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Abstract—Distributed graph analytics systems for CPUs, like
D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use
a bulk-synchronous parallel (BSP) programming and execution
model. BSP permits bulk-communication and uses large messages
which are supported efficiently by current message transport
layers, but bulk-synchronization can exacerbate the performance
impact of load imbalance because a round cannot be completed
until every host has completed that round. Asynchronous dis-
tributed graph analytics systems circumvent this problem by
permitting hosts to make progress at their own pace, but existing
systems either use global locks and send small messages or send
large messages but do not support general partitioning policies
such as vertex-cuts. Consequently, they perform substantially
worse than bulk-synchronous systems. Moreover, none of their
programming or execution models can be easily adapted for
heterogeneous devices like GPUs.

In this paper, we design and implement a lock-free, non-
blocking, bulk-asynchronous runtime called Gluon-Async for
distributed and heterogeneous graph analytics. The runtime
supports any partitioning policy and uses bulk-communication.
We present the bulk-asynchronous parallel (BASP) model which
allows the programmer to utilize the runtime by specifying only
the abstract communication required. Applications written in
this model are compared with the BSP programs written using
(1) D-Galois and D-IrGL, the state-of-the-art distributed graph
analytics systems (which are bulk-synchronous) for CPUs and
GPUs, respectively, and (2) Lux, another (bulk-synchronous)
distributed GPU graph analytical system. Our evaluation shows
that programs written using BASP-style execution are on average
∼ 1.5× faster than those in D-Galois and D-IrGL on real-world
large-diameter graphs at scale. They are also on average ∼ 12×
faster than Lux. To the best of our knowledge, Gluon-Async is
the first asynchronous distributed GPU graph analytics system.

Index Terms—Graph analytics, distributed and heterogeneous,
BSP model, asynchronous parallel execution models.

I. INTRODUCTION

Present-day graph analytics systems have to handle large

graphs with billions of nodes and trillions of edges [1]. Since

graphs of this size may not fit in the main memory of a single

machine, systems like Pregel [2], PowerGraph [3], Gemini [4],

D-Galois [5], D-IrGL [5], and Lux [6] use distributed-memory

clusters. In these distributed graph analytics systems, the graph

is partitioned [7], [8], [9] so that each partition fits in the

memory of one host in the cluster, and the bulk-synchronous
parallel (BSP) programming model [10] is used. In this model,

the program is executed in rounds, and each round consists of

computation followed by communication. In the computation

phase, each host updates node labels in its partition. In the

communication phase, boundary node labels are reconciled

so all hosts have a consistent view of labels. The algorithm

terminates when a round is performed in which no label is

updated on any host.

One drawback of the BSP model is that it can exacerbate

the performance impact of load imbalance because a round

cannot be completed until every host has completed that round.

This happens frequently in graph analytics applications for

two reasons: (1) unstructured power-law graphs are difficult

to partition evenly, and (2) efficient graph analytics algorithms

are data-driven algorithms that may update different subsets

of nodes in each round [11], making static load balancing

difficult.

One solution is to use asynchronous programming models

and systems [12], [13], [14], [15], [16], [17], which take

advantage of the fact that many graph analytics algorithms are

robust to stale reads. Here, the notion of rounds is eliminated,

and a host performs computation at its own pace while an

underlying messaging system ingests messages from remote

hosts and incorporates boundary node label updates into the

local partition of the graph. Asynchronous algorithms for

particular problems like single-source shortest-path (sssp) [18]

and graph coloring [19] have also been implemented. Some

of these systems or implementations use global locks or send

small messages, but current communication substrates in large

clusters are engineered for large message sizes. The other

systems send large messages but either do not handle general

partitioning policies like vertex-cuts [20], [21] or do not

optimize communication [5]. Consequently, the performance

of these systems is not competitive with BSP systems like

Gemini [4] or D-Galois [5]. In addition, it is not straightfor-

ward to extend these asynchronous programming or execution

models to execute on heterogeneous devices like GPUs.

In this paper, we explore a novel lock-free, non-

blocking, asynchronous programming model that we call bulk-

asynchronous parallel (BASP), which aims to combine the

advantages of bulk communication in BSP models with the

computational progress advantages of asynchronous models.

BASP retains the notion of a round, but a host is not required to
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Fig. 1: An example of partitioning a graph (Source: Gluon [5]).

wait for other hosts when computation in a round is completed;

instead, it sends and receives messages (if available) and

moves on to the next round. One advantage of the BASP model

is that it is relatively easy to modify BSP programs to BASP

programs. It is also easy to modify BSP-based graph analytics

systems for CPUs or GPUs to implement this model.

In our study, we use D-Galois and D-IrGL [5], the state-

of-the-art distributed CPU and GPU graph analytics sys-

tems, respectively. Both these systems are built using the

communication-optimizing substrate, Gluon [5]. By modifying

Gluon to support the BASP model, we develop the first

asynchronous, distributed, heterogeneous graph analytics sys-

tem; we name this system Gluon-Async. Like Gluon, Gluon-

Async can be used to extend or compile [22] existing shared-

memory CPU-only or GPU-only graph analytical systems for

distributed and heterogeneous execution. For large-diameter

real-world web-crawls, Gluon-Async is on an average ∼ 1.4×
faster than D-IrGL on 64 GPUs and ∼ 1.6× faster than D-

Galois on 128 hosts. Furthermore, it is ∼ 12× faster than Lux,

another BSP-style distributed GPU graph analytics system.

The rest of this paper is organized as follows. Section II

gives an overview of BSP-style distributed graph analytics and

introduces the BASP model. Section III shows how Gluon [5],

the state-of-the-art BSP-style distributed and heterogeneous

graph analytics system, can be converted to BASP-style ex-

ecution, and we believe similar modifications can be made

to other BSP-based systems. Section IV gives experimental

results on Stampede2, a large CPU cluster, and on Bridges, a

distributed multi-GPU cluster. Section V describes the related

work, and Section VI summarizes the results of this study.

II. BULK-ASYNCHRONOUS PARALLEL MODEL

This section introduces the BASP model. We start with an

overview of the BSP model before describing BASP.

A. Overview of Bulk-Synchronous Parallel (BSP) Execution

At the start of the computation, the graph is partitioned

among the hosts using one of many partitioning policies [20].

Figure 1 shows a graph that has been partitioned between

two hosts. The edges of the graph are partitioned between

hosts, and proxy nodes are created on each host for the end-

points of its edges. Since the edges connected to a given vertex

Time

(a) Bulk-Synchronous Parallel (BSP)

(b) Bulk-Asynchronous Parallel (BASP)
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Fig. 2: BSP vs. BASP execution.

may be mapped to different hosts, a given vertex in the graph

may have proxies on several hosts. One of these proxies is

designated the master, and the others are designated as mirrors.

During computation, the master holds the canonical value of

the vertex, and it communicates that value to the mirrors when

needed. In Figure 1, host h1 has masters for nodes {A,B,E,F,I}
and mirrors for nodes {C,G,J}.

Execution of the program occurs in rounds. In each round,

a host computes independently on its partition of the graph.

Most existing systems use the vertex programming model
in which nodes either update the labels of their neighbors

(push-style operator) or update their own labels using the

labels of their neighbors (pull-style operator) until quiescence

is reached. Since a vertex in the original graph can have

proxies on several hosts, the labels of these proxies may be

updated differently on different hosts. For example, in a push-

style breadth-first search (BFS) computation on the graph of

Figure 1 rooted at vertex A, the mirror vertex for G on host

h1 may get the label 2 from B while the master vertex for G

on host h2 remains at the initial value ∞.

To reconcile these differences, it is necessary to perform

inter-host communication. A key property of many graph

analytics algorithms is that the differences among the labels

of vertices can be reconciled by communicating the labels of

all mirrors to the master, reducing them using an application-

dependent operation, and broadcasting the result to all mirrors

(as each edge is present on only one host, updates to edge

labels do not involve communication). In the BFS example

considered above, the value 2 will be sent to the master for

vertex G on host h2 where it is reduced with the master’s

label using the “minimum” operation, and the result 2 is

used to update the labels of the master and mirrors. This

pattern of reconciling labels using a reduction operation at

the master followed by broadcast to mirrors can be used for

any partitioning strategy [5]. It can also be used to offload the

computation on any device [5].

In the BSP model, this reconciliation of node labels by inter-

host communication is performed in each round of execution,

and a host must send and ingest all updates from other hosts

in that round before it can proceed to the next round. As a

consequence, the slowest, or straggler, host in a round deter-
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1 Graph∗ g ;
2 s t r u c t GNode { / / d a t a on each node
3 u i n t 3 2 t d i s t o l d ;
4 u i n t 3 2 t d i s t c u r ;
5 } ;

6 g luon : : D i s tAccumula to r <u n s i g n e d i n t> t e r m i n a t o r ;
7 . . . / / sync s t r u c t u r e s
8 s t r u c t SSSP {
9 vo id o p e r a t o r ( ) ( GNode s r c ) c o n s t {

10 i f ( s r c . d i s t o l d > s r c . d i s t c u r ) {
11 t e r m i n a t o r += 1 ; / / do n o t t e r m i n a t e
12 s r c . d i s t o l d = s r c . d i s t c u r ;
13 f o r ( a u t o d s t : g−>n e i g h b o r s ( s r c ) ) {
14 u i n t 3 2 t n e w d i s t ;
15 n e w d i s t = s r c . d i s t c u r + g−>w e i g h t ( s r c , d s t )

;
16 a tomicMin ( d s t . d i s t c u r , n e w d i s t ) ;
17 }
18 }
19 }
20 } ;
21 . . . / / i n i t i a l i z a t i o n , 1 s t round f o r s o u r c e
22 do { / / f i l t e r −based da ta−d r i v e n r o u n d s
23 t e r m i n a t o r . r e s e t ( ) ;
24 g a l o i s : : d o a l l ( g−>b e g i n ( ) , g−>end ( ) , SSSP{&g } ) ;
25 g luon : : sync < . . . /∗ sync s t r u c t u r e s ∗ / >() ;

26 } w h i l e ( t e r m i n a t o r . r e d u c e ( ) ) ;

Fig. 3: Single source shortest path (sssp) application in BSP

programming model.

mines when all hosts complete that round. This may increase

the idle time of the other hosts and lead to load imbalance

among hosts. This is exacerbated when the algorithm requires

100s of bulk-synchronous rounds to converge. Large real-

world graph datasets have non-trivial diameter which may

execute for several rounds in the BSP model. This is turn may

result in load imbalance among hosts, hurting performance

(we analyze this in Section IV-D). One way to overcome this

is to relax the bulk-synchronization required in each round.

B. Overview of Bulk-Asynchronous Parallel (BASP) Execution

The bulk-asynchronous parallel (BASP) execution model is

based on the following intuition: when a host completes its
computation in a round, it can send messages to other hosts
and ingest messages from other hosts, but it can go on to the
next round of computation without waiting for messages from
any stragglers. Conceptually, the barrier at the end of each

BSP round becomes a point at which each host sends and

ingests messages without waiting for all other hosts to reach

that point. The correctness of this execution strategy depends

on the fact that graph analytics algorithms are resilient to stale

reads: as long as there are no lost updates, execution will

complete correctly.

Since hosts perform communication only at the end of a

round, the BASP execution model permits the message trans-

port layer to use large messages, which is advantageous on

current systems since they do not handle small messages effi-

ciently. In contrast, the asynchronous model in GraphLab [12]

uses small messages (along with locks) to interleave inter-host

1 Graph∗ g ;
2 s t r u c t GNode { / / d a t a on each node
3 u i n t 3 2 t d i s t o l d ;
4 u i n t 3 2 t d i s t c u r ;
5 } ;

6 g luon : : D i s t T e r m i n a t o r <u n s i g n e d i n t> t e r m i n a t o r ;
7 . . . / / sync s t r u c t u r e s
8 s t r u c t SSSP {
9 vo id o p e r a t o r ( ) ( GNode s r c ) c o n s t {

10 i f ( s r c . d i s t o l d > s r c . d i s t c u r ) {
11 t e r m i n a t o r += 1 ; / / do n o t t e r m i n a t e
12 s r c . d i s t o l d = s r c . d i s t c u r ;
13 f o r ( a u t o d s t : g−>n e i g h b o r s ( s r c ) ) {
14 u i n t 3 2 t n e w d i s t ;
15 n e w d i s t = s r c . d i s t c u r + g−>w e i g h t ( s r c , d s t )

;
16 a tomicMin ( d s t . d i s t c u r , n e w d i s t ) ;
17 }
18 }
19 }
20 } ;
21 . . . / / i n i t i a l i z a t i o n , 1 s t round f o r s o u r c e
22 do { / / f i l t e r −based da ta−d r i v e n r o u n d s
23 t e r m i n a t o r . r e s e t ( ) ;
24 g a l o i s : : d o a l l ( g−>b e g i n ( ) , g−>end ( ) , SSSP{&g } ) ;

25 g luon : : t r y s y n c < . . . /∗ sync s t r u c t u r e s ∗ / >() ;

26 } w h i l e ( t e r m i n a t o r . c a n n o t t e r m i n a t e ( ) ) ;

Fig. 4: sssp application in BASP programming model. The

modifications with respect to Figure 3 are highlighted.

communication with computation, which is difficult to support

efficiently on current systems.

Figure 2(a) shows a timeline for BSP-style computation

on two GPUs. Each GPU is assumed to be a device that is

connected to a host that performs inter-host communication.

In each round, a GPU performs computation, transfers data to

its host, and gets data from its host when that host receives it

from the remote host. One feature of efficient graph analytics

algorithms is that the amount of computation in each round in

a given partition can vary unpredictably between rounds, so

balancing computational load statically is difficult. This means

that in each BSP round, some GPUs may be idle for long

periods of time waiting for overloaded GPUs to catch up. This

is shown in the second BSP round in Figure 2(a): device H1

has more computation to do than device H0 in some rounds

(and vice-versa), so in those rounds, one host must idle or

wait for the other host to finish and send its data. Figure 2(b)

illustrates the same computation under the BASP-model: here,

the idle time has been completely eliminated.

While BASP exploits the resilience of graph analytics

programs to stale reads to compensate for lack of load balance,

stale reads may result in wasted computation. For example,

under BSP execution, a host may ingest an update from

another host and compute immediately with that value in the

next round, whereas under BASP execution, the host may

miss the update, compute with the stale value, and see the

update only in a later round at which point it will need to

repeat the computation with the updated value. Therefore, if

load is already well-balanced under BSP execution, BASP
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execution may not be advantageous. We study these trade-offs

by building and analyzing a BASP system.

III. ADAPTING BULK-SYNCHRONOUS SYSTEMS FOR

BULK-ASYNCHRONOUS EXECUTION

In this section, we describe how we adapted a BSP-

style distributed and heterogeneous graph analytics system

for BASP execution using the state-of-the-art communication

substrate Gluon [5]. We first describe the changes required

to Gluon application programs to make them amenable to

BASP execution (Section III-A). We then describe changes

to Gluon to support BASP-style execution (Section III-B).

We use the terms Gluon-Sync and Gluon-Async to denote

BSP-style and BASP-style Gluon, respectively. Finally, we

present a non-blocking termination detection algorithm that is

required for BASP-style execution (Section III-C). Based on

our experience, we believe that other BSP systems can also

be easily adapted to BASP.

A. Bulk-Asynchronous Programs

D-Galois [5] is the state-of-the-art distributed graph analyt-

ical system for CPUs. D-Galois programs are shared-memory

Galois [23] programs that make calls to the Gluon(-Sync)

communication substrate to synchronize distributed-memory

computation. Figure 3 shows a code snippet for single-

source-shortest-path (sssp) application. Each host processes

its partition of the graph in rounds: computation is followed

by communication. The compute phase (shown at Line 24)

processes the vertices in the partitioned graph using a push-
style operator (shown at Line 9) to compute and update the new

distance values for their neighbors. The communication phase

uses Gluon’s communication interface, i.e., the sync() method

(shown at Line 25). Gluon is responsible for coordinating the

communication among all hosts; at the end of this phase, all

hosts have a consistent view of node labels. The application

terminates when there is a round in which no host updates

a node label. This can be detected using Gluon’s distributed

accumulator to determine the number of updates among all

hosts in a round.

Figure 4 shows the same sssp application in the BASP

programming model using Gluon-Async. The changes to

the application are highlighted. The try sync (non-blocking)

call is responsible for coordinating the communication of

labels among the hosts asynchronously. It ensures that each

host eventually receives all the expected messages; in other

words, it ensures that the hosts have a consistent view of

node labels eventually. However, the challenge for each host

then is to detect the termination of an application. This

is handled efficiently using the cannot terminate() method.

The cannot terminate (non-blocking) call is responsible for

terminating if and only if no node labels can be updated on any

host1. It ensures that no host terminates as long as some host

has some computation or communication left to be completed.

1The value set to DistTerminator on each host determines whether “no node
labels are updated” or another quiescence condition is the termination criteria.

Since try sync() and cannot terminate() methods are non-

blocking in nature, a host that performs synchronization can

proceed to next round of computation phase without waiting

for the communication process to complete. Thus, it may

improve the performance.

While we explain these changes using D-Galois, the changes

to other Gluon-based systems are similar because the only

lines of code that changed are those related to Gluon. For

example, in D-IrGL, the state-of-the-art distributed GPU graph

analytical system, an IrGL compiler-generated CUDA kernel is

called instead of galois::do_all, and the sync structures

have CUDA kernels instead of CPU code. None of this

needs to be changed to make the program amenable to BASP

execution.

All programs that can be run asynchronously in exist-

ing distributed graph frameworks like PowerSwitch [14] and

GRAPE+ [17] can use BASP. In addition, if a program can be

run asynchronously in shared-memory, then it can use BASP

on distributed-memory. In shared-memory, BSP programs can

be made asynchronous if the program is resilient to stale reads

and if computation is independent of the BSP round number.

The same condition acts as a pre-requisite for changing BSP

programs to BASP programs. For example, betweenness cen-

trality [24] uses round number in its computation and requires

BSP-style execution for correctness, so it cannot be changed

for BASP-style execution. Most other BSP graph programs

that have been used in the evaluation of distributed graph

processing systems [3], [4], [5], [6], [22] can be changed to

BASP-style execution by changing only a few lines of code.

B. Bulk-Asynchronous Communication

Recall from Section II that algorithm execution in both

Gluon-Sync and Gluon-Async is done in local rounds where

each round performs bulk-computation followed by bulk-

communication. The bulk-communication itself involves a

reduce phase followed by a broadcast phase. Thus, each

round has 3 phases: computation, reduce, and broadcast. The

computation phase is identical in Gluon-Sync and Gluon-

Async, but the other phases differ.

The reduce and broadcast phases are blocking in Gluon-

Sync and non-blocking in Gluon-Async. In Gluon-Sync, hosts

exchange messages in each phase (even if the message is

empty) and hosts wait to receive these messages; this acts

like an implicit barrier. Messages are sent in the reduce or

broadcast phase of Gluon-Async only if there are updates to

mirror nodes (empty messages are not required due to relax-

ation of synchronization barriers) and no host waits to receive

a message. The action for the received messages in Gluon-

Async depend on whether they were sent in the reduce or

broadcast phase. As there are two phases and messages could

be delivered out-of-order, we distinguish between messages

sent in reduce and broadcast phases using tags. We describe

this more concretely next.

Let host hi have the set of mirror proxies Pi for which

the set of master proxies Pa are on host ha. Let Ui be the

set of mirror proxies on hi that are updated in round r (by
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Fig. 5: Illustration of communication in Gluon-Async.

definition, Ui ⊆ Pi). Let Ua be the master proxies on ha that

are updated in round r, during either computation or reduce

phases (by definition, Ua ⊆ Pa).

In Gluon-Sync, the Gluon substrate performs the following

operations for every pair of hi and ha:

• Reduce phase for hi: Sends one message mR containing

values of Ui to ha (if Ui = ∅, then an empty message is

sent) and resets the values of Ui to the identity element

of the reduction operation.

• Reduce phase for ha: Waits to receive mR from hi and,

once received, uses the reduction operator and the values

in mR to update the corresponding master proxies in Pa.

• Broadcast phase for ha: Sends one message mB contain-

ing values of Ua to hi (if Ua = ∅, then an empty message

is sent).

• Broadcast phase for hi: Waits to receive mB from ha

and, once received, uses the values in mB to set the

corresponding mirror proxies in Pi.

To support BASP-style execution of Gluon-Async, we

modified the Gluon communication-optimizing substrate to

perform the following operations (instead of the above) for

every pair of hi and ha:

• Reduce phase for hi: If Ui �= ∅, sends a reduce-tagged

message mR containing values of Ui to ha and resets

the values of Ui to the identity element of the reduction

operation.

• Reduce phase for ha: For every reduced-tagged message

mR received from hi, uses the reduction operator and the

values in mR to update the corresponding master proxies

in Pa.

• Broadcast phase for ha: If Ua �= ∅, sends a broadcast-

tagged message mB containing values of Ua to hi.

• Broadcast phase for hi: For every broadcast-tagged mes-

sage mB received from ha, uses the reduction operator
and the values in mB to update the corresponding mirror

proxies in Pi.

If the reduction operator is not used in the broadcast phase

of Gluon-Async, algorithms may not yield correct results (or

even converge). To illustrate this with an example, we show

the synchronization of proxies in Figure 5 for the single-

source shortest path (sssp) code in Gluon-Async (shown in

Figure 4). The label dist_current (shortened as dc), is

reduced during computation using the “minimum” operation.

Consider a vertex v with proxies on hosts h1 and h2, where

the master proxy is on h1 and the mirror proxy is on h2. The

label dc is initialized to ∞ on both proxies. Say host h2 sends

values 10, 7, and 6 after executing its local rounds 1, 2, and 3,

respectively. Say host h1 receives all these values in the order

10, 6, and 7 at the end of its round 2. Host h1, which still

has ∞ value for its proxy, reduces the received values one-

by-one, yielding the update 6, and broadcasts this value to h2.

Host h1 reduces its proxy value during computation to 5 and

broadcasts it to h2 after its round 3. Host h2 receives both

these values in the order of 5 and 6. The mirror proxy value

on h2 is 6 (because reset is a no-op for minimum operation).

If host h2 had set the received values (in order) like in Gluon-

Sync, then the final value of h2 would be 6, which would be

incorrect. Host h2 instead reduces the received values one-

by-one yielding the update 5. The proxies on both hosts are

not updated thereafter and thus, both proxies have the same

values.

An important point to note is that if the message is not

empty, then Gluon-Sync and Gluon-Async send the same

message. Gluon-Async thus retains the underlying advantages

of Gluon-Sync. Gluon-Async supports any partitioning policy

and performs bulk-communication, thereby utilizing Gluon’s

communication optimizations that exploit structural and tem-

poral invariants in partitioning policies [5]. Gluon-Async can

be plugged into different CPU or GPU graph analytics systems

to build distributed-memory versions of those systems that use

BASP-style execution. As shown in Figure 2, communication

between a GPU device and its host is a local operation. Gluon-

Async treats this as a blocking operation like Gluon-Sync.

While this can be made non-blocking too, it is outside the

scope of this paper.

We showed that BASP-style execution can be used in

Gluon-Async without any blocking or waiting operations

among hosts. The messages, if any, will be eventually deliv-

ered. The key to this is that hosts must not terminate until there

are messages left to be delivered. This requires non-blocking

termination detection, which we explain next.

C. Non-blocking Termination Detection

BASP-style execution requires a more complicated termina-

tion algorithm than BSP-style execution. We describe a non-

blocking termination detection algorithm that uses snapshots

to implement a distributed consensus protocol [25] that does

not rely on message delivery order.

The algorithm is based on a state machine maintained

on each host. At any point of time, a host is in one of

five states: Active (A), Idle (I), Ready-to-Terminate1 (RT1),

Ready-to-Terminate2 (RT2), and Terminate (T ). The goal of

termination detection is that a host should move to T if and

only if every other host will move to T . We describe state

transitions and actions for ensuring this.

Hosts coordinate with each other by taking non-blocking

snapshots that are numbered. When a host takes a snapshot

n, it broadcasts its current state to other hosts (non-blocking).

Once a host h takes the snapshot n, it cannot take the next

snapshot n+1 until h knows that every other host has taken the

snapshot n. In other words, before h takes the next snapshot

n + 1, h should not only have completed the broadcast it
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States:

A À À : Active
I À À À : Idle
RT1À: ÀReady-to-Terminate1
RT2À: ÀReady-to-Terminate2 
T À À À: Terminate

Fig. 6: State transition diagram for termination detection.

Start Condition for state transition End Action
State (boolean formula) State

A inactive I
I ¬inactive A
I inactive ∧ inspected RT1 Snapshot
RT1 ¬inactive A
RT1 inactive ∧ inspected RT2 Snapshot
RT2 ¬inactive A
RT2 inactive ∧ inspected ∧ ¬affirmed RT2 Snapshot
RT2 affirmed T Terminate

TABLE I: Conditions required for state transitions during

termination detection.

initiated for n but also have received broadcast messages

from every other host for n. Thus, eventually, every host will

know the states that all other hosts took their snapshots from.

For example, all hosts will know whether all hosts took the

snapshot n from the same state RT2 or not. We use this

knowledge to transition between states.

Each host has a dedicated communication thread that is

started when the program begins (and terminated when pro-

gram ends). It receives messages throughout program execu-

tion. Every host takes a (dummy) snapshot initially. Subse-

quent snapshots are taken by a host h only if h is ready

to terminate. Intuitively, hosts can terminate only if every

host knows that ”every host knows that every host wants

to terminate”. This requires two consecutive snapshots to

be taken with all hosts indicating that they are ready-to-

terminate (RT). We use RT1 and RT2 to distinguish between

two consecutive snapshots of RT.

On each host h, the termination detection algorithm is

invoked at the end of each local round r; all the state

transitions occur only at this point in the program. Note that

r is incremented each time cannot terminate() is invoked (see

Figure 4 for example). Let n be the last snapshot that h has

taken. When the termination detection algorithm is invoked,

we first check if h is inactive, inspected, or affirmed.

A host h is considered to be inactive if the following

conditions hold:

1) No label was updated in round r in computation, reduce,

or broadcast phases.

2) All non-blocking sends initiated on this host are complete.

3) All non-blocking receives initiated on this host are com-

plete.

The first condition checks whether work was done in r while

the other conditions check whether any work is still pending.

These conditions must hold for h to take the next snapshot

n+ 1.

A host h is considered to be inspected if it knows that all the

hosts have taken the previous snapshot n. This condition must

hold for h to take the next snapshot n+1. Similarly, a host h
is considered to be affirmed if (i) h has been inspected and (ii)

it knows that all the hosts have taken the previous snapshot n
from state RT2 (that is, other hosts have also affirmed their

readiness to terminate). This condition must hold for h to

terminate.

Initially, every host is in state A. Figure 6 shows the possible

state transition on a single host. Table I shows the conditions

that must hold for each state transition and the action, if

any, taken after the state transition. No action is taken with

transitions to states A and I . When h transitions to RT1 or

RT2, it takes a snapshot. When h transitions to T , h decides

to terminate (returns false in Line 26 in Figure 4). A host

moves from A to I only if the host is inactive. If a host is not

inactive, then it moves to A from the I , RT1, or RT2 states.

If h is inspected and is in I , then it moves to RT1. If h is

inspected and is in RT1, it moves to RT2. If h is affirmed,

then it moves from RT2 to T .

Consider an example with two hosts, h1 and h2. Initially,

both of them initiate (dummy) snapshot n0. When h2 becomes

inactive, it moves to I. As both hosts initiated the previous

snapshot n0, h2 moves to RT1 and initiates the next snapshot

n1. Meanwhile, h1 sends a message to h2, becomes inactive,

and moves to I. As n0 has ended, h1 moves to RT1 and

initiates n1. In the next round, h1 detects that h2 also has

initiated n1. Note that it would be incorrect for h1 to terminate

at this point, although both h1 and h2 initiated n1 from RT1.

Our algorithm uses two RT states to detect this, so h1 moves

to RT2 instead of terminating and initiates the next snapshot

n2. During this time, h2 received the message from h1 which

made it active and moved it to A. Later, it moves to I and then

RT1 to initiate n2. In the next round, h2 observes that n2 has

ended, so it moves to RT2 and initiates n3. h1 also observes

that n2 has ended and initiates n3 while remaining in RT2.

Now, in the next round on both hosts, each host observes that

n3 has ended and that the other host has initiated n3 from

RT2, so both hosts affirm to terminate and move to T .

To implement our termination detection algorithm in Gluon-

Async (Line 26 in Figure 4), we use non-blocking collectives

to take a snapshot. For the reduce and broadcast phases,

we modify the communication substrate to send messages

in synchronous mode instead of standard mode. In standard
communication mode of MPI or LCI [26], a send (call) may

complete before a matching receive is invoked. Hence, both

the sender and the receiver may become inactive and terminate

while the message is still in-flight. In contrast, in synchronous
mode, a send is considered complete only if the receiver has

initiated receive. Consequently, when a message is in-flight,

either the sender or the receiver is in active state A. Thus,

synchronous communication mode sends are necessary for our
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TABLE II: Input graphs and their key properties (we classify graphs with estimated diameter > 200 as high-diameter graphs).

Small graphs Large graphs
twitter50 rmat27 friendster uk07 gsh15 clueweb12 uk14 wdc14 wdc12

|V | 51M 134M 66M 106M 988M 978M 788M 1,725M 3,563M
|E| 1,963M 2,147M 1,806M 3,739M 33,877M 42,574M 47,615M 64,423M 128,736M
|E|/|V | 38 16 28 35 34.3 43.5 60.4 37 36
Max OutDegree 779,958 453M 5,214 15,402 32,114 7,447 16,365 32,848 55,931
Max InDegree 3.5M 21,806 5,214 975,418 59M 75M 8.6M 46M 95M
Estimated Diameter 12 3 21 115 95 498 2,498 789 5,274
Size (GB) 16 18 28 29 260 325 361 493 986

termination detection protocol. Note that our protocol does

not rely on the order of message delivery of Gluon or the

underlying communication substrate such as MPI or LCI [26].

Note that goal of termination detection is that a host should

move to T if and only if every other host will move to T . We

now argue how our termination detection algorithm satisfies

this property. A non-active, non-terminated host h can move

back to state A only if it receives data from another host –

in this case, the inactive flag will become false. Since the

program is correct, at least one host will not reach the RT2

state until the final value(s) are computed (no false detection of

termination). A host h can reach the state RT2 from RT1 or

RT2 only if it is inspected and inactive, which means that

h did not update any labels and did not send nor receive

data. If every host took the snapshot from RT2, then no

host computed, sent, or received data between two snapshots.

Consequently, no host can receive a message and move to A
after that, so every host must terminate.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the benefits of Bulk-

Asynchronous Parallel (BASP) execution over Bulk-

Synchronous Parallel (BSP) execution using D-Galois [5] and

D-IrGL [5], the state-of-the-art graph analytics systems for

distributed CPUs and distributed GPUs, respectively. Both

these systems are built on top of a Gluon [5]. In this paper, we

use the name Gluon-Sync to refer to these two systems. We

modified D-Galois and D-IrGL BSP programs as described

in Section III-A to make them amenable for BASP-style

execution. As described in Sections III-B and III-C, we

modified Gluon to support BASP-style execution for both

systems, which we call Gluon-Async (source code is publicly

available [27]).

We also compare the performance of Gluon-Async with that

of Lux [6], which is a multi-host multi-GPU graph analytical

framework that uses BSP-style execution; note that there are

no asynchronous distributed GPU graph analytical systems to

compare against. GRAPE+ [17] and PowerSwitch [14] are

asynchronous distributed CPU-only graph systems, and we

compare them with Gluon-Async.

We first describe our experimental setup (Section IV-A). We

then present our evaluation on distributed GPUs (Section IV-B)

and distributed CPUs (Section IV-C). Finally, we analyze

BASP and BSP (Section IV-D) and summarize our results

(Section IV-E).
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Fig. 7: Strong scaling (log-log scale) of Lux, Gluon-Sync, and

Gluon-Async for small graphs on Bridges (2 P100 GPUs share

a physical machine).

A. Experimental Setup

We conducted all the GPU experiments on the Bridges

cluster [28] at the Pittsburgh Supercomputing Center [29],

[30]. Each machine in the cluster is configured with 2 NVIDIA

Tesla P100 GPUs and 2 Intel Broadwell E5-2683 v4 CPUs

with 16 cores per CPU, DDR4-2400 128GB RAM, and 40MB

LLC. The machines are interconnected through Intel Omni-

Path Architecture (peak bandwidth of 100Gbps). We use up

to 64 GPUs (32 machines). All benchmarks were compiled

using CUDA 9.2, GCC 7.3, and MVAPICH2 2.3b.

All the CPU experiments were run on the Stampede2 [31]

cluster located at the Texas Advanced Computing Center.

Each machine is equipped with 2 Intel Xeon Platinum 8160

“Skylake” CPUs with 24 cores per CPU, DDR4 192GB

RAM, and 66MB LLC. The machines in the cluster are

interconnected through Intel Omni-Path Architecture (peak

bandwidth of 100Gbps). We use 48 threads on each machine

and up to 128 machines (6144 cores or threads). Benchmarks

were compiled with GCC 7.1 and IMPI 17.0.3.

Table II shows the input graphs along with their key

properties: twitter50 [32], [33] and friendster [34] are social

network graphs; rmat27 is a randomized synthetically gener-
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Fig. 8: Speedup of Gluon-Async over Gluon-Sync for large

graphs on Bridges (2 P100 GPUs share a physical machine).

ated graph using with an RMAT generator [35]; uk07, gsh15,

clueweb12 [36], uk14 [32], [33], [37], wdc14, and wdc12 [38]

are among the largest public web-crawls (wdc12 is the largest

publicly available graph). Table II splits the graphs into two

categories: small and large. Small graphs are only used for

comparison with Lux, GRAPE+, and PowerSwitch (we could

not run these systems using the large graphs), while we use

large graphs for all other experiments. We also classify the

graphs based on their estimated (observed) diameter. All small

graphs are low-diameter graphs with diameter < 200, while

all large graphs, except gsh15, are high-diameter graphs with

diameter > 200.

We evaluated our framework with 5 benchmarks: breadth-

first-search (bfs), connected components (cc), k-core (kcore),

pagerank (pr), and single source shortest path (sssp). For pr, we

used a tolerance of 10−6. For bfs and sssp, we considered the

vertex with maximum out-degree as the source. For kcore, we

use a k of 100. All benchmarks are executed until convergence.

We report the total execution time, excluding the graph load-

ing, partitioning, and construction time. The reported results

are a mean over three runs.

For Gluon-Sync and Gluon-Async, the partitioning policy

is configurable as it uses the CuSP streaming partitioner [20].

Based on the recommendations of a large-scale study [21],

we choose the Cartesian Vertex Cut (CVC) [9], [5] for all our

experiments2. We use LCI [26] instead of MPI for message

transport among hosts3.

2sssp, clueweb12, GPUs uses Outgoing Edge Cut due to memory limits.
3Dang et al. [26] show the benefits of LCI over MPI for graph applications.
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Fig. 9: Speedup of Gluon-Async over Gluon-Sync for large

graphs on Stampede (each host is a 48-core Skylake machine).

For Lux, we only present results for cc and pr as the other

benchmarks are not available or produce incorrect output. pr

in Lux does not have a convergence criterion, so we executed

it for the same number of rounds as that of Gluon-Sync4

(Gluon-Async might execute more rounds to converge). Note

that Lux uses an edge-cut partitioning policy and dynamically

re-partitions the graph to balance the load.

GRAPE+ [17] is not publicly available. We present results

used in their paper (and provided by the authors). They

use a total of 196 cores in their study; to compare with

them, we use 12 machines of Stampede with 16 threads (196

cores). They use partitions provided by XtraPulp [8]. They

present results only for cc, pr, and sssp on friendster. When

comparing with them, we use the same partitioning policy,

we use the same source nodes for sssp (5506215, 6556728,

1752217, 3391590, 782658), and we use the same tolerance

for pr (10−3). For a relative comparison, we also present the

corresponding PowerSwitch [14] results from their paper [17].

We do not evaluate PowerSwitch ourselves because it is an

order of magnitude slower.

B. Distributed GPUs

Small graphs: Figure 7 shows the total execution time of

Gluon-Async, Gluon-Sync, and Lux on small graphs using up

to 16 GPUs. Missing points indicate that the system ran out of

4Both Gluon-Sync and Lux are BSP-style and use the same algorithm.
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TABLE III: Total execution time of Gluon-Sync and Gluon-

Async on 192 cores of Stampede; PowerSwitch and GRAPE+

on 192 cores of a different HPC cluster [17].

Benchmark Input PowerSwitch GRAPE+ Gluon-Sync Gluon-Async

cc
friendster

61.1 10.4 1.7 1.7
pr 85.1 26.4 21.3 21.9

sssp 32.5 12.7 5.8 5.5

memory (except for Lux with cc on rmat27 using 16 GPUs,

which failed due to a crash). The major trend in the figure

is that both Gluon-Async and Gluon-Sync always outperform

Lux and scale better. It is also clear that Gluon-Async and

Gluon-Sync perform quite similarly. In some cases, Gluon-

Async is also noticeably slower (pr on twitter50). We do not

expect Gluon-Async to perform better than Gluon-Sync for

low-diameter graphs like these because most benchmarks in

Gluon-Sync execute very few (< 100) rounds for these. We

will analyze this later using larger graphs (Section IV-D). Nev-

ertheless, both Gluon-Async and Gluon-Sync are on average

∼ 12× faster than Lux.

Large Graphs: Figure 8 shows the speedup in total execution

time of Gluon-Async over Gluon-Sync for large graphs using

up to 64 GPUs (Lux runs out of memory for all the large

graphs, even on 64 GPUs). Missing points indicate that either

Gluon-Sync or Gluon-Async ran out of memory (almost

always, if one runs out of memory, the other also does; only

in a couple of cases, Gluon-Async runs out of memory but

Gluon-Sync does not because Gluon-Async may use more

communication buffers). 64 GPUs are insufficient to load

wdc12 as input, partition it, and construct it in memory; so

both Gluon-Sync and Gluon-Async run out of memory. It is

apparent that Gluon-Async always outperforms Gluon-Sync

for large graphs. We observe that the speedup depends on both

the input graph and the benchmark. Typically, speedup is better

for clueweb12 and wdc14 than gsh15. The speedup is also

usually lower for pr than for other benchmarks. We also see

that in most cases, the speedup of Gluon-Async over Gluon-

Sync increases with an increase in the number of GPUs. This

indicates that Gluon-Async scales better than Gluon-Sync. For

high-diameter graphs on 64 GPUs, Gluon-Async is on average

∼ 1.4× faster than Gluon-Sync.

C. Distributed CPUs

Small graphs: Table III shows the total execution time of

PowerSwitch, GRAPE+, Gluon-Sync, and Gluon-Async for

friendster with 192 threads. Note that Gluon-Sync and Gluon-

Async used machines on Stampede, whereas PowerSwitch and

GRAPE+ used machines on a different HPC cluster. Similar

to GPUs, the performance differences between Gluon-Async

and Gluon-Sync are negligible because friendster is a low-

diameter graph. Although both GRAPE+ and PowerSwitch

are asynchronous systems, they are much slower than Gluon-

Sync and Gluon-Async. Both Gluon-Sync and Gluon-Async

are on average ∼ 2.5× and ∼ 9.3× faster than GRAPE+ and

PowerSwitch, respectively. This shows that a well-optimized

TABLE IV: Minimum BSP-rounds for Gluon-Sync on CPUs.

Input Estimated Minimum Number of Rounds

Diameter bfs cc kcore pr sssp

gsh15 95 61 11 239 172 62
clueweb12 498 184 25 696 161 200
uk14 2,498 1,825 80 443 161 1,976
wdc14 789 503 196 146 180 507
wdc12 5,274 2,672 401 277 183 3,953

existing bulk-synchronous system (Gluon-Sync) beats the ex-

isting asynchronous systems and that it is challenging to

reap the benefits of asynchronous execution. Gluon-Sync uses

Galois [23] computation engine and Gluon [5] communication

engine. Both have several optimizations that help Gluon-Sync

outperform PowerSwitch and GRAPE+. It is not straight-

forward to incorporate these optimizations in PowerSwitch

and GRAPE+ due to the way they perform asynchronous

communication. Gluon-Async introduces a novel way for

asynchronous execution while retaining all the performance

benefits of on-device computation engines like Galois and

IrGL [39] and the inter-device communication engine, Gluon.

While Gluon-Sync and Gluon-Async perform similarly for

small graphs, we show that on large graphs, Gluon-Async can

be much faster than Gluon-Sync.

Large graphs: Figure 9 shows the speedup in total execution

time of Gluon-Async over Gluon-Sync for large graphs using

up to 128 Skylake machines or hosts. Missing points indicate

that either Gluon-Sync or Gluon-Async ran out of memory.

The trends are similar to those on GPUs. The speedup depends

on both the input graph and the benchmark. Gluon-Async

mostly outperforms Gluon-Sync; its performance is similar

or lower than that of Gluon-Sync on 64 or fewer hosts in

some cases for pr or in some cases for the input gsh15. The

speedup of Gluon-Async over Gluon-Sync increases with the

increasing number of hosts indicating that on distributed CPUs

also, Gluon-Async scales better than Gluon-Sync. For high-

diameter graphs on 128 CPUs, Gluon-Async is on average

∼ 1.6× faster than Gluon-Sync.

D. Analysis of BASP and BSP

Using Gluon-Async and Gluon-Sync, we now analyze the

performance difference between BASP-style and BSP-style

execution, respectively, on both distributed GPUs and CPUs.

Specifically, we focus on: (1) why the difference arises (load

imbalance), (2) where the difference exists (idle time), and

(3) how the difference manifests itself (rounds executed).

Load imbalance: Table IV shows the number of rounds

executed by benchmarks in Gluon-Sync for the large graphs.

It can be observed that higher diameter graphs are likely to

execute more rounds, except for pr. We next measure the load

imbalance by calculating the total time spent by each host

in computation and determine the relative standard deviation

(standard deviation by mean) of these values. Figures 10(a)

and 10(b) presents these values for Gluon-Sync as a box-
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Fig. 10: Load imbalance in Gluon-Sync (presented as relative standard deviation in computation times among devices).

plot5 for all the number of devices (CPUs or GPUs) for

each benchmark and input graph on Bridges and Stampede,

respectively. Each point in a box-plot is a value for a distinct

configuration of the number of devices (CPUs or GPUs) for

that benchmark and input graph. The load imbalance and

the number of rounds can be used to tell whether Gluon-

Sync can benefit from switching to BASP-style execution.

As cc on gsh15 is well balanced and executes very few

rounds, it does not benefit much from BASP-style execution.

In contrast, benchmarks using clueweb12 are more imbalanced

and benefit significantly from BASP-style execution, even if it

executes very few rounds like in cc. For high-diameter graphs,

load balance is difficult to achieve in efficient data-driven
graph applications [11] because different subsets of nodes may

be updated in different rounds. We show that Gluon-Async

circumvents this by using BASP-style execution.
Idle time: We define busy time of a host as the time spent

in computation, serialization (for packing messages to be

sent), deserialization (for unpacking and applying received

messages), and communication between host and device. The

5The box for an input graph and benchmark represents the range of 50%
of these values for that input graph and benchmark; the line dividing the box
is the median of those values and the circles are outliers.

rest of the total time is the idle time; in BASP, idle time

includes the time to detect termination. Different hosts can

have different busy and idle times (stragglers have smaller

idle times), so we consider the minimum and maximum across

hosts. Figure 11 show the breakdown of execution time into

minimum busy time, minimum idle time, and the difference

between maximum and minimum idle time. As expected, BSP

has high maximum idle time due to load imbalance and BASP

reduces idle time, which is one of the main advantages of

having bulk-asynchronous execution. However, this reduction

in idle time could lead to a corresponding increase in busy

time because the host could be doing redundant or useless

work by operating on stale values instead of being idle. This

depends on the input graph and the benchmark. In some cases

like pr, the busy time increases even though the idle time is

reduced. In most other cases, the busy time does not increase

by much. Nevertheless, it is clear that the difference between

BASP and BSP is in the idle time, and the total execution

time will be reduced only if the idle time is reduced without

an excessive increase in busy time.

Rounds executed: All hosts execute the same number of

rounds in BSP (Table IV), whereas different hosts may execute

different numbers of local rounds in BASP. The minimum
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(c) clueweb12 on 128 hosts of Stampede
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(d) wdc12 on 128 hosts of Stampede

Fig. 11: Breakdown of execution time (sec); the minimum number of rounds executed among hosts is shown on each bar.

rounds executed in BSP and BASP are shown on each bar

in Figure 11. We use the minimum local rounds among hosts

to estimate the critical path in the execution. We count the

number of edges processed (locally) on each host and use

the maximum among hosts to estimate the work done in

the execution. Figure 12 presents the correlation between the

speedup in execution time, the increase or growth in the work

done (maximum local work items or edges processed), and the

reduction in the critical path (minimum local rounds). Each

point is a value for a distinct configuration of benchmark,

input, and number of devices (CPU or GPU); we have omitted

outliers. Red (closer) points have lower growth in the work

done and higher points (taller lines) have more reduction in

the critical path. If BASP reduces both the work done (growth

< 1) and the critical path (reduction > 1), then it would

obviously be faster. As shown in the figure, BASP is faster

than BSP (speedup > 1) when work done is reduced. More

importantly, BASP does more work than BSP in many cases,

but it is faster due to a reduction in the critical path. When

BASP is slower than BSP (speedup < 1), it is due to a high

growth in work done without sufficient reduction in critical

path. Although the minimum number of local rounds in BASP

may be smaller than that of BSP, the maximum number of

local rounds in BASP may be higher because the faster hosts

need not wait and may execute more local rounds. Instead of

waiting after every round in BSP, faster hosts in BASP may

execute more rounds. Consequently, faster hosts could make

more progress and send updated values to the stragglers or

slower hosts. The straggler hosts receive these updated values

before they move to the next round, saving them from doing

redundant work using stale values. Thus, straggler hosts doing

fewer local rounds leads to faster convergence in BASP.

E. Summary and Discussion

Table V compares the performance of Gluon-Sync and

Gluon-Async using the best-performing number of CPUs

and GPUs. Both Gluon-Sync and Gluon-Async mostly scale

well, so their best performance is usually on the maximum

number of CPUs or GPUs we evaluated. For low-diameter

graphs, Gluon-Async and Gluon-Sync are comparable. For

high-diameter graphs, Gluon-Async is on average ∼ 1.5×
faster than Gluon-Sync. The speedup varies depending on the
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Fig. 12: BASP over BSP: correlation between speedup, growth

in maximum # local work items, and reduction in minimum

# local rounds for all benchmarks, inputs, and devices (CPUs

or GPUs). Red color indicates lower growth in work items.

benchmark, the input, and the scale (number of devices). The

speedup is typically best for high-diameter graphs at scale.

This is similar to what has been observed for asynchronous

execution on CPUs [23] or GPUs [40]. Thus, Gluon-Async

helps scaling out large real-world graph datasets.

V. RELATED WORK

Asynchronous Distributed Graph Analytics Systems. The

popularity of the bulk-synchronous parallel (BSP) model [10]

of computation has led to work that improves its performance

by improving the underlying asynchrony and reducing the

wait time. GraphLab [12] and PowerSwitch [14] systems

use their gather-apply-scatter model along with distributed

locking for non-blocking, asynchronous execution. None of the

other systems, including Gluon-Async, use locks. Systems like

Aspire [13], GRACE [15], Giraph++ [16], and ASYMP [41],

which are based on asynchronous parallel (AP) model, avoid

delaying the processing of the already arrived messages.

GiraphUC [42] proposes the barrierless asynchronous parallel

(BAP) model that uses local barriers to reduce the message

“staleness” and overheads due to global synchronization.

While GiraphUC is lock-free and asynchronous, it blocks

during synchronization until it receives the first message

(from any host). Most recently, Fan et al. [17] show that the

Adaptive Asynchronous Parallel (AAP) model used in their

GRAPE+ system can be used to dynamically adjust the relative

progress of different worker threads and reduce the stragglers

and stale computations. Similarly, Groute [40] proposes an

asynchronous system, but it is limited to a single node system.

Most of these existing systems either perform fine-grained

synchronization or do not support general partitioning policies.

TABLE V: Fastest execution time (sec) of Gluon-Sync and

Gluon-Async using the best-performing number of hosts (# of

hosts in parenthesis; “-” indicates out of memory; best among

Gluon-Sync and Gluon-Async in bold and highlighted).

Bench- Input CPUs (Stampede) GPUs (Bridges)

mark Gluon-Sync Gluon-Async Gluon-Sync Gluon-Async

bfs

gsh15 1.3 (128) 0.8 (128) 0.9 (64) 0.7 (64)
clueweb12 4.5 (128) 3.0 (128) 4.2 (64) 2.4 (64)
uk14 13.0 (128) 8.8 (128) 8.8 (64) 7.4 (64)
wdc14 9.3 (128) 6.5 (128) 7.6 (64) 4.6 (64)
wdc12 110.3 (128) 48.9 (128) - -

cc

gsh15 1.0 (128) 1.0 (128) 1.2 (64) 1.1 (64)
clueweb12 5.8 (128) 2.3 (128) 10.7 (64) 6.6 (64)
uk14 2.2 (64) 1.3 (128) 10.4 (64) 6.1 (64)
wdc14 7.3 (128) 5.2 (128) 6.7 (64) 4.8 (64)
wdc12 29.8 (128) 21.0 (128) - -

kcore

gsh15 9.8 (128) 6.9 (128) 3.0 (64) 2.3 (64)
clueweb12 64.3 (128) 36.2 (128) 7.8 (64) 3.7 (64)
uk14 11.8 (128) 6.4 (128) 2.2 (64) 1.7 (64)
wdc14 18.4 (128) 9.4 (128) - -
wdc12 62.4 (128) 29.9 (128) - -

pr

gsh15 47.3 (128) 46.2 (64) 14.0 (64) 10.5 (64)
clueweb12 130.5 (16) 91.6 (128) 32.3 (64) 24.9 (32)
uk14 11.7 (128) 10.1 (128) 6.3 (64) 5.6 (64)
wdc14 24.7 (128) 25.3 (128) 13.4 (64) 11.9 (64)
wdc12 120.2 (128) 102.2 (128) - -

sssp

gsh15 2.9 (128) 1.9 (128) 2.8 (64) 2.1 (64)
clueweb12 8.1 (128) 4.6 (128) 5.1 (32) 4.0 (32)
uk14 16.3 (128) 13.0 (128) 12.4 (64) 9.0 (64)
wdc14 10.9 (128) 7.7 (128) 10.1 (64) 5.9 (64)
wdc12 168.3 (128) 78.9 (128) - -

None of them can be extended for vertex-cuts without signif-

icantly increasing the communication cost; i.e., some of the

communication optimizations [5] would need to be dropped

for such an extension (to elaborate, GRAPE+ is the only one

that can support vertex-cuts without using distributed locks,

but they send an updated value from a proxy directly to all the

other proxies instead of reducing updated values to a master

proxy and broadcasting the result to mirror proxies, resulting

in more communication volume and messages). Consequently,

prior asynchronous systems do not perform as well as the state-

of-the-art BSP-style distributed systems [4], [5]. Moreover,

none of the prior asynchronous systems can be extended

trivially to support execution on multi-host multi-GPUs.

In contrast, we propose a Bulk-Asynchronous Parallel

(BASP) model for both distributed CPUs and GPUs in which

the threads potentially never wait and instead continue to

do local work if available without explicitly waiting for the

communication from other hosts. Our redesign of reduce and

broadcast communication phases enables removing synchro-

nization while exploiting bulk-communication.

Bulk-Synchronous Distributed Graph Analytics Systems.

There have been many works that support graph analytics on

distributed CPUs [2], [3], [4], [5], [43] or GPUs [5], [6] in

the Bulk-Synchronous Parallel (BSP) model. Our proposed

approach targets wait-time reduction in graph applications by

exploiting the underlying asynchrony in codes written in BSP

models, and it targets distributed CPU and GPU systems.
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VI. CONCLUSION

This paper presented a novel programming model called

BASP that takes bulk-communication from BSP models and

continuous compute from asynchronous models to improve

overall runtime of programs. We showed that it is easy to adapt

BSP programs for BASP execution by modifying programs

in D-Galois and D-IrGL, the state-of-the-art distributed graph

analytics systems for CPUs and GPUs, respectively. Both

these systems use the Gluon substrate for communication.

We modified Gluon to support BASP and build the first

asynchronous distributed and heterogeneous graph analytical

system, Gluon-Async (source code is publicly available [27]).

Gluon-Async retains the benefits of Gluon, so it can handle

arbitrary partitioning policies and can be used to extend

existing CPU or GPU graph analytical systems for distributed

and heterogeneous execution. Our evaluation shows that on

real-world large-diameter graphs at scale, BASP programs

are on average ∼ 1.5× faster than D-Galois and D-IrGL,

respectively. Gluon-Async also scales better than them.
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