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Abstract. Let X be a holomorphic symplectic variety with a torus T action and a finite fixed 
point set of cardinality k. We assume that elliptic stable envelope exists for X. Let AI,J = Stab(J)|I 

be the k × k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The 
entries of this matrix are theta-functions of two groups of variables: the K¨ahler parameters 
and equivariant parameters of X. We say that two such varieties X and X0 are related by the 3d 
mirror symmetry if the fixed point sets of X and X0 have the same cardinality and can be 
identified so that the restriction matrix of X becomes equal to the restriction matrix of X0 after 
transposition and interchanging the equivariant and K¨ahler parameters of X, respectively, 
with the K¨ahler and equivariant parameters of X0. The first examples of pairs of 3d symmetric 
varieties were constructed in [Rim´anyi R., Smirnov A., Varchenko A., Zhou Z., 
arXiv:1902.03677], where the cotangent bundle T∗ Gr(k,n) to a Grassmannian is proved to be 
a 3d mirror to a Nakajima quiver variety of An−1-type. In this paper we prove that the cotangent 
bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads 
to nontrivial theta-function identities. 
Key words: equivariant elliptic cohomology; elliptic stable envelope; 3d mirror symmetry 
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1 Introduction 

1.1 The 3d mirror symmetry 

The 3d mirror symmetry has recently received plenty of attention in both representation theory 
and mathematical physics. It was introduced by various groups of physicists in [6, 7, 9, 10, 14, 20, 
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21], where one starts with a pair of 3d N = 4 supersymmetric gauge theories, considered as mirror 
to each other. Under the mirror symmetry, the two interesting components – Higgs 
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branch and Coulomb branch – of the moduli spaces of vacua are interchanged, as well as the Fayet–
Iliopoulos parameters and mass parameters. 

Translated into the mathematical language, the N = 4 supersymmetry indicates a hyperk¨ahler 
structure on the moduli space. In particular, for the theories we are interested in, the Higgs branch 
X is a variety which can be constructed as a hyperk¨ahler quotient, or equivalently in the algebraic 
setting, as a holomorphic symplectic quotient. As a large class of examples, Nakajima quiver 
varieties arise in this way, as Higgs branches of N = 4 supersymmetric quiver gauge theories. The 
mass parameters arise here as equivariant parameters of a certain torus T acting naturally on the 
Higgs branch X. The Fayet–Iliopoulos parameters, or K¨ahler parameters arise as coordinates on 
the torus K = Pic(X) ⊗ZC×. 

The “dual” symplectic varieties X0 – Coulomb branches, however, did not admit a mathematical 
construction until recently, see [5, 27, 29], where the Coulomb branches are defined as singular 
affine schemes by taking spectrums of certain convolution algebras, and quantized by considering 
noncommutative structures. Nevertheless, in many special cases, Coulomb branches admit nice 
resolutions, and can be identified with the Higgs branches of the mirror theory. These cases 
include hypertoric varieties, cotangent bundles of partial flag varieties, the Hilbert scheme of 
points on C2 and more generally, moduli spaces of instantons on the minimal resolution of An 

singularities. 3d mirror symmetry is often referred to as symplectic duality in mathematics, see 
references in [3, 4]. 

Aganagic and Okounkov in [1] argue that the equivariant elliptic cohomology and the theory of 
elliptic stable envelopes provide a natural framework to study the 3d mirror symmetry (See also 
the very important talk “Enumerative symplectic duality” given by A. Okounkov during the 2018 
MSRI workshop “Structures in Enumerative Geometry”). In particular, they argue that the elliptic 
stable envelopes of a symplectic variety depend on both equivariant and K¨ahler parameters in a 
symmetric way. Motivated by [1] we give the following definition of 3d mirror symmetric pairs of 
symplectic varieties X and X0. 

Let a symplectic variety X be endowed with a Hamiltonian action of a torus T. Let the set XT of 
torus fixed points be a finite set of cordiality k. For I ∈ XT let Stab(I) be the elliptic stable envelope 
of I.1 It is a class in elliptic cohomology of X. The restrictions of these elliptic cohomology classes 
to points of XT give a k ×k matrix AI,J = Stab(I)|J. The matrix elements AI,J are theta functions of two 
sets of variables associated with X: the equivariant parameters, which are coordinates on the torus 
T, and the K¨ahler parameters, which are coordinates on the torus K = Pic(X) ⊗ZC×. 

Let X and X0 be two such symplectic varieties. 

Definition 1.1. A variety X0 is a 3d mirror of a variety X if 

 
1 For the generality in which elliptic stable envelope can be defined see [25, Chapter 3]. The existence of these classes 

is proven for X given by Nakajima varieties and hypertoric varieties. It is expected, however, that elliptic stable 
envelopes exist for more general symplectic varieties. 
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(1) There exists a bijection of fixed point sets XT → (X0)T0, I 7→ I0. 

(2) There exists an isomorphism 

 κ: T → K0, K → T0 

identifying the equivariant and K¨ahler parameters of X with, respectively, K¨ahler and 
equivariant parameters of X0. 

(3) The matrices of restrictions of elliptic stable envelopes for X and X0 coincide after 
transposition (when the set of fixed points are identified by (1)) and change of variables (2): 

 , (1.1) 

where A0J0,I0 denotes the restriction matrix of elliptic stable envelopes for X0. 
The first examples of pairs of 3d symmetric varieties were constructed in [32], where the 

cotangent bundle T∗ Gr(k,n) to a Grassmannian is proved to be a 3d mirror of a Nakajima quiver 
variety of An−1-type. In this paper we prove that the cotangent bundle of the full flag variety is 3d 
mirror self-symmetric. 

That statement in particular leads to nontrivial theta-function identities. The left and righthand 
sides of equation (1.1) are given as sums of alternating products of Jacobi theta functions in two 
groups of variables. Equality (1.1) provides k2 highly nontrivial identities satisfied by Jacobi theta 
functions. In Section 3.5 we describe some of these identities in detail. 

Alternatively, one could define 3d mirror variety X0 as a variety which has the same Ktheoretic 
vertex functions (after the corresponding change of the equivariant and K¨ahler parameters). The 
vertex functions of X are the K-theoretic analogues of the Givental’s J-functions introduced in [30]. 
For the cotangent bundles of full flag varieties the vertex functions were studied for example in 
[13, 22, 23]. We believe that this alternative definition is equivalent to the one we give above. 

1.2 Elliptic stable envelopes: main results 

The notion of stable envelopes is introduced by Maulik–Okounkov in [25] to study the quantum 
cohomology of Nakajima quiver varieties. Stable envelopes depend on a choice of a cocharacter of 
the torus T. The Lie algebra of the torus admits a wall-and-chamber structure, such that the 
transition matrices between stable envelopes for different chambers turn out to be certain R-
matrices satisfying the Yang–Baxter equations, and hence they define quantum group structures. 
In [30, 31], the construction is generalized to K-theory, realizing the representations of quantum 
affine algebras. What appears new in K-theoretic stable envelopes is the piecewise linear 
dependence on a choice of slope, which lives in the space of K¨ahler parameters. 

The slope dependence is replaced by the meromorphic dependence on a complex K¨ahler 
parameters µ ∈ K (in the original paper [1] the K¨ahler parameters are denoted by z), in the further 
generalization of stable envelopes to equivariant elliptic cohomology, from which the 
cohomological and K-theoretic analogs can be obtained as certain limits. Now the elliptic stable 
envelopes depend on both equivariant and K¨ahler parameters, which makes the 3d mirror 
symmetry phenomenon possible. 

In this paper, we will consider the special case where X is the cotangent bundle of the variety 
of complete flags in Cn, which can be constructed as the Nakajima quiver variety associated to the 
An−1-quiver with dimension vector (1,2,...,n−2,n−1) and framing vector (0,0,...,0,n). There is a torus 
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action induced by the torus T on the framing space Cn. Fixed points XT can be identified with 
permutations of the ordered set (1,2,...,n), and hence parameterized by the symmetric group Sn. 

Let q ∈ C∗ be a complex number with |q| < 1, and E = C∗/qZ be the elliptic curve with modular 
parameter q. By definition, the extended equivariant elliptic cohomology ET(X) of X fits into the 
following diagram 

 ObI � / E (X) � / S(X) × ET × EPic(X) 

(1.2) 
 

ET × EPic(X), n−1 

where S(X) = Q SkE is the space of Chern roots, ET and EPic(X) are the spaces of equivariant 
k=1 

and K¨ahler parameters respectively, and ObI is an irreducible component of ET(X), associated with 
the fixed point I, called an orbit appearing in the following decomposition given by the localization 

ET . 
I∈XT 

Here each  is isomorphic to the base ET × EPic(X), and ∆ denotes the gluing data. 
Moreover, in our case X is a GKM variety, which by definition means that it admits finitely many 

T-fixed points and finitely many 1-dimensional orbits, and implies that ET(X) above is a simple 
normal crossing union of the orbits , along hyperplanes that can be explicitly described. 

The dual variety of X is another copy of the cotangent bundle of complete flag variety, which 
we denote by X0, in order to distinguish it from X. From the perspective of the 3d mirror symmetry, 
although X and X0 are isomorphic as varieties, we do not identify them in this naive way. Instead, 
we consider the sets of fixed points of X and X0 which are both parameterized by permutations I ∈ 
Sn, and define a natural bijection between the fixed points as bj: XT −→∼ (X0)T0, I 7→ I−1, 

where I−1 denotes the permutation inverse to I. Moreover, we also identify the base spaces of 
parameters in a nontrivial way 

 κ: EPic(X) ∼= ET0, EPic(X0) ∼= ET, (1.3) 

 , ~0 →7 ~. 

By definition, given a fixed point I ∈ XT, and a chosen cocharacter σ of T, the elliptic stable 
envelope Stabσ(I) is the section of a certain line bundle T (I) on ET(X), uniquely determined by a 
set of axioms. Moreover, explicit formulas for this sections, in terms of theta functions, can be 
obtained via abelianization. We will be interested in their restrictions to orbits Stab(I)|OˆJ, and the 
normalized version Stab(I)|OˆJ. 
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Our main result will be the following identity of the normalized restriction matrices of elliptic 
stable envelopes, for X and X0. 

Theorem 1.2. Let I,J ∈ XT be fixed points and I−1, J−1 be the corresponding fixed points on the dual 
variety. Then 

 Stab  Stab0 . (1.4) 
0 

Here κ: ObJ → ObI−1 is the isomorphism (1.3) and the equality (1.4) means that the 
corresponding sections coincide after this change of variables. 

Moreover, by the Fourier–Mukai philosophy, a natural idea originally from Aganagic–
Okounkov [1] is to enhance the coincidence above to the existence of a universal duality interface2 

on the product X × X0. Consider the following diagram of embeddings 

 X × {J} −i→J X × X0 ←− {iI I} × X0. 

Theorem 1.2 can then be rephrased as 

Theorem 1.3. There exists a holomorphic section m (the duality interface) of a certain line bundle 
on EllT×T0(X × X0) such that 

  Stab(I),  Stab0(J), 

where I is a fixed point on X and J is the corresponding fixed point on X0 (i.e., J = I−1 as a permutation). 

1.3 Weight functions and R-matrices 

Our proof of Theorem 1.4 relies on the observation that the elliptic stable envelope Stabσ(I), as 
defined in Aganagic–Okounkov [1], is related to weight functions WIσ(t,z,~,µ), defined in [34]. The 
weight function WIσ(t,z,~,µ) is a section of a certain line bundle over S(X)×ET ×EPic(X) in (1.2). The 
elliptic stable envelope Stabσ(I) is the restriction of this section to the extended elliptic 
cohomology ET(X). 

Weight functions first arise as integrands in the integral presentations of solutions to qKZ 
equations, associated with certain Yangians of type A [11, 12, 38, 39, 40, 41, 42]. For us, the weight 
functions here are the elliptic version introduced in [34]. 

Important properties of weight functions are described by the so called R-matrix relations. 
These relations describe the transformation properties of weight functions under the 
permutations of equivariant parameters. We show that these relations, in fact, uniquely determine 
the restriction matrices AI,J. 

Similar relations, describing the transformations of weight functions under the permutations 
of K¨ahler parameters were recently found by Rim´anyi–Weber in [35]. The proof of our main 
theorem is based on the observation that these new relations can be understood as the R-matrix 
relations for the 3d mirror variety X0 (because the K¨ahler parameters of X is identified with 
equivariant parameters of X0 under the 3d mirror symmetry). The R-matrix relations and the dual 
R-matrix relations then provide two ways to compute the restriction matrices, which is essentially 
two sides of the main equality of Theorem 1.2. 

 
2 In the previous paper [32], it is called the Mother function. 
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Let us note that 3d self symmetry of full flag varieties should have important applications to 
representation theory. In particular, we expect that it is closely related to self-symmetry of double 
affine Hecke algebra under the Cherednik’s Fourier transform [8]. Another interesting example of 
a symplectic variety which is 3d mirror self-dual is the Hilbert scheme of points on the complex 
plane Hilb . The explicit formulas for the elliptic stable envelopes in this case were obtained 
in [37]. In this case, however, Hilb  is not a GKM variety and therefore methods used in this 
paper are unavailable. 

We remark also that this paper deals with the cotangent bundles of full flag varieties of A-type. 
In general, it is natural to expect that cotangent bundles of the full flag varieties for a group G is a 
3d mirror of the cotangent bundle of full flag variety for the Langlands dual group LG. Though in 
general these flag varieties are not quiver varieties, both the R-matrix and the Bott–Samelson 
recursion [35] is available in this setting and the 3d mirror symmetry can be proved using 
technique similar to one in the present paper. 

2 Equivariant elliptic cohomology of X 

In this section we give a brief introduction to equivariant elliptic cohomology. For detailed 
definitions and constructions, we refer the reader to [15, 16, 17, 19, 24, 36], and also the recently 
appeared new approach [2]. 

2.1 The equivariant elliptic cohomology functor 

Let X be a smooth quasiprojective variety over C, and T be a torus acting on X. Recall that T-
equivariant cohomology is a contravariant functor from the category of varieties with T-actions to 
the category of algebras over the ring of equivariant parameters HT∗(pt), which is naturally 
identified with affine schemes over Spec , where r = dimT. Equivariant K-theory can 
be defined in a similar way, with the additive group Cr replaced by the multiplicative SpecKT(pt) 
∼= (C×)r. 

Let us set 

E := C×/qZ, 

which is a family of elliptic curves parametrized by the punctured disk 0 < |q| < 1. In the general 
definition of elliptic cohomology one works with more general families of elliptic curves, but 
considering E will be sufficient for the purposes of the present paper. 

Equivariant elliptic cohomology is constructed as a covariant functor 

EllT: {varieties with T-actions} → {schemes}, for 

which the base space of equivariant parameters is 

ET := EllT(pt) ∼= Er. 
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By functoriality, every X with T-action is associated with a structure map EllT(π): EllT(X) → EllT(pt), 
induced by the projection π: X → pt. 

We briefly describe the construction of equivariant elliptic cohomology. For each point t ∈ ET, 
take a small analytic neighborhood Ut, which is isomorphic via the exponential map to a small 
analytic neighborhood in Cr. Consider the sheaf of algebras 

H , 

where 

 Tt := \ kerχ ⊂ T, 
χ∈char(T),χ(t˜)∈qZ 

and t˜∈ T is any lift of t ∈ ET. 
Those algebras glue to a sheaf H over ET, and we define EllT(X) := SpecETH . The fiber of EllT(X) 

over t is obtained by setting local coordinates to 0, as described in the following 

 �  

  

This diagram describes a structure of the scheme EllT(X) and gives one of several definitions of 
elliptic cohomology. 

2.2 Chern roots and extended elliptic cohomology 

In this subsection, we consider X constructed as a GIT quotient of the form Y//θG, where G is a 
linear reductive group acting on an affine space CN, θ is a fixed character of G, and Y ⊂ CN is a G-
invariant subvariety. Let T be a torus acting on CN which commutes with G. The action hence 
descends to X. 

Given a character χ: G → C∗, the 1-dimensional G-representation Cχ descends to a line bundle Lχ 

on the quotient X. In other words, consider the map 

. 

The bundle Lχ is the pullback of the tautological line bundle on BC∗ to X. More generally, any G-
representation pulls back to a vector bundle, called a tautological bundle, on X. 

Let K ⊂ G be the maximal torus, and W be the Weyl group. Then EllG(pt) ∼= EdimK/W. From the 
diagram above, we have the cohomological Kirwan map 

, 
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and also the elliptic Kirwan map 

 EllT(X) → EdimK . (2.1) 

We say that X satisfies Kirwan surjectivity, if (2.1) is a closed embedding. By the results of [26], 
it holds for any Nakajima quiver variety. 

To include the dependence on K¨ahler parameters, consider 

EPic(X) := Pic(X) ⊗Z E ∼= EdimPic(X), and define the 

extended equivariant elliptic cohomology by 

ET(X) := EllT(X) × EPic(X). 

In particular, if X is a GIT quotient satisfying Kirwan surjectivity, one has the embedding 

 ET(X) � / (EdimK/W) × ET × EPic(X) 

 
ET × EPic(X). 

The coordinates on the three components of the RHS, as well as their pullbacks to ET(X), will be 
called Chern roots, equivariant parameters and K¨ahler parameters respectively. 

2.3 GKM varieties 

For a general X, the equivariant elliptic cohomology EllT(X) may be difficult to describe, even if the 
diagram above given by Kirwan surjectivity is present. However, for the following large class of 
varieties called GKM varieties, it admits a nice explicit combinatorial characterization. There are 
many classical examples of GKM varieties, including toric varieties, hypertoric varieties, and 
partial flag varieties. 

Definition 2.1. Let X be a variety with a T-action. We say that X is a GKM variety, if 

• XT is finite, 

• for every two fixed points p,q ∈ XT there is no more than one T-equivariant curve connecting 
them. 

• X is T-formal, in the sense of [18]. 

By definition, a GKM variety admits only finitely many T-fixed points and 1-dimensional T-
orbits. In particular, there are finitely many T-equivariant compact curves connecting fixed points, 
and they are all rational curves isomorphic to P1. 

By the localization theorem, we know that the irreducible components of EllT(X) are 
parameterized by fixed points p ∈ XT, each isomorphic to the base ET. Therefore, set-theoretically, 
EllT(X) is the union of |XT| copies of ET: 
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 EllT , (2.2) 
p∈XT 

where Op 
∼= ET and /∆ denotes the gluing data. Following [1] we will call Op the T-orbit associated 

to the fixed point p in EllT(X) (even though it is not an orbit of any group action). 
We have the following explicit description of EllT(X). The proof is a direct application of the 

characterization [18] of HT∗(X) when X is GKM, see [32]. 

Proposition 2.2. If X is a GKM variety, then 

EllT , 
p∈XT 

where /∆ denotes the intersections of T-orbits Op and Oq along the hyperplanes 

Op ⊃ χ⊥C ⊂ Oq, 

for all p and q connected by an equivariant curve C, where χC is the T-character of the tangent space 
TpC, and χ⊥C is the hyperplane in ET associated with the hyperplane kerχC ⊂ T. The intersections of 
orbits Op and Oq are transversal and hence the scheme EllT(X) is a variety with simple normal crossing 
singularities. 

The extended version also has the same structure 

 ET , (2.3) 
p∈XT 

where ∆ is the same as before, and EPic(X). For each 
fixed point p ∈ XT, we have the diagram 

 Obp � /  � / EdimK ET × EPic(X) 

(2.4) 
 

ET × EPic(X). 

Let t1,...,tdimK be the elliptic Chern roots. The embedding of  in EdimK EPic(X) is always cut 
out by linear equations  dimK, where  is a certain linear combination of 
equivariant parameters. 

Example 2.3. Consider the (C∗)N+1-action on PN. The equivariant K-theory ring, viewed as a 
scheme, fits into the following diagram 

  ( X ) 
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� / Spec Spec 

 

 
SpecCz1±1,...,zN±1+1,µ±1, 

where L is the class of O(1), z1,...,zN+1 are equivariant parameters, and µ is the K¨ahler parameter. 
Intuitively,  is simply the same picture “quotient by qZN+1×Z”. In particular, the relation 
(1−z1L)···(1−zN+1L) gives a simple normal crossing of N +1 components, each isomorphic to the 

base. The i-th component Obpi, which we call orbit corresponding to the fixed point i, is cut out by 
the linear equation 1 − ziL = 0. 
2.4 Geometry and extended elliptic cohomology of X 

From now on, let X be the Nakajima quiver variety associated to the An−1-quiver, with dimension 
vector (1,2,...,n − 1) and framing vector (0,0,...,0,n). More precisely, the quiver looks like 
 a1 a2 an−2 

 V1 o / / / 
n−1 

O 
j 

 
W, 

where 

 Vi = Ci, 1 ≤ i ≤ n − 1, W = Cn. 

By definition, one considers the vector space 
n−2 

R = MHom(Vi,Vi+1) ⊕ Hom(Vn−1,W), 
i=1 

 n−1 n−1 

acted upon naturally by G := Q GL(Vi), and the moment map µ: T∗R → Q gl(Vi)∗ given by 
 i=1 i=1 

 b1a1 = 0, aibi − bi+1ai+1 = 0, 1 ≤ i ≤ n − 3, an−2bn−2 − ij = 0. 

Given any stability condition θ = (θ1,...,θn−1) ∈ Zn−1, there is a G-character ( n−1 

Q (detgi)θi. We choose the stability condition to be θi < 0, 1 ≤ i ≤ n − 1, and define 
i=1 

X := µ−1(0)//θG. 

h (1 − z 1 L ) ··· (1 − z N +1 L ) i 

V 2 
b 1 

··· 
b 2 

V 
b n − 2 

i 
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Proposition 2.4. The quiver variety X defined above is isomorphic to the cotangent bundle of the 
complete flag variety in Cn. 

Proof. Recall the following criterion of stability [28]: a representative (a,b,i,j) is stable if and only 
if for any invariant subspace S ⊂ V := Li Vi, the following two conditions hold 

1) if S ⊂ kerj, then either θ · dimS > 0 or S = 0; 

2) if S ⊃ imi, then either θ · dimS > θ · dimV or S = V . 

For a representative (a,b,i,j) the space 
n−2 

S = Mkerai ⊕ kerj 
i=1 

is stable under a and b by the moment map equations. Hence for the representative to be stable, 
it has to satisfy 1), which implies S = 0. In other words, ai and j are injective, which gives a complete 
flag in Cn. The maps bi then represent a point in the cotangent fiber.  

Consider the torus (C∗)n acting on (x1,...,xn) ∈ W, which descends to X, and an extra torus  
scaling the cotangent fibers 

 , , 

where z1,...,zn,~ are the equivariant parameters. 
Let Vk, 1 ≤ k ≤ n − 1 be the tautological bundles associated with Vk. Denote their Chern roots 

decomposition by 

. 

in the K-theory of X. Let {e1,...,en} be the standard basis of W = Cn. Fixed points of X are 
parameterized by complete flags V1 ⊂ ··· ⊂ Vn−1 ⊂ W, where each Vk is a coordinate subspace in W, 
i.e., spanned by a subset of size k of ei’s. For any 1 ≤ k ≤ n, let Ik be the index such that Vk/Vk−1 = CeIk. 
Then the tuple (I1,...,In) is a permutation of the indices (1,...,n). In other words, for each element of 
the symmetric group I ∈ Sn, there is a fixed point of X, given by the complete flag V1(I) ⊂ ··· ⊂ Vn−1(I) 
⊂ W, where 

 Vk(I) = SpanC{eI1,...,eIk}, 1 ≤ k ≤ n. 

We also introduce the notation of ordered indices: 

 , 1 ≤ k ≤ n. (2.5) 

By Kirwan surjectivity, the extended elliptic cohomology ET(X) embeds into the space 

E × Sym2 E × ··· × Symn−1 E × ET × EPic(X) 

with coordinates 



12 R. Rim´anyi, A. Smirnov, A. Varchenko and Z. Zhou 
 

. 

Moreover, by the GKM description, the extended elliptic cohomology is a union of orbits 

 ET , (2.6) 

where  is cut out by the linear equations 

 , 1 ≤ l ≤ k ≤ n. (2.7) 

Note that in these equations of Chern root restrictions, we have implicitly chosen an ordering of 
Chern roots , depending on each fixed point. The tangent bundle at the fixed point I is 

. 

Choose a cocharacter of the torus (C)∗ σ = (1,2,...,n) ∈ Rn, which 

decomposes the tangent bundle as TIX = NI+ ⊕ NI−, where 

. 

3 Elliptic weight functions and R-matrices 

3.1 Notations and parameters 

Let q ∈ C∗ be a complex number with |q| < 1. The skew Jacobi theta function is defined by 

. 

It has the following properties 

. 

The elliptic weight functions depend on the following sets of parameters: 

• The equivariant parameters z = (z1,...,zn) representing the coordinates on OI 
∼= ET in (2.2). 

• The K¨ahler (or dynamical) parameters µ = (µ1,...,µn) representing the coordinates on EPic(X)-
part of the extended orbits  in (2.3). 

• The Chern roots t  of the rank k tautological bundle Vk over X. We will 
abbreviate by t  the set of all Chern roots of all tautological bundles. 

• The T-equivariant weight ~ representing the weight of the symplectic form on X. 
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For a permutation σ we write zσ = (zσ(1),...,zσ(n)) and 1/z = (1/z1,...,1/zn). 

As we discussed in Section 2.4 the fixed points XT are labeled by permutations I = (I1,...,In) of the 
ordered set (1,...,n). By abuse of language we will denote the fixed point corresponding to I by I as 
well. For another permutation σ ∈ Sn, the product σ · I will denote the composed permutation (and 
also the corresponding fixed point) 

(1,...,n) 7→ (σ(1),...,σ(n)) 7→ (Iσ(1),...,Iσ(n)). 

We will denote the restrictions of Chern roots to the orbits corresponding to fixed points (2.7) by 

 z , (3.1) 

where  are defined by (2.5). 

3.2 Weight functions 

Let us define the elliptic weight functions 

 WI(t,z,~,µ) = Symt(1) ···Symt(n−1) UI(t,z,~,µ), (3.2) 

where the symbol Sym denotes the symmetrization over the corresponding set of variables and 

 
with convention  and 

if , 
, if

, if

. 

Here the index j(I,k,a) ∈ {1,...,n} is defined such that 

, 

and 

  (3.3) 

For a permutation σ ∈ Sn we also define the elliptic weight function 

Wσ,I(t,z,~,µ) := Wσ−1(I)(t,zσ,~,µ). 

Of particular importance will be the weight function corresponding to the longest permutation σ0 

= (n,n − 1,...,2,1) ∈ Sn. 
Define 
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 AσI,J(z,µ) = Wσ,I(zJ,z,h,µ), (3.4) 

the matrix of restrictions of elliptic weight functions to fixed points. For σ = id we will abbreviate 
it to AI,J(z,µ). 

3.3 Properties of weight functions and restriction matrices 

The elliptic weight functions enjoy several interesting combinatorial identities. Here we list some 
of them which will be used below. A more detailed exposition can be found in [33, 34]. Let us set 

 . 

This function satisfies the following property: 

Lemma 3.1. 

. 

Proof. By direct computation.  

Lemma 3.2. For the dominance order on permutations, the matrix AI,J(z,µ) is lower triangular, i.e., 

 AI,J(z,µ) = 0, if  

and the diagonal elements are given by 

AI,I(z,µ) = (−1)IPI(z1,...,zn)P
I−1·σ0(µσ0(1),...,µσ0(n)), (3.5) where (−1)I stands for the parity of the 

permutation I. The matrix functions AI,J(z,µ) are holomorphic in all variables z, ~, µ. 

Proof. Lemmas 2.4, 2.5 and 2.6 in [34].  

Let us consider the elliptic dynamical R-matrix in the Felder’s normalization 

, 

where 1 ≤ j,k ≤ n, j 6= k. 

Lemma 3.3. The weight functions (3.2) satisfy the following recursive relations 

, 

where a := I−1(k), b := I−1(k +1), and sk denotes the transposition (k,k +1). The superscript zk ↔ zk+1 

denotes the function in which zk is substituted by zk+1 and zk+1 by zk. 

Proof. Theorem 2.2 in [34].  
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We can reformulate those as relations among the matrix elements of the restriction matrix. 

Corollary 3.4. The elements of the restriction matrix satisfy the following relations: 

 . (3.6) 

The identity (3.6) can be used to compute recursively all matrix elements AI,J(z,µ) from the 
known diagonal entries (3.5): 

Lemma 3.5. The restriction matrix AI,J(z,µ) is the unique lower triangular matrix (in the basis of 
indexes I ordered by ) with the diagonal elements given by (3.5) satisfying the R-matrix relations 
(3.6). 

Proof. The proof is by induction on rows of the restriction matrix. The restriction matrix AI,J(z,µ) 
is lower triangular if I, J are ordered by the dominance order . Thus, the only nontrivial matrix 
element in the first row is Aid,id(z,µ). This matrix element is fixed by (3.5) and thus all elements in 
the first row are uniquely determined. Note that (3.6) can be rewritten as: 

AI·sk,J·sk(z,µ) = αskAI,J(z,µ)zk↔zk+1 + βskAI,J·sk(z,µ) 

for certain explicit functions αsk and βsk. For any I0 6= id, there always exists some k, such that for I 
:= I0 · sk, we have . Thus, the last identity is the expression for matrix elements in 
the I0-th row in terms of its values in the previous rows. The result follows by induction.  

3.4 Dual R-matrix relations 

Recent results in [35] show that the matrix elements of the restriction matrices satisfy another 
recursion, named “Bott–Samelson recursion” in [35]. We will call this other recursion the “dual R-
matrix relations” and explain later that these relations correspond to R-matrix relations on the 
symplectic dual variety X0. 
Theorem 3.6. The elements of the restriction matrix satisfy the following relations 

 , (3.7) 

where a = n−Jk +1 and b = n−Jk+1 +1 and the coefficients R˜
c,da,b are related to the coefficients of Felder’s 

R-matrix by 

  . (3.8) 

Proof. This identity is equivalent to Theorem 11.1 in [35]. Indeed, direct computations show that 
the weight functions wI used in [35] differ from the one used in the present paper by a factor 

, 
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where C a constant independent of I, and pj−1(i) is given by (3.3). Substituting this to the equation 
(33) of [35], we arrive at (3.7).  

The following Lemma and its proof is analogous to Lemma 3.5. 

Lemma 3.7. The restriction matrix AI,J(z,µ) is the unique lower triangular matrix (in the basis of 
indexes I ordered by ) with diagonal elements given by (3.5) satisfying the recursive relations (3.7). 

Note 3.8. We found that the matrix elements AI,J(z,µ) can be computed in two different ways: using 
recursion (3.6) or recursion (3.7). This fact provides a set of highly nontrivial identities for elliptic 
functions. We give several examples of these identities in Section 3.5, see also [35, Section 9]. In 
general, these identities can be formulated as Theorem 3.10 below. 

The recursive relations (3.6) and (3.7) are closely related: 

Proposition 3.9. Let AI,J(z,µ) be a matrix satisfying relations (3.6). Let BI,J(z,µ) be the matrix defined 
by 

 . (3.9) 

Then the matrix BI,J(z,µ) satisfies the relations (3.7). 

Proof. Expressing AI,J(z,µ) from (3.9), we find 

. 

Substituting this into (3.6) we obtain 

. 

To see that this identity is equivalent to (3.7), we change the indices of the matrices by 

 J−1 · σ0 7→ I, I−1 · σ0 7→ J, (3.10) 

such that 

 

. 

Substitution zi 7→ µ−i 1, µi 7→ zσ0(i) simplifies it to 

 Bsk·I,sk·J(z,µ)µk↔µk+1 = R˜a,ba,bBI,J(z,µ) + R˜a,bb,aBI,sk·J(z,µ), (3.11) 

where R˜
a,bb,a are related to Felder’s R-matrix as in (3.8). Finally, in R-matrix relations (3.6) the 

index a is the number of the element k in the permutation I and b is the number of the element 
k+1 in I. After changing indexes as in (3.10) we find that a = n−Jk +1 and b = n−Jk+1 +1. 
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We see that relation (3.11) coincides with (3.7).  

We conclude the following result. 

Theorem 3.10. The elements of the restriction matrix satisfy the following identities 

 , (3.12) 

where σ0 denotes the longest permutation in the symmetric group Sn. Proof. Let 

BI,J(z,µ) be as in the previous proposition. First 

AI,I(z,µ) = (−1)n(n−1)/2BI,I(z,µ). 

This follows from (3.5) Lemma 3.1 and (−1)σ0 = (−1)n(n−2)/2. 
By Corollary 3.4 AI,J(z,µ) satisfies the R-matrix relations, and thus by the previous proposition 

BI,J(z,µ) satisfies relations (3.7). By Lemmas 3.5 and 3.7, we conclude 

AI,J(z,µ) = (−1)n(n−1)/2BI,J(z,µ). 

This identity is equivalent to (3.12) after the change of variables zi 7→ µσ0(i), µi 7→ zi−1 and indexes 
σ0 · J−1 7→ I, σ0 · I−1 7→ J.  

Note 3.11. We would like to stress here that the identity (3.12) describes a symmetry between 
two sets of parameters of completely different nature: the equivariant parameters z and the 
K¨ahler parameters µ. The symmetry of the elliptic stable envelopes with respect to the 
transformation z ↔ µ is one of the predictions of 3d mirror symmetry. We will discuss this point 
of view in Section 4. 

3.5 Examples 

Case n = 2. Using (3.2) we find that the weight functions are equal 

 . 

Here, as we defined in Section 3.1, (1,2) and (2,1) denote the fixed points corresponding to the 
trivial and non-trivial permutations of S2 respectively. 

By (3.1) the restriction to the point (1,2) is given by the substitution  and that to the 

point (2,1) is given by the substitution . Thus, in the basis of permutations ordered by 
(1,2), (2,1), the matrix of restrictions equals 

 . 

The statement of Theorem 3.10 in this case is equivalent to the following system of identities 

A(1,2),(1,2)(z1,z2,µ1,µ2) = −A(2,1),(2,1)(µ2,µ1,1/z1,1/z2), 
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A(1,2),(2,1)(z1,z2,µ1,µ2) = −A(1,2),(2,1)(µ2,µ1,1/z1,1/z2), 

A(2,1),(1,2)(z1,z2,µ1,µ2) = −A(2,1),(1,2)(µ2,µ1,1/z1,1/z2), A(2,1),(2,1)(z1,z2,µ1,µ2) = 

−A(1,2),(1,2)(µ2,µ1,1/z1,1/z2). 

It is easy to observe that all these identities trivially follow from ϑ(1/x) = −ϑ(x). The situation, 
however, is more involved in the “non-abelian” cases n ≥ 3. 

Case n = 3. In this case one checks that the identities (3.12) are all trivial (i.e., both sides are 
equal to zero or coincide trivially) except the following matrix elements 

A(3,1,2),(1,2,3)(z1,z2,z3,µ1,µ2,µ3) = −A(3,2,1),(2,1,3)(µ3,µ2,µ1,1/z1,1/z2,1/z3), 

A(3,2,1),(2,1,3)(z1,z2,z3,µ1,µ2,µ3) = −A(2,3,1),(1,2,3)(µ3,µ2,µ1,1/z1,1/z2,1/z3), 

A(3,2,1),(1,2,3)(z1,z2,z3,µ1,µ2,µ3) = −A(3,2,1),(1,2,3)(µ3,µ2,µ1,1/z1,1/z2,1/z3), Let us, for instance, 

compute the two sides of the last line. Using the definition (3.2) we have 

 

where the second term  denotes the first term with  switched. 
By (3.1), the restriction of a weight function to (3,2,1) corresponds to the specialization 

. Thus, we compute 

, 

and the identity above takes the form 
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. 

This is an example of nontrivial identity satisfied by the Jacobi theta-functions. It is equivalent to 
the so called four-term identity for the theta functions, see equation (2.7) in [34], after some 
identification of the parameters. 

4 Elliptic stable envelopes 

4.1 Elliptic stable envelopes in holomorphic normalization 

The elliptic stable envelopes for Nakajima quiver varieties were defined in [1]. If X is the Nakajima 
quiver variety defined in Section 2.4 (the cotangent bundle over the full flag variety) and I ∈ XT is 
a fixed point then the elliptic stable envelope Stabσ(I) is the unique section of a certain line bundle 
over ET(X) distinguished by a set of remarkable properties. We refer to [1, Section 3] for the 
original definition. The elliptic stable envelope depends on a choice of a chamber σ. For X the set 
of chambers coincides with the set of Weyl chambers of the Lie algebra sln and thus, the chambers 
are parameterized by permutations σ, see [33] for the detailed discussion of cotangent bundles 
over partial flag varieties. 

n−1 

Let us set S(X) = Q SkE where SkE denotes the k-th symmetric power of the elliptic 
k=1 

curve E. Coordinates on S(X) are symmetric functions in Chern roots t of the tautological bundles. 
Recall the following map as in (2.4) 

cX 
ET(X) −→ S(X) × ET × EPic(X), 

given by the elliptic Chern classes of the tautological bundles over X. It is known that cX is an 
embedding [26], see also [1, Section 2.4]. 

The elliptic weight functions Wσ,I(t,z,~,µ) are symmetric in t and thus represent sections of 
certain line bundles over the scheme S(X) × ET × EPic(X). The following theorem describes the known 
relation between the weight functions and the elliptic stable envelopes for X. 

Theorem 4.1. The elliptic stable envelope of a fixed point I ∈ XT for a chamber σ is given by the 
restriction of the corresponding elliptic weight function to elliptic cohomology of X: 

 Stabσ(I) = c∗XWσ,I(t,z,~,µ). (4.1) 



 
Proof. In the original paper [1] the elliptic stable envelope Stabσ(I) was defined as the unique 
section of certain line bundle satisfying a list of defining conditions. It was checked in Theorem 
7.3 of [34] that the right side of (4.1) satisfies these conditions.  

Remark 4.2. The elliptic stable envelopes Stab ) defined by Aganagic–Okounkov in [1] and 
the restrictions (4.1) differ by a normalization (i.e., by a factor). One of the defining properties in 
[1] fixes the diagonal restriction 

Stab , 
while in our normalization of the elliptic weight functions the diagonal restrictions are given by 
(3.5). This means that the Aganagic–Okounkov stable envelopes and the ones we use in the 
present paper are related by 

Stabσ(I) = (−1)σ−1IPI−1σσ0(µσ0(1),...,µσ0(n))StabAOσ (I). 
That is, the two versions of stable envelopes are sections of line bundles related by the twist of a 
line bundle which PI−1σσ0(µσ0(1),...,µσ0(n)) is a section of. We chose to use (4.1) is this paper because 
in this normalization the stable envelopes are holomorphic, see Lemma 3.2. 

4.2 Dual variety X0 and dual stable envelope 

Let us fix a second copy of symplectic variety isomorphic to the cotangent bundle over the full flag 
variety. To distinguish it from X we denote it by X0. We will refer to X0 as “dual variety”. We denote 
the torus acting on X0 by T0 (by definition, it acts on X0 in the same way the torus T acts on X). As in 
(2.6) the extended equivariant elliptic cohomology scheme of this variety has the following form 

 ET , (4.2) 
I∈(X0)T0 

00 

where ObI 
∼= ET0 × EPic( . We will denote by (z ) the coordinates on ObI. 

We denote by Stab the elliptic stable envelope for the dual variety corresponding to the 
chamber σ0: 

 Stab , (4.3) 

where t0 stands for the set of Chern roots of the tautological bundles over X0 and cX0 is the same as 
in the previous subsection. 

4.3 Identification of K¨ahler and equivariant parameters 

Although as varieties X and X0 are isomorphic, we treat them differently. In particular, fixed points 
and parameters will be identified in a nontrivial way. 

We fix an isomorphism of extended orbits of dual varieties 
0 

κ: ObI → ObJ 

defined explicitly in coordinates by 

 µ0i 7→ zi, zi0 7→ µi, ~0 7→ ~, i = 1,...,n. 
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Note that κ maps the equivariant parameters of X to the K¨ahler parameters of X0 and vice versa. In 
particular, it provides an isomorphisms (which we denote by the same symbol, for simplicity) 

 κ: EPic(X) ∼= ET0, EPic(X0) ∼= ET. (4.4) 

4.4 3d mirror symmetry of cotangent bundles over full flag varieties 

It is clear that XT and (X0)T0 are the same sets. We define a bijection bj: XT → 

(X0)T0, bj(I) := I−1. 

We say that J ∈ (X0)T0 is the fixed point corresponding to a fixed point I ∈ XT if J = bj(I). 
Now we are ready to formulate our main theorem revealing z ↔ µ symmetry of elliptic stable 

envelopes associated with the cotangent bundles over full flag varieties: 
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Theorem 4.3. Let I,J ∈ XT be fixed points and I−1, J−1 be the corresponding fixed points on the dual 
variety. Then 

 Stab .  Stab
OI−1 

Proof. By definition Stab ). Similarly, by (4.3) we have 

Stab . 

From the definition of κ we obtain 

κ∗ Stab0 . 

Thus, the statement is equivalent to Theorem 3.10.  

Our Definition 1.1 of 3d mirror symmetry then implies: 

Corollary 4.4. The variety X0 is a 3d mirror of X. 

As X ∼= X0 we say that X is 3d mirror self-dual. 

5 The duality interface 

5.1 Interpolation function 

Let us define the following combination of elliptic weight functions m˜(t,t0) := 

(−1)n(n−1)/2 X A−I,J1 (z,z0)WJ(t,z,~,z0)WI−1·σ0(t0,z0σ0,1/z). 

I,J∈Sn 

This function interpolates the elliptic weight functions in the following sense. 

Lemma 5.1. 



 

 m˜ , m˜ . 

Proof. Obvious from the definition of restriction matrix (3.4) and Theorem 3.10.  

Let us consider the scheme S(X)×S(X0)×ET×T0. As before, we assume that the coordinates on S(X) 
are symmetric functions in Chern roots t and coordinates on S(X0) are symmetric functions in t0. 
By definition, m˜(t,t0) is symmetric function in t and t0. Therefore, it represents a section of certain 
line bundle on this scheme. 

5.2 Interpolation function as a section of a line bundle 

We would like to rewrite the statement of the previous lemma in geometric terms. For a fixed 
point L ∈ (X0)T0 we denote by αL0 the composition of the following maps 

ET × EPic(X) × S(X) → ET0 × EPic(X0) × S(X) ∼= ObL0 × S(X) →eL ET0(X0) × S(X) 
cX0 0 × ET0 × EPic(X0) → S(X) × S(X0) × ET×T0, −→ S(X) × S(X ) 

where the first and the last maps are given by κ (just a change of variables), eL is the inclusion of 

the extended orbit Ob0L to the extended cohomology ET0(X0) (4.2) and cX0 is the elliptic Chern class 

for X. We denote by αL : ET0 × EPic(X0) × S(X0) −→ S(X) × S(X0) × ET×T0 

the map given by the same chain of maps with X0 in place of X. Lemma 5.1 can be formulated as 
follows 
Lemma 5.2. 

. 

Proof. The map (  is the restriction of a section to the orbit . By definition, it is 
given by a substitution t0 = z0L. The same for αL∗ . The result follows from the Lemma 5.1 after the 
change of variables by κ.  

5.3 The duality interface 

Let us consider a T × T0-variety X × X0. For fixed points I ∈ XT, J ∈ (X0)T0 we consider the equivariant 
embeddings 

 X × {J} −i→J X × X0 ←− {iI I} × X0. (5.1) 

We have 

EllT×T0(X × {J}) = EllT(X) × ET0 ∼= ET(X), 

where the last equality is by (4.4). Similarly, we use (4.4) to fix the isomorphism EllT×T0({I}× X0) ∼= 
ET0(X0). By covariance of the equivariant elliptic cohomology functor, the maps (5.1) induce the 
following embeddings 
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 ET  EllT×T0(X × X0) ←−i∗I ET0(X0). 

Theorem 5.3. There exists a holomorphic section m (the duality interface3) of a certain line bundle 
on EllT×T0(X × X0) such that 

  Stab(I),  Stab0(J), 

where I is a fixed point on X and J is the corresponding fixed point on X0 (i.e., J = I−1 as a permutation). 

Proof. Let 

 EllT×T0(X × X0) −→c S(X) × S(X0) × ET×T0 

be the embedding by the elliptic Chern classes. Define m = c∗(m˜). For I ∈ XT we can factor the 
inclusion map as  where cX0 : ET(X0) → S(X0)×ET0 ×EPic(X0) the elliptic Chern classes of 
tautological bundles over X0. Thus, 

(i∗I)∗(m) = c∗X0 ◦ αI∗(m˜) = c∗X 0(WI−1·σ0(t0,z,~,1/µ0)) = Stab0(I−1) = Stab0(J), 

where the second equality is by Lemma 5.2 and the third is by (4.3). The calculation for a fixed 
point on J ∈ (X0)T0 is the same. 

Finally, by definition, m is holomorphic if every restriction m|OI,J is holomorphic. But m|OI,J = 

AI,J(z,z0), 

which is holomorphic by Lemma 3.2.  Mirror Self-Symmetry of the Cotangent Bundle of the Full 
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