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Abstract. Let X be a holomorphic symplectic variety with a torus T action and a finite fixed
point set of cardinality k. We assume that elliptic stable envelope exists for X. Let A;y= Stab(J) |
be the k x k matrix of restrictions of the elliptic stable envelopes of X to the fixed points. The
entries of this matrix are theta-functions of two groups of variables: the Kahler parameters
and equivariant parameters of X. We say that two such varieties X and X°are related by the 3d
mirror symmetry if the fixed point sets of X and X° have the same cardinality and can be
identified so that the restriction matrix of X becomes equal to the restriction matrix of X° after
transposition and interchanging the equivariant and K"ahler parameters of X, respectively,
with the K"ahler and equivariant parameters of X°. The first examples of pairs of 3d symmetric
varieties were constructed in [Rim’anyi R. Smirnov A., Varchenko A. Zhou Z,
arXiv:1902.03677], where the cotangent bundle T+ Gr(k,n) to a Grassmannian is proved to be
a 3d mirror to a Nakajima quiver variety of An-1-type. In this paper we prove that the cotangent
bundle of the full flag variety is 3d mirror self-symmetric. That statement in particular leads
to nontrivial theta-function identities.

Key words: equivariant elliptic cohomology; elliptic stable envelope; 3d mirror symmetry

2010 Mathematics Subject Classification: 17B37; 55N34; 32C35; 55R40

1 Introduction

1.1  The 3d mirror symmetry

The 3d mirror symmetry has recently received plenty of attention in both representation theory
and mathematical physics. It was introduced by various groups of physicists in [6, 7, 9, 10, 14, 20,


https://doi.org/10.3842/SIGMA.2019.093
http://arxiv.org/abs/1902.03677
http://arxiv.org/abs/1902.03677

2 R. Rim anyi, A. Smirnov, A. Varchenko and Z. Zhou

21], where one starts with a pair of 3d N = 4 supersymmetric gauge theories, considered as mirror
to each other. Under the mirror symmetry, the two interesting components - Higgs

This paper is a contribution to the Special Issue on Representation Theory and Integrable Systems in honor of
Vitaly Tarasov on the 60th birthday and Alexander Varchenko on the 70th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Tarasov-Varchenko.html
branch and Coulomb branch - of the moduli spaces of vacua are interchanged, as well as the Fayet-
[liopoulos parameters and mass parameters.

Translated into the mathematical language, the N = 4 supersymmetry indicates a hyperk“ahler
structure on the moduli space. In particular, for the theories we are interested in, the Higgs branch
X is a variety which can be constructed as a hyperk“ahler quotient, or equivalently in the algebraic
setting, as a holomorphic symplectic quotient. As a large class of examples, Nakajima quiver
varieties arise in this way, as Higgs branches of N = 4 supersymmetric quiver gauge theories. The
mass parameters arise here as equivariant parameters of a certain torus T acting naturally on the
Higgs branch X. The Fayet-Iliopoulos parameters, or K'ahler parameters arise as coordinates on
the torus K = Pic(X) ®zC~.

The “dual” symplectic varieties X° - Coulomb branches, however, did not admit a mathematical
construction until recently, see [5, 27, 29], where the Coulomb branches are defined as singular
affine schemes by taking spectrums of certain convolution algebras, and quantized by considering
noncommutative structures. Nevertheless, in many special cases, Coulomb branches admit nice
resolutions, and can be identified with the Higgs branches of the mirror theory. These cases
include hypertoric varieties, cotangent bundles of partial flag varieties, the Hilbert scheme of
points on C2 and more generally, moduli spaces of instantons on the minimal resolution of A4,
singularities. 3d mirror symmetry is often referred to as symplectic duality in mathematics, see
references in [3, 4].

Aganagic and Okounkov in [1] argue that the equivariant elliptic cohomology and the theory of
elliptic stable envelopes provide a natural framework to study the 3d mirror symmetry (See also
the very important talk “Enumerative symplectic duality” given by A. Okounkov during the 2018
MSRI workshop “Structures in Enumerative Geometry”). In particular, they argue that the elliptic
stable envelopes of a symplectic variety depend on both equivariant and K"ahler parameters in a
symmetric way. Motivated by [1] we give the following definition of 3d mirror symmetric pairs of
symplectic varieties X and X°.

Let a symplectic variety X be endowed with a Hamiltonian action of a torus T. Let the set X" of
torus fixed points be a finite set of cordiality k. For I € X" let Stab(I) be the elliptic stable envelope
of I.11t is a class in elliptic cohomology of X. The restrictions of these elliptic cohomology classes
to points of X" give a k xk matrix A;;= Stab([)|;. The matrix elements A;;are theta functions of two
sets of variables associated with X: the equivariant parameters, which are coordinates on the torus
T, and the K"ahler parameters, which are coordinates on the torus K = Pic(X) &.C~.

Let X and X°be two such symplectic varieties.

Definition 1.1. A variety X%is a 3d mirror of a variety X if

1 For the generality in which elliptic stable envelope can be defined see [25, Chapter 3]. The existence of these classes
is proven for X given by Nakajima varieties and hypertoric varieties. It is expected, however, that elliptic stable
envelopes exist for more general symplectic varieties.
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(1) There exists a bijection of fixed point sets X" — (X0)", [ 7— [°.

(2) There exists an isomorphism
K: T — KO, K—To

identifying the equivariant and K"ahler parameters of X with, respectively, K'ahler and
equivariant parameters of X°.

(3) The matrices of restrictions of elliptic stable envelopes for X and X° coincide after
transposition (when the set of fixed points are identified by (1)) and change of variables (2):

Ay =" (Al 1) (1.1)

where A% o denotes the restriction matrix of elliptic stable envelopes for X0.

The first examples of pairs of 3d symmetric varieties were constructed in [32], where the
cotangent bundle T* Gr(k,n) to a Grassmannian is proved to be a 3d mirror of a Nakajima quiver
variety of A,-1-type. In this paper we prove that the cotangent bundle of the full flag variety is 3d
mirror self-symmetric.

That statement in particular leads to nontrivial theta-function identities. The left and righthand
sides of equation (1.1) are given as sums of alternating products of Jacobi theta functions in two
groups of variables. Equality (1.1) provides k2 highly nontrivial identities satisfied by Jacobi theta
functions. In Section 3.5 we describe some of these identities in detail.

Alternatively, one could define 3d mirror variety X°as a variety which has the same Ktheoretic
vertex functions (after the corresponding change of the equivariant and K"ahler parameters). The
vertex functions of X are the K-theoretic analogues of the Givental’s J-functions introduced in [30].
For the cotangent bundles of full flag varieties the vertex functions were studied for example in
[13, 22, 23]. We believe that this alternative definition is equivalent to the one we give above.

1.2 Elliptic stable envelopes: main results

The notion of stable envelopes is introduced by Maulik-Okounkov in [25] to study the quantum
cohomology of Nakajima quiver varieties. Stable envelopes depend on a choice of a cocharacter of
the torus T. The Lie algebra of the torus admits a wall-and-chamber structure, such that the
transition matrices between stable envelopes for different chambers turn out to be certain R-
matrices satisfying the Yang-Baxter equations, and hence they define quantum group structures.
In [30, 31], the construction is generalized to K-theory, realizing the representations of quantum
affine algebras. What appears new in K-theoretic stable envelopes is the piecewise linear
dependence on a choice of slope, which lives in the space of K"ahler parameters.

The slope dependence is replaced by the meromorphic dependence on a complex Kahler
parameters p € K (in the original paper [1] the K"ahler parameters are denoted by z), in the further
generalization of stable envelopes to equivariant elliptic cohomology, from which the
cohomological and K-theoretic analogs can be obtained as certain limits. Now the elliptic stable
envelopes depend on both equivariant and K'ahler parameters, which makes the 3d mirror
symmetry phenomenon possible.

In this paper, we will consider the special case where X is the cotangent bundle of the variety
of complete flags in Cr, which can be constructed as the Nakajima quiver variety associated to the
A,-1-quiver with dimension vector (1,2,..,n-2,n-1) and framing vector (0,0,...0,n). There is a torus
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action induced by the torus T on the framing space Cn. Fixed points X' can be identified with
permutations of the ordered set (1,2,..,n), and hence parameterized by the symmetric group S.

Let g € C*be a complex number with |g| < 1, and E = C*/g” be the elliptic curve with modular
parameter g. By definition, the extended equivariant elliptic cohomology Er(X) of X fits into the
following diagram

T Obi@ / E (X) B/ S(X) x ET x EPic(X)

(1.2)

ET x Epic(X), n-1

where S(X) = Q S¥E is the space of Chern roots, Erand Epic(x) are the spaces of equivariant
k=1

and K"ahler parameters respectively, and Op;is an irreducible component of Er(X), associated with

the fixed point /, called an orbit appearing in the following decomposition given by the localization

- (o)

IeX™

E

Here eachO7 is isomorphic to the base Er x Epicgry, and A denotes the gluing data.
Moreover, in our case Xis a GKM variety, which by definition means that it admits finitely many
T-fixed points and finitely many 1-dimensional orbits, and implies that Er(X) above is a simple

normal crossing union of the orbits 61, along hyperplanes that can be explicitly described.
The dual variety of X is another copy of the cotangent bundle of complete flag variety, which

we denote by X9, in order to distinguish it from X. From the perspective of the 3d mirror symmetry,
although X and X° are isomorphic as varieties, we do not identify them in this naive way. Instead,
we consider the sets of fixed points of X and X? which are both parameterized by permutations [ €

S», and define a natural bijection between the fixed points as bj: X' ——~ (X%)%, | 7— [-1,

where [-1 denotes the permutation inverse to I. Moreover, we also identify the base spaces of
parameters in a nontrivial way

K: EPic(X) ~= ETo, EPic(Xo) ~= ET, (1.3)

/ !/
Hi = Zi, Zi i, N7,

By definition, given a fixed point I € X", and a chosen cocharacter ¢ of T, the elliptic stable
envelope Stab,(I) is the section of a certain line bundle T (I) on Er(X), uniquely determined by a
set of axioms. Moreover, explicit formulas for this sections, in terms of theta functions, can be
obtained via abelianization. We will be interested in their restrictions to orbits Stab(/) |07, and the
normalized version Stab(/)|o7.
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Our main result will be the following identity of the normalized restriction matrices of elliptic
stable envelopes, for X and X°.

Theorem 1.2. Let 1] € X" be fixed points and I-%, -1 be the corresponding fixed points on the dual
variety. Then

* —1
stab D16, = 5" stapo (7 o)) (1.4)
0

Here x: Opb; —» Obr: is the isomorphism (1.3) and the equality (1.4) means that the

corresponding sections coincide after this change of variables.

Moreover, by the Fourier-Mukai philosophy, a natural idea originally from Aganagic-
Okounkov [1] is to enhance the coincidence above to the existence of a universal duality interface?
on the product X x X°. Consider the following diagram of embeddings

Xx{J} —i=>I X x X0e—={ir [} x X0,

Theorem 1.2 can then be rephrased as

Theorem 1.3. There exists a holomorphic section m (the duality interface) of a certain line bundle
on Ellpro(X x X°) such that

(i77)"(m) = Stab(D), (17)"(m) = stabo()),

where 1 is a fixed point on X and ] is the corresponding fixed point on X° (i.e,, ] = I-1 as a permutation).

1.3 Weight functions and R-matrices

Our proof of Theorem 1.4 relies on the observation that the elliptic stable envelope Stabe(), as
defined in Aganagic-Okounkov [1], is related to weight functions Wy (t,z,~,u), defined in [34]. The
weight function Wpo(t,z,~,u) is a section of a certain line bundle over S(X)xEr xEpic(xy in (1.2). The
elliptic stable envelope Stabs(I) is the restriction of this section to the extended elliptic
cohomology Er(X).

Weight functions first arise as integrands in the integral presentations of solutions to qKZ
equations, associated with certain Yangians of type A[11, 12, 38, 39, 40, 41, 42]. For us, the weight
functions here are the elliptic version introduced in [34].

Important properties of weight functions are described by the so called R-matrix relations.
These relations describe the transformation properties of weight functions under the
permutations of equivariant parameters. We show that these relations, in fact, uniquely determine
the restriction matrices Ay;.

Similar relations, describing the transformations of weight functions under the permutations
of K"ahler parameters were recently found by Rim’anyi-Weber in [35]. The proof of our main
theorem is based on the observation that these new relations can be understood as the R-matrix
relations for the 3d mirror variety X° (because the K'ahler parameters of X is identified with
equivariant parameters of X under the 3d mirror symmetry). The R-matrix relations and the dual
R-matrix relations then provide two ways to compute the restriction matrices, which is essentially
two sides of the main equality of Theorem 1.2.

2 In the previous paper [32], it is called the Mother function.
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Let us note that 3d self symmetry of full flag varieties should have important applications to
representation theory. In particular, we expect that it is closely related to self-symmetry of double
affine Hecke algebra under the Cherednik’s Fourier transform [8]. Another interesting example of
a symplectic variety which is 3d mirror self-dual is the Hilbert scheme of points on the complex
plane Hilbn(CZ). The explicit formulas for the elliptic stable envelopes in this case were obtained
in [37]. In this case, however, Hilb" (CZ) is not a GKM variety and therefore methods used in this
paper are unavailable.

We remark also that this paper deals with the cotangent bundles of full flag varieties of A-type.
In general, it is natural to expect that cotangent bundles of the full flag varieties for a group G is a
3d mirror of the cotangent bundle of full flag variety for the Langlands dual group LG. Though in
general these flag varieties are not quiver varieties, both the R-matrix and the Bott-Samelson
recursion [35] is available in this setting and the 3d mirror symmetry can be proved using
technique similar to one in the present paper.

2 Equivariant elliptic cohomology of X

In this section we give a brief introduction to equivariant elliptic cohomology. For detailed
definitions and constructions, we refer the reader to [15, 16, 17, 19, 24, 36], and also the recently
appeared new approach [2].

21 The equivariant elliptic cohomology functor

Let X be a smooth quasiprojective variety over C, and T be a torus acting on X. Recall that T-
equivariant cohomology is a contravariant functor from the category of varieties with T-actions to
the category of algebras over the ring of equivariant parameters Hr*(pt), which is naturally
identified with affine schemes over SpecH T(pt) = C" where r = dimT. Equivariant K-theory can
be defined in a similar way, with the additive group Crreplaced by the multiplicative SpecK+(pt)
= (C.

Let us set
E:=C/q,

which is a family of elliptic curves parametrized by the punctured disk 0 < |q| < 1. In the general
definition of elliptic cohomology one works with more general families of elliptic curves, but
considering E will be sufficient for the purposes of the present paper.

Equivariant elliptic cohomology is constructed as a covariant functor

Ell;: {varieties with T-actions} — {schemes}, for

which the base space of equivariant parameters is

Er:= Ell'r(pt) ~=Er,
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By functoriality, every X with T-action is associated with a structure map Ellr(m): Ell:(X) = Ellt(pt),
induced by the projection m: X - pt.

We briefly describe the construction of equivariant elliptic cohomology. For each point t € Er,
take a small analytic neighborhood U, which is isomorphic via the exponential map to a small
analytic neighborhood in C. Consider the sheaf of algebras

HU: = H—T—(XTt) @2 (pt) f};’

where

Te:= \ kery cT,
x€Echar(T),x(t)€qz

and '€ T is any lift of t € Er.

Those algebras glue to a sheaf H over £y, and we define Ell1(X) := SpeceH . The fiber of Ell{(X)
over t is obtained by setting local coordinates to 0, as described in the following

diagram [1]:
Spec H* (X Tt)——— Spec H(X ™) ()~ (Uy) EllT(X)
Elly () ‘ Ell7 ()
{th cr Ut .

This diagram describes a structure of the scheme Ell;(X) and gives one of several definitions of
elliptic cohomology.

2.2 Chern roots and extended elliptic cohomology

In this subsection, we consider X constructed as a GIT quotient of the form Y//sG, where G is a
linear reductive group acting on an affine space CV, 6 is a fixed character of G, and Y c CVis a G-
invariant subvariety. Let T be a torus acting on CN¥ which commutes with G. The action hence
descends to X.

Given a character y: G — C*, the 1-dimensional G-representation Cydescends to a line bundle L,

on the quotient X. In other words, consider the map

X =Y*/Gc[Y/G] c [cN/G] — BG % BC*

The bundle L, is the pullback of the tautological line bundle on BC*to X. More generally, any G-

representation pulls back to a vector bundle, called a tautological bundle, on X.

Let K c G be the maximal torus, and W be the Weyl group. Then Ellg(pt) ~= Edim*/W. From the

diagram above, we have the cohomological Kirwan map

Hi (pt)" @ Hi (pt) = HE(pt) ® Hy(pt) — H(X),
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and also the elliptic Kirwan map
Elly(X) — Eamk/ W) x &7, (2.1)

We say that X satisfies Kirwan surjectivity, if (2.1) is a closed embedding. By the results of [26],
it holds for any Nakajima quiver variety.
To include the dependence on K"ahler parameters, consider

Eric(x) := Pic(X) @z E ~= EdimPic(x), and define the
extended equivariant elliptic cohomology by

ET(X) := EllT(X) x EPic(x).

In particular, if X is a GIT quotient satisfying Kirwan surjectivity, one has the embedding

ET(X) / (Edimk/W) x ET x EPic(X)

ET x Epic).

The coordinates on the three components of the RHS, as well as their pullbacks to Er(X), will be
called Chern roots, equivariant parameters and K ahler parameters respectively.

2.3 GKM varieties

For a general X, the equivariant elliptic cohomology Ell:(X) may be difficult to describe, even if the
diagram above given by Kirwan surjectivity is present. However, for the following large class of
varieties called GKM varieties, it admits a nice explicit combinatorial characterization. There are
many classical examples of GKM varieties, including toric varieties, hypertoric varieties, and
partial flag varieties.

Definition 2.1. Let X be a variety with a T-action. We say that X is a GKM variety, if
e X'is finite,
« for every two fixed points p,q € X" there is no more than one T-equivariant curve connecting
them.
e Xis T-formal, in the sense of [18].
By definition, a GKM variety admits only finitely many T-fixed points and 1-dimensional T-

orbits. In particular, there are finitely many T-equivariant compact curves connecting fixed points,
and they are all rational curves isomorphic to P1.

By the localization theorem, we know that the irreducible components of Ell(X) are
parameterized by fixed points p € X', each isomorphic to the base Er. Therefore, set-theoretically,
Ell+(X) is the union of |X"| copies of E:
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e = ( il Op)/ 8 (22)

PEXT

where O, ~= Erand /A denotes the gluing data. Following [1] we will call O, the T-orbit associated

to the fixed point p in Ellt(X) (even though it is not an orbit of any group action).
We have the following explicit description of Ell;(X). The proof is a direct application of the
characterization [18] of Hr*(X) when X is GKM, see [32].

Proposition 2.2. If X is a GKM variety, then

A < il o,,) /8

peEX"
where /A denotes the intersections of T-orbits O, and Oq along the hyperplanes
Op D y1cC Oq,

for all p and q connected by an equivariant curve C, where xcis the T-character of the tangent space
T,C, and x‘cis the hyperplane in Er associated with the hyperplane keryc c T. The intersections of
orbits Opand Oy are transversal and hence the scheme Ell1(X) is a variety with simple normal crossing
singularities.

The extended version also has the same structure

K= ( il 6p>/ 2 (23)

peEX"

where A is the same as before, andO» = Op *Epicn). For each
fixed point p € X", we have the diagram

- ET(X)— Obpm / /EdimK/W) XET x EPic(x)

(2.4)
ET x Epic(X).

Let t1,....taimk be the elliptic Chern roots. The embedding 0fO in EdimK/W) x &1 *Epic(x) is always cut

. . i = 1; <i <. il R . .
out by linear equat10nst7’ tz|p’ l=is dimK, Wheret”p is a certain linear combination of

equivariant parameters.

Example 2.3. Consider the (C*)¥+l-action on PN. The equivariant K-theory ring, viewed as a

scheme, fits into the following diagram
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+1 _+1 +1 +1]
SpeCC[L A1 AN M Jh[l— z1L) - (1- znv+1L)i / Spec
(C[Lﬂ, zlﬂ, ... ,zﬁi_l, uil]

SpecCz1z1,...,ZN+1+1, 41,

where L is the class of 0(1), zy,..,zn+1 are equivariant parameters, and u is the K'ahler parameter.

N
Intuitively,ET (]p ) is simply the same picture “quotient by g*+1**”. In particular, the relation
(1-z1L)--+(1-2zn+1L) gives a simple normal crossing of N +1 components, each isomorphic to the

base. The i-th component Op,;, which we call orbit corresponding to the fixed point i, is cut out by
the linear equation 1 - z;L = 0.
2.4 Geometry and extended elliptic cohomology of X

From now on, let X be the Nakajima quiver variety associated to the A,-1-quiver, with dimension
vector (1,2,..,n — 1) and framing vector (0,0,..,0,n). More precisely, the quiver looks like

a az an-2

V .oe V
b1 2 b2 ba-2 Vio / / /

n-1

where
Vi=C, 1<i<n-1, W=_cCn

By definition, one considers the vector space
n-2

R= MHom(V,-,Vm) @ Hom(V,-1,W),
i=1

n-1 n-1

acted upon naturally by G := Q GL(V:), and the moment map u: T*R = Q gl(Vi)* given by
i=1 i=1

biai= 0, ab;- bi1ai:1= 0, 1<i<n- 3, an-2bn-2-— l] =0.
n—1
Given any stability condition 0 = (64,...,0n-1) € 21, there is a G-character (gi)¢:1 -1

Q (detg;)¥. We choose the stability condition to be 8;< 0,1 <i<n - 1, and define
i=1

X:=p1(0)//46.
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Proposition 2.4. The quiver variety X defined above is isomorphic to the cotangent bundle of the
complete flag variety in Cn.

Proof. Recall the following criterion of stability [28]: a representative (a,b,ij) is stable if and only

if for any invariant subspace Sc V:= L V;, the following two conditions hold
1) if S c kerj, then either 6 - dimS >0 or S = 0;
2) if S © imi, then either 8 - dimS > 6 - dimVorS=V.

For a representative (a,b,ij) the space
n-2
S= Mkera,- @ kerj
i=1

is stable under a and b by the moment map equations. Hence for the representative to be stable,
ithas to satisfy 1), which implies S = 0. In other words, a;and j are injective, which gives a complete
flag in C". The maps b;then represent a point in the cotangent fiber.

Consider the torus (C*)" acting on (x,..,x») € W, which descends to X, and an extra torusCh
scaling the cotangent fibers

(@1, s an) = (T2 2z, ) (a,b,i,j) = (a,h 'b, A1, j)

’

where z1,..,z,,~ are the equivariant parameters.
Let Vi, 1 < k < n - 1 be the tautological bundles associated with V. Denote their Chern roots
decomposition by

Ve =t 4oy

in the K-theory of X. Let {ey,..en} be the standard basis of W = Cn Fixed points of X are
parameterized by complete flags Vi € - € V,-1 € W, where each Viis a coordinate subspace in W,
i.e.,, spanned by a subset of size k of e/'s. For any 1 < k < n, let Iybe the index such that V/Vi-1 = Cep.
Then the tuple (Iy,..,1,) is a permutation of the indices (1,..,n). In other words, for each element of
the symmetric group I € S,, there is a fixed point of X, given by the complete flag Vi(I) € «- € V-1(I)
c W, where

Vi(I) = Spanc{en,-...en}, 1<ks<n
We also introduce the notation of ordered indices:
(i< <iy={n,...L}  1<ksen (2.5)
By Kirwan surjectivity, the extended elliptic cohomology E+(X) embeds into the space
E x Sym2 E x -+ x Symn-1E x ET x EPic(X)

with coordinates
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AR

1 2 2 -1
<t§)7tg )até)vatgn )a"‘a n—1 > 1,...,zn,h,,u1,...,,un)_

Moreover, by the GKM description, the extended elliptic cohomology is a union of orbits

o= ( 1 6:)/a

Er IeG, (2.6)
whereOr is cut out by the linear equations
(k)
ty =z
l i 1<i<ksn. 2.7)
Note that in tilese equations of Chern root restrictions, we have implicitly chosen an ordering of
Chern rootsti »---+%; , depending on each fixed point. The tangent bundle at the fixed point / is
z z
X S Mty %
1<l<k<n Tk I\<i<k<n T,

Choose a cocharacter of the torus (C)* ¢ = (1,2,..,n) € R, which

decomposes the tangent bundle as T:X = Ni* @ N, where

Np= Y gpt S T N Y Zgpt Y

z z V4 z
1<li<k<n “Tk 1<i<k<n ~Ti 1<li<k<n Tk 1<i<k<n “hi
I <1y, I;>1 Ii>1; I <1y,

3 Elliptic weight functions and R-matrices

3.1 Notations and parameters

Let g € C*be a complex number with |q| < 1. The skew Jacobi theta function is defined by

I(x) = («? =272 d(q) d(g/x),  o(x) =] (1 - ¢'2)
s=0 .

It has the following properties

I(qz) L 1
I(x) /2’

9(1/z) = ~0(a)
The elliptic weight functions depend on the following sets of parameters:

e The equivariant parameters z = (z1,..,2») representing the coordinates on O; ~= Erin (2.2).
e The K"ahler (or dynamical) parameters y = (i1,..,un) representing the coordinates on Epicx)-
part of the extended orbitsOr in (2.3).

(k) _ (t(k‘) t(k‘)) . .
¢ The Chern roots t 1 s---»' ) of the rank k tautological bundle Vi over X. We will

_ (+D (n)
abbreviate by t— (tl s tn )the set of all Chern roots of all tautological bundles.

¢ The T-equivariant weight ~ representing the weight of the symplectic form on X.
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For a permutation o we write z, = (Zs(1)--Zom)) and 1/z = (1/z1,...,1/Zx).

As we discussed in Section 2.4 the fixed points X" are labeled by permutations I = (I3,...,I,) of the
ordered set (1,..,n). By abuse of language we will denote the fixed point corresponding to I by I as
well. For another permutation ¢ € S, the product ¢ - I will denote the composed permutation (and
also the corresponding fixed point)

(1,..,n) 7- (o(1),..,0(n)) 7= (Ls1)--Iom))-
We will denote the restrictions of Chern roots to the orbits corresponding to fixed points (2.7) by
=t =2) (3.1)
whereil” are defined by (2.5).

3.2 Weight functions

Let us define the elliptic weight functions
Wi(t,z,~,u) = Symyq) »+ - Symie-1y Ui(t,2,~, 1), (3.2)

where the symbol Sym denotes the symmetrization over the corresponding set of variables and

k k+1 5’9“)
n—1 H H 1/}I,k,a,c t(—k)

a=1 c=1
UI(t:zvhv p’) = H t(k)h t(k)
k=1 H 9 a Y b
1<a<b<k t,()k) ((Lk)
(n)
with convention?i =~ = Ziand
9(he), ifid Y < i)
xhl_pl,k+l(i((tk))uk+1 lf
"/)I,k,a,c(x) =qv l ' (k+1) (k)
Hj(1,k,a) i¢ =1q ,if
O (x), D S (k)

Here the index j(I,k,a) € {1,..,n} is defined such that
Ii1 k) = ir(zk)’

and

1, I; <m,
prj(m) =

For a permutation o € S, we also define the elliptic weight function

WU,I(t/z/ N/u) = Wa-l[l) (tIZO'INII'l)'

Of particular importance will be the weight function corresponding to the longest permutation o
=(nn-1,.21)€S,
Define
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AJIJ(ZI“) = Wgrl(zjlzlhlll)l (34)

the matrix of restrictions of elliptic weight functions to fixed points. For o = id we will abbreviate
itto Ayy(zu).

3.3 Properties of weight functions and restriction matrices

The elliptic weight functions enjoy several interesting combinatorial identities. Here we list some
of them which will be used below. A more detailed exposition can be found in [33, 34]. Let us set

P](zl,...,zn): H ﬂ(%) H 0(&)
1<k<iI<n

z z
1<k<i<n Iy I
I<I I;>1p,

This function satisfies the following property:

Lemma 3.1.

PO'()-I-O'() (20_01(1)5 s 720_-01(”)) = P[(Zla sy ZTL).

Proof. By direct computation.
Lemma 3.2. For the dominance order on permutations, the matrix A;j(zu) is lower triangular, i.e.,
Ay(zu) =0, ifJ =1
and the diagonal elements are given by
Ap(zp) = (—1)’P,(Zl,...,zn)Pl-l-go(,ugo(n,...,ugo(n)), (3.5) where (-1)! stands for the parity of the
permutation 1. The matrix functions A;j(z,u) are holomorphic in all variables z, ~, .

Proof. Lemmas 2.4, 2.5 and 2.6 in [34].

Let us consider the elliptic dynamical R-matrix in the Felder’s normalization

Ayt _

. . I(x)d <ﬁ> ‘ 9 <%> 9(h)
Rijwm =1, Rjjlnm) = ———FEC REiep) = —F
oty (22 oty (1)

Hk wr/

where 1 <jk<n,j6=k.
Lemma 3.3. The weight functions (3.2) satisfy the following recursive relations

22+l _ pash %k b,a 2k
W[-Sk: - Ra,b ( > Wr + Ra,b ( WI'Sk

Zk+1 Rk+1

where a := I'1(k), b := I'1(k +1), and sk denotes the transposition (kk +1). The superscript zx < Zi.1

denotes the function in which zyis substituted by Zi«1 and Zi+1 by Zy.

Proof. Theorem 2.2 in [34].
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We can reformulate those as relations among the matrix elements of the restriction matrix.

Corollary 3.4. The elements of the restriction matrix satisfy the following relations:

2k

Al~sk7J-sk (zv /J')ZkHZkJrl = Rzlb) (K) AI,J(Zﬁ N) + RZ:?) (
‘ +1

2k

> AI-sk,J(za M)

Zit1 (3.6)

The identity (3.6) can be used to compute recursively all matrix elements A;j(zu) from the
known diagonal entries (3.5):

Lemma 3.5. The restriction matrix A;j(zu) is the unique lower triangular matrix (in the basis of
indexes I ordered by ) with the diagonal elements given by (3.5) satisfying the R-matrix relations
(3.6).

Proof. The proof is by induction on rows of the restriction matrix. The restriction matrix A;;(z,u)
is lower triangular if , / are ordered by the dominance order . Thus, the only nontrivial matrix
element in the first row is Aigia(zu). This matrix element is fixed by (3.5) and thus all elements in
the first row are uniquely determined. Note that (3.6) can be rewritten as:

Atsifsi(z,u) = asiArj(z,p)zvoze + BsiALf-si(z,14)

for certain explicit functions asand Bq«. For any I° 6= id, there always exists some k, such that for /
:= 0 5, we have I’ = I - s = I, Thus, the last identity is the expression for matrix elements in
the [9-th row in terms of its values in the previous rows. The result follows by induction.

3.4 Dual R-matrix relations

Recent results in [35] show that the matrix elements of the restriction matrices satisfy another
recursion, named “Bott-Samelson recursion” in [35]. We will call this other recursion the “dual R-
matrix relations” and explain later that these relations correspond to R-matrix relations on the
symplectic dual variety X°.

Theorem 3.6. The elements of the restriction matrix satisfy the following relations

~a,b b
Ay Lspes (2, )" = R AL (2, 1) + Ry ALs,a (2, 1) (3.7)

where a = n-Ji+1 and b = n-Ji+«1 +1 and the coefficients RNC,da'b are related to the coefficients of Felder’s

R-matrix by

ab a,b
Rc,d - Rcd

zi>—>/ti_1, Hir—>2

o0(d), (3.8)

Proof. This identity is equivalent to Theorem 11.1 in [35]. Indeed, direct computations show that
the weight functions w;used in [35] differ from the one used in the present paper by a factor

9 (hl—p]w(i)ﬂ)
i

’

9(h) >t¢{(w‘) [1<i<j<n,I;>I;}

Wi =wi-¢ (G

1<i<g<n
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where C a constant independent of I, and pj-1(i) is given by (3.3). Substituting this to the equation
(33) of [35], we arrive at (3.7).

The following Lemma and its proof is analogous to Lemma 3.5.

Lemma 3.7. The restriction matrix Arj(zu) is the unique lower triangular matrix (in the basis of
indexes I ordered by ) with diagonal elements given by (3.5) satisfying the recursive relations (3.7).

Note 3.8. We found that the matrix elements A;j(z 1) can be computed in two different ways: using
recursion (3.6) or recursion (3.7). This fact provides a set of highly nontrivial identities for elliptic
functions. We give several examples of these identities in Section 3.5, see also [35, Section 9]. In
general, these identities can be formulated as Theorem 3.10 below.

The recursive relations (3.6) and (3.7) are closely related:

Proposition 3.9. Let A;j(zu) be a matrix satisfying relations (3.6). Let B;j(z,u) be the matrix defined
by
B],J(Zla ceesZny M1y 7:“’71/) = 14(7()-07_1.,0'()-1_1 (/1‘1_17 ey M;I’ ZUO(U’ ] ZUO(”)), (39)

Then the matrix Byj(z,u) satisfies the relations (3.7).

Proof. Expressing A;j(zu) from (3.9), we find
AI,J(Zlv sy RAny By e 7:UJ7L> = BJ_l-O'OJ_l-O'O (/‘L(T()(l)v ) :u(r()(n)a 2;15 teey Z/;l).

Substituting this into (3.6) we obtain

—1 —1\RE$2Zk+1
Bsk-J—l-ao,sk-I—l-oo (,uag(l)a <y Hog(n)s #1590 %n )

a,b -1 -1
:Ra’bBJ_l-O'o,[_l-a‘o(/J’O'(](l)?“'7#0’()(”)721 ,...,Zn )

b,a

) -1 -1
+ Ra,bBJ_LUO,Sk-'I_L(fo (Mm)(l), s Mog(n)s Rl s R )

To see that this identity is equivalent to (3.7), we change the indices of the matrices by

J1e007= 1, Il 007-], (3.10)
such that
Bsk-l,sk-.] (/Lao(l)v s oy (n)» 21—17 o Z;l)Zk:(—)Zk+l

a,b — _
= Ra;bB],J(,uo'U(l)a <oy Hog(n)s #1 1a s Ry ])

b,a — _
+ R;,ZBI,Sk'J(MU()(1)7 ) nucr()(n)a 21 17 sy Ry 1).

Substitution z; 7= p~i1, ;i 7— zoo() simplifies it to
Bsk~1,sk~](Z,,u)yk<—>uk+1 = Fa,ba,bBI,](Z,y) + RNa,bb,aBI,sk-](Z,,u), (3.11)

where RNG,bbﬂ are related to Felder’s R-matrix as in (3.8). Finally, in R-matrix relations (3.6) the

index a is the number of the element k in the permutation I and b is the number of the element

k+1 in I. After changing indexes as in (3.10) we find that a = n—Jx+1 and b = n—Ji.1 +1.
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We see that relation (3.11) coincides with (3.7).

We conclude the following result.
Theorem 3.10. The elements of the restriction matrix satisfy the following identities
A]’J(Z, /J') = (_1)n(nil)ﬂAJ—l‘ao,I—Lao (Mao(l)u [ER N Mao(n)v Zl_la ey 27:1) [312)

’

where o, denotes the longest permutation in the symmetric group S.. Proof. Let

Bij(z,u) be as in the previous proposition. First
Ari(zp) = (=1)nn-1)/2B1i(z,W).

This follows from (3.5) Lemma 3.1 and (-1)c0= (-1)n(n-2)/2,
By Corollary 3.4 A;j(z,u) satisfies the R-matrix relations, and thus by the previous proposition
Byj(zu) satisfies relations (3.7). By Lemmas 3.5 and 3.7, we conclude

Arj(zu) = (-1)n(n-1)/2B1j(z,1).

This identity is equivalent to (3.12) after the change of variables z; 7= poo), 4i 7= zi-1 and indexes
oo J17-> 100 I'17-].

Note 3.11. We would like to stress here that the identity (3.12) describes a symmetry between
two sets of parameters of completely different nature: the equivariant parameters z and the
K'ahler parameters u. The symmetry of the elliptic stable envelopes with respect to the
transformation z < u is one of the predictions of 3d mirror symmetry. We will discuss this point
of view in Section 4.

3.5 Examples

Case n = 2. Using (3.2) we find that the weight functions are equal

hzi i z hz Zo
van=o(2)o(3p) v () ()
1 M1 1 1 1 M1/,

Here, as we defined in Section 3.1, (1,2) and (2,1) denote the fixed points corresponding to the
trivial and non-trivial permutations of S; respectively.

1
By (3.1) the restriction to the point (1,2) is given by the substitutiontg = #1and that to the

(1 _
point (2,1) is given by the substitution’i = = 22, Thus, in the basis of permutations ordered by
(1,2), (2,1), the matrix of restrictions equals

()e(2)
oo (22) (%) 0 (£2)

The statement of Theorem 3.10 in this case is equivalent to the following system of identities

Ar,g(21, 22, 1, p2) =

Aw2),(1,2)(z1,22,u1,u2) = —A 1,0 (U2,u1,1/21,1/22),
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Aw2),20)(z1,22,u1,u2) = —Aa2),0(u2,u1,1/21,1/22),
A 1),(1,2)(z1,22,u1,u2) = —A1),1,2)(U2,u1,1/21,1/22), Ax1),21)(21,22,u1,42) =
-Aw2),(1,2)(12,u1,1/21,1/22).

It is easy to observe that all these identities trivially follow from J(1/x) = -9(x). The situation,

however, is more involved in the “non-abelian” cases n = 3.
Case n = 3. In this case one checks that the identities (3.12) are all trivial (i.e., both sides are

equal to zero or coincide trivially) except the following matrix elements
Ai3,1,2),(1,23)(21,22,23,u1,u2,u3) = -A3,21),21,3)(U3,u2,u1,1/21,1/72,1/73),
A21),21,3)(21,22,23,u1,u2,u3) = —A31),(1,2,3) (U3, u2,u1,1/21,1/72,1/73),
A 21),(1,23)(21,22,23,u1,u2,u3) = -Ai21),(123)(13,u2,u1,1/21,1/22,1/23), Let us, for instance,
compute the two sides of the last line. Using the definition (3.2) we have

W(3,2,1) (t z,h, ,LL)

ht(? %) 1y hz 2o 43 23 hz hzo 23143
N=ar ) )\ ® ) e )\ w ) e ) e )
— t tm ty t p2 ty t ty ty "

- 2 2

NCAWES

té?) th)

(2 )

(2) ,(2)
where the second term ( 1 et ) denotes the first term with?i '+ t2 ~ switched.

By (3.1), the restriction of a weight function to (3,2,1) corresponds to the specialization
(2) )
t 2}

+ (1 e 2.

1 _ _ _
ty = z1, = 21, = %2, Thus, we compute

A3.2,1),1,2,3) (21, 22, 23, p1, p2, p13)
9(h)*9 (—Z”””> 9 (2”‘2> 9 <ﬂ> 9 <ZQ’“”)
_ 222 223 <3 2313
'(2)
2
v (5) 0 (52) 0 (2) () 0 (5) (%)
+ Z2 2 Z3 3 2343 Z1
(%)
Z9 ,

and the identity above takes the form
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0(h)>Y (M> 9 (—z1”2> 9 <ﬂ> 9 <22u1>
_ Z22 2243 23 2313
'(2)
22

o (32)0(2)o(2)(2) 22)o

+

)

(%)

19
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ﬂ(h)gﬁ (Zzﬂs) 9 <23M3> 9 (&) 9 (23M2>
_ Z1H2 2242 M1 2001
(52)
2

by : 3 1L h,
o () ()2 () ()2 () ()

M2 21 M1 Z2 Z1j41 13

(52)
M2

This is an example of nontrivial identity satisfied by the Jacobi theta-functions. It is equivalent to

the so called four-term identity for the theta functions, see equation (2.7) in [34], after some
identification of the parameters.

_|_

4  Elliptic stable envelopes

4.1 Elliptic stable envelopes in holomorphic normalization

The elliptic stable envelopes for Nakajima quiver varieties were defined in [1]. If X is the Nakajima
quiver variety defined in Section 2.4 (the cotangent bundle over the full flag variety) and I € X is
a fixed point then the elliptic stable envelope Stab,([) is the unique section of a certain line bundle
over Er(X) distinguished by a set of remarkable properties. We refer to [1, Section 3] for the
original definition. The elliptic stable envelope depends on a choice of a chamber o. For X the set
of chambers coincides with the set of Weyl chambers of the Lie algebra sl,and thus, the chambers
are parameterized by permutations o, see [33] for the detailed discussion of cotangent bundles

over partial flag varieties.
n-1

Let us set S(X) = Q skE where S¥E denotes the k-th symmetric power of the elliptic
k=1
curve E. Coordinates on S(X) are symmetric functions in Chern roots t of the tautological bundles.
Recall the following map as in (2.4)

cX

ET(X) —— S(X) x ET x EPic(x),

given by the elliptic Chern classes of the tautological bundles over X. It is known that cxis an
embedding [26], see also [1, Section 2.4].

The elliptic weight functions Ws(tz~,u) are symmetric in ¢t and thus represent sections of
certain line bundles over the scheme S(X) x Erx Epicixyy. The following theorem describes the known
relation between the weight functions and the elliptic stable envelopes for X.

Theorem 4.1. The elliptic stable envelope of a fixed point I € X' for a chamber o is given by the
restriction of the corresponding elliptic weight function to elliptic cohomology of X:

Stab,(I) = c*xWoe,i(t,z,~,10). (4.1)



Proof. In the original paper [1] the elliptic stable envelope Stab,(I) was defined as the unique
section of certain line bundle satisfying a list of defining conditions. It was checked in Theorem
7.3 of [34] that the right side of (4.1) satisfies these conditions.

Remark 4.2. The elliptic stable envelopes Stab?o(-’) defined by Aganagic-Okounkov in [1] and
the restrictions (4.1) differ by a normalization (i.e., by a factor). One of the defining properties in
[1] fixes the diagonal restriction

Stabﬁo(l)b[ = Po—1-1<zo)’

while in our normalization of the elliptic weight functions the diagonal restrictions are given by
(3.5). This means that the Aganagic-Okounkov stable envelopes and the ones we use in the
present paper are related by

Stab,(]) = (=1)71F 1-1000(Uoo(1)r too(n)) Stab0, (1).
That is, the two versions of stable envelopes are sections of line bundles related by the twist of a
line bundle which Pr-1560(fto0(1),....ho0(m) iS a section of. We chose to use (4.1) is this paper because
in this normalization the stable envelopes are holomorphic, see Lemma 3.2.

4.2 Dual variety X° and dual stable envelope

Let us fix a second copy of symplectic variety isomorphic to the cotangent bundle over the full flag
variety. To distinguish it from X we denote it by X0. We will refer to X?as “dual variety”. We denote
the torus acting on X?by T° (by definition, it acts on X°in the same way the torus T acts on X). As in
(2.6) the extended equivariant elliptic cohomology scheme of this variety has the following form

,(x'):< I1 6§>/A’

I€(Xo)T0

. (4.2)

00 / h/-“/
where Op; ™= Erox Epic()/( ). We will denote by (z ) the coordinates on Op.
We denote by Stab the elliptic stable envelope for the dual variety corresponding to the

chamber oy:
stah (1) = (=1)"=D2c3 W, (#, 2 1, /1) (4.3)

where t0stands for the set of Chern roots of the tautological bundles over X°and cxis the same as
in the previous subsection.

4.3 Identification of K'ahler and equivariant parameters

Although as varieties X and X° are isomorphic, we treat them differently. In particular, fixed points
and parameters will be identified in a nontrivial way.

We fix an isomorphism of extended orbits of dual varieties
0
K: Obr— Oby

defined explicitly in coordinates by

Uo7 z, Z07— W, ~07T i=1,.,n.
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Note that k maps the equivariant parameters of X to the K ahler parameters of X° and vice versa. In
particular, it provides an isomorphisms (which we denote by the same symbol, for simplicity)

K: EPic(X) ~= ETo, EPic(Xo) ~= ET. (4.4)

4.4 3d mirror symmetry of cotangent bundles over full flag varieties

It is clear that X"and (X°)"0are the same sets. We define a bijection bj: X" —
(oY, bi(7) =1,

We say that J € (X°)is the fixed point corresponding to a fixed point I € X"if ] = bj([).

Now we are ready to formulate our main theorem revealing z & u symmetry of elliptic stable
envelopes associated with the cotangent bundles over full flag varieties:
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Theorem 4.3. Let 1,] € X' be fixed points and I-%, -1 be the corresponding fixed points on the dual
variety. Then

. -1
stab (I)]g, =#" stab (/ )|~ ),
Or-1
Proof. By definition stab o, = Ar.s(z, ). Similarly, by (4.3) we have
= <_1)n(n71)/2AJ_1-00,1_1-00 (Z;U(l)v ) Zén(l)v 1/Mlla R 1/”;1)

~/
O;-1

1 r—1
Stab (J )
From the definition of k we obtain

- StabO(J—l) \6’171) _ (_1)7L(n—1)/2AJ_1,0071—1_00 (,uao(l), <o Hog(n) 1/2’1, ceey 1/Zn)
Thus, the statement is equivalent to Theorem 3.10.

Our Definition 1.1 of 3d mirror symmetry then implies:

Corollary 4.4. The variety Xis a 3d mirror of X.

As X 7= XOwe say that X is 3d mirror self-dual.

5 The duality interface

5.1 Interpolation function

Let us define the following combination of elliptic weight functions m™(tto) :=
(=D)nm-12 X A-1j1 (z,20) W)(t,2,~,20) Wi-1-00(t0,2000,1/Z).

LJES,

This function interpolates the elliptic weight functions in the following sense.

Lemma 5.1.



mAt, z-1) = Wi(t, z, h, z’)’ miz-1,t) = (—l)n(nfl)/QWI.go(t',zfm,h, 1/z)

Proof. Obvious from the definition of restriction matrix (3.4) and Theorem 3.10.

Let us consider the scheme S(X)xS(X?)xEr«o. As before, we assume that the coordinates on S(X)
are symmetric functions in Chern roots t and coordinates on S(X°) are symmetric functions in t°.
By definition, m™(t,t9) is symmetric function in t and t0. Therefore, it represents a section of certain
line bundle on this scheme.

5.2 Interpolation function as a section of a line bundle

We would like to rewrite the statement of the previous lemma in geometric terms. For a fixed
point L € (X°)"owe denote by a;°the composition of the following maps

ET x EPic(x) x S(X) = ETox EPic(Xo) x S(X) ~= ObLo x S(X) —e. ETo(X0) x S(X)
%00 x Erox Epicxoy = S(X) x S(X0) x Erxto, = S(X) x S(X)
where the first and the last maps are given by x (just a change of variables), e; is the inclusion of
the extended orbit Op?; to the extended cohomology Er(X°) (4.2) and cxois the elliptic Chern class
for X. We denote by ay: Ero x Epicixoy X S(X?) == S(X) x S(X9) x Erxto

the map given by the same chain of maps with X?in place of X. Lemma 5.1 can be formulated as
follows
Lemma 5.2.

all'ik—l (ﬁl) = WL (t’ 2, h” 'u’)’ a;—l (ﬁl) = (_1)n(n_l)/2WL-0()(t,a Zﬁruv h’ 1/“'/).

. / -~/
Proof. The map (¢Xx’° er)” In o s the restriction of a section to the orbit OL. By definition, it is
given by a substitution t0 = z0;. The same for a;*. The result follows from the Lemma 5.1 after the
change of variables by «.

5.3 The duality interface

Let us consider a T x T0-variety X x X°. For fixed points I € X', ] € (X°)"owe consider the equivariant
embeddings

XxA{J} —i=>I X x X0—={ir [} x X0, (5.1)

We have

EllTxTO(X X {]}) = EHT(.XJ X ETO~: ET(.XJ,

where the last equality is by (4.4). Similarly, we use (4.4) to fix the isomorphism Ellr.ro({I}x X°) ~=

Ero(X?). By covariance of the equivariant elliptic cohomology functor, the maps (5.1) induce the
following embeddings



24 R. Rim anyi, A. Smirnov, A. Varchenko and Z. Zhou

Ex(X) = Ellyxro(X x X0) «—is  ETo(X0).

Theorem 5.3. There exists a holomorphic section m (the duality interface3) of a certain line bundle
on Ellpro(X x X°) such that

(i%)"(m) = Stab(), (i7)"(m) = Stabo()),
where | is a fixed point on X and ] is the corresponding fixed point on X° (i.e, ] = I"'1as a permutation).

Proof. Let
EHTXTO(XX XO) ——C S(.XJ X S(XO) x Etxto

be the embedding by the elliptic Chern classes. Define m = ¢*(m”). For I € X" we can factor the
inclusion map as’] = ¥I°CX’ where cxo E7(X9) — S(X°)xEro xEpic(xo) the elliptic Chern classes of
tautological bundles over X°. Thus,

(#)*(m) =c*x0 ° ar(m”) = c*xo(Wi-1-00(t%,2,~,1/u0)) = Stab0(I-1) = Stab0(J),

where the second equality is by Lemma 5.2 and the third is by (4.3). The calculation for a fixed
point on ] € (X°)"is the same.

Finally, by definition, m is holomorphic if every restriction m|o;is holomorphic. But m|oy, =
Aij(z,20),

which is holomorphic by Lemma 3.2. Mirror Self-Symmetry of the Cotangent Bundle of the Full
Flag Variety 21
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