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Abstract. We consider two complexes. The first complex is the twisted de Rham complex of
scalar meromorphic differential forms on projective line, holomorphic on the complement to
a finite set of points. The second complex is the chain complex of the Lie algebra of sl2-valued
algebraic functions on the same complement, with coefficients in a tensor product of

contragradient Verma modules over the affine Lie algebra slcz2. In [Schechtman V., Varchenko

A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex
to the second was suggested and it was indicated that under this monomorphism the existence
of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is
reflected in the relations between the cohomology classes of the de Rham complex. In this
paper we prove these results.
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1 Introduction

We consider two complexes. The first complex is the twisted de Rham complex of scalar
meromorphic differential forms on projective line, that are holomorphic on the complement to a
finite set of points. The second complex is the chain complex of the Lie algebra of sl;-valued
algebraic functions on the same complement, with coefficients in a tensor product of

contragradient Verma modules over the affine Lie algebra slcz. In [9] a construction of a
monomorphism of the first complex to the second was suggested. That construction gives a
relation between the singular vectors in the Verma modules and resonance relations in the de
Rham complex.
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That construction of the homomorphism was invented in the middle of 90s, while the paper
[9] was prepared for publication 20 years later, when the proofs were forgotten, if they existed.
The paper [9] provides supporting evidence to the results formulated in [9], but not the proofs.
The goal of this paper is to give the proofs to the results formulated in [9], namely, the proofs that
the construction in [9] indeed gives a homorphism of complexes and relates the resonances in the

de Rham complex and the sl¢2 singular vectors.

This paper is a contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of
Dmitry Fuchs. The full collection is available at https://www.emis.de/journals/SIGMA/Fuchs.html

The construction in [9] has two motivations.

The first motivation was to generalize the principal construction of [8]. In [8], the tensor
products of contragradient Verma modules over a semisimple Lie algebra were identified with
the spaces of the top degree logarithmic differential forms over certain configuration spaces. Also
the logarithmic parts of the de Rham complexes over the configuration spaces were identified
with some standard Lie algebra chain complexes having coefficients in these tensor products, cf.
in [4, 5] a D-module explanation of this correspondence.

The second idea was that the appearance of singular vectors in Verma modules over affine Lie
algebras is reflected in the relations between the cohomology classes of logarithmic differential
forms. This was proved in an important particular case in [1, 2], and in [7] a one-to-one
correspondence was established “on the level of parameters”. In [9] and in the present paper this
correspondence is developed for another non-trivial class of singular vectors, namely for (a part
of) Malikov-Feigin-Fuchs singular vectors, cf. [6].

The paper has the following structure. In Section 2 we introduce the de Rham complex of a

master function and resonance relations. In Section 3 we discuss slc; Verma modules, the Kac-
Kazhdan reducibility conditions. We formulate Theorem 3.2 which describes certain relations in
a contragradient Verma module. The proof of Theorem 3.2 is the main new result of this paper. In
Theorem 3.3 we describe the connection between the relations, described in Theorem 3.2, and
the Malikov-Feigin-Fuchs singular vectors. In Section 4 we construct a map of the de Rham
complex of the master function to the chain complex of the Lie algebra of sl;-valued algebraic
functions. Theorem 4.1 says that the map is a monomorphism of complexes. The proof of Theorem
4.1 is the second new result of this paper. Section 5 is devoted to the proof of Theorem 3.2. The
proof is straightforward but rather nontrivial and lengthy.

2 The de Rham complex of master function

2.1  Twisted de Rham complex

Consider C with coordinate t. Define the master function by the formula
n
() =Y(t - zi)-misx,
i=1

where z1,..,Z,,M3,..,Myk € C are parameters. Fix these parameters and assume that zj,..,z, are
distinct. Set
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Zn+1 = O, mn+1=m1+"'+mn_2.

Denote U = C - {z3,..,Zn}.

Consider the twisted de Rham complex associated with ®,
0 —— QO(U) —9— Q1(U) == 0. (2.1)

Here Qr(U) is the space of rational differential p-forms on C regular on U. The differential d is given
by the formula

d=d+aA. (2.2)

where d is the standard de Rham differential and the second summand is the left exterior
multiplication by the form

n

1 dt do
a——;Zmit_—Zi =3

1=

Formula (2.2) is motivated by the computation
d(Pw) =ddw +dP A w = P(dw + a A w).

The complex Q°(U) is the complex of global algebraic sections of the de Rham complex of

(Ognﬁ), where d = d + a A - is considered as the integrable connection on the sheaf Oy of
holomorphic functions on U.

If the monodromy of @ is non-trivial, that is, if at least one of the numbers mi/k,....mn/k
is not an integer, then

H(Q*(U)) = 0, see dimH'(Q(U))=n-1,

for example [7].

2.2 Basis of Q° (V)
The functions
1
(t — 2i)" for a € Zso and tafor a € Z

form a basis of Q0(U). The differential forms

dt
(t = 2i)" for a € Z>o and tadt for a € Zx

form a basis of Q1(U). The differential d is given by the formulas
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' 1 B ‘ dt m; dt
0 (mae) = st e+ DY e

dt
_Z -—zl)af—z

J#i (2.3)

a—1 n t

8 a = am—ZmJ 4 1dt—ZZmJ jkt" 1= kdt—Zm .

(2.4)

j=1 k=1j=1 j=1

2.3 Resonances

The equations

(i) mi+ (a- 1)k =0 forsomea € Z», i €{1,.,n},

(ii) mpe1+ 2 —ak =0 for some a € Z,
(iii) k=0,

are called the resonance relations for the parameters mj,..., mu.1, k of the de Rham complex.

If « = 0, then the twisted de Rham complex is not defined. If the resonance relation m;+ ax =0
is satisfied for some g, then the first term in the right-hand side of (2.3) equals zero. Similarly, if
the resonance relation my+1 +2—-ak = 0 is satisfied for some g, then the first term in the right-hand
side of (2.4) equals zero.

2.4 Logarithmic subcomplex

1 1
Let Qlog(U) c <U) be the subspace generated over C by function 1. Let Qlog(U) c (U) be the
subspace generated over C by the differential forms

dtw,:
t-2z

,J=1,..,n

These subspaces form the logarithmic subcomplex [Ql.og(U)’ 8) of the de Rham complex
(2+(U),0). We have

0:17- .

For generic mj,..,my, k, the embedding (Ql.og(U)’ 9) = (V) a) is a quasi-isomorphism, the

logarithmic forms ws,..,w, generate the space H1(2*(U)), and the cohomological relation »
mw;~ 0 is the only one, see for example [7].

Each resonance relation implies a new cohomological relation between the forms ws,...,w,,
n

see [9, Corollary 6.4]. For example, if my.1+ 2 — k = 0, then P zimjw;~ 0, and if mp.1 +
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J=1
2 -2Kx=0,then
n n n
2 1
E Zimjw; — - E z2jm E zimiw; | ~0
j=1 C\u=1 i=1

3 slcz-modules

3.1 Liealgebraslic2

Let sl; be the Lie algebra of complex (2 x 2)-matrices with zero trace. Let e, f, h be standard
generators subject to the relations

[efl = h, [he] = 2e, [hf] = -2f

Let slc; be the affine Lie algebra 52 = 5l [T, T7'] & Ce with the bracket
[aT®,bT7] = [a,b]T" + i{a, b)ditj0c,

where c is central element, ha,bi = tr(ab). Set
eir=e f1 =ﬁ h1 = h,
ex=fT, fa=eT-, ha=c-h.

These are the standard Chevalley generators defining slc; as the Kac-Moody algebra
2 =2
corresponding to the Cartan matrix -2 2 )

3.2 Automorphism

The Lie algebra sl¢z has an automorphism 7,

mc7-¢ eTi—=7 [T fTi7- eT, hTi7— -hT:
3.3 Verma modules

We fix k € C and assume that the central element c acts on all our representations by multiplication
by k.

For m € C,let V (m,k - m) be the sl¢c2 Verma module with generating vector v. The Verma module
is generated by v subject to the relations

ewv=0, ev=0, hiv=my, hav = (k- m)v.

Letn™- C 5/[\2 be the Lie subalgebra generated by fi, f>and Un”-its enveloping algebra. The map
Un"-— V (mk - m), F 7— Fv, is an isomorphism of Un"--modules.

The space V (m,k - m) has a Z25-grading: a vector fi-+-fi,v with i; € {1,2} has degree (p1,p2), if pi
is the number of i’s in the sequence iy,...,I. For y € 72, denote by V (m,k — m), c V (mk — m) the

corresponding y-homogeneous component.
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A homogeneous nonzero vector w in V (m,k — m), non-proportional to v, is called a singular
vector if exw = e;w = 0. The Verma module V (m,k — m) is reducible, if and only if it contains a
singular vector.

3.4 Reducibility conditions
See Kac-Kazhdan [3]. Set

k=k+2.

The Verma module V (m,k —m) is reducible if and only if at least one of the following relations
holds:

(@ m-I+1+(a-1)k=0,
(b) m+I1+1-ax=0,
(c) k=0,

where [a € Z». If (m,k) satisfies exactly one of the conditions (a), (b), then V (m,k — m) contains a
unique proper submodule, and this submodule is generated by a singular vector of degree (la,/(a
- 1)) for condition (a) and of degree (I(a - 1),la) for condition (b).

These singular vectors are highly nontrivial and are given by the following theorem.

Theorem 3.1 (Malikov-Feigin-Fuchs, [6]). For a,l € Z>gand k € C, the monomials
F12(La,x) = fil+(a-1)xf2i+(a-2)f11+(a=3)ic =+ f2I-(a-2)xf1I-(a-1)x,

F21(La,x) = f2i+(a-1)xf1i+(a-2)xf21+(a-3)x ***flI-(a-2)Kf21-(a-1)xc

are well-defined as elements of Un"_. If m = [-1-(a-1)k, then Fi2(La,x)v € V (m,k-m) is a singular
vector of degree (la,l(a-1)) and if m = -I-1+ak, then F21(La,x)v € V (m,k-m) is a singular vector of
degree (I(a - 1),la).

An explanation of the meaning of complex powers in these formulas see in [6].
For example for m = -2 + x, we have

For1(1,1,k)v = fov = %v,

and for m = -2 + 2k, we have
) 2 h
Fu(L,2,0)0 = A0 = f(2) v+ G+ Rz 0 — A+ R)rse.
3.5 Shapovalov form

The Shapovalov form on an slc; Verma module V with generating vector v is the unique symmetric

bilinear form S(-,-) on V such that

Stwv) =1, S(fxy) = S(xey) fori=1,2;xy€eV.

For y € 72, let"> be the vector space dual to V,. Define’” = ©V5. The space V*is an

sl2-module with thesl2-action defined by the formulas:
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(eig, ) = (¢, fix)
hfip,xi = he,exi, — ,
where ¢ € V*,x € V,i=1,2. The sl-module V ~is called the contragradient Verma module.

The Shapovalov form S considered as a map S: V —— V' *is a morphism of 5/[;—modules.

3.6 Bases in Vand V*

Let V be an slc; Verma module V. For every y = (pypz) € Z:% with p1 =6 ps, we fix a basis in the

homogeneous component V,c V.

For p1 > p2, we fix the basis

f f h h e e
Til'--Tiaﬁ--.ﬁﬁ..-ﬁv

where

e e h h f I

x X
with the indices satisfying (3.1). Notice that for any x € sl, the elements 77 and 77 commute.
These collections of vectors are bases by the Poincar’e-Birkhoff-Witt theorem.
* *
For any y, we fix a basis in the y-homogeneous componentVW C V7 as the basis dual of the basis

in V, specified above. If {w;} is a basis in V,, then we denote by {(w;)*} the dual basis in"~.

3.7 Main formula

Theorem 3.2 ([9, Theorem 5.12]). For m,k € C and a € 7>, the following identities hold in the

contragradient Verma module V (m,k - m)*,

f

L =+ @-nw2) ()

[h( f \..,e€ Y
| (wder) 2 (fig0) ]
(=1

i+j=a—1—¢
12j>0
e . e \*
() = (alk+2) —m -2) (T—v) ’ 32)
a—2 h * f N
g () 2f G|
i>5>1 ) (3.3)
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where v is the generating vector of the Verma module V (m,k - m).

Theorem 3.2 was announced in [9]. The proof of Theorem 3.2 is the main result of this paper.
The theorem is proved in Section 5.

Remark. The right-hand sides of formulas (3.2) and (3.3) have the factors m + (a - 1)(k + 2) and
a(k + 2) = m - 2. The vanishing of these factors corresponds to the resonance conditions m;+ (a -
1)k =0 and mu.+1 + 2 — ak = 0 for the de Rham complex in Section 2.3, if we recall that k = k + 2.

_f
Remark. Theorem 3.2 says that the action of the element 7= 1’ of degree (a,a - 1) on the covector

(v)* can be expressed in terms of the actions of the elements 77 and 77 of smaller degree on some
other covectors. Similarly the action of the element77 of degree (a - 1,a) on the covector (v)*can

be expressed in terms of the actions of the elements 77> 77 of smaller degree on some other
covectors.

3.8 Relation to Malikov-Feigin-Fuchs vectors
Let
S:V(imk-m) -V (mk-m)

be the Shapovalov form. Denote

Xo(m.k —m) = §~1 ((m +la—1)(k+2) (Tflv>*>

Ya(m,k —m) = 57 ((m+2 — a(k +2)) (;a ))

For generic values of m and k, the Shapovalov form S is non-degenerate and X, and Y, are well
defined elements of V (m,k — m). The chosen basis in V (m,k — m) allows us to compare these
vectors for different values of k, m. The vectors X.(m,k — m), Y,(m,k — m) are holomorphic functions
of k, m for generic k, m.

Recall the resonance lines in the (m,k)-plane, given by the equations

m-I1+1+(a-1)(k+2)=0, m+l+1-alk+2)=0, k+2=0,
for some a,l € Z>o, see Section 3.4.

Theorem 3.3 ([9, Theorem 6.2]). For a € Z>¢ let (mo,ko) be a point of the line m+(a-1)(k+ 2) =0,
which does not belong to other resonance lines. Then the function X.(m,k — m) can be analytically
continued to the point (mo,ko), and Xa(mo,ko —mo) is a (nonzero) singular vector of V (mo,ko —mo),
hence it is proportional to the Malikov-Feigin-Fuchs vector F12(1,a,ko +2).

Similarly, for a € Z>olet (mo,ko) be a point of the line m+2-a(k +2) = 0, which does not belong to
other resonance lines. Then the function Ys(m,k-m) can be analytically continued to the point
(mo,ko), and Yq(mo,ko —mo) is a (nonzero) singular vector of V (mo,ko —mo), hence it is proportional to
the Malikov-Feigin-Fuchs vector F21(1,a,ko + 2).
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4 Homomorphism of complexes

4.1 Lie algebra sl2(U)

Recall that {z1,...,Zn,zn+1 = 00} are pairwise distinct points of the complex projective line P1and U =
P1-{z1,...,.Zn,Zn+1}. Fix local coordinates t-z,..,t-z, 1/t on P1at these points, respectively. Let sl(U)
be the Lie algebra of sl;-valued rational functions on P regular on U, with the pointwise bracket.
Thus, an element of slz(U) has the form e @ u1+ h Q uz + f Q us with u; € Q°(U), and the bracket is
defined by the formula [x @ u1,y @ uz] = [xy] & (u1u2).

4.2  slz(U)-modules

We say that anﬁ/[\z—module W has the finiteness property, if for any w € W and x € sl,, we have xT/ -
w =0 forall J >>0. For example, the contragradient Verma module has the finiteness property.

Let Wi,.., Why.1 be slcz-modules with the finiteness property. Then the Lie algebra sl,(U) acts on
Wi Q - @ Whp.1by the formula
rRu- (W ®  Quwpy1) = ([x@u(t)](zl)wl) QW@+ @ Wpg1 + -+
Fw @ @ w1 ® ([z @ u®)]*w,) @ wyyr
W ® - Qwy ® (7?([:1: ® u(t)](oo))wnﬂ),

where for x @ u € sly(U) the symbol [x & u(t)]@ denotes the Laurent expansion of x Q uatt =z

z @ u(t)]> . .
and [ < denotes the Laurent expansion at ¢t = oo; the symbol 7 in the last term denotes

the sl;-automorphism defined in Section 3.2.

The finiteness property of the tensor factors ensures that the actions of the Laurent series are
well-defined.

The sl¢2-action gives us a map

e sh(U) @ (14 W;) — W, (4.1)

4.3 Chain complex

For a Lie algebra g and a g-module W we denote by C.(g W) the standard chain complex of g with
coefficients in W, where

ColaW)=NgQ W,
P

d(gp A - A gr ® w) = X(=1)1gpA - AghiA = A g1 @ giw
i=1

+ X (-1)ig, A AgbiA -+ Agbin- A g1 ® [gigilw.
1<i<j<p
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4.4 Two complexes

4.4.1

Let my,..,myk € C, k + 2 6= 0. Define mys1=mq+ -+ + my,— 2. Forj = 1,..,n + 1, let V;be the slc; Verma
module V (m;k -m;) and V*the corresponding contragradient Verma module. Consider the chain

Co(sla(U), @14V

complex J ) and its last two terms

— sh(U) ® (@M1 -5 @itV - 0

where d = g, see formula (4.1).

n+1y %
We assign degree 0 to the term®j=1"5 of this complex and assign degree 1 to the differential

d, so that the whole complex sits in the non-positive area.

4.4.2

Consider the twisted de Rham complex in (2.1) corresponding to k = k +2 with degrees shifted by
1, namely, the complex Q*(U)[1],

0 - Qo(U) -9- Q1(U) - 0, where the shift [1] means that we assign

degree p - 1 to the term Qr(U).

4.5 Construction
Define a linear map

1. 1 n+1y,%
b QN U) — &V

by the formulas

dt . f : .
mH—“(Ul) ®"'®<W0m) ® - ® (vn41) ,
o . . e % (4.2)
t2 Lt K1)"® - ® (vp)" ® (ﬁ%ﬁl) )
(4.3)
for a > 0. Define a linear map
0. 0 n+1y/*
n’: QUU) — sl(U) ® (@7 V))
by the formulas
1 f * *
(t—Z,,”)a = (t—Z,"L)a ®(U1) ®"'®(Un+1>
“ € * f f * *
_ .o 2 — —Um n
R [
=1 i+j=a—l
i25>0
h f )
+ ® (01)*®-- ®<—_vm> ®- - ® (vn 1)*],
(t = 2m)! T i (4.4)

fora > 0;
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= R () @ @ (vpy1)”

a—2
l * *
_lzj[et(g(m) SEICUCEEDY (TZTJ ”“)
=0

i+j=a—I1,
i>2j>1

I+1 * ... * _° '
+htTR () R ® (vy) ®(Ta_z—1vn+1) ]’ (4.5)

fora = 0.

Theorem 4.1 ([9, Theorem 5.12]). Formulas (4.2)-(4.5) define a homomorphism of complexes

n: QYU)[1] = Co(sl2(U); ®n+1V*) namely we have

an::nla_

The homomorphism is injective.

Theorem 4.1 was announced in [9]. Here is a proof of the theorem.

Proof. First we calculate nio((t - zp)- ﬂ))

1 dt
m S (mp+‘m)( t— 2 a+1 ZZ _Z)k: (t— zp)* 1k

= lj#p
- Zp)a t—zj
n' /

= (mp + ka)(v1)" ®@ -+ ® (ﬁvpy Q-+ ® (Upt1)”

_ZZ (v1 ®"'®(%vp)*@)'”@(vrwl)*

k= 1#1)

Y ) 0 (1) © - © ()"
J#p “»

Then we calculate d(”o((t - zp)_a)),
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P t—2zp
+ (t _ezp)l X2 H_jz:a: Z(U )* XX (1{1 ,1{] Up & ® (’Un+1) :|
= (vp)* ® [(mp+a(k+2)) (z];vp>

X
@ )
+ [ﬁ (%U ) +2ﬁ Z (%%vp) :|:| ® @ (Ung1)*

=1 it+j=a—l
12520
+) () ® - ®(fr;)" ® - ® (vnt1)
i (2j — 2p)°

oy (m 2) oot

= (Ha-l-mp)(vl)*@ ® (%vp> R - ®(Un+1)
a f .
- J v1)* .. v
lz_;jé;?(] p)l(l) ® ®<Talp) ® - ® (Vpyn)

+ Z (LZ(UI)* ® @ (fu;)" ® - ® (vnt1)"

In this calculation we use formula (3.2) to express the action ofTa on (vp)*. These formulas show
thatd (77 ((t—2p)~ a)) =n (6((t —2p)” a))
Now we calculate n1(d(t%)),

o 1 n a—1 n 1 n dt
a4 = o - 1dt sya—s—1 - La_
G D) B SR S e
j=1 s=1 j=1 j=1
't n . " € *
— (cm — mj> (V)" ®--® (vp)" ® (ﬁvnﬂ)
j=1
a—1 n
S * * € *
—Zij2j<U1) R ®(vp)" ® (T“ S'Un-i-l)
s=1 j=1

+ ijz;‘(vl)* Q@ (fu)* ® - (vng1)"
=1

Then we calculate d (”O(ta)),
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a—2
0 . . " " e *
a [T, R (v) @ - ® (vpg1)* — Z [htH—l ® V)" Q@ - ® (vp)* ® (mvn+l>
=0
*
tet' ® () @ ® () ®2 Y (TZTJ "+1) ]
R
n
B miz ) ® - ® ()" @ - ® (vngr)”
j=1
+()*®- @ (vp)" ® [(—mnﬂ —2+a(k+2)) (Ta””“)
a—2
h e * f e e *
b 124 £ (o]
= oy
. oS ot ce N ho( '
e e e 2L 5 (Figin) - g () |
=0 gEy
a—1 n e %
_ szjzj(vl)* R ® (v,)* ® (T“ SU”“)
s=1 j=1
n e *
- (an - ij) (V1)@ ® (v,)* ® (ﬁvm—l)
j=1
a—1 n e %
_ ZZmJZ;(Ul)* R R® ('Un)* ® (T(l S’Un_|_1)
s=1 j=1

+ DM ) ® e ® () @ ® (vn)".
7=1

In this calculation we use formula (3.3) to express the action ofT@ on (vn+1)*. Notice also that
calculatlng the actlon on"n+1we use the automorphism m, see Section 3.2.These formulas show

thatd (7°(t*)) = n*(8(t*)).

Clearly the maps nt, n2are injective. Theorem 4.1 is proved.

4.6 Image of logarithmic subcomplex

Under the monomorphism n ofTheorem 4.1 the image of the logarithmic subcomplex (€2 log(U) 9)
is the chain complexC o(n-, ®;2 V )
precisely, we have

of the nilpotent subalgebra n_ C sl, generated by f. More

N17->fQ (vi)* ® -+ ® (Vns1) xitt»'_>_”(”1)*®'--®(fvj)*®---®(vn+1)*
: - DR e ), ; |

j=1,.,n,and
pr @) @@ (vnp1)* > mi(v) @ ® (fu;)F @ @ (Ung1)*
j=1 .

Far-reaching generalizations of this identification of the logarithmic subcomplex with the chain
complex of the nilpotent Lie algebra n_see in [8].



14 A. Slinkin and A. Varchenko
5 Proof of Theorem 3.2

5.1 Formula (3.3) follows from formula (3.2)

The Lie algebra sl¢c2 has an automorphism p, corresponding to the involution of the Dynkin

diagram:

p(e) = es-; p(f) = f3- p(hi) = hs-; =12
We have p?=id. In other words, p acts by the formulas

ee fT, fe el hec-h

Lemma 5.1. For i € Z>o, we have

f e e f h h
i T, T T Tl T

p:

Proof. We have
e R e Y R e

T
kbl ] = 3 sl -3 5o - e

Similarly we prove that? (77) = %7 p(%) = _%.

Form € C, let o : sla — End(V (m,k-m)) be the Verma module structure. Let mop: slo =
End(V (m,k — m)) be the twisted module structure.

Clearly thegE-modules (om ° p,V (mk - m)) and (om-r,V (m — k,m)) are isomorphic. If v,€ V
(m,k - m) and vi-m € V (k — m,m) are generating vectors, then an isomorphism y: (o, ° p,V (mk -
m)) = (Om-1,V (m - km)) is defined by the formula,

fire+fisVik-m 7= f3-ir>+*f3-i:vm,

for any iy,...,I; € {1,2}. The isomorphism y restricts to isomorphisms of the graded components, V
(k= mm)piLp) = V (mk — m)papy).

In Section 3.6 we fixed bases of the homogeneous components V(1,52) with p1 6= p,of any Verma
module V. By Lemma 5.1, under the isomorphism y the chosen basis of V (k—=m,m),1,2)is mapped
to the chosen basis of V (m,k — m)pzp1) up to multiplication of the basis vectors by +1. This *1

h\ _ h
appears due to the formula” (F) — 7 T% In particular, we have
e
X 77 Vk—m 7 g Um
T Tt iivk_m = LLUm
_ , T T Ti+1 Ti+1 .
Let Om: 8o — End(V(m, k — m)*) be the contragradient Verma module structure. Let

omop: sy = End(V (m,k —m)*) be the twisted module structure. The isomorphism y induces
an isomorphism of modulesX”: (03, 0 p, V(m, k —m)*) — (o7, _p, V(m — k,m)").

with p1 # p2

*
In Section 3.6 we fixed bases in the homogeneous componentsv(m-,pz) of any con-
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f(k: m,m);

tragradient Verma module V*. Under the isomorphism y*, the chosen basis o (p1,p2)

is mapped to the chosen basis ofv(m’ k—m

In particular, we have
. / ’ e * i i e e *
X (Tzvk -m | (Tz‘+1”m> i Vk-m | (Ti-i—l Tj+1”m>

Assume that the relation in formula (3.2) holds in every contragradient Verma module V* Then
in V (k - m,m)~it takes the form

)(pz 1) up to multiplication of the basis vectors by +1.

(Ohom)* = (—m — 2+ a(k +2)) <%vkm> '

1

R ) 2k X ()]

i+j=a—1—4
i>§>0

Ta—l

The isomorphism y* sends this relation to the relation in V (m,k - m)~,

) = (=m =2+ a(k +2)) ()
a—1
h e * f e e *
+2 [_ﬁ (T(HUM) 25 ) (Ti+1 Tj+1”m> }
(=1 i+j=a—1—¢

i>j>0

’

which is exactly the relation in formula (3.3). Thus formula (3.2) implies formula (3.3).

5.2 Auxiliary lemma
Let
V=V (mk-m) and V=V (mk-m)~

Lemma 5.2. Forx €V, ¢ € V* k € 7=, we have

h
(geoe) =) () = st {guee) = (et

Proof. The proof is by induction. We prove the first equality, the others are proved similarly.
h
We have [f2’ hl= T, hence [f,[fo,f1]] = 2/£. Similarly [ey,[eze1]] = 2eT. So for k= 1, we have

<%<p,l‘> = <%[f1» [f2’f1]]9971'> = <‘f°’ %[[61’62]’61]x> = (e €T$>.

We have[fQ’ Hf——l] - Jh_k, hence[fl’ [f2, ka_l]] - ?_{ Similarly, [eT™1 fT],¢] = 2¢T* Then

(Feoa)y=(5 || g o) = o[l ] ) = Goeta)

5.3 The structure of the proof of formula (3.2)

We reformulate formula (3.2) as
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T(l
a—1 * *
h e f
[Tf (w SORE PV CE DN
/=1 i+j=a—1—/4
12520 , (51)

and will prove it in this form.

Each term in (5.1) is an element of the homogeneous componentv(z’a—l). In Section 3.6 we
specified a basis of the dual component V(,-1). We will calculate the value of the right-hand side
in (5.1) on an arbitrary basis vector and will obtain the value of the left-hand side on that vector.

The basis in V(qq-1) consists of the vectors

f f h h e e
TR e e T el

where
0<i<ir-1<-+ <1y, 1SjsSjS_1S"'Sj1, 1SI,«_1SIr_2S"'511;
rsr-1X XX
iu+ ju+ Iu= a-— 1.
u=1 u=1 u=1

We partition the basis in four groups. Group O consists of the single basis vector r—_~1v. Group

/
[ consists of all basis vectors with r = 1, but different from 7a-1?. Group II consists of all basis
vectors with r = 2. Group III consists of all basis vectors with r = 3.

f
Notice that the value of the left-hand side of (5.1) on the basis vector 7¢=1" equals m + (a - 1)(k

+ 2). Hence we need to show that the value of the right-hand side on the basis vector %U equals
m + (a - 1)(k + 2). Similarly the value of the left-hand side on any basis vector of Groups I-III
equals zero. Hence we need to prove that the value of the right-hand side on any basis vector of
Groups I-III equals zero. These four statements are the content of Propositions 5.3, 5.4, 5.7, and
5.9 below. These propositions prove Theorem 3.2.

54 GroupO

f
Proposition 5.3. The value of the right-hand side of (5.1) on the basis vector T+=T Y equals m + (a -

1)(k + 2). Proof. By Lemma 5.2 we have
foow 4 a-1_f
<Tal (v)*, Talv> = <(v) eT 1T“ 1v>

- <(v)*, [h—{—(a—l) T{fle - ]u> =m+ (a— 1)k,

since eTe-1v is of degree (-a,—a + 1), hence zero.
By Lemma 5.2, for "€ {1,..,a - 1} we have

i / T f f ’ /
<T_L£ <Ta1€v) ’Ta1v> = < (WU) ’hTzTa1v>
f i /
= < (Tal—fv> ’_2Ta—1€v> = _2.
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By Lemma 5.2 for "€ {1,..,a - 1} we have

frN f AR f
7 2 (m5) )= 2 (Fr) omw)

i+j=a—1-¢ i+j=a—1—¢
12520 12520
frAN f
_ < ) (___,v> f:r%> 0
TvT7 * To-1-
i+j=a—1—¢
127520 ,

since fTvis of degree (-"+ 1,-") < (0,-1), hence zero. Therefore,

. a—1 h * *
(7o - r (7)o X (F5) 7o)

(=1 i+j=a—1—¢
12520

=m+ (a— 1Dk — (=2)(a—1) = m+ (a — 1)(k +2).

Proposition 5.3 is proved.

55 Groupl
Proposition 5.4. The value of the right-hand side of (5.1) on any basis vector of Group 1 equals zero.

Proof. Group I consists of basis vectors of the form

f hh
= Ta—t-ni T Y where ne€{l,..,a-1)}, Jit e +js=n, Jiz 1.

w
Lemma 5.5. In the notation above, if s = 1, then
<%(U)*, ’LU> = 2TLI€,

h f . 2nk, if =n
TFaoigV ) ow) =934 .. o .
( v) > if'>a-1-n, (5.2)if 'sa-1-n,if '<n,,if ' >n.

g

0,

0 exclusive with the second and third lines in (5.2).

_ f h
Proof. We have?’’ = Ta-1== 77V, Then

<i Z (i iv> ,w> = {2’ Note that the first line in (5.2) is not mutually

Ta 1) mﬁ”> = <(U) R T ﬁ“>
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— <(v)*, [hT” + Ta_fl_neTal] %U>

—1 h —1 h
Note that®T" ™ 75V s of degree (-a + n,—a + 1 + n) < (-1,0), so that T~ 702 0. Hence
h h
<(v)*,hT"T—an> = <(U)*, [an + ﬁhT”] v> = 2nk.
We have
b f N f N (N e S
Tt Ta—l—fv ’ Ta—1-n FU o Ta—l—ZU ) Ta—1-n ﬁv
Y +n—a+1 f | P
hT Ta—l—nﬁv = l:—sz n-a + Ta—l—nhT ﬁv
— _2fo+nfa+1i/U+ f hTéi’U

Tn Ta—1-n Tn : ,

Note that the second summand is nonzero if and only if * = n. In that case we have
f tf n Nt
< <Ta_1_n’U ,th ﬁv = 2nk.

For the first suqlmand, if ' +n-a+1<0,then —2f

{+n—a+1_h i i .
T 77V is a basis vector and so pairing

f
with (T‘H"‘/U gives zero.If '+ n-a+1 >0, then

< <Ta_f1_€,v> , _2fTZ+n—a+l %U>

= < <7Tafl_ev>* ,—2 [27@1{1—6 + %fo—i-n—a—H] v> — 4

7

where we used fT*n-a+ly = (.

Finally,
e fry /I h ffP N e [ h
<ﬁ Z <ﬁﬁv> ? Ta—1-n ﬁv> = < Z (FEU ’fT Ta—1-n ﬁv
i+j=a—1—¢ i+j=a—1—¢
12520 12520
e f  h f ch  f — ) / /
fT Ta—1-n ﬁv - Ta—1l-n fT ﬁv © Ta—1-n 2fT "+ ﬁfT U= 2Ta—1—n Tn—ZU’

’

since fT'v = 0. Note that (a-1-n)+(n-") = a-1-", hence ifi=a-1-nand j = n-"
(or vice versa depending on what is greater) we have

< Z (ﬁﬁv> ’2Ta—1—n T"€U> =9

i+j=a—1—¢
12j>0

7

whenever n - * 2 0 and zero otherwise. The lemma is proved.

For s = 1 Proposition 5.4 follows from Lemma 5.5:
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—1 * *
/ e h / e fr I h
(-3 | (7o) +2m & (L) | ppme
/=1 i+j=a—1-¢
127520
=2nk —2nk+4n—2-2n =0.
Lemma 5.6. For s = 2, we have

<Tic1 (U>*’w> -0 (5.3)

al<i< f U)* w>_0
o \TEATe (5.4)

i>j>0 . (5.5)

_ i h
Proof. Recall that Y = 7o=T=7 751 * " T35 ” with j; + «- + js= n. We have
f * v ra-
<Ta1 (U) ,W ) = <(U) ,6T 1w>,

eT* L = T !

f a—1 h h
Ta—l—neT ﬁ Tjsv.

[hT"

We have """ 77 7o U= 0, since hT" commutes with all 77:. Indeed, we have n > j;since ji + -+ +
js=n,jiz1,and s 2 2.
_J epa-l_h . _h_ a=1_h_ .  _h_
We also have Ta=t=m €T’ TJI 755 V= 0 since®l " 71 TV is of degree (-a+n,—a+

1+ n) £ (-1,0), hence zero. This proves (5.3).
We prove (5.4) by induction on s. For s = 2 we have

h f ' f "
(e )~ () )

Wrtw = prt—t [—2fo—“+1+” + / hTﬂ o h

Ta—1=n Tij1 Ti2 Ta—1-n T T2
h h f h h
l—a+14n " . 4
—2fT T T v+ Ta 1w hT" — T T2 V-

¢ _h__h_ f . .
Note that for 7%~ o= hT 771 772 U to give a nonzero pairing with (T“ =7 U) we need " = n, which

_h_
1mp11es that h'T commutes with 771 and 772 (€> jlsmce]l +j2=n="andj;2 1), so that

¢ h o b .
Ta Tat=n M i 75 v gives zero for all .

¢ <a—1-—n, fTotltn b b,

Also note that whenever Ti1 Ti2 © is a basis vector and so pairing

f *
with (Ta—l—“)) gives zero. If '>a -1 - n, then
h h

_ {—a+1+n
2fT TJI T]2

— _9 |:2fTZ—a+1+n—j1 + Lfo—a+l+n:| —

Ti1 T2

. h h h
_ {—a+1+n—j _ {—a+1+n
= —4fT 1Tj2v . fT T . (5.6)

1
If'<a-1-n +]1, the first summand gives zero when pairing with (Ta = é”) , since for such

l—a+14n—j1 _h_
2 772 Y is a basis vector. For *>a -1 - n + j;, we have

_4fT€7a+1+’rL*j1 LU — 4 |: f 4+ — h fo a+1+n— j1:| v = —8 f

T2 Ta—1— Ta—1-¢Y T2 Ta—1—£v7
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since fT-a+1+n-jty is of degree (-"+a-1-n+ji1+1,-"+a-1-n+j;) <(0,-1), hence must be equal

to zero.So for "€ {a-1-n+ji+1,.,a- 1} we get

f i l—a+14n—j h _
< (WU ,—4fT lﬁv = -8

and zero for other values of ". The total number of elements in the set {a-1-n+ji+1,..,a-1} equals

J2:
Whereas, for the second summand in (5.6) we have

h l—a+1+n h h l—a+14+n—7j2 h l—a+1+n
_ h l—a+14n—jo
= A fT v,

since fT-a*1*nv is of degree (-'+a-1-n+1,-"+a-1-n) <(0,-1), hence must be equal to zero.
If > a-1-n+j,, then fT-a*1+n-2y is of degree (- +a-1-n+j+1,-+a-1-n+jz) < (0,-1), hence must
be equal to zero. If "< a -1 -n +j, then
h {—a+14+n—j2,, __ f l—a+14+n—7ja h
_4ﬁfT v=—4 —2m + fT ﬁ
h

o f é—(l+1+n—j2
_ —4fT -

Ta—l—é
The second summand gives zero when pairing with \7a=1=¢%/ . So for "€ {a-1-n+1,..,a-
1-n+j} weget

f ' h {—a+14n h _
< <—Ta—l—£v ’_QﬁfT ﬁv =8

and zero for other values of ". The total number of elements in theset{a-1-n+1,..,a-1-n+
Jj2} equals j>.
Therefore,

a—1 *
h f fh h —

2 <ﬁ <T“15U> ' Ta—1-n ﬁﬁ”> =—8j2+8j2=0

=1

and so for s = 2 we proved (5.4).
Now suppose that (5.4) holds for all natural numbers up to s. Then

hT@ f h h v = |:_2fTK—a+l+n+ f hTﬁ h A h

T e e - —_— 1 e A 3 /U
Ta—1-n i1 Tis+1 Ta—1-n Tt Tis+1

S prtho . _h , . o ( ! v)* .
Note that forT-1=" Ti1  Tis+1” to give a nonzero pairing with \7«-1-¢"/ we need "= n.

h
That assumption implie; that hT commutes with77 for alli € {1,..,s + 1} since "> j;as ji + «** + jos1=
hTt-h ..

n="andj;= 1. Hence7* 1" T Tis+1 " gives zero for all .
. fri-atitn b _h g, ,
Also note that whenever < a - 1 - n, the vector 171 T7s+1 " is a basis vector and

f *
so pairing with (T"r—l—fZ v) gives zero.
If ' >a-1-n,then
_2fT€—a+l+ni_ . h
Tt Tis+1
f h h LfT—tH-l—i—'rH—Zi . h

Ta—1-(n—0)— 752 Tis’  “Th Tiz i (5.7)

h h
ﬁ."TjS+1U

: h
— l—a+1+n—j1 l—a+1+4+n
v=—-2|2fT + T fr
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Note that by induction hypothesis we have
a—1 *
B h f f h h
0= ; <ﬁ <7Ta—1—fv> e TR )

’ f h h

So we add this zero term multiplied by -2 to the first summand in (5.7) to get

a—1 *
f h h
_2Z< <T“ 1-¢ ) 72Ta—1—(n—jl)—€ﬁ”'Tjs+1v
- f h h
_QZ< <Ta - > T Tafl(njl)ﬁ.“Tjs+1U>
= " f ¢ f h h
__QZ<<TG =" > ’[2m+”m Ti " The

B * f s h h

where in the last step We use commutation relations.

__f _ ppth . _h ) . : f *
Note that forze—1-(-i1) W 75 eV to give a nonzero pairing with (TG*I*‘Z v) we need

h
"= n—j;. That assumption implies that hT' commutes with 77i for all i € {2,..,s+1} since
__f oyt ho_h ‘
‘>jiasjz+ - +j1=n-ji1="andj;= 1. Hence 71~ ("—J1) hT 75 Tis+1 Y gives zero for all .

For the second summand in (5.7) we have

T h —a+1+n+£ h h
_2Z<<Ta 1Y > ﬁf Tj2'”Tjs+1U

a—1 *
— _f h f h atitnte| N h
=2 < <Ta1z” T 2Ta717(n7j2) T]z TRt Tis il

=1
a—1 *
_ f h f h h
N _4;< <Ta—1—f” ' Tt Ta—1—(n—j2)—€ Tda  Tise1' (5.9)
-« f N h ok h h
— R —a+1+n+€_ " .
2 ? < <Ta_1_€v> T T T2 T T3 Tis+1 v>' (5‘10)
=1
In (5.9) we note that
h f h h
Tt Ta—1—(n—j2)—€ T35 Tist1
B f f hl h h
T | “pa—1—(n—j1—j2)—¢ + Ta—1—(n—j2)—L T | Tiz Tjs+1v
/ h h f h h h

= -2

Ta -7 Tt Ta gt Th T Tie

Note that in both terms the number of h’s is less than or equal to s, so we use the exact same
reasoning as in (5.8) to show that
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a—1 * f h h 0
Ta— 1 v Ta—1—(n—j1—j2)—€ T93 * " Thst1 v)="4u

/=1

a—1 *

3 f, f ho R RN
— Ta—1—¢ P Ta—1—(n—j2)—£ Tj1 T3 Tis+1 o

which implies that the expression in (5.9) equals zero. Similarly, one shows that in (5.10),
a—1 *
D (R S T e A B
— Ta-1-t " Tt T2 Tis  Tis+

the factor fT-a*1+n+ can be pulled to the right by using the same argument (first commute

h
[fT-a+t+n+"with T35 and then pull fT-a+1+n-3+ to the left). Ultimately, we get

a—1 *
/ hh h h —at14n+e, \ _
;«Ta—l—?” T TR TR Tt v) =9

’

since '>a -1 -nand so fT-a*1+n+'y = 0. Therefore,

a—1 h f * f h h 0
Z ﬁ Taflffv » Ta—1-n ﬁ T TiJs v)=

(=1

’

and formula (5.4) is proved.
We prove formula (5.5) by induction on s. For s = 2, we have

(7 2 F5) - 2 (F5) )

i+j=a—1—/¢ i+j=a—1—/4
i>5>0 i>>0
h h h h
fTZU) — fTZ f o f fTE

Ta—1-n ﬁﬁv T Ta—1-n T Tjg ) ,

¢_h__h
Note that/ 1" 741 792V is of degree (n-'+1,n-"), hence nonzero only if * < n. For such *we
have

f —j ¢ f 0 D f e h
Ta—1-n 2fT T ft TJ2 2Ta717n fT e T2 TRl T Ta—1-n T]1 f
f P f
= 2Ta_1_nfT‘Z MRt 2 s fo P2y, (5.11)

If * <, then the first summand in (5.11) gives zero when pairing with any vector with two fs. If °
> j1, then
h

EfTe_jl] v=4

f
Ta—1-n

- h [ o
fTE—Jlﬁ'U = 2Ta—f1—n ngé—ﬁ—Jz +

f f

2 Ta—1-—n Tn—£

If * > j,, then the second summand in (5.11) is zero simply because fT~2v = 0. If " < j, then

f h /—7j f ] l—j h f f
2Ta717nﬁ T =205 (2T TR+ T2 v = A Y
SlnCE Ta— 1 n fTZ J2 L

771 Y is a basis vector, hence pairing with a vector consisting of two fs gives
zero. Therefore,
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a—1 %
I f / /
_§:< > <fﬁﬁ0 Af;t%ﬁ:ﬂ>

, i>§>0
(5. () )

(5.12)

(5.13)

Note that in the expression in (5.12) for each " € {j; +1,..,n} there exists exactly one pair of indices
(ij) = (max{a-1-n,n-"},min{a-1-n,n-"}) that gives 4 when pairing. All other pairs (ij) give zero.
Similarly, the expression in (5.13) equals -4 for each " € {1,...j>} and exactly one corresponding
pair (ij), and zero otherwise. Also note that the number of elements in each set {ji + 1,..,n} and
{1,...,j2} equals j,. Hence we get

4j, - 4j,= 0.

Therefore, formula (5.5) is proved for s = 2.
Now suppose that formula (5.5) holds for all natural numbers up to s. Then

. f h h B I ¢ h h
T ramnrn i = per=ad T gn o
_ f 0—j1 h (| h
= Taflfn 2fT + ﬂfT ﬁ N Tjs+1 v
— f l—J1 h h f h ¢ h h
_2Ta—l—nfT ﬁ”'Tjsﬁ—lv_'_ Ta—l—nﬁfT ﬁ..'TjaA—lv' (5.14)

Note that if " <jj, then the first summand in (5.14) is a basis vector and hence its pairing with a
vector consisting of two f’s gives zero. If * > j; we have
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(=1 ‘itj=a—1-4
i>5>0
a—1 *
_ frf f oy h h
B < E: (fﬁfgv ’JW—PﬂfT Tz i !
l=j1+1 ‘i4+j=a—1—¢
i>j>0
a—l *
__ e ff f h h
= T 25: TiTi’) ' Ta—1-nTiz  Tiet1®
l=j1+1 i+j=a—1—£
i>5>0
e AN f h N,
- ﬁ Z ﬁﬁv " la—1—j1)—(n—j1) ﬁ o TJs+1 v)=
k=1 i+j=a—1—j1—k

i>5>0

by induction hypothesis. For the second summand in (5.14) we have

[ h o h h  f h piia g B pmi] B h
Taotnn! T anﬂmv_ﬂlnﬂlf t I TR T
f iz D h [ hoh h
= 2Tais nzvlf T T Y e e T TE T T (5.15)
Note that
f . heoo o f iy iy 1 R h
Ta 1—n T]lf ? j3 Tjs+1v - Ta—l—n _QfT ! 2 +fT 2ﬁ ﬁ o Tjs+lv
= -2 / fo—jl—jzi... h f T ho b _h v
Ta—1-n 75 Tien Ut Taiow Tir Tis ~ Tistr

where in each vector the number of h’s is less than or equal to s. Repeating the argument above,
we see that by induction hypothesis we get

f PN S mh ho \ _
z< R e I T
=1 ‘it+j=a—1—¢
1>35>0

Now in the second summand in (5.15),
f h h T h h
Ta—1-n T]l T2 7l T T]3 o Ts+1 v

we pull fT to the right and at each step we use induction hypothesis to argue that we keep getting
zeros. Ultimately, we get a vector
foh T
Ta—1—n Tj1 T]S+1

which is zero, since fT has grading (-"+ 1,-7) < (0,-1) and so fT'v = 0. Therefore,

a—1 *

e i foho o hN
Z<ﬁ 2 (?T—) TT—T>0
=1 i+j=a—1—¢

i>j>0

Formula (5.5) and Lemma 5.6 are proved.
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Proposition 5.4 is proved.
5.6 Groupll

Proposition 5.7. The value on the right-hand side of (5.1) on any basis vector from Group 11 equals
zero.

Proof. Group II consists of vectors

ffh h e

Lemma 5.8. We have

<Tf_1 (v)*, w> = 25T (m — [Ek), (5.16)
) ; ) 2572 (m — k), ifii=ih=a-1-"
L — s+1
<T€ (Tal€v> ,w> =12 (m—1k) ,ifii6=iandihoriz=a-1-°  (5.17)
0, ,
otherwise,
R B P S
if'=a-1-i1-1Iy
(5.18)
T TT O, otherwise. i+j=a-1-"izj=0

Proof. We have
. h h
<%(v)*,w> = <(v)*,eT“_1w> = <(v)*, [hT“_l_“ + %eTa_l] %ﬁ ... ﬁ%v>
_ <(v)*,hTa”1ii_ . iiv> <(v)* S opor L Liv>. (5.19)

T2 T Tis T! Tu T2 Thn Tis T
1S h .  _h e
Note that"Ta T2 Tt~ T7s T is of degree (-i1 - 1,-i1) < (-1,0), hence
1 _h_ h e
eT*” T12 791 " T35 70 U= 0. In the first summand in (5.19) we pull hTs-1-i1 to the right to get

. h h e L e

* a—1—1i1—1i2 L s+1 a—1—i1—ig—j1——as
<(1}) ,—2fT e T > <(v) =25 fT 1Y

= <(v)*, —25’“le%®> = ((v)*, 25" (h — le)v) = 25T (m — 1K),

where at each step we do not write monomials of negative degree, since they give zero when
applied to v. This proves formula (5.16). We have

h * *
(e (7etmrn) o) = (i) )

0 0—i I ool R h e
hT w = —2fT 1 + T'Ll hT :| Ti2 ﬁ st TJG F’U
- _ f*ilii...ii f l—ig f | P ...ie
= —2fT T2 T Ts Tl T 7 T —2fT + T2 7z hT T Tis Tl
_ [ f l—iq f Z 12 f f h h e
- __QEfT 2 TRt Tt TZz Ti il




26 A. Slinkin and A. Varchenko
I f pptho . hoe : \ . .

Note that the vector 7 72 "1 7u7 775 11 Y after pulling hT to the right either becomes a zero

vector or a vector with two f’s, which of course gives Zero when pairing w1th a basis vector with
Té—in_h_ 0 _h

one f. Also, note that the only possibility for the vector m f 71 77 Tl give a nonzero

b—ig_h_ _h e
pairing with (T“ 1= fv) is when i; = g-1-" Similarly 77 G IT 71 75 11 Vgives a nonzero

number only ifii=a - 1 - . First consider the caseii=i;=a -1 - . We have

—dra T fT%_aH% o T};s %U
_ _4Ta—fl—€ 9 fT2f-atl-in 4 TijfT%—a-i-l 1% o %;z
Note that!/ 7> "' 75 - T Fris of degree (-j1,—j1) < (-1,-1), hence
fTQZfaJrlThj’_Q %% ().
So we get
_8Ta;fl—€fT2€_a+1_jl T};’z "'%;z L _2s+2%fT2€—u+l—j1—m—js%,U
et Tafl P ST = 28+2Tafl_z (h—le)o = 2°F2(m — 1K),

where at each step we don’t write monomials of negative degree, since they give zero when
applied to v.
Forii=a-1-"6=iandiz=a-1- "6=1i;we have

f o h o hoe
_2Ta717€ fT2f a+11—,_ T]é Tl — 28-‘1—1 (m _ ll{)

where we performed the exact same computation as above. Therefore, formula (5.17) is proved.
We have

(i 2 (R )= 2, (b)),

i+j=a—1-¢ i+j=a—1—¢
12520 127520
o f Tt h h e ff i1 h . o h h e
T = e I s g = s |20 T | e e
. . . . frtl ... hoe
The only nonzero pairing happens when "is such thatii +iz=a -1 - ". In that case T2 Tis TT
¢ _h h_ e
has degree (—j1,—j1) < (-1,-1), hence FT %5 735 71%= 0, Therefore we
have
o d f o b he o f fgege o f f e
et U n T Y e T = e T

where we pulled fT1to the right and did not write monomials of negative degree, since they give

zero when applied to v. Hence we get

s I f
2 raTn

(—h +lc)v.

Therefore,
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e fFrN
w2, (5m) )
itj=a—1—¢
12520

- ¥ {(£Ly) rhLenvion) - —rm-w

itj=a—1—¢
i>5>0

’

since for i = iy, j = i; we get —=25(m - lk) and zero for other pairs (ij). Formula (5.18) and
Lemma 5.8 are proved. By
Lemma 5.8, we have
1

(o -S [ () +25 = (F40) o)

i+j=a—1—¢
i>j>0

=25 (m — k) — 2.2 (m — 1k) + 2 2°(m — Ik) = 0.

Note that
a—1 *
h ( f > > s+1
<£:1 T \T

in both cases i1 = i; and i; 6= i;. Also note that
a—1

e £y
(7 X (F80) =) ro
=1 itj=a—1—¢
12520
only if “is such thati; + i.=a - 1 - . Therefore, Proposition 5.7 is proved.
5.7 Group III

Proposition 5.9. The value of the right-hand side of (5.1) on any basis vector of Group 111 equals
zero.

Proof. A vector in Group III has the form
f f h h e e

Tra U ThTh TiTh T T

where r > 3.

Lemma 5.10. For every "€ {1,..,a - 1}, we have

/ « _

<T“‘1 (®) ’w> -0 (5.20)
hf f O\ O\

<W (T“‘l‘”v> w> o (5.21)

(7, 2, (F5) »)-0

itj=a—1—¢
i>§>0 . (5.22)

Proof. We have
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eTU, 1 >

a—1—1 f a—1 f f h h e €

S
N
8~
L
<
=
g
~_—
1

eT_lf...__... h €

_e
Note that T T TR T 71 Vs of degree (=it - 1,-i1) < (=1,0), hence
zero. So we have

a—1—i1—1 f a—1—i f f h h e e
<() [ 2fT - 2+T12hT 1} TR e R

pro-l—inf ... L h . h e . _e . , ]
As above, note that T3 Tir Th1 Tis Th Tr—1" is of degree (—i» - 1,-12) <

(-1,0), hence zero. Therefore we obtain

<(1))*,—2 f ffaln 12LLLLU>:O

T'Ld T'Lr TJI Tjs Tll Tl'r'—l
fTaflfilfiQL_ oo e e
since T T9s Th T'-1"is of degree (-iz—++*—i;~r+2,~i—--=i;) < (-1,0) for r = 3,
hence zero. Formula (5.20) is proved.
We have
h f ) f -
(7 (7fee) )= { () )
¢ (i f el f [ h h e e
hT w |: 2fT 1+T11hT]EH'TZ'TE‘“EE'”—THAU
_ o f f h h e e
T S Th i Th T Y (5.23)
/ W f I h h e e
T s e TR T T T v (5.24)

Observe that for " < i1in (5.23) we have a basis vector, hence it gives zero when pairing with

f *
(Ta—l—f U) .If "> iy, then we pull fT-1to the right and notice that no matter how fT-itinteracts with
h’s and e’s, it does not affect the number of];s, which is greater or equal than two. Hence, the vector
*
in (5.23) gives zero when pairing with (Taflff v
In (5.24) note that
f

¢ f l— ¢
W' = =2f T 4 T

so that either hT is pulled to the right not affecting the number of f’s or it gives fT-%2, for which we
apply the same argument as above after pulling it to the right to argue that the pairing of the vector

f *
in (5.24) with (7e5=7v)" is zero. Formula (5.21) is proved. We have

7 2 Fm) - (F5) )

i+j=a—1—¢ itj=a—1-¢
i>7>0 12720
o o f f h h e e
flw= T o e i iy ?
S L he e
T Tir Tn Tis Th Tlr—1 " ’

As in formula (5.21), no matter how fT interacts with h’s and e’s, the number of fs remains

LI
unchanged, i.e.,, we have more than or equal to three f’s, so that pairing with (T' ”) is zero.
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Formula (5.22) is proved.

Proposition 5.9 follows from Lemma 5.10.

Theorem 3.2 is proved.
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