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ABSTRACT
Accelerating large-scale CNN training is needed to keep train-
ing times reasonable as datasets grow larger and models become
more complex. Existing frameworks primarily scale using data-
parallelism, but this is limited by the mini-batch size, which cannot
grow arbitrarily. We introduce three algorithms that partition chan-
nel or filter data to exploit parallelism beyond the sample dimension.
Further, they partition the parameters of convolutional layers, re-
placing global allreduces with segmented allreduces—smaller, con-
current allreduces among disjoint processor sets. These algorithms
enable strong scaling, reduced communication overhead, and re-
duced memory pressure, enabling training of very wide CNNs.

We demonstrate improved strong and weak scaling, including
up to 4.1x reductions in training time for residual networks and 4x
reductions in allreduce overhead. We also show that wider models
provide improved accuracy on ImageNet. We study the current
limitations of our algorithms and provide a direction for future
optimizations of large-scale deep learning frameworks.
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1 INTRODUCTION
Deep learning has achieved tremendous results in fields ranging
from computer vision to climate analytics and astrophysics [30, 31,
33, 40]. A major component of this success has been the availability
of enough compute power to train sufficiently large models on large
datasets. GPUs have been critical in enabling this growth [46], and it
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is now common to employ clusters of GPUs to train a single model.
Nonetheless, training a state-of-the-art convolutional neural net-
work (CNN) to convergence can take days or weeks. As ever more
data is produced, and as researchers iterate through larger varieties
of more complex models in search of better accuracies, increasingly
more compute power needs to be leveraged. Frequent retraining is
also typical, to explore or update models based upon newly ingested
data or simulation outputs [21, 34]. It is thus necessary to accelerate
training on large clusters of GPUs.

Current approaches to accelerating CNN training focus on dis-
tributed data-parallelism, which we also refer to as sample par-
allelism, following the convention of Dryden et al. [17]. In this
approach, a mini-batch, typically consisting of no more than a
few thousand samples from a dataset, is partitioned among proces-
sors, which each have complete replicas of the model’s parameters.
These processors can independently perform forward and back-
propagation for their local data samples and compute parameter
updates based upon them. They must then synchronize these up-
dates, which takes the form of a global allreduce on the parameter
buffers, after which a local optimization step, typically stochastic
gradient descent (SGD), is performed. Even with modern CNNs
consisting primarily of convolutional layers, which have relatively
few parameters compared to large fully-connected layers, these
allreduces are a major bottleneck to efficient scaling [18, 28, 30],
and this problem will only worsen in the future as compute power
continues to increase faster than network latency and bandwidth.

The data-parallel approach can be both strong and weak scaled
based upon the mini-batch size [6]. In strong scaling, a fixed mini-
batch size is partitioned over more processors; in weak scaling, the
number of samples per processor is fixed and the global mini-batch
size grows as additional processors are added. With sample paral-
lelism, strong scaling is fundamentally limited by the mini-batch
size. Yet one cannot arbitrarily increase the mini-batch size during
weak scaling, as it can negatively impact the generalization perfor-
mance of the learned model [20, 27, 38, 52]. Thus, it is important
to enable strong scaling beyond the sample dimension to take ad-
vantage of additional compute resources. This also helps mitigate
memory pressure due to the very large samples present in emerging
scientific deep learning applications [17, 30, 40], which may have
many channels. In some applications, the memory requirements
may be significant enough that partitioning is necessary merely
to run. For both strong and weak scaling, it is also vital to reduce
global allreduce overheads, which limit large-scale training.

To address these issues, we propose to exploit parallelism within
convolutional layers beyond the sample dimension by also partition-
ing the channel and filter dimensions of CNNs. This is in the same
spirit as Dryden et al. [17], who partitioned the sample and spatial
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dimensions of CNNs to improve strong scaling and reduce memory
pressure. To do this, we introduce a family of three algorithms
for performing convolution with distributed input/output chan-
nel/filter data, resulting in the same output as non-distributed con-
volution. Each algorithm is differentiated by the data movement and
computation patterns it performs. These algorithms can addition-
ally be combined with sample parallelism or the spatial parallelism
of [17] to form hybrid algorithms where multiple types of partition-
ing are combined hierarchically. The stationary-x algorithm avoids
communication of input data during forward propagation and the
stationary-y algorithm avoids communication of input data during
backpropagation, along with the corresponding gradients. These
are both special cases of the stationary-w algorithm, a more com-
plicated algorithm that can control the amount of communication
in both forward and backpropagation. These names are by analogy
to stationary matrix product algorithms [51, 57]. Each algorithm
requires some communication during forward or backpropagation,
which adds unavoidable overhead and can prevent perfect strong
scaling, but they do not require global communication. Indeed, it can
typically be performed on-node, where high-bandwidth links (e.g.
NVLink2) are available, depending on data partitioning. We also
consider the impacts of using inter-node communication, which
enables additional strong scaling and can reduce memory pressure.

These algorithms additionally partition the parameters of a con-
volutional layer instead of fully replicating them on every proces-
sor. Hence, they are both model- and data-parallel (parameters and
activations are partitioned). This changes the communication pat-
tern when synchronizing gradients from a global allreduce to a
segmented allreduce: disjoint subsets of processors run concurrent
allreduces on different portions of the parameters. These segmented
allreduces therefore perform communication on smaller data buffers
and among fewer processors, reducing communication overhead.

While other frameworks, such as DistBelief [15] and Project
Adam [12], have exploited model parallelism in convolutions for
distributed training, they have done so by partitioning the filters
to workers and using parameter servers. In contrast, our work
jointly partitions channels and filters, and does so in a completely
distributed manner. This necessitates much more complex commu-
nication patterns during forward and backpropagation, which must
be mapped efficiently to collective communication primitives.

We provide some additional background and define our notation
in Section 2, describe our algorithms in Section 3, and develop a
performance model in Section 4. Our implementation is described in
Section 5 and we comprehensively evaluate performance of ResNet-
50 [22] for ImageNet-1k [49] in Section 6. We also examine training
the wider Wide ResNet-50-2 [62] and -50-4 networks. The latter
could not be trained by the original authors due to memory and
training time requirements; our work makes this training feasible.
We summarize our contributions as follows:
• We describe a family of algorithms for parallelizing convolutional
layers with channel and filter decompositions.
• We provide performant implementations of these algorithms in
an open-source framework (LBANN [58]).
• We provide a performance model to help understand algorithm
performance and scaling.
• We comprehensively evaluate our implementations with micro-
benchmarks and end-to-end training.

• We provide accuracy results showing the benefit of wider models.

2 BACKGROUND AND NOTATION
We begin by providing a brief overview on training CNNs and
related algorithms, and then describe our notation. We assume the
reader has a basic familiarity with training deep learning models.

2.1 Convolutional neural networks
For simplicity, we will assume convolution is performed on 2D
data with stride 1 and “same” padding (these assumptions are not
necessary). We will say that a convolutional layer has F filters of
sizeK×K that are applied to an input consisting of N samples, each
withC channels, height H , and widthW . The layer then has six 4D
tensors associated with it: a N ×C ×H ×W input x , a F ×C ×K ×K
weights w , and a N × F × H ×W output y, plus the associated
gradients dL

dx ,
dL
dw , and dL

dy (where L is the loss function).
With this, convolution is defined as follows. To further simplify,

we will assume thatK is odd and writeO = ⌊K/2⌋ to be the number
of pixels outside the image border the filter needs, and that “out-of-
bounds” subscripts are handled by padding. In forward propagation,
a layer receives its input x and computes its output y as

yk,f ,i, j =
C−1∑
c=0

O∑
a=−O

O∑
b=−O

xk,c,i+a, j+bwf ,c,a+O,b+O . (1)

In backpropagation, a layer receives an input error signal dLdy and

computes its weights gradient dL
dw and an output error signal dLdx as

dL

dwf ,c,a,b
=

N−1∑
k=0

H−1∑
i=0

W −1∑
j=0

dL

dyk,f ,i, j
xk,c,i+a−O, j+b−O (2)

dL

dxk,c,i, j
=

F−1∑
f =0

O∑
a=−O

O∑
b=−O

dL

dyk,f ,i−a, j−b
wf ,c,a+O,b+O . (3)

These are the backward-filter and backward-data phases of com-
putation, respectively. In this work, we do not focus on the imple-
mentation of convolution itself, and instead rely on cuDNN [11]
to provide an optimized implementation for a single GPU. To
emphasize this and simplify notation, we will use ConvForward,
ConvBackFilt, and ConvBackData to refer to the computations of
y, dLdw , and dL

dx , respectively.

2.2 Distributed CNN training
From these equations, the various decompositions we discuss are
formed by partitioning one or more dimensions (N , C , F , H , or
W ), and performing the necessary communication to ensure the
correct result is computed. For example, the common data-parallel
approach to distributed training, where samples are partitioned
among different processors, is immediately clear from the above
equations: computing y and dL

dx can be done entirely locally, but
only the part of the sum for dL

dw that involves local samples can
be done. Computing the remainder of the sum requires a global
allreduce. Similarly, the H or W dimensions can be partitioned
among processors, but in addition to the allreduce, halo exchanges
on x and dL

dx are required to compute the values of convolution
near the partition boundaries [17].
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Following the convention of [17] we refer to exploiting paral-
lelism along a dimension as “parallelizing” that dimension. Thus,
the methods just described are sample parallelism and height and
width (or spatial) parallelism. Note that these methods are orthog-
onal and can be combined in hybrid methods. In this work, we
introduce algorithms for channel and filter parallelism to exploit
parallelism within the remaining dimensions: C and F .

2.3 Notation
We introduce the notation we use to describe our algorithms. This
notation is meant to be a simplified, high-level description of how
tensors are distributed while eliding many “lower level” details. It is
inspired by the notation developed for the FLAME project [50, 51],
and also inspired by the approach of High Performance Fortran [3].

2.3.1 Processor grid. A layer is distributed over a processor grid G,
which is constructed as a multi-dimensional grid over the available
processors. G may vary between layers, since they can use differ-
ent parallelization strategies or algorithms. Note that the order of
dimensions for the processor grid has no bearing on the ordering
of dimensions for local data, which can be laid out in whatever
manner is most efficient.

2.3.2 Distributions. A distribution DGa specifies which entries in
a tensor a reside on which processors in a processor grid G (we
will omit G when clear). Our algorithms use Cartesian distributions
where each dimension N is either distributed over a processor grid
dimension N , denoted ◦N

N
, or replicated, denoted ∗N (omitting N

and N when clear). Thus, we can define the distribution of a by
specifying ◦ or ∗ for each dimension.

For example, hybrid sample and spatial parallelism is given by
a distribution over a (N ,H ,W) processor grid. The input ten-
sor x (with dimensions N ×C × H ×W ) is x[◦, ∗, ◦, ◦], indicating
that the sample dimension N and the spatial dimensions H and
W are distributed, while the channel dimension C is replicated.
(The boundaries of the H andW distributions on each processor
will need to overlap in order to properly describe the necessary
halo exchanges.) This notation is intended to convey the high-level
intuition about data distributions.

We now define the notation precisely. A distributionDGa is a map
from a multi-index in G to a set of multi-indices corresponding to
entries of a. To be a valid distribution, we require that each element
of a be assigned to at least one processor. Although this can define
arbitrary distributions, our algorithms require only a few cases.
Let N be a tensor dimension, N a processor grid dimension, |N |
the size of tensor dimension N , and [|N |] the first |N | integers.
Then the function ◦N

N
(projN(p)) maps from G to a subset of [|N |],

giving a distribution on N for N . The projection ensures that the
distribution is based solely on a processor’s index inN . The function
∗N (p) returns [|N |] for any p ∈ G. When ◦ and ∗ are specified for
each tensor dimension, we can construct a distribution by taking
the Cartesian product of these functions. Throughout this paper,
we will use ◦ to denote a block, load-balanced distribution. While
other distributions are possible in general, a block distribution
is necessary for partitioning spatial dimensions, as convolution
requires spatially adjacent data.

Note that a tensor cannot be distributed over the same grid
dimension multiple times, or else some entries will not reside on
any processor. If a processor grid dimension is not specified in
D
G
a , the data is replicated over that dimension. We refer to such

dimensions as the redundant grid dimensions. (This is equivalent
to the notion of redundant communicators in Elemental [50].)

2.3.3 Segmented collectives. We will make use of segmented collec-
tives, wherein disjoint sets of processors concurrently perform the
same collective operation using only the data local to the processors.
A segmented collective has the potential to be significantly faster
than a global collective, since it is performed among a smaller set of
processors, and may involve less data from each processor. The pro-
cessors involved in such a collective correspond to the redundant
grid dimensions for the tensor the collective is performed on.

2.3.4 Redistributions. We use a[DGa ] ←− a[DGa ] to denote a re-
distribution (typically, an allgather) of a from distribution DGa to

D
G
a . On a per-dimension basis, there are four basic cases:
• ∗ ←− ◦ is an allgather that assembles the complete set of indices
for a dimension on every processor involved.
• ◦ ←− ∗ discards local data.
• ◦ ←− ◦ and ∗ ←− ∗ are NOPs.

We may also need to specify a redistribution ◦d ′ ←− ◦d that
moves data between distributions over different processor grid
dimensions; here we require that d be a proper subset of d ′ (or vice-
versa). These are discards of local data or segmented allgathers.

2.3.5 Reductions. Data movement may also involve collective re-
ductions, which we denote explicitly as a[DGa ] ←−

∑̃
Aa[D

G
a ].

This is logically a segmented allreduce over the redundant grid
dimensions. For clarity, we include a subscript to explicite indicate
the dimensions being reduced over: The reduction will be over the
processors that have different indices for the dimensions inA, and
the same indices for the remaining dimensions of G (this can be
omitted). Note that one could define reductions entirely in terms of
data distributions, but we do not use that approach here.

We mention an important special case that fuses a reduction and

a redistribtion: a[DGa ] ←−
∑̃
a[DGa ]where the distribution change

is ◦ ←− ∗. This can be implemented as a segmented reduce-scatter,
which is significantly cheaper than an allreduce.

3 ALGORITHMS
We now introduce our algorithms, beginning with an example
of sample parallelism to illustrate our notation with a familiar
algorithm. We assume that input tensors are distributed as required,
and that output tensor distributions match what the algorithms
“naturally” produce. Explicit redistributions can be added if needed.

3.1 Example: Sample parallelism
Recall that sample parallelism partitions only theN dimension of in-
put/output tensors and thatw is replicated on every processor. Our
processor grid will consist of only one dimension, N , to distribute
the sample dimension. The distributions of x and dL

dy are [◦, ∗, ∗, ∗],

as are the output distributions for y and dL
dx . As the weights are

replicated, w and dL
dw have distribution [∗, ∗], where we omit the
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K × K dimensions for simplicity (they are replicated in every case).
We also make use of temporary variables denoted Ti . With this,
sample parallelism in our notation is implemented as:
(1) y[◦, ∗, ∗, ∗] ←− ConvForward(x[◦, ∗, ∗, ∗],w[∗, ∗])
(2) dL

dx [◦, ∗, ∗, ∗] ←− ConvBackData(dLdy [◦, ∗, ∗, ∗],w[∗, ∗])

(3) T3[∗, ∗] ←− ConvBackFilt(dLdy [◦, ∗, ∗, ∗],x[◦, ∗, ∗, ∗])

(4) dL
dw [∗, ∗] ←−

∑̃
NT3[∗, ∗].

From this, we can see all the important parts of the algorithm
and its communication: forward and backward propagation can be
conducted entirely locally, and then a global reduction is performed
to compute the final value of dL

dw (completing the sum over N in
Eq. 2). This reduction is performed over all processors that have
different indices for the N dimension; since that dimension is the
only one that is distributed, and based upon the transition rules in
Section 2.3.5, this is a global allreduce.

Extending this algorithm to include spatial parallelism in addi-
tion to sample parallelism is simple (noting that we do not explic-
itly represent the halo exchange): x , y, dLdx , and

dL
dy would instead

be distributed as [◦, ∗, ◦, ◦] on a processor grid with dimensions
(N ,H ,W), and the reduction would be over the N ,H ,W dimen-
sions. This would still involve a global allreduce.

3.2 Stationary-x
We now describe the first of our algorithms exploiting channel
and filter partitioning, which we call stationary-x . We refer to it
as “stationary” by analogy with stationary matrix product algo-
rithms [51], which avoid communicating a particular matrix. We
first present the algorithm in our notation and then discuss our
reasoning behind it and some implications.

We will assume that input data is distributed channel-wise in
addition to using sample and spatial parallelism: x[◦, ◦, ◦, ◦] over a
processor grid (N ,H ,W,C). This choice of dimension ordering is
not needed for correctness, but does result in good performance, as
bandwidth-intensive communication of activations will tend to use
faster links (e.g. NVLink2) due to channels being partitioned over
a small number of close GPUs. Note that the order of processor
grid dimensions need not match the tensor’s, and that we will
write tensors in the ordering given in Section 2.1 (e.g. N ×C ×H ×
W ). Similarly, we will assume that the desired distribution of y is
[◦, ◦C , ◦, ◦], where the F dimension of y is distributed according to
the C dimension of the processor grid; this ensures that the inputs
and outputs have matching data distributions. The tensors dL

dy and
dL
dx are distributed similarly. Unlike sample or spatial parallelism,
we distribute the weights by channels instead of replicating them:
w[∗, ◦]. Thus, w is distributed such that each rank has, for every
filter, only the channel parameters for its local input channels. Note,
when combining this with hybrid parallelism (e.g. sample), these
may still be replicated, but not over every processor. With this, the
algorithm is as follows:
(1) T1[◦, ∗, ◦, ◦] ←− ConvForward(x[◦, ◦, ◦, ◦],w[∗, ◦])
(2) y[◦, ◦C , ◦, ◦] ←−

∑̃
CT1[◦, ∗, ◦, ◦]

(3) dL
dy [◦, ∗, ◦, ◦] ←−

dL
dy [◦, ◦C , ◦, ◦]

(4) dL
dx [◦, ◦, ◦, ◦] ←− ConvBackData(dLdy [◦, ∗, ◦, ◦],w[∗, ◦])

(5) T3[∗, ◦] ←− ConvBackFilt(dLdy [◦, ∗, ◦, ◦],x[◦, ◦, ◦, ◦])

(6) dL
dw [∗, ◦] ←−

�∑
N,H,WT3[∗, ◦].

As a high-level summary, this algorithm first does forward prop-
agation locally (1), then performs a segmented reduce-scatter (2)
among each set of processors that has different channels for the
same sample and spatial region, in order to complete the sum over
channels in Eq. 1 and then produce the correct distribution for
y. The scatter is needed because each processor locally produces
output for every filter. (See Figure 1, left.) Backpropagation be-
gins with a segmented allgather (3) to assemble the filters of dL

dy .
Backward-data (Eq. 3) can then be computed completely locally
(4). Backward-filter (Eq. 2) can be partially computed locally (5),
but completing the summations still requires aggregating over all
sample and spatial distributions (6). (See Figure 1, right.) A key
advantage of this algorithm is that this allreduce is no longer global:
it is a segmented allreduce over only the local data, among proces-
sors that have the same channel data. Thus, we reduce both the
amount of data that is allreduced, and the number of processors
participating in each allreduce.

This algorithm trades additional communication overhead dur-
ing forward and backpropagation (from the reduce-scatter and
allgather) for additional parallelism among channels. Convolutions
among different channels can be performed concurrently in for-
ward propagation and for backward-data, reducing total compute
time. In backpropagation, the allgather of dL

dy before computing
ConvBackData is necessary given our distribution ofw . Other dis-
tributions would require either additional data or communication. It
also significantly reduces memory usage, as the complete channels
of each tensor need only be stored during the forward or backprop-
agation pass through their particular layer.

We also partitionw by channels, as opposed to fully replicating
it as is typical, for two reasons. First, as the input data is partitioned
by channels, only the parameters corresponding to those channels
would be used during forward and backpropagation on each pro-
cessor. Second, if weights were replicated on every processor, the
backward-filter stage would require a global allreduce to update
the parameters. By partitioning w , we are able to instead use a
segmented allreduce to reduce communication overheads, since
updates need only be communicated among processors with the
same parameters. Thus, for example, if a combination of sample and
channel parallelism is used and channels are partitioned among two
processors, we perform two disjoint allreduces, each among half
the processors and over half the data. We also considered alternate
communication patterns, but these result in excess communication
or buffer space.

As a future optimization to reduce the communication over-
head from reduce-scatters and allgathers, this algorithm (as well as
the stationary-y and -w algorithms) is amenable to blocking and
pipelining, similarly to stationary matrix product algorithms.

3.3 Stationary-y
The stationary-y algorithm is symmetric to the stationary-x algo-
rithm, and uses a (N ×H×W×F ) grid. It avoids communicatingy
and dL

dy instead of x and dL
dx (compare lines (2) and (3) of stationary-

x to (4) and (1) below, respectively). The tensors x , y, dLdx , and
dL
dy
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Figure 1: Illustration of the stationary-x algorithm’s forward (left) and backpropagation (right) for one layer and two samples,
using two-way channel/filter partitioning on four processors.

are distributed as in the stationary-x algorithm.w is distributed as
[◦, ∗], so each processor has only its local filters. The algorithm is:
(1) x[◦, ∗, ◦, ◦] ←− x[◦, ◦F , ◦, ◦]
(2) y[◦, ◦, ◦, ◦] ←− ConvForward(x[◦, ∗, ◦, ◦],w[◦, ∗])
(3) T2[◦, ∗, ◦, ◦] ←− ConvBackData(dLdy [◦, ◦, ◦, ◦],w[◦, ∗])

(4) dL
dx [◦, ◦F , ◦, ◦] ←−

∑̃
FT2[◦, ∗, ◦, ◦]

(5) T3[◦, ∗] ←− ConvBackFilt(dLdy [◦, ◦, ◦, ◦],x[◦, ∗, ◦, ◦])

(6) dL
dw [◦, ∗] ←−

�∑
N,H,WT3[◦, ∗].

For this, the communication patterns have been swapped be-
tween forward and backpropagation compared to the stationary-x
algorithm. An allgather is performed at the beginning of forward
propagation (1), followed by local convolution (2). The backward-
data step can first be performed locally (3) and is then followed by
a reduce-scatter (4) to complete the sum over filters (Eq. 3). The
backward-filter computation (5, 6) is similar to the stationary-x
algorithm, except now the segmented allreduce aggregates gra-
dient updates among processors with the same filters. A similar
discussion of communication choices also applies.

3.4 Stationary-w
We now present the stationary-w algorithm (the name is chosen for
consistency despite the reduction on dL

dw ). This is also the most com-
plex of the algorithms we present, and, in fact, both the stationary-x
and -y algorithms are special cases of this one. At a high level, this
algorithm distributes the C dimension of x , the F dimension of
y and both C and F dimensions of w , which requires communi-
cation during both forward and backpropagation. The parameter
update allreduce remains segmented. The communication pattern
essentially combines those of the stationary-x and y algorithms.

The processor grid for this algorithm is (N ,H ,W,C,F ). Input
and output tensors are distributed over the linearization of the C
and F dimensions of the processor grid. We will assume that x
and dL

dx are distributed according to [◦, ◦F×C , ◦, ◦] and y and dL
dy

according to [◦, ◦C×F , ◦, ◦]. The weights are distributed according
tow[◦, ◦], and so are partitioned over both the F and C dimensions
of G. The stationary-w algorithm is now:
(1) x[◦, ◦C , ◦, ◦] ←− x[◦, ◦F×C , ◦, ◦]
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Figure 2: Illustration of the stationary-w algorithm’s for-
ward propagation for one layer and sample, four channels
and filters, using a 2 × 2 distribution of channels and filters.

(2) T1[◦, ◦F◦, ◦] ←− ConvForward(x[◦, ◦C , ◦, ◦],w[◦, ◦])
(3) y[◦, ◦C×F , ◦, ◦] ←−

∑̃
CT1[◦, ◦F , ◦, ◦]

(4) dL
dy [◦, ◦F , ◦, ◦] ←−

dL
dy [◦, ◦C×F , ◦, ◦]

(5) T2[◦, ◦C , ◦, ◦] ←− ConvBackData(dLdy [◦, ◦F , ◦, ◦],w[◦, ◦])

(6) dL
dx [◦, ◦F×C , ◦, ◦] ←−

∑̃
FT2[◦, ◦C , ◦, ◦]

(7) T3[◦, ◦] ←− ConvBackFilt(dLdy [◦, ◦F , ◦, ◦],x[◦, ◦C , ◦, ◦])

(8) dL
dw [◦, ◦] ←−

�∑
N,H,WT3[◦, ◦].

This algorithm first does a segmented allgather of the channels
of x such that they match the channel distribution of w (1). This
does not fully assemble the channels, but is required since the C
dimension of x is distributed over C × F while the C dimension
ofw is distributed over only C. Forward propagation is performed
locally (2), and then a segmented reduce-scatter (3) completes the
summation and scatters data back over the processor grid. (See
Figure 2.) Note that this has transposed the channel dimension of y
over the F×C subgrid, compared to x . This is due to the distribution
ofw and the communication patterns. No additional data movement
is required for the subsequent layer, as itsw can be transposed to
account for this. The backward-data phase (4-6) is symmetric. The
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backward-filter phase first does a local computation (7) and then
aggregates the updates among corresponding processors (8).

The stationary-w algorithm generalizes both other algorithms,
as we can recover them by making the F or C processor grid
dimension be size 1, respectively. When this is done, some of the
collective operations (e.g., steps (1) and (6) for stationary-x) can
be elided, as they are performed over a single processor. When
referring to a particular instance of the stationary-w algorithm, we
indicate the C × F grid it uses (e.g. 4 × 2).

3.5 Other layers
Partitioning data along the channel/filter dimension has implica-
tions for other commonly-used layers in CNNs. Most layers natu-
rally adapt to this partitioning and require no additional communi-
cation while benefiting from reduced local computation. Element-
wise layers, such as ReLU or dropout, are trivially adapted. Similarly,
pooling is applied channel-wise and thus requires no further adap-
tation. Channel partitionings do not make sense for fully-connected
layers, as they operate on a linearized input.

Batch normalization [26] is also applied channel-wise, so its com-
putation requires no significant adjustment. It does have learnable
parameters, but these are distributed channel-wise, so the corre-
sponding allreduce becomes segmented. Thus, a channel partition
can help reduce communication overhead for batch normalization
layers in addition to convolutional layers.

4 PERFORMANCE MODEL
We now present a simple performance model of our algorithms
and discuss some key performance implications. We will focus on
the stationary-x algorithm, as the others are similar. The primary
purpose of this model is to verify that the performance results we
obtain are consistent with what we expect from the algorithms.

We use ConvForward, ConvBackData, and ConvBackFilt to re-
fer to the local time taken to perform convolution on the local data
of their arguments. We do not use an analytic model, as convolution
libraries may select among many algorithms based upon the par-
ticular problem (direct, im2col [8], Winograd [32], FFT [39], etc.).
We use the analytic communication models of [56] for collective
operations; since again there are many possible algorithms (tree,
butterfly, ring, etc.), we use AR(n,p) to be the time for an allreduce
on n words over p processors, RS(n,p) for a reduce-scatter, and
AG(n,p) for an allgather. We write IaN to refer the local size of di-
mension N of tensor a (assuming a distribution from context), and
use |N | to refer to the size of processor grid dimension N .

With this, the time for stationary-x forward convolution is

ConvForward(x[◦, ◦, ◦, ◦],w[∗, ◦], S, P) + RS(IyN IwF I
y
H I

y
W , |C|)

where S and P are the stride and padding. To simplify, we have
neglected the cost of halo exchanges for spatial parallelism, as
they can typically be overlapped [17]. Note that due to the stride
and padding, the spatial dimensions of y may be different from x .

Backpropagation time (including the allreduce) is given by

AG(I
dL
dy
N IwF I

dL
dy
H I

dL
dy
W , |C|)

+ ConvBackData(
dL

dy
[◦, ∗, ◦, ◦],w[∗, ◦], P , S)

+ ConvBackFilt(
dL

dy
[◦, ∗, ◦, ◦],x[◦, ◦, ◦, ◦], P , S)

+ AR(IwF IwC K2, |N ||H ||W|).

While we have included it here, the allreduce time can be overlapped
with ConvBackData and computation in other layers.

One can now see the tradeoffs within this algorithm: we perform
additional communication in forward and backpropagation (which
cannot be overlapped, except by blocking), reduce local computa-
tion, and perform allreduces over smaller sets of processors and
buffers. Whether this is worthwhile depends on how local compu-
tation scales, the communication performance on the C processor
grid dimension, and the decreased allreduce communication costs.
This also implies that strong scaling will be ultimately limited by the
unoverlapped communication overheads from the reduce-scatters
and allgathers.

This also sheds light on how to choose between the stationary-x
and y algorithms: it depends upon the relative number of channels
and filters in a convolution, and the stride and padding parame-
ters. If a layer has fewer channels than filters, the y algorithm may
more efficiently partition the data and perform less communication.
However, if the convolution has strides above one, or does not
use “same” padding, the spatial domain of y will be smaller than x ,
meaning that the stationary-x algorithm performs less communica-
tion when the number of channels and filters are comparable. This
matches the intuition that the larger tensor should be kept station-
ary. Whether the stationary-w algorithm is worthwhile depends
on whether the decreased local computation and allreduce commu-
nication outweighs the additional reduce-scatters and allgathers
and the decreased returns to partitioning one dimension too much.

Note that these algorithms require additional memory to hold
data before or after reduce-scatters or allgathers, although the mem-
ory required to hold parameters is decreased. This memory need not
be permanently allocated for the stationary-x algorithm, as it is only
used by temporaries and could be allocated from a shared memory
pool. The stationary-y andw algorithms requires the allgathered x
data to be held until the layer completes backpropagation.

5 IMPLEMENTATION
We have implemented these algorithms by extending the open-
source LBANN scalable deep learning toolkit [58] and its distributed
tensor library [17]. This provides an underlying substrate for MPI-
based parallel training, GPU acceleration, and tensor partitioning.
While LBANN has efficient support for sample and spatial paral-
lelism, it does not support partitioning the channels of activation
tensors or convolution weights.

We implemented the appropriate tensor distributions for our al-
gorithms and added support to the convolutional layers for such dis-
tributions. Local convolution is performed with NVIDIA’s cuDNN
library [11]. Each convolutional layer allocates temporary memory
using a shared CUB memory pool [44] that releases memory after
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the layer’s forward or backpropagation work is done, in order to
minimize memory overheads. NCCL [43] is used to implement the
reduce-scatter and allgather communication, for both intra- and
inter-node communication. Since our implementation locally stores
data in an NCHW format, this communication is non-contiguous
when IxN > 1. To mitigate this, we implement custom CUDA kernels
for packing (for reduce-scatter) and unpacking (for allgather).

LBANN’s optimization framework was also modified to support
segmented allreduces, again using NCCL. To do this, we simply
split the associated communicator appropriately. During testing,
we observed that segmented tree allreduces using NCCL had very
high performance variability, and that a similar effect was present
with our system MPI. We therefore use only ring allreduces, which
did not exhibit such variability. As many of the allreduces are large
(≥ 100 KiB), we do not expect this to fundamentally impact our
results. We observed that concurrent NCCL allreduces and reduce-
scatters or allgathers during backpropagation overlap well, so we
are still able to effectively hide allreduce communication.

We validated our implementation by extensively testing it and
comparing its results to convolution performed on a single GPU.
Adapting other layers (e.g., pooling, batch normalization)was straight-
forward once the tensor library supported channel- and filter-
parallel distributions.

6 EVALUATION
We now evaluate our algorithms using both microbenchmarks and
end-to-end training. We examine independently the compute and
segmented allreduce performance of our algorithms for represen-
tative layers of ResNet-50, and then the performance of the full
algorithm. This allows us to understand the upper bound of possible
performance improvements. We focus our microbenchmarks on the
stationary-x algorithm in this paper, as the others exhibit similar
trends. We then evaluate the strong and weak scaling performance
for end-to-end training of ResNet-50 and two wider architectures
using all our algorithms. Finally, we report accuracy results and
speedups for our models.

We use the Lassen supercomputer [36]. It consists of 795 nodes,
each with two IBM POWER9 CPUs and four NVIDIA V100 (Volta)
GPUs with NVLink2. Nodes have 256 GB of memory and each
GPU has 16 GB of memory. It is interconnected via dual-rail Infini-
Band EDR. Each CPU has two GPUs attached to it. The NVLink2
interconnect does not cross the socket boundary; thus intra-node
communication between GPUs on different sockets uses the socket
interconnect, which has significantly lower bandwidth. Our imple-
mentation uses a recent development version of LBANN, GCC 7.3.1,
Spectrum MPI 2019.01.30, CUDA 9.2.148, cuDNN 7.5.0, and NCCL
2.4.2. For all results we use single-precision floating point.

ResNet-50 [22] is a standard image recognition CNN with near
state-of-the-art performance. It also forms the basis for many mod-
ern classification architectures (e.g. [24, 54, 59]) and architectures
for other tasks (e.g. [9, 48, 63]). We therefore expect that improve-
ments for ResNet-50 training will have broad impact. The network
consists of a stack of five blocks of layers, conv_1 through conv_5,
which process progressively smaller spatial domains with larger
filter banks. Our evaluation focuses extensively on this network.

To understand the impact of wider CNN architectures, we also
evaluate end-to-end training for two Wide ResNet (WRN) [62]
architectures, WRN-50-2 and -50-4. These networks have a sim-
ilar structure to ResNet-50, but the 3 × 3 convolutions have the
number of filters (their width) increased by a factor of 2 and 4,
respectively. WRN-50-2 achieved superior accuracy to ResNet-50
in the authors’ evaluation; they were unable to evaluate wider net-
works due to memory constraints. We are able to demonstrate the
training of these wider models, which had not previously been
done, and show the accuracy improvements they bring. We use
fully-convolutional [37] versions of all models.

We evaluate both strong and weak mini-batch scaling. Strong
scaling uses additional GPUs to train with a fixed mini-batch size;
weak scaling fixes the number of samples per GPU and grows
the global mini-batch size. Our evaluations will consist of hybrid
sample and channel/filter parallelism: data is partitioned over an
N × C × F grid. Thus, when weak scaling, we fix a mini-batch
size for each “row” of theN processor grid dimension. When using
two- or four-way channel parallelism, we always partition channels
within a single socket or node, respectively. Eight-way channel par-
allelism requires two nodes, and hence inter-node communication
for reduce-scatters and allgathers. We also explore combinations of
partitioning schemes, where different layers are partitioned with
different techniques to best exploit parallelism.

6.1 Microbenchmarks
Compute.Wefirst examine the computational strong scaling of the
cuDNN kernels used for local convolution with a fixed mini-batch
size as we partition a layer. Figure 3 presents the local convolution
time on a single GPU as a layer is partitioned over additional GPUs.
We select two layers, one near the beginning of ResNet-50 (in
the conv_3 block, which has relatively few channels and filters),
and one near the end (in conv_5, which has many more channels
and filters). Precise configurations are given in the figures. We
examine three mini-batch sizes for strong scaling: N = 1, 2, and
32, which correspond to extreme sample parallelism and a more
typical number of samples per GPU. Note that results with different
mini-batch sizes are not directly comparable; it is the scaling trends
that are important. To evaluate this, we used CUDA events to time
the convolution kernel on GPU. We first did several warmup runs,
then reported the mean of five runs. To avoid measuring kernel
launch overheads, we used a spin kernel to ensure all work reached
the GPU before beginning measurements. We use auto-tuning to
select the fastest cuDNN algorithm for each configuration.

The N = 1 case is most indicative of the kernel scaling as chan-
nels are decreased. For the conv_3 layer, while we observe im-
provements due to channel partitioning, the scaling is sub-linear.
We also observe that forward propagation tends to scale better than
backpropagation. Direct convolution should scale linearly regard-
less of how a dimension is partitioned, but optimized algorithms
may exploit the locality in channel accesses (e.g. im2col); as we
partition channels, there is less locality to exploit. Given the small
total runtime, other overheads (e.g. kernel scheduling) may also be
significant. A similar trend occurs for N = 2, although with such a
small mini-batch it appears better to partition the channels instead
of the samples. The N = 32 case exhibits a trend where sample
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Figure 3: Microbenchmark results for a conv_3 (left) and conv_5 (right) layer of ResNet-50 without any communication.
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ResNet-50.

parallelism initially scales better, but eventually hybrid sample and
channel parallelism produces better results.

The trend is similar for the conv_5 layer, although forward prop-
agation scaling is much closer to linear. For N = 32, we observe
that channel parallelism consistently outperforms sample paral-
lelism, due to the large number of channels. Backpropagation is
more comparable, although there are slight benefits.

Communication. We next examine the allreduce performance
in isolation, as it is the key communication bottleneck when scaling.
We illustrate this with the conv_3 layer, as the trends in other layers
are similar. Figure 4 presents these results. To obtain these mea-
surements, we first conducted several warmup runs, then timed the
appropriate segmented allreduce on a buffer sized appropriately for
the amount of channel parallelism (e.g. half the size for two-way).
We can see that for a given number of GPUs, the segmented allre-
duce is faster. The large jumps in runtime for sample and two-way
allreduces are due to crossing socket and/or node boundaries. As
bandwidth-bound ring allreduces are primarily sensitive to the vec-
tor size, much of this improvement is driven by the reduced buffer
size. However, latency may become more of a factor at large scale
or with smaller parameter buffers (e.g. for batch normalization).
Thus, greater segmentation may be more beneficial for such cases.

We observe that while segmentation improves performance, it
is again not a linear improvement. For a ring allreduce on a large
buffer, runtime is approximately linear in the buffer size; we ob-
serve that eight-way segmentation results in only a 4x reduction in

runtime. We investigated whether this was due to contention on
shared InfiniBand HCAs, but this did not explain the results. Our
hypothesis is that NCCL has all InfiniBand control performed by
threads on a single core of each socket. For a segmented allreduce,
the ranks on each socket are in different segments of the collec-
tive, creating contention. A communication framework optimized
for segmented allreduces should be able to mitigate this impact.
Nonetheless, we observe reductions in allreduce runtime of over
50% and up to 4x at large scale.

Summary. Based upon the individual computation and commu-
nication scaling trends, we expect to see limited gains in compute
time, concentrated in layers with many channels or filters. Run-
time gains will also be limited by the communication overheads
of reduce-scatters and allgathers. However, we can expect to see
significant improvements in allreduce overhead at large scale, par-
ticularly as the faster communication makes it easier to overlap
communication and computation.

Layer scaling.We now examine the runtime of the conv_3 and
conv_5 layers above using the full stationary-x algorithm. Our
measurement methodology is as above, and we perform all com-
munication. As we are looking at a single layer, the allreduce is not
overlapped, and its runtime is included in backpropagation. Figure 5
presents strong scaling for these results. For conv_3, forward and
backpropagation are flat or do not scale well when N is small; this
is expected according to our performance model as the overhead
of communication is high and this layer has few channels. Eight-
way channel parallelism, in particular, suffers from the high cost of
inter-node reduce-scatters and allgathers. Comparing Figures 3 and
5, we can see that this overhead is often 2x or more. For N = 32, we
focus on the trends of each configuration and how they compare.
Forward propagation scales relatively well, although this is likely
due primarily to the scaling of sample parallelism. Backpropagation
exhibits a parabolic shape due to the impact of allreduces at larger
scales. We can observe that communication overhead is improved
at large scale by the segmented collectives, but sample parallelism
is still superior. Again, this is expected due to the few channels, but
demonstrates that even when a layer is poorly suited to it, moderate
channel parallelism does not add too much overhead.

We observe much better trends for conv_5. For small N , eight-
way channel parallelism is again not profitable due to inter-node
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Figure 5: Strong scaling for a conv_3 (left) and conv_5 (right) layer of ResNet-50. Allreduces are included in backpropagation.
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Figure 6:Weak scaling for a conv_5 layer of ResNet-50. Allre-
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communication, but two- and four-way parallelism show more
promise. For N = 32, channel parallelism scales better than sam-
ple parallelism, showing moderate improvements at larger scales,
but allreduce overheads again rapidly dominate. Overall, we see
moderate benefits from strong scaling via channel parallelism for
layers with many channels, and a trend of reduced communication
overheads at large scale.

With this in mind, we next consider weak scaling for the conv_5
layer in Figure 6. For this plot, we fix 32 samples per row of N and
use hybrid parallelism; thus at the largest scale we consider 1024
GPUs (256 nodes). We use a maximum of 16k samples in sample
parallelism, as this is roughly the maximum useful batch size for
training ResNet-50 with current techniques [52]. In forward propa-
gation, we observe scaling trends similar to what we would expect
from Figure 5, as channel parallelism improves over sample paral-
lelism. Weak scaling is excellent in this case. In backpropagation,
we can observe that channel parallelism again outperforms sam-
ple parallelism. Further, the rate of increase in allreduce runtime
is less with additional channel parallelism: we have successfully
reduced communication overheads. In end-to-end training, we can
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Figure 7: Scaling for end-to-end training of ResNet-50.

therefore expect channel parallelism to enable easier communica-
tion/computation overlap.

Summary. There are some limitations to our results: cuDNN
kernels and segmented allreduces do not always scale linearly. Nev-
ertheless, we are able to demonstrate improvements for important
layers, primarily through the reduced communication overhead.
While the use of ring allreduces may limit weak scaling perfor-
mance, since the segmentation reduces both the vector size and
number of processors involved, we expect these results to translate
similarly to tree or butterfly algorithms. Although we have focused
on the stationary-x algorithm in this section, the other algorithms
have a similar structure and their performance trends are similar.

6.2 End-to-End Training
Wenow evaluate the performance of end-to-end training on the Ima-
geNet dataset. For simplicity, we use synthetic data that matches the
dimensions of ImageNet data; since our compute nodes can fit the
entire ImageNet-1K dataset in host memory, this is not significantly
different than using real data. We report the average mini-batch
time over an epoch, skipping the first mini-batch (which performs
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Figure 8: Scaling performance for end-to-end training of Wide ResNet-50-2 and Wide ResNet-50-4.

initialization). We evaluated 2-, 4-, and 8-way channel/filter paral-
lelism using the stationary-x (channel-parallel), -y (filter-parallel),
and -w (channel × filter parallel) algorithms with hybrid sample
parallelism for each network. We also consider partitioning layers
with combinations of schemes, including spatial parallelism, when
it is profitable. For clarity, we plot only a subset of the results (see
the supplementary material for complete results).

We show ResNet-50 scaling performance in Figure 7 with 32
samples per row of N , again using a maximum mini-batch size of
16k. The four-way stationary-x algorithm uses up to 2048 GPUs
(512 nodes). For small mini-batch sizes (32-256), sample and two-
way channel parallelism weak scale very well, and have comparable
performance. Beyond this, sample parallelism begins to degrade in
performance due to allreduce overheads; two-way channel paral-
lelism maintains its weak scaling for another two doublings. Four-
way channel parallelism weak scales quite well throughout the
entire range of mini-batch sizes, but is outperformed at smaller
scales. We have observed that this is due to the overhead of inter-
socket reduce-scatters and allgathers compared to compute scaling,
primarily for the early layers of ResNet-50. This agrees with our
performance model and microbenchmarks. At the largest scales,
where allreduce overheads are greatest, four-way channel paral-
lelism is fastest. We do not show eight-way channel parallelism,
as it was not beneficial at these scales. The main cause of limited
performance at smaller scales is the overhead of reduce-scatters
and allgathers for channel parallelism, particularly for early layers
in ResNet-50, outweighing the reduced allreduce overhead (which
is mostly hidden by other compute).

We also evaluated using the stationary-y and -w for every layer.
While they exhibit the same trends, they are outperformed by the
stationary-x algorithm. This is because most layers in ResNet-50
have larger x tensors than y tensors, indicating the stationary-x
algorithm is preferred. Further, there is insufficient compute in
ResNet-50 for the additional parallelism in the stationary-w algo-
rithm to be beneficial.

To reduce these overheads, we consider two additional sets of
configurations. First, we used the spatial parallelism of [17] for the

conv_1 and conv_2 blocks (aN×H grid) and then the stationary-x
algorithm for the remaining layers. These results are also plotted
in Figure 7 (with “+spatial”), where we observe that this has signifi-
cantly mitigated overheads from the early layers while continuing
to offer good weak scaling. The overhead from shuffling between
different tensor distributions is negligible. At large scales, where
allreduce overheads are most acute, we see up to 1.6x speedups
with four-way spatial/channel parallelism over sample parallelism,
comparable to the results in [17], with much better weak scaling
compared to sample parallelism. To further reduce overheads, we
extended this spatial/stationary-x hybrid to use the stationary-y
algorithm for the layers with y tensors larger than x tensors (about
1/10 of layers; plotted as “channel/filter” algorithms). This further
reduces communication overheads, with the four-way algorithm
outperforming all others, achieving up to 1.9x speedups.

In Figure 8, we show the scaling performance for end-to-end
training of WRN-50-2 and -50-4, using 16 and 8 samples per row
of N , respectively. We use a smaller mini-batch per GPU due to
the increased memory requirements of the networks. Based on the
benefits observed for ResNet-50, we plot only configurations that
use spatial parallelism for the first two ResNet blocks, as they con-
sistently perform better; but note that due to the wider models, the
benefit is less dramatic than for ResNet-50. For WRN-50-2, we show
results using the combination of the stationary-x and -y algorithms,
which achieves up to 2.4x speedups with eight-way partitioning
(which performs inter-node reduce-scatters and allgathers). We
also considered the hybrid spatial/stationary-w algorithm, and plot
results for this with a 4 × 2 C × F sub-grid, where performance
is comparable to the eight-way stationary-x/-y case. Using a 2 × 4
sub-grid performed slightly worse, as partitioning the y tensors
further offers less advantage. For WRN-50-4, we plot results for
spatial/stationary-x and spatial/stationary-w algorithms; due to the
increasing width of 3 × 3 convolutions, this model has very few
layers where y tensors are larger than x , so the advantage of the
stationary-y algorithm is very small. We see large performance im-
provements at every scale and benefits from using the stationary-w
algorithm due to the large compute requirements for this model.
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Table 1: ImageNet validation accuracy and training time.

Model/Algorithm Mini-batch Top-1 Top-5 Time (min)

ResNet-50 (sample)
8192 77.3% 93.6%

34.1
+spatial+4-way x/y 19.9 (1.7x)

WRN-50-2 (sample)
4096 78.4% 94.3%

106.9
+spatial+8-way x/y 45.5 (2.3x)

WRN-50-4 (sample)
2048 80.0% 95.1%

432.3
+spatial+4×2w 105.0 (4.1x)

The eight-way spatial/stationary-w algorithm with a 4 × 2 sub-grid
achieves up to 4.1x performance improvements at large scale and
is always at least 2x faster than sample parallelism.

Overall, our algorithms are able to significantly improve perfor-
mance, especially at large scales or for wide models, which would
be otherwise infeasible to train due to memory requirements. The
varying benefits of the different stationary algorithms illustrates
that they can complement one another and be used in combination
to achieve significant training speedups.

6.3 Accuracy and Training Time
We evaluated the accuracy and total training time of these net-
works on ImageNet, using both sample parallelism and our best-
performing algorithm configuration (Table 1). We used the learning
rate schedule, hyperparameters, and data augmentation strategy
of Goyal et al. [20] for all models and additionally included MixUp
augmentation [64]. All models were trained for 90 epochs. Our
baseline results for ResNet-50 exceed those of [20], and we show
significant improvements in accuracy for wider models, compara-
ble to significantly deeper and/or more complicated architectures
(e.g. SE-ResNeXt101 [23]). For Wide ResNet-50-2 and -4, we re-
port results using the mini-batch size that achieved the best accu-
racy; that this is smaller for wider networks agrees with recent
results [45], although additional hyperparameter tuning may im-
prove this. Note that, since our algorithms replicate convolution
exactly, they achieve the same accuracy as sample parallelism.

This demonstrates the advantage of wider models, even with-
out additional hyperparameter tuning, to improve accuracy, while
avoiding extensive CNN architecture development. This also shows
that the warmup and linear scaling rule introduced by [20] can en-
able training with large batches on models other than ResNet-50.

7 RELATED WORK
There are a great many works on parallelizing CNN training at
various scales. We refer the reader to Ben-Nun and Hoefler for a
comprehensive overview [6]. In particular, there has been recent
work on optimizing training for big scientific or computational
simulation datasets on large HPC resources [30, 40]. These have
focused on accelerating sample-parallel training via techniques
such as optimized communication and I/O. These techniques are,
in general, orthogonal to ours, and can be jointly leveraged.

Scaling convolution. AlexNet [29] introduced an early form of
model parallelism, partitioning convolutional filters between two

GPUs in order to avoid memory limits. However, this made use of
grouped convolutions to reduce inter-GPU communication, instead
of directly replicating regular convolution. Similarly, DistBelief [15]
and Project Adam [12] supported partitioned filters using parame-
ter servers, but did not partition input channels. When adapting
this to decentralized settings, the communication patterns also be-
come significantly more complicated. Coates et al. [13] spatially
partitioned locally-connected layers, which are similar to convolu-
tional layers, and also employed other model-parallel techniques.
Dryden et al. [17] demonstrated efficient strong scaling of CNN
training when using hybrid sample/spatial parallelism. In contrast,
we partition channels and filters instead of the spatial domain, and
also partition convolution parameters. Our work is orthogonal and
can be used jointly to further improve both strong and weak scaling
performance, as we have demonstrated (Section 6.2).

Demmel and Dinh [16] have developed lower bounds on commu-
nication complexity for forward propagation of a single CNN layer,
and presented sequential algorithms that achieve them. However,
they do not consider an entire training iteration. Gholami et al. [19]
presents a general framework for parallelizing CNN training along
multiple dimensions, but their results are limited to simulation, and
their formulation of channel/filter parallelism differs.

Other neural network scaling. Model-parallelism has a long
history, but modern work primarily targets fully-connected lay-
ers or distributes different layers to different processors. DistBe-
lief, Project Adam, and TensorFlow [1], among others, support
this. LBANN [58] included support for distributing fully-connected
layer parameters by leveraging distributed linear algebra libraries.
Recently, Mesh-TensorFlow [53] adopted a similar approach and
introduced a framework for implementing more general decomposi-
tions layers via a set of collective communication primitives, but has
focused on model-parallel fully-connected layers. TF-Replicator [7]
is similar to Mesh-TensorFlow, but focuses on ease of scaling for
existing models. Pipeline parallelism is also a common technique
for scaling training, and has been implemented in frameworks such
as GPipe [25] and Pipe-SGD [35]. These pipelining techniques are
orthogonal to our algorithms and can be jointly implemented.

Accelerating ResNet-50. There has been significant interest in
accelerating ResNet-50 [22] on the ImageNet-1K dataset [49], partly
due to its inclusion in several deep learning benchmarks [5, 14, 42].
A sequence of works has steadily reduced the time to train ResNet-
50 to convergence [2, 20, 41, 60, 61]. All of these works make use
of pure sample parallelism when training. Their speedups come
from a combination of framework optimizations, communication
algorithm optimizations ([41, 60] use 2-D torus allreduces), spe-
cial hardware ([60] use TPUv3s), and learning tricks to scale to
extremely large batch sizes ([20] introduce linear learning rate
scaling; [61] introduce LARS; [2] use RMSprop warmup and other
tricks; [41] use batch size control and label smoothing). Many of
these learning tricks require very extensive hyperparameter opti-
mization before good results can be achieved. In contrast, we utilize
channel/filter parallelism to strong scale convolution while also
enjoying improved weak scaling due to reduced communication
overheads, without changing the actual convolution operation be-
ing performed or the learning of the model. Thus, our work could
be used jointly with other learning tricks to further accelerate
ResNet-50 training, while also being applicable to other models.
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Distributed matrix/matrix products. Our notation and algo-
rithms are inspired by work done on distributed matrix/matrix
product algorithms, particularly the SUMMA algorithms [57], sta-
tionary Elemental algorithms [51], and their extension to tensor
contractions [50]. Cartesian data decompositions onto processor
grids also have a long history within linear algebra. However, we
wish to emphasize that our algorithms are designed explicitly for
convolution, and not for approaches that implement convolution
via matrix products (e.g. im2col), although all such algorithms may
be used to implement the local convolution operation. Our notation
also draws upon that of High Performance Fortran [3].

8 CONCLUSIONS
We have presented a family of algorithms for scaling CNN training
by exploiting parallelism within the channel dimension. These
further exploit model parallelism by partitioning the parameters
of convolutional layers, reducing communication overheads and
memory pressure. Our evaluation has demonstrated the promise
of such methods, particularly at large scale, where communication
overheads are large and it may not be feasible to increase mini-
batch sizes further. We have also shown that it is possible to train
very wide models, which were previously infeasible due to memory
requirements. Essentially, these algorithms enable strong scaling
while also reducing communication overheads for weak scaling,
without requiring any additional hyperparameter tuning.

Parallelizing by channels is particularly relevant for future CNN
architectures. While models have grown deeper over time, they
are often refined into wider models (e.g. Inception v2 [55], Wide
ResNets [62]). Further, asmodels grow larger (e.g. AmoebaNets [47]),
exploiting all available parallelism becomes necessary to keep train-
ing times andmemory use reasonable, particularly for large datasets
or samples from novel applications (e.g. scientific or industrial do-
mains, which may involve multi-spectral data with many channels).
Supporting multiple parallelization approaches also provides flexi-
bility (e.g. stationary-y for upsampling branches in semantic seg-
mentation). Leveraging large-scale systems to accelerate training
is critical to ensuring productive data science by keeping iteration
time for exploring new models or integrating updated data low.

Our results also highlight several research directions to pursue
to better exploit parallelism. GPU convolution kernels, which have
been highly optimized for particular configurations, do not nec-
essarily perform optimally when the channels or filters of a layer
are partitioned. Hand-optimizing kernels for every possible con-
figuration is infeasible [4], so exploring automatic methods (e.g.
TVM [10]) may yield the best results. Similarly, segmented col-
lective communication, an important primitive for more complex
parameter distributions, does not perform optimally; optimizing
communication frameworks to take advantage of these communica-
tion patterns is important. Asmany current and future HPC systems
have multiple NICs per node, these communications could take ad-
vantage of network and compute node topology-aware algorithms
for improved performance.

Now that it is feasible to train very wide CNN models, it is
important to conduct experiments to understand the impact of such
CNNs on problems of interest. One may also consider designing
CNN architectures that are more amenable to distributed training;

for example, grouped convolutions could be used to reduce the
communication requirements of our algorithms. This co-design of
neural network architecture and training can help enable improved
models that can be trained faster, yielding new insights.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run four sets of experiments: 1. Convolution with no com-
munication: We run the ‘distconv_benchmark‘ associated with
our modified distributed tensor library, using the arguments ‘–
conv-algo AUTOTUNE –skip-allreduce –skip-chanfilt-comm‘ (plus
associated arguments to specify the particular problem being bench-
marked). 2. We adapted the Aluminum 0.2.1 ‘benchmark_allreduces‘
benchmark to benchmark segmented allreduces. Each configu-
ration was run with the NCCL backend and the environment
variables ‘AL_PROGRESS_RANKS_PER_NUMA_NODE=2‘
and ‘NCCL_TREE_THRESHOLD=0‘. 3. Stationary-x bench-
marks: We run the ‘distconv_benchmark‘ associated with our
modified distributed tensor library, using the arguments
‘–conv-algo AUTOTUNE‘ (and ‘–chanfilt-algo X‘ when
needed, plus associated arguments to specify the particu-
lar problem being benchmarked). We set the environment
variables ‘AL_PROGRESS_RANKS_PER_NUMA_NODE=2‘ and
‘NCCL_TREE_THRESHOLD=0‘. 4. End-to-end training experiments
used our modified version of LBANN and specified the appropriate
model file and partitioning strategy. Models were generated using
LBANN’s Python interface for ResNet-50 andWide ResNets. We set
the following environment variables: DISTCONV_WS_CAPACITY_
FACTOR = 0.1, LBANN_DISTCONV_CONVOLUTION_
FWD_ALGORITHM = AUTOTUNE,
LBANN_DISTCONV_CONVOLUTION_BWD_DATA_ ALGO-
RITHM = AUTOTUNE, LBANN_DISTCONV_CONVOLUTION_
BWD_FILTER_ALGORITHM = AUTOTUNE,
LBANN_DISTCONV_NUM_PRE_GENERATED_SYNTHETIC_
DATA = 1, LBANN_DISTCONV_EVALUATE_PERFORMANCE
= 1, LBANN_DISTCONV_TENSOR_SHUFFLER
= HYBRID, NCCL_TREE_THRESHOLD = 0,
AL_PROGRESS_RANKS_PER_NUMA_NODE = 2,
OMP_NUM_THREADS = 4.

Exact problem configurations are given within the paper. Every
experiment was run on a quiet system in a dedicated allocation of
512 compute nodes. Each run was launched using ‘jsrun -n <num
nodes> -d packed -b packed:10 -r 1 -c 40 -g 4 -a <ranks per node>‘.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

N/A

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Lassen, 650 nodes, 2x IBM POWER9 +
4x NVIDIA V100 16 GB/NVLINK2 + 2x IB EDR per node

Operating systems and versions: BlueOS 3.2-24

Compilers and versions: GCC 7.3.1

Applications and versions: LBANN-distconv

Libraries and versions: SpectrumMPI 2019.01.30, CUDA 9.2.148,
cuDNN 7.5.0, NCCL 2.4.2, Aluminum 0.2.1, Hydrogen 1.2.0

Key algorithms: Stochastic gradient descent

Input datasets and versions: ILSVRC-2012 (ImageNet 1K)

Paper Modifications: We modified LBANN’s distributed tensor
library to support tensors with distributed channel or filter dimen-
sions. We then modified its convolution implementation to support
the stationary-x, -y, and w algorithms (as described in the paper).
We did not need to modify its other layers (batchnorm, ReLU, etc.)
as they naturally handled the distributed channel dimension. We
implemented optimized CUDA kernels for packing/unpacking non-
contiguous reduce-scatters/allgathers on the channel dimension.
We added appropriate communicators and hooks for the necessary
(segmented) reduce-scatters, allgathers, and allreduces.

We then integrated this updated library into the LBANN-distconv
branch. This necessitated modifications to tensor dimension setup
and allocation in convolution and batch normalization layers. We
also added support for segmented allreduces to its optimizer frame-
work.

Output from scripts that gathers execution environment informa-
tion.
LSB Version: :core-4.1-noarch:core-4.1-ppc64l ⌋

e:cxx-4.1-noarch:cxx-4.1-ppc64le:desktop-4.1-noa ⌋

rch:desktop-4.1-ppc64le:languages-4.1-noarch:lan ⌋

guages-4.1-ppc64le:printing-4.1-noarch:printing- ⌋

4.1-ppc64le

↪→

↪→

↪→

↪→

Distributor ID: RedHatEnterpriseServer
Description: Red Hat Enterprise Linux Server

release 7.5 (Maipo)↪→

Release: 7.5
Codename: Maipo

Linux lassen1 4.14.0-49.18.1.bl6.ppc64le #1 SMP Tue
Dec 11 16:29:11 PST 2018 ppc64le ppc64le ppc64le
GNU/Linux

↪→

↪→

Architecture: ppc64le
Byte Order: Little Endian
CPU(s): 176
On-line CPU(s) list: 0-175
Thread(s) per core: 4



Dryden, et al.

Core(s) per socket: 22
Socket(s): 2
NUMA node(s): 6
Model: 2.1 (pvr 004e 1201)
Model name: POWER9, altivec supported
CPU max MHz: 3800.0000
CPU min MHz: 2300.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 10240K
NUMA node0 CPU(s): 0-87
NUMA node8 CPU(s): 88-175
NUMA node252 CPU(s):
NUMA node253 CPU(s):
NUMA node254 CPU(s):
NUMA node255 CPU(s):

MemTotal: 333899392 kB
MemFree: 307218624 kB
MemAvailable: 306914112 kB
Buffers: 27904 kB
Cached: 273856 kB
SwapCached: 75776 kB
Active: 562816 kB
Inactive: 253056 kB
Active(anon): 415616 kB
Inactive(anon): 134976 kB
Active(file): 147200 kB
Inactive(file): 118080 kB
Unevictable: 16777216 kB
Mlocked: 16777216 kB
SwapTotal: 16777152 kB
SwapFree: 16093120 kB
Dirty: 960 kB
Writeback: 0 kB
AnonPages: 17276800 kB
Mapped: 327360 kB
Shmem: 36416 kB
Slab: 3158400 kB
SReclaimable: 591232 kB
SUnreclaim: 2567168 kB
KernelStack: 36272 kB
PageTables: 52608 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 183726848 kB
Committed_AS: 18174976 kB
VmallocTotal: 549755813888 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 65536 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 13434880 kB

CmaFree: 13433088 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 259:0 0 1.5T 0 disk
|-bb-swaplv 253:1 0 16G 0 lvm [SWAP]
`-bb-rootlv 253:0 0 150G 0 lvm /

+--------------------------------------------------- ⌋

--------------------------+↪→

| NVIDIA-SMI 418.39 Driver Version: 418.39

CUDA Version: 10.1 |↪→

|-------------------------------+------------------- ⌋

---+----------------------+↪→

| GPU Name Persistence-M| Bus-Id Disp.A

| Volatile Uncorr. ECC |↪→

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage

| GPU-Util Compute M. |↪→

|===============================+=================== ⌋

===+======================|↪→

| 0 Tesla V100-SXM2... On | 00000004:04:00.0 Off

| 0 |↪→

| N/A 28C P0 36W / 300W | 0MiB / 16130MiB

| 0% Default |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 1 Tesla V100-SXM2... On | 00000004:05:00.0 Off

| 0 |↪→

| N/A 27C P0 34W / 300W | 0MiB / 16130MiB

| 0% Default |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 2 Tesla V100-SXM2... On | 00000035:03:00.0 Off

| 0 |↪→

| N/A 27C P0 35W / 300W | 0MiB / 16130MiB

| 0% Default |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

| 3 Tesla V100-SXM2... On | 00000035:04:00.0 Off

| 0 |↪→

| N/A 24C P0 34W / 300W | 0MiB / 16130MiB

| 0% Default |↪→

+-------------------------------+------------------- ⌋

---+----------------------+↪→

H/W path Device Class Description
================================================

system 8335-GTW

(ibm,witherspoon)↪→

/0 bus Motherboard
/0/16 processor 02AA966
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/0/16/0 memory 32KiB L1 Cache

(instruction)↪→

/0/16/1 memory 32KiB L1 Cache

(data)↪→

/0/16/2 memory 512KiB L2 Cache

(unified)↪→

/0/16/3 memory 10MiB L3 Cache

(unified)↪→

/0/20 processor 02AA966
/0/20/0 memory 32KiB L1 Cache

(instruction)↪→

/0/20/1 memory 32KiB L1 Cache

(data)↪→

/0/20/2 memory 512KiB L2 Cache

(unified)↪→

/0/20/3 memory 10MiB L3 Cache

(unified)↪→

/0/24 processor 02AA966
/0/24/0 memory 32KiB L1 Cache

(instruction)↪→

/0/24/1 memory 32KiB L1 Cache

(data)↪→

/0/24/2 memory 512KiB L2 Cache

(unified)↪→

/0/24/3 memory 10MiB L3 Cache

(unified)↪→

/0/28 processor 02AA966
/0/28/0 memory 32KiB L1 Cache

(instruction)↪→

/0/28/1 memory 32KiB L1 Cache

(data)↪→

/0/28/2 memory 512KiB L2 Cache

(unified)↪→

/0/28/3 memory 10MiB L3 Cache

(unified)↪→

/0/32 processor 02AA966
/0/32/0 memory 32KiB L1 Cache

(instruction)↪→

/0/32/1 memory 32KiB L1 Cache

(data)↪→

/0/32/2 memory 512KiB L2 Cache

(unified)↪→

/0/32/3 memory 10MiB L3 Cache

(unified)↪→

/0/36 processor 02AA966
/0/36/0 memory 32KiB L1 Cache

(instruction)↪→

/0/36/1 memory 32KiB L1 Cache

(data)↪→

/0/36/2 memory 512KiB L2 Cache

(unified)↪→

/0/36/3 memory 10MiB L3 Cache

(unified)↪→

/0/40 processor 02AA966

/0/40/0 memory 32KiB L1 Cache

(instruction)↪→

/0/40/1 memory 32KiB L1 Cache

(data)↪→

/0/40/2 memory 512KiB L2 Cache

(unified)↪→

/0/40/3 memory 10MiB L3 Cache

(unified)↪→

/0/44 processor 02AA966
/0/44/0 memory 32KiB L1 Cache

(instruction)↪→

/0/44/1 memory 32KiB L1 Cache

(data)↪→

/0/44/2 memory 512KiB L2 Cache

(unified)↪→

/0/44/3 memory 10MiB L3 Cache

(unified)↪→

/0/48 processor 02AA966
/0/48/0 memory 32KiB L1 Cache

(instruction)↪→

/0/48/1 memory 32KiB L1 Cache

(data)↪→

/0/48/2 memory 512KiB L2 Cache

(unified)↪→

/0/48/3 memory 10MiB L3 Cache

(unified)↪→

/0/52 processor 02AA966
/0/52/0 memory 32KiB L1 Cache

(instruction)↪→

/0/52/1 memory 32KiB L1 Cache

(data)↪→

/0/52/2 memory 512KiB L2 Cache

(unified)↪→

/0/52/3 memory 10MiB L3 Cache

(unified)↪→

/0/56 processor 02AA966
/0/56/0 memory 32KiB L1 Cache

(instruction)↪→

/0/56/1 memory 32KiB L1 Cache

(data)↪→

/0/56/2 memory 512KiB L2 Cache

(unified)↪→

/0/56/3 memory 10MiB L3 Cache

(unified)↪→

/0/60 processor 02AA966
/0/60/0 memory 32KiB L1 Cache

(instruction)↪→

/0/60/1 memory 32KiB L1 Cache

(data)↪→

/0/60/2 memory 512KiB L2 Cache

(unified)↪→

/0/60/3 memory 10MiB L3 Cache

(unified)↪→

/0/64 processor 02AA966
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/0/64/0 memory 32KiB L1 Cache

(instruction)↪→

/0/64/1 memory 32KiB L1 Cache

(data)↪→

/0/64/2 memory 512KiB L2 Cache

(unified)↪→

/0/64/3 memory 10MiB L3 Cache

(unified)↪→

/0/68 processor 02AA966
/0/68/0 memory 32KiB L1 Cache

(instruction)↪→

/0/68/1 memory 32KiB L1 Cache

(data)↪→

/0/68/2 memory 512KiB L2 Cache

(unified)↪→

/0/68/3 memory 10MiB L3 Cache

(unified)↪→

/0/72 processor 02AA966
/0/72/0 memory 32KiB L1 Cache

(instruction)↪→

/0/72/1 memory 32KiB L1 Cache

(data)↪→

/0/72/2 memory 512KiB L2 Cache

(unified)↪→

/0/72/3 memory 10MiB L3 Cache

(unified)↪→

/0/76 processor 02AA966
/0/76/0 memory 32KiB L1 Cache

(instruction)↪→

/0/76/1 memory 32KiB L1 Cache

(data)↪→

/0/76/2 memory 512KiB L2 Cache

(unified)↪→

/0/76/3 memory 10MiB L3 Cache

(unified)↪→

/0/80 processor 02AA966
/0/80/0 memory 32KiB L1 Cache

(instruction)↪→

/0/80/1 memory 32KiB L1 Cache

(data)↪→

/0/80/2 memory 512KiB L2 Cache

(unified)↪→

/0/80/3 memory 10MiB L3 Cache

(unified)↪→

/0/84 processor 02AA966
/0/84/0 memory 32KiB L1 Cache

(instruction)↪→

/0/84/1 memory 32KiB L1 Cache

(data)↪→

/0/84/2 memory 512KiB L2 Cache

(unified)↪→

/0/84/3 memory 10MiB L3 Cache

(unified)↪→

/0/88 processor 02AA966

/0/88/0 memory 32KiB L1 Cache

(instruction)↪→

/0/88/1 memory 32KiB L1 Cache

(data)↪→

/0/88/2 memory 512KiB L2 Cache

(unified)↪→

/0/88/3 memory 10MiB L3 Cache

(unified)↪→

/0/92 processor 02AA966
/0/92/0 memory 32KiB L1 Cache

(instruction)↪→

/0/92/1 memory 32KiB L1 Cache

(data)↪→

/0/92/2 memory 512KiB L2 Cache

(unified)↪→

/0/92/3 memory 10MiB L3 Cache

(unified)↪→

/0/8 processor 02AA966
/0/8/0 memory 32KiB L1 Cache

(instruction)↪→

/0/8/1 memory 32KiB L1 Cache

(data)↪→

/0/8/2 memory 512KiB L2 Cache

(unified)↪→

/0/8/3 memory 10MiB L3 Cache

(unified)↪→

/0/2048 processor 02AA966
/0/2048/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2048/1 memory 32KiB L1 Cache

(data)↪→

/0/2048/2 memory 512KiB L2 Cache

(unified)↪→

/0/2048/3 memory 10MiB L3 Cache

(unified)↪→

/0/2052 processor 02AA966
/0/2052/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2052/1 memory 32KiB L1 Cache

(data)↪→

/0/2052/2 memory 512KiB L2 Cache

(unified)↪→

/0/2052/3 memory 10MiB L3 Cache

(unified)↪→

/0/2056 processor 02AA966
/0/2056/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2056/1 memory 32KiB L1 Cache

(data)↪→

/0/2056/2 memory 512KiB L2 Cache

(unified)↪→

/0/2056/3 memory 10MiB L3 Cache

(unified)↪→

/0/2060 processor 02AA966
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/0/2060/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2060/1 memory 32KiB L1 Cache

(data)↪→

/0/2060/2 memory 512KiB L2 Cache

(unified)↪→

/0/2060/3 memory 10MiB L3 Cache

(unified)↪→

/0/2064 processor 02AA966
/0/2064/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2064/1 memory 32KiB L1 Cache

(data)↪→

/0/2064/2 memory 512KiB L2 Cache

(unified)↪→

/0/2064/3 memory 10MiB L3 Cache

(unified)↪→

/0/2068 processor 02AA966
/0/2068/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2068/1 memory 32KiB L1 Cache

(data)↪→

/0/2068/2 memory 512KiB L2 Cache

(unified)↪→

/0/2068/3 memory 10MiB L3 Cache

(unified)↪→

/0/2072 processor 02AA966
/0/2072/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2072/1 memory 32KiB L1 Cache

(data)↪→

/0/2072/2 memory 512KiB L2 Cache

(unified)↪→

/0/2072/3 memory 10MiB L3 Cache

(unified)↪→

/0/2076 processor 02AA966
/0/2076/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2076/1 memory 32KiB L1 Cache

(data)↪→

/0/2076/2 memory 512KiB L2 Cache

(unified)↪→

/0/2076/3 memory 10MiB L3 Cache

(unified)↪→

/0/2080 processor 02AA966
/0/2080/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2080/1 memory 32KiB L1 Cache

(data)↪→

/0/2080/2 memory 512KiB L2 Cache

(unified)↪→

/0/2080/3 memory 10MiB L3 Cache

(unified)↪→

/0/2084 processor 02AA966

/0/2084/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2084/1 memory 32KiB L1 Cache

(data)↪→

/0/2084/2 memory 512KiB L2 Cache

(unified)↪→

/0/2084/3 memory 10MiB L3 Cache

(unified)↪→

/0/2088 processor 02AA966
/0/2088/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2088/1 memory 32KiB L1 Cache

(data)↪→

/0/2088/2 memory 512KiB L2 Cache

(unified)↪→

/0/2088/3 memory 10MiB L3 Cache

(unified)↪→

/0/2092 processor 02AA966
/0/2092/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2092/1 memory 32KiB L1 Cache

(data)↪→

/0/2092/2 memory 512KiB L2 Cache

(unified)↪→

/0/2092/3 memory 10MiB L3 Cache

(unified)↪→

/0/2096 processor 02AA966
/0/2096/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2096/1 memory 32KiB L1 Cache

(data)↪→

/0/2096/2 memory 512KiB L2 Cache

(unified)↪→

/0/2096/3 memory 10MiB L3 Cache

(unified)↪→

/0/2100 processor 02AA966
/0/2100/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2100/1 memory 32KiB L1 Cache

(data)↪→

/0/2100/2 memory 512KiB L2 Cache

(unified)↪→

/0/2100/3 memory 10MiB L3 Cache

(unified)↪→

/0/2104 processor 02AA966
/0/2104/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2104/1 memory 32KiB L1 Cache

(data)↪→

/0/2104/2 memory 512KiB L2 Cache

(unified)↪→

/0/2104/3 memory 10MiB L3 Cache

(unified)↪→

/0/2108 processor 02AA966
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/0/2108/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2108/1 memory 32KiB L1 Cache

(data)↪→

/0/2108/2 memory 512KiB L2 Cache

(unified)↪→

/0/2108/3 memory 10MiB L3 Cache

(unified)↪→

/0/2112 processor 02AA966
/0/2112/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2112/1 memory 32KiB L1 Cache

(data)↪→

/0/2112/2 memory 512KiB L2 Cache

(unified)↪→

/0/2112/3 memory 10MiB L3 Cache

(unified)↪→

/0/2116 processor 02AA966
/0/2116/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2116/1 memory 32KiB L1 Cache

(data)↪→

/0/2116/2 memory 512KiB L2 Cache

(unified)↪→

/0/2116/3 memory 10MiB L3 Cache

(unified)↪→

/0/2128 processor 02AA966
/0/2128/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2128/1 memory 32KiB L1 Cache

(data)↪→

/0/2128/2 memory 512KiB L2 Cache

(unified)↪→

/0/2128/3 memory 10MiB L3 Cache

(unified)↪→

/0/2132 processor 02AA966
/0/2132/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2132/1 memory 32KiB L1 Cache

(data)↪→

/0/2132/2 memory 512KiB L2 Cache

(unified)↪→

/0/2132/3 memory 10MiB L3 Cache

(unified)↪→

/0/2136 processor 02AA966
/0/2136/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2136/1 memory 32KiB L1 Cache

(data)↪→

/0/2136/2 memory 512KiB L2 Cache

(unified)↪→

/0/2136/3 memory 10MiB L3 Cache

(unified)↪→

/0/2140 processor 02AA966

/0/2140/0 memory 32KiB L1 Cache

(instruction)↪→

/0/2140/1 memory 32KiB L1 Cache

(data)↪→

/0/2140/2 memory 512KiB L2 Cache

(unified)↪→

/0/2140/3 memory 10MiB L3 Cache

(unified)↪→

/0/12 processor 02AA966
/0/12/0 memory 32KiB L1 Cache

(instruction)↪→

/0/12/1 memory 32KiB L1 Cache

(data)↪→

/0/12/2 memory 512KiB L2 Cache

(unified)↪→

/0/12/3 memory 10MiB L3 Cache

(unified)↪→

/0/0 memory 319GiB System memory
/0/0/0 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/1 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/2 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/3 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/4 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/5 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/6 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/7 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/8 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/9 memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/a memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/b memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/c memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/d memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/e memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/0/f memory 16GiB RDIMM DDR4

2666 MHz (0.4ns)↪→

/0/1 generic

bmc-firmware-version↪→

/0/2 generic buildroot
/0/3 generic capp-ucode
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/0/4 generic hostboot
/0/5 generic hostboot-binaries
/0/6 generic linux
/0/7 generic machine-xml
/0/9 generic occ
/0/a generic petitboot
/0/b generic sbe
/0/c generic skiboot
/0/d generic version
/0/100 bridge IBM
/0/100/0 storage NVMe SSD

Controller 172Xa↪→

/0/101 bridge IBM
/0/101/0 bus TUSB73x0

SuperSpeed USB 3.0 xHCI Host Controller↪→

/0/102 bridge IBM
/0/102/0 bridge AST1150

PCI-to-PCI Bridge↪→

/0/102/0/0 display ASPEED Graphics

Family↪→

/0/103 bridge IBM
/0/103/0 hsi0 network MT28800 Family

[ConnectX-5 Ex]↪→

/0/103/0.1 hsi1 network MT28800 Family

[ConnectX-5 Ex]↪→

/0/104 bridge IBM
/0/104/0 bridge PLX Technology,

Inc.↪→

/0/104/0/2 bridge PLX Technology,

Inc.↪→

/0/104/0/2/0 storage 88SE9235 PCIe 2.0

x2 4-port SATA 6 Gb/s Controller↪→

/0/104/0/a bridge PLX Technology,

Inc.↪→

/0/104/0/a/0 display GV100GL [Tesla

V100 SXM2]↪→

/0/104/0/b bridge PLX Technology,

Inc.↪→

/0/104/0/b/0 display GV100GL [Tesla

V100 SXM2]↪→

/0/104/0/c bridge PLX Technology,

Inc.↪→

/0/104/0.1 generic PLX Technology,

Inc.↪→

/0/104/0.2 generic PLX Technology,

Inc.↪→

/0/104/0.3 generic PLX Technology,

Inc.↪→

/0/104/0.4 generic PLX Technology,

Inc.↪→

/0/105 bridge IBM
/0/105/0 enP5p1s0f0 network NetXtreme BCM5719

Gigabit Ethernet PCIe↪→

/0/105/0.1 enP5p1s0f1 network NetXtreme BCM5719

Gigabit Ethernet PCIe↪→

/0/106 bridge IBM
/0/107 bridge IBM
/0/108 bridge IBM
/0/109 bridge IBM
/0/10a bridge IBM
/0/10b bridge IBM
/0/10c bridge IBM
/0/10d bridge IBM
/0/10e bridge IBM
/0/10f bridge IBM
/0/110 bridge IBM
/0/111 bridge IBM
/0/112 bridge IBM
/0/113 bridge IBM
/0/113/0 hsi2 network MT28800 Family

[ConnectX-5 Ex]↪→

/0/113/0.1 hsi3 network MT28800 Family

[ConnectX-5 Ex]↪→

/0/114 bridge IBM
/0/115 bridge IBM
/0/115/0 bridge PLX Technology,

Inc.↪→

/0/115/0/4 bridge PLX Technology,

Inc.↪→

/0/115/0/4/0 display GV100GL [Tesla

V100 SXM2]↪→

/0/115/0/5 bridge PLX Technology,

Inc.↪→

/0/115/0/5/0 display GV100GL [Tesla

V100 SXM2]↪→

/0/115/0/d bridge PLX Technology,

Inc.↪→

WARNING: output may be incomplete or inaccurate, you

should run this program as super-user.↪→

ARTIFACT EVALUATION
Verification and validation studies: Correctness of algorithms was

ensured by validating that the results produced by the stationary-x
algorithm matched the results of convolution performed on a single
GPUwithin a fixed threshold (0.00001) for every layer configuration
used within the networks considered, and a broader set of test cases.

Accuracy and precision of timings: Benchmarks were run several
times, averaged, and checked for outliers.

Used manufactured solutions or spectral properties: None.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: None.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. None.
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