given by assumption.

Sequentiality then follows since B0,λ succeeds as required with probability 1/2p(λ) for sufficiently
large λ ∈ N.

7 Applications

We formalize some applications of continuous VDFs below.

7.1 Public Randomness Beacons

A randomness beacon is an ideal functionality proposed by Rabin [Rab83]. In this section, we
formally define a computational variant of this notion and show that it can be achieved using
a continuous VDF. In the following definition, the algorithm Tick corresponds to the iterated
sequential function which computes the states of the beacon, and the algorithm Tock gives the
output of the beacon at each time step.

Definition 7.1 ((B, `,∆)-Public Randomness Beacon). Let B, `,∆: N → N. A (B, `,∆)-public
randomness beacon is a tuple of algorithms (Gen, Init,Tick,Tock,Verify) with the following syntax:

• pp← Gen(1λ): A PPT algorithm that takes as input 1λ and outputs the public parameters pp.

• state0 ← Init(1λ, pp, x0): A deterministic algorithm that takes as input 1λ, pp, and a starting
point x0 and outputs the initial state state0.

• state′ ← Tick(1λ, pp, state): A deterministic algorithm that takes as input 1λ, pp, and a state
state, and outputs the next state state′. We let Tick(·) denote an algorithm that takes 1λ, pp,
and (state, t) as input and outputs the t-wise composition Tick(t)(1λ, pp, ·) on input state.

• x← Tock(1λ, pp, state): A deterministic algorithm that takes as input 1λ, pp, and a state state,
and outputs the value x of the beacon corresponding to that state.

• b← Verify(1λ, pp, (x0, t), (x, state)): A deterministic algorithm that takes as input 1λ, pp, (x0, t)
for x0 ∈ {0, 1}λ and t ∈ N, and (x, state) for a beacon value x and a state state, and outputs
b ∈ {0, 1}.

We require the following properties to hold:

Completeness: For all t ≤ B(λ) and x0 ∈ {0, 1}λ, let state0 = Init(1λ, pp, x0) and statet =
Tick(t)(1λ, pp, state0). Then

Verify(1λ, pp, (x0, t), (Tock(1λ, statet), statet)) = 1.
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Soundness: For all t ≤ B(λ) and non-uniform algorithms A = {Aλ}λ∈N such that size(Aλ) ∈
poly(B(λ)), there exists a negligible function negl such that for all λ ∈ N,

Pr


pp← Gen(1λ)
x0 ← {0, 1}λ
(x, state, t)← Aλ(pp, x0)
state0 = Init(1λ, pp, x0)

:
x 6= Tock(1λ,Tick(t)(1λ, pp, state0))
Verify(1λ, pp, (x0, t), (x, state)) = 1


≤ negl(λ).

Honest Evaluation: For all λ ∈ N and pp ∈ Supp
(
Gen(1λ)

)
, Tick(1λ, pp, ·) runs in time at most

`(λ).

Indistinguishability: For every t ≤ B(λ) and non-uniform algorithm A0 = {A0,λ}λ∈N with
size(A0,λ) ∈ poly(B(λ)), there exists a negligible function negl such that the probability that the
following experiment outputs 1 is at most 1/2+negl(λ) for all λ ∈ N and t+∆(t) ≤ t′ ≤ B(λ):

Expt′(λ):

1. pp← Gen(1λ)

2. A1 ← A0,λ(pp, t′)

3. x0 ← {0, 1}λ, b← {0, 1}, state0 ← Init(1λ, pp, x0)

4. If b = 0, then x← {0, 1}λ. Else, x = Tock(1λ,Tick(t
′)(1λ, pp, state0)).

5. b′ ← A1(x, x0, state0)

6. Output 1 if b = b′ and depth(A1) ≤ t · ` and 0 otherwise.

While this notion is very related to that of a cVDF, we remark on a few points about the
definition of a public randomness beacon above and how it relates to a cVDF.

First, for an honest algorithm that starts computing as soon as the seed x0 and start state
state0 = RB.Init(1λ, pp, x0) is generated, it will be able to output the random value produced by
Tock(1λ,Tick(t)(1λ, pp, state0)) at time t · `(λ) + s(λ) where s(λ) is the time to compute Tock(1λ, ·).
After computing the initial state, it continuously computes Tick and can compute the beacon at
each interval by spawning an extra processor in parallel. At any point in time, the algorithm will
need to run at most s(λ)/`(λ) extra processors in parallel, which is independent of the number of
steps t so far. Furthermore, any other party that arrives at some time t · `(λ) and sees statet =
Tick(t)(1λ, pp, state0) will be able to output the beacon value at the same time. Thus, ` is the interval
time corresponding to the randomness beacon, but there will be a slight delay corresponding to the
time to compute Tock and Init before the first beacon is output. An illustration of this is given in
Figure 5.

Second, a randomness beacon only guarantees completeness, soundness, and indistinguishability
with respect to an honestly chosen seed. In contrast, a cVDF specifies a stronger property that
it is verifiable from any point in its computation, and we only require that sequentiality holds
from an honestly sampled starting point. We could have defined this weaker notion of a cVDF for
this application, but we found this stronger notion more natural for a general verifiable iteratively
sequential function.

Lastly, a randomness beacon guarantees that up until time t · `(λ), the random values produced
by the beacon ∆(t) steps into the future are indistinguishable from random. For a cVDF, we
only guarantee that the states past time t + ∆(t) cannot be computed—or, stated differently, are
unpredictable—before time (1 − ε) · (t + ∆(t)). To deal with this, we can apply a suitable hash
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x0 Init Tick Tick Tick · · ·

Tock Tock Tock

x1 x2 x3

state0 state1 state2

Figure 5: An example of running the randomness beacon. At each time step, running Tick on
statei produces statei+1, where all states are publicly verifiable. Then, each state can be used to
get the value of the beacon at that time. Note that Tick is iterated sequentially, while Tock is
applied to the output at each step.

function to the cVDF’s state at each step to obtain such a pseudorandom value. We show that this
is secure assuming a pseudo-random generator (PRG) for unpredictable seeds, which are known to
exist in the random oracle model. Intuitively, a PRG for unpredictable seeds is a function whose
output is indistinguishable from random against a class of algorithms that cannot predict the input
to the PRG. We need such a notion of PRGs for unpredictable seeds with respect to classes of
algorithms which have bounded depth. We formally define this notion as follows:

Definition 7.2 (Unpredictable distributions). Let C = {Cλ}λ∈N be a collection of classes of circuits

and let {Sλ}λ∈N be a family of distributions where Sλ is a distribution over (x, z) ∈ {0, 1}poly(λ) ×
{0, 1}poly(λ) for all λ ∈ N. We say that S is an unpredictable distribution against C if for every
algorithm A = {Aλ}λ∈N where Aλ ∈ Cλ for all λ ∈ N, there exists a negligible function negl such
that for all λ ∈ N,

Pr

[
(x, z)← Sλ
x′ ← Aλ(z)

: x′ = x

]
≤ negl(λ).

Definition 7.3 (PRGs for unpredictable seeds). Let C = {Cλ}λ∈N be a collection of classes of

circuits and let G = {Gλ : {0, 1}poly(λ) → {0, 1}λ}λ∈N be a family of polynomial-time computable
functions. We say that G is a PRG for unpredictable seeds against C if for any unpredictable
distribution {Sλ}λ∈N against C, for any distinguisher B = {Bλ}λ∈N where Bλ ∈ Cλ for all λ ∈ N,
there exists a negligible function negl such that for all λ ∈ N,∣∣∣∣Pr [(x, z)← Sλ : Bλ(Gλ(x), z,Gλ) = 1]− Pr

[
(x, z)← Sλ
r ← {0, 1}λ : Bλ(r, z,Gλ) = 1

]∣∣∣∣
≤ negl(λ).

We now show that the PRGs for unpredictable seeds and cVDFs (with suitable parameters)
suffice to construct a public randomness beacon. One subtle point is that for our construction, we
need to start with a cVDF where cVDF.Sample includes its randomness in its output. In our cVDF
construction, Sample(pp) outputs (g, 0h,⊥) where g is a uniform group element. Therefore, without
loss of generality, g is simply the randomness of sample. We call a cVDF with this property publicly
sampleable.

Theorem 7.4 (Restatement of Theorem 1.2). Let B, ` : N → N and ε ∈ (0, 1). Assuming the
existence of a publicly sampleable (B, `, ε)-cVDF and a PRG for unpredictable seeds against the
classes Ct = {Ct,λ}λ∈N for all t ≤ B(λ) where Ct,λ is the class of circuits with size poly(B(λ)) and
depth t · `(λ). Then, there exists a (B, `,∆)-public randomness beacon for ∆(t) = ε·t

1−ε .
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Proof. Let cVDF = (cVDF.Gen, cVDF.Sample, cVDF.Eval, cVDF.Verify). Our public randomness
beacon RB = (RB.Gen,RB.Init,RB.Tick,RB.Tock,RB.Verify) is defined as follows:

• RB.Gen(1λ) uses the same public parameters as cVDF.Gen(1λ).

• RB.Init(1λ, pp, x0) computes state0 = cVDF.Sample(1λ, pp;x0) using x0 as randomness.21

• RB.Tick(1λ, pp, state) computes the next state by outputting cVDF.Eval(1λ, pp, state).

• RB.Tock(1λ, state) outputs a random beacon value computed by Gλ(state).

• RB.Verify(1λ, pp, (x0, t), (x, state)) checks that the current state as defined by cVDF verifies,
i.e., cVDF.Verify(1λ, pp, (RB.Init(1λ, pp, x0), t), state) = 1, and that the beacon value is correct,
i.e., RB.Tock(1λ, pp, state) = x. Output 1 if both checks pass, and output 0 otherwise.

Completeness follows since cVDF satisfies completeness from honest start. For the rest of the proof,
let state0 = RB.Init(1λ, pp, x0), which is the starting point of the cVDF. Honest evaluation follows
from honest evaluation of cVDF. We now argue that soundness and indistinguishability hold.

Soundness. Suppose that there exists an algorithm A = {Aλ}λ∈N where size(Aλ) ∈ poly(B(λ))
and a polynomial p such that for infinitely many λ ∈ N, it holds that

Pr

 pp← RB.Gen(1λ)
x0 ← {0, 1}λ
(x, state, t)← Aλ(pp, x0)

:
x 6= RB.Tock(1λ,RB.Tick(t)(1λ, pp, state0))
RB.Verify(1λ, pp, (x0, t), (x, state)) = 1


≥ 1

p(λ)
.

We consider two cases: either state is equal to RB.Tick(t)(1λ, pp, state0) or not. If they are equal and
x 6= RB.Tock(1λ, state), this implies that RB.Verify will reject by definition. If the are not equal, then
we know that state 6= cVDF.Eval(t)(1λ, pp, state0) but cVDF.Verify(1λ, pp, (state0, t), state) accepts
since RB.Verify accepts. This implies that we can use A to break the soundness of cVDF with
probability 1/p(λ), which is a contradiction.

Indistinguishability. Suppose there exists a t ≤ B(λ), an algorithm A0 = {A0,λ}λ∈N, and a
polynomial p that causes the indistinguishability experiment to output 1 with probability more
than 1/2 + 1/p(λ) for some t′ ∈ [t + ∆(t), B(λ)]. In other words, let A1 be the algorithm output
by A0,λ. Then the following holds for this experiment:

Pr[b = b′ ∧ depth(A1) ≤ t · `(λ)] ≥ 1/2 + 1/p(λ).

We claim that this breaks that security of the PRG for unpredictable seeds G against the class of
circuits Ct with size B(·) and depth at most t · `(·).

Specifically, let statet′ = RB.Tick(t
′)(1λ, pp, state0) = cVDF.Eval(t

′)(1λ, pp, state0). We will show
that by the iteratively sequential property of cVDF, we know that statet′ is unpredictable for
adversaries with depth at most (1− ε) · t′ · `(λ). Because ∆(t) = ε·t

1−ε , it follows that statet′ is also
unpredictable for adversaries with depth at most t · `(λ). More formally, consider the family of
distributions S = {Sλ}λ∈N where Sλ samples x0 ← {0, 1}λ and outputs (statet′ , (x0, state0)) where

21If we need more bits of randomness, we can use a standard PRG with polynomial expansion.
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state0 = cVDF.Sample(1λ, pp;x0) and statet′ = cVDF.Eval(t
′)(1λ, pp, state0). For any class of circuits

B = {Bλ}λ∈N such that depth(Bλ) ≤ t · `(λ) for all λ ∈ N, it holds that

Pr

[
(statet′ , (x0, state0))← Sλ
state← Bλ((x0, state0))

: state = statet′

]
≤ negl(λ)

by the sequentiality property of cVDF. Note that this is where we used the fact that cVDF.Sample
includes its randomness as its output (since Bλ expects to see the randomness x0 of cVDF.Sample
but the adversary in the iteratively sequential experiment of the cVDF only receives the output of
cVDF.Sample).

Thus, it suffices to show that using A0,λ, we can construct a circuit Dλ with depth at most t·`(λ)
that distinguishes (xt′ , (x0, state0)) from (r, (x0, state0)) where r ← {0, 1}λ and xt′ = Gλ(statet′)
(where we assume the description of Gλ is public).

We construct an algorithm D = {Dλ}λ∈N as follows. We sample pp ← Gen(1λ) and compute
A1 ← A0,λ(pp, t′). If depth(A1) ≤ t ·`(λ), we set Dλ = A1, and otherwise, we set Dλ to be a dummy
circuit that always outputs ⊥. The distinguishing probability of Dλ for all λ ∈ N is given by the
following set of inequalities:

|Pr[Dλ(xt′ , state0) = 1]− Pr[Dλ(r, state0) = 1]|
=
∣∣Pr[b′ = 1 ∧ depth(A1) ≤ t · `(λ) | b = 1]

−Pr[b′ = 1 ∧ depth(A1) ≤ t · `(λ) | b = 0]
∣∣

=
∣∣2 Pr[b′ = b ∧ depth(A1) ≤ t · `(λ)]− 1

∣∣
≥ 2/p(λ),

which contradicts the assumption that G is a secure against the class Ct.

7.2 PPAD Hardness

Recall that TFNP, introduced by Megiddo and Papadimitriou [MP91], is the class of NP search
problems with a guaranteed solution. Since its introduction, there has been a systematic study that
clusters the problems in TFNP into subclasses based on the type of combinatorial argument estab-
lishing their totality. We consider two important subclasses of TFNP: PPAD and CLS. The class
PPAD (for Polynomial Parity Argument on Directed graphs), introduced by Papadimitriou [Pap94],
is important partly due to the fact that one of its complete problems is finding Nash equilibrium in
bimatrix games [DGP09, CDT09]. The definition of PPAD is formally given by one of its complete
problems called End-Of-Line (EOL). The class CLS (for Continuous Local Search), introduced by
Daskalakis and Papadimitriou [DP11], is the smallest non-trivial class among the currently defined
subclasses of TFNP (in particular, CLS ⊆ PPAD) and nevertheless it contains many important
problems (see [HY17] for references). One problem that lies inside CLS (yet is not known to be
complete) is called End-Of-Metered-Line (EOML) [HY17].

We next define recall the definitions of two promise problems (which are not total) which
reduce to EOML: (1) The Sink-of-Verifiable-Line (SVL) problem that was introduced by
Abbot, Kane and Valiant [AKV04] and further developed by [BPR15], and (2) the relaxed-Sink-
of-Verifiable-Line (rSVL) problem that was introduced by Choudhuri et al. [CHK+19a]. The
definitions are taken from [CHK+19a].

Definition 7.5. A Sink-of-Verifiable-Line (SVL) instance is a tuple (S, V, T, v0) where T ∈
[2λ], v0 ∈ {0, 1}λ, and S : {0, 1}λ → {0, 1}λ, V : {0, 1}λ×[T ]→ {0, 1} are circuits with the guarantee
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that for every (v, i) ∈ {0, 1}λ × [T ] such that v = Si(v0), it holds that V (v, i) = 1. The goal is to
find a sink: a vertex v ∈ {0, 1}λ such that V (v, T ) = 1.

The circuit S can be viewed as implementing the successor circuit of a directed graph over
{0, 1}λ that consists of a single line starting at v0. Using the circuit V one can efficiently test
whether a vertex v? is at distance t from v0. The goal is to find the node at distance T . In the
relaxed-SVL problem, defined next, the setting is very similar except that there might be off-chain
vertices and finding one that verifies also counts as a valid solution.

Definition 7.6. A relaxed-Sink-of-Verifiable-Line (rSVL) instance is a tuple (S, V, T, v0)
where T ∈ [2λ], v0 ∈ {0, 1}λ, and S : {0, 1}λ → {0, 1}λ, V : {0, 1}λ × [T ] → {0, 1} are circuits with
the guarantee that for every (v, i) ∈ {0, 1}λ × [T ] such that v = S(i)(v0), it holds that V (v, i) = 1.
The goal is to find one of the following:

• The sink: a vertex v ∈ {0, 1}λ such that V (v, T ) = 1, or

• A false positive: a pair (v, i) ∈ {0, 1}λ × {0, . . . , 2λ} such that v 6= S(i)(v0) and V (v, i) = 1.

Hardness of rSVL (resp. SVL) is defined in the standard way. Specifically, rSVL is (worst-case)
hard if for every non-uniform polynomial-time (in the description size of the instance) algorithm
there is an instance (S, V, T, v0) of rSVL (resp. SVL) for which the algorithm fails. rSVL (resp.
SVL) is average-case hard if there exists an efficient instance sampler such that every non-uniform
polynomial-time algorithm cannot solve a random instance generated by the sampler. It is known
that rSVL and SVL reduce to EOML [AKV04, BPR15, HY17, CHK+19a]. Thus, worst-case (resp.
average-case) hardness of rSVL or SVL translates into worst-case (resp. average-case) hardness of
EOML which translates into worst-case (resp. average-case) hardness of CLS and PPAD.

In what follows we define a fine-grained version of (r)SVL hardness that measures the required
length of the chain to get security for adversaries running in bounded time. Namely, given an
adversary A that runs in time t, we consider the minimal required chain length to guarantee
security. The smaller the gap, the tighter the security is. The following definition is stated for
worst-case hardness but extends to average-case hardness naturally.

Definition 7.7 (Optimal hardness). Fix a function s. We say that rSVL is f -hard if for any
non-uniform algorithm A = {Aλ}λ∈N with size(Aλ) ≤ s(λ) for all λ ∈ N, there exists an rSVL
instance of length f(s(λ)) that Aλ cannot solve (for large enough λ). If f is linear then we say that
rSVL is optimally hard.

The recent work of Choudhuri et al. [CHK+19a] gave an f -hard rSVL instance with f(s) = sc

for some constant c ≥ 2 (namely, there is a polynomial gap). Concretely, the length of their chain
is 2n·log2 d for a constant d ≥ 4 and one can find the label of the last node by solving #SAT on
n variables (which can be done in size 2n). We show that a continuous VDF, on the other hand,
implies optimal (average-case) hardness of rSVL.

Theorem 7.8 (rSVL optimal hardness; restatement of Theorem 1.3). Let B, `, ε : N→ N be func-
tions where B(λ) ≥ λc for a sufficiently large constant c. If there exists a (B, `, ε)-cVDF, then
rSVL is optimally average-case hard for algorithms with size s(λ) ≤ (1− ε) ·B(λ).

As a corollary, by combining Theorems 6.2 and 7.8, we obtain Theorem 1.3: assuming that the
Fiat-Shamir transformation for ω(1)-round proof systems is sound and that the repeated squaring
assumption holds, there exists an optimally (average-case) hard rSVL instance.
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Corollary 7.9. Let D,B, α : N → N be functions satisfying λc ≤ B(λ) ≤ 2λ
1/3

for a sufficiently
large constant c, α(λ) ≤ dlogλ(B(λ))e, and D(λ) ≥ λd

′
for all λ ∈ N and for a specific constant

d′. Suppose that the α-round strong FS assumption holds and the (D,B)-RSW assumption holds
for a polynomial ` : N→ N and constant ε ∈ (0, 1). Then, rSVL is optimally average-case hard for
adversaries with size s(λ) ≤ (1− ε) ·B(λ).

Not only we get an optimally hard rSVL instance, but we also rely on a weaker variant of
Fiat-Shamir than [CHK+19a]. Concretely, letting the chain length be B = B(λ), our construction
relies on Fiat-Shamir for logλB-round protocols while the construction of [CHK+19a] needs Fiat-
Shamir for log2B-round protocols. In particular, when B is a polynomial function, we rely on a
constant-round Fiat-Shamir transformation while they need Fiat-Shamir for super constant round
protocol. A further comparison regarding optimal hardness is given below.

Proof of Theorem 7.8. Let (cVDF.Gen, cVDF.Sample, cVDF.Eval, cVDF.Verify) be a (B, `, ε)-cVDF.
Fix any function s satisfying s(λ) ≤ (1 − ε) · B(λ) for all λ ∈ N. Define the instance sampler I
for average-case hard rSVL instances as follows. First, I(1λ) samples pp ← Gen(1λ) and v0 ←
cVDF.Sample(pp) and sets T = (1 + ε

1−ε) · s(λ). Then, it sets S, V to be the circuits where

S(v) = cVDF.Eval(1λ, pp, v) and V (v, i) = cVDF.Verify(1λ, pp, (v0, i), v).

The resulting instance is (S, V, T, v0). Note that for every λ ∈ N, it holds that every (S, V, T, v0) in
the support of I(1λ) is a valid instance of rSVL by the completeness property of cVDF.

To show optimal hardness of rSVL using this sampler, suppose for contradiction that there
exists an algorithm Aλ = {Aλ}λ∈N and a polynomial p such that size(Aλ) = s(λ) for all λ ∈ N
and for infinitely many λ ∈ N, Aλ can solve the rSVL instance sampled by I(1λ) with probability
1/p(λ).22 Fix λ ∈ N and an instance (S, V, T, v0) ← I(1λ). Whenever Aλ succeeds, it either finds
a false positive or a sink for the rSVL instance.

In the first case, suppose Aλ finds a false positive (v, i), meaning that v 6= S(i)(v0) and V (v, i) =
1. By definition of S and V , this implies that v 6= cVDF.Eval(i)(1λ, pp, v0) yet cVDF.Verify(1λ, pp,
(v0, i), v) = 1. This directly implies an algorithm of size in poly(B(λ)) which on input pp sam-
ples v0 ← Sample(pp), runs Aλ on the corresponding rSVL instance to obtain (v, i), and outputs
((v0, i), v) in contradiction with the soundness of the cVDF.

In this second case, suppose Aλ outputs a sink v. Then, Aλ can be used to construct an
algorithm B1,λ that breaks the sequentiality property of cVDF as follows. The algorithm B1,λ(pp)
for pp ← cVDF.Gen(1λ) outputs B2, where B2 is a circuit that has pp hardcoded. On input
v0 ← cVDF.Sample, B2 forms the corresponding rSVL instance (S, V, T, v0), runs Aλ to obtain v,
and outputs (v, T ). Whenever Aλ succeeds at outputting a sink v, it holds that V (v, T ) = 1, which
implies that cVDF.Verify(1λ, pp, (v0, T ), v) accepts. Let c′ be the constant such that I(1λ) runs in
time λc

′
. Observe that

size(B2) ≤ size(Aλ) + size(I(1λ)) ≤ (1− ε) ·B(λ) + λc
′ ≤ (1− ε′) ·B(λ) · `(λ)

for ε′ ≤ ε− λc
′

B(λ)·`(λ) ∈ ε−o(1) when B(λ) is polynomially larger than λc
′
. It follows that B1,λ breaks

the sequentiality of cVDF for all sufficiently large λ with probability 1/p(λ), in contradiction.

Remark 3 (Hardness of EOL and Nash equilibrium). The reduction from rSVL (and SVL) to
EOL is not tight (and thus so is the Nash equilibrium instance). Namely, even if we start with
an optimally hard instance of rSVL, the resulting EOL instance has f -hardness for some small

22In fact, it suffices to assume that size(Aλ) ≤ B(λ) and depth(Aλ) ≤ s(λ). See below.
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polynomial f(s) ∈ poly(s) (The non-tightness stems from the fact that the underlying pebbling
argument introduces a blow-up in the number of nodes in the instance). Coming up with an optimally
hard EOL instance is left as an open problem.

On depth-robustness moderate-hardness. The proof of Theorem 7.8 actually shows another
flavor of hard instances—an rSVL instance that can be solved in fixed polynomial-time, yet no
adversary with bounded depth (but any polynomial size) can solve. For this application we only
require the Fiat-Shamir heuristic for constant-round proofs. For concreteness, consider the regime
where T , the chain length, is a fixed polynomial (think of T (λ) = λ100). The proof of Theorem 7.8
shows that any polynomial-size algorithm, as long as its depth is at most (1 − ε) · T (λ), cannot
solve the rSVL instance.

Theorem 7.10 (Moderately-hard depth-robustness). Let B, `, ε, T : N → N be functions where
B(λ) > λc

′
for a sufficiently large constant c′, such that there exists a (T,B, `, ε)-cVDF (see Re-

mark 2). Then, there exists an instance of rSVL that can be solved in time T (λ) yet is hard for
algorithms with depth at most (1− ε) · T (λ) · `(λ) and size at most B(λ).

As stated in Theorem 1.4, we can apply the reduction from rSVL to EOL (and then to Nash
equilibrium) and get a depth-robust moderately-hard instance—namely, there is a constant d such
that for sufficiently large c, there is a distribution over EOL instances of size n that can be solved
in time nc but is hard for all polynomial-time algorithm of depth nc/d.

In contrast, the rSVL instance of [CHK+19a] (and hence Nash equilibrium instance) does not
give any guarantee for general polynomial-time algorithms, since breaking their instance would
correspond to solving a #SAT instance with O(log(λ)) variables, which is solvable in low-depth
given parallel processors.
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A Number Theory Facts

For N ∈ N and any x ∈ ZN , we use the notation |x|N to denote min{x,N − x}. Next, we state
three standard useful facts. Full proofs are given for completeness.

Fact A.1. Let N ∈ Supp
(
RSW.Gen(1λ)

)
. Then, for µ ∈ Z?N , it holds that 〈µ〉 = QRN if and only

if there exists an x ∈ Z?N such that µ = x2 and gcd(x± 1, N) = 1.
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Proof. Let the representation of x be (a, b), i.e., x = a mod p and x = b mod q, and thus µ = x2 has
representation (a2, b2). First, suppose that 〈µ〉 = QRN . This implies that a2, b2 6= 1, so a, b 6∈ {±1}.
It follows that gcd(x ± 1, N) = 1. For the other direction, suppose now that gcd(x ± 1, N) = 1.
Since p and q do not divide (x±1), it holds that a, b 6∈ {±1}. This implies that a2, b2 6= 1. Because
Z?p has order 2p′ and a2 is a quadratic residue in Z?p, a2 must have order p′. Similarly, b2 must have
order q′. This implies that the order of µ is p′ · q′/ gcd(p′, q′) = p′ · q′ = |QRN |, so 〈µ〉 = QRN .

Fact A.2 ([Rab79]). There exists a polynomial time algorithm A such that for any λ ∈ N, N
in the support of RSW.Gen(1λ), and µ, x, x′ ∈ ZN , if µ = x2 = x′2 and x′ 6∈ {x,−x}, then
A(1λ, N, (µ, x, x′)) outputs (p, q) such that N = p · q.

Proof. A(1λ, N, (µ, x, x′)) computes p = gcd(x + x′, N) and q = N/p, and outputs (p, q). To see
that this is correct, let (a, b) be the representation of x, i.e., x is equal to a mod p and b mod q. If
(x′)2 = x2, then x′ has representation in {(±a,±b)}. However, we assume that x′ 6∈ {x,−x}, so x′

must have representation (a,−b) or (−a, b). In the first case, x + x′ = 0 mod q and in the second
case x+ x′ = 0 mod p, as needed.

Fact A.3. Let N ∈ Supp
(
RSW.Gen(1λ)

)
and let 〈x〉 = QRN . Then, for any i ∈ N, it holds that

〈x2i〉 = QRN .

Proof. Let µ = x2
i

mod N . Since 〈x〉 = QRN , then µ generates QRN whenever its exponent with
respect to x is not divisible by p′ or q′. This trivially holds since 2i is even and p′, q′ are odd.
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