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Abstract. We consider two complexes. The first complex is the twisted de Rham complex of 
scalar meromorphic differential forms on projective line, holomorphic on the complement to 
a finite set of points. The second complex is the chain complex of the Lie algebra of sl2-valued 
algebraic functions on the same complement, with coefficients in a tensor product of 

contragradient Verma modules over the affine Lie algebra slc2. In [Schechtman V., Varchenko 
A., Mosc. Math. J. 17 (2017), 787–802] a construction of a monomorphism of the first complex 
to the second was suggested and it was indicated that under this monomorphism the existence 
of singular vectors in the Verma modules (the Malikov–Feigin–Fuchs singular vectors) is 
reflected in the relations between the cohomology classes of the de Rham complex. In this 
paper we prove these results. 
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1 Introduction 
We consider two complexes. The first complex is the twisted de Rham complex of scalar 
meromorphic differential forms on projective line, that are holomorphic on the complement to a 
finite set of points. The second complex is the chain complex of the Lie algebra of sl2-valued 
algebraic functions on the same complement, with coefficients in a tensor product of 

contragradient Verma modules over the affine Lie algebra slc2. In [9] a construction of a 
monomorphism of the first complex to the second was suggested. That construction gives a 
relation between the singular vectors in the Verma modules and resonance relations in the de 
Rham complex. 

http://varchenko.web.unc.edu/
https://doi.org/10.3842/SIGMA.2019.075


2 A. Slinkin and A. Varchenko 
That construction of the homomorphism was invented in the middle of 90s, while the paper 

[9] was prepared for publication 20 years later, when the proofs were forgotten, if they existed. 
The paper [9] provides supporting evidence to the results formulated in [9], but not the proofs. 
The goal of this paper is to give the proofs to the results formulated in [9], namely, the proofs that 
the construction in [9] indeed gives a homorphism of complexes and relates the resonances in the 

de Rham complex and the slc2 singular vectors. 

 
This paper is a contribution to the Special Issue on Algebra, Topology, and Dynamics in Interaction in honor of 

Dmitry Fuchs. The full collection is available at https://www.emis.de/journals/SIGMA/Fuchs.html 
The construction in [9] has two motivations. 
The first motivation was to generalize the principal construction of [8]. In [8], the tensor 

products of contragradient Verma modules over a semisimple Lie algebra were identified with 
the spaces of the top degree logarithmic differential forms over certain configuration spaces. Also 
the logarithmic parts of the de Rham complexes over the configuration spaces were identified 
with some standard Lie algebra chain complexes having coefficients in these tensor products, cf. 
in [4, 5] a D-module explanation of this correspondence. 

The second idea was that the appearance of singular vectors in Verma modules over affine Lie 
algebras is reflected in the relations between the cohomology classes of logarithmic differential 
forms. This was proved in an important particular case in [1, 2], and in [7] a one-to-one 
correspondence was established “on the level of parameters”. In [9] and in the present paper this 
correspondence is developed for another non-trivial class of singular vectors, namely for (a part 
of) Malikov–Feigin–Fuchs singular vectors, cf. [6]. 

The paper has the following structure. In Section 2 we introduce the de Rham complex of a 

master function and resonance relations. In Section 3 we discuss slc2 Verma modules, the Kac– 
Kazhdan reducibility conditions. We formulate Theorem 3.2 which describes certain relations in 
a contragradient Verma module. The proof of Theorem 3.2 is the main new result of this paper. In 
Theorem 3.3 we describe the connection between the relations, described in Theorem 3.2, and 
the Malikov–Feigin–Fuchs singular vectors. In Section 4 we construct a map of the de Rham 
complex of the master function to the chain complex of the Lie algebra of sl2-valued algebraic 
functions. Theorem 4.1 says that the map is a monomorphism of complexes. The proof of Theorem 
4.1 is the second new result of this paper. Section 5 is devoted to the proof of Theorem 3.2. The 
proof is straightforward but rather nontrivial and lengthy. 

2 The de Rham complex of master function 

2.1 Twisted de Rham complex 

Consider C with coordinate t. Define the master function by the formula 
n 

Φ(t) = Y(t − zi)−mi/κ, 
i=1 

where z1,...,zn,m1,...,mn,κ ∈ C are parameters. Fix these parameters and assume that z1,...,zn are 
distinct. Set 

https://www.emis.de/journals/SIGMA/Fuchs.html
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 zn+1 = ∞, mn+1 = m1 + ··· + mn − 2. 

Denote U = C − {z1,...,zn}. 
Consider the twisted de Rham complex associated with Φ, 

 0 −→ Ω0(U) −∂→ Ω1(U) −→ 0. (2.1) 

Here Ωp(U) is the space of rational differential p-forms on C regular on U. The differential ∂ is given 
by the formula 

 ∂ = d + α ∧ ·, (2.2) 

where d is the standard de Rham differential and the second summand is the left exterior 
multiplication by the form 

. 
Formula (2.2) is motivated by the computation 

d(Φω) = Φdω + dΦ ∧ ω = Φ(dω + α ∧ ω). 

The complex Ω•(U) is the complex of global algebraic sections of the de Rham complex of 
, where ∂ = d + α ∧ · is considered as the integrable connection on the sheaf OUan of 

holomorphic functions on U. 
If the monodromy of Φ is non-trivial, that is, if at least one of the numbers m1/κ,...,mn/κ 

is not an integer, then  

H0(Ω•(U)) = 0, see 

for example [7]. 

2.2 Basis of Ω•(U) 

The functions 

dimH1(Ω•(U)) = n − 1, 

  for a ∈ Z>0 and ta for a ∈ Z≥0 

form a basis of Ω0(U). The differential forms 

  for a ∈ Z>0 and tadt for a ∈ Z≥0 

form a basis of Ω1(U). The differential ∂ is given by the formulas 
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  (2.3) 

t 
 .
 (2.4) 

− zj 
 j=1 k=1 j=1 j=1 

2.3 Resonances 

The equations 

(i) mi + (a − 1)κ = 0 for some a ∈ Z>0, i ∈ {1,...,n}, 

(ii) mn+1 + 2 − aκ = 0 for some a ∈ Z>0, 

(iii) κ = 0, 

are called the resonance relations for the parameters m1,...,mn+1, κ of the de Rham complex. 
If κ = 0, then the twisted de Rham complex is not defined. If the resonance relation mi + aκ = 0 

is satisfied for some a, then the first term in the right-hand side of (2.3) equals zero. Similarly, if 
the resonance relation mn+1 +2−aκ = 0 is satisfied for some a, then the first term in the right-hand 
side of (2.4) equals zero. 
2.4 Logarithmic subcomplex 

Let Ω ) be the subspace generated over C by function 1. Let Ω ) be the 
subspace generated over C by the differential forms 

dt ωj = , j = 1,...,n. 
t − zj 

These subspaces form the logarithmic subcomplex (Ω ) of the de Rham complex 
(Ω•(U),∂). We have 

∂: 1 7→ α. 

For generic m1,...,mn, κ, the embedding (Ω ) is a quasi-isomorphism, the 
logarithmic forms ω1,...,ωn generate the space H1(Ω•(U)), and the cohomological relation n 

P miωi ∼ 0 is the only one, see for example [7]. 
i=1 

Each resonance relation implies a new cohomological relation between the forms ω1,...,ωn, 
n 

see [9, Corollary 6.4]. For example, if mn+1 + 2 − κ = 0, then P zjmjωj ∼ 0, and if mn+1 + 
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j=1 

2 − 2κ = 0, then 

. 

3 slc2-modules 

3.1 Lie algebra slc2 
Let sl2 be the Lie algebra of complex (2 × 2)-matrices with zero trace. Let e, f, h be standard 
generators subject to the relations 

 [e,f] = h, [h,e] = 2e, [h,f] = −2f. 

Let slc2 be the affine Lie algebra  with the bracket 

 

where c is central element, ha,bi = tr(ab). Set 
e1 = e, f1 = f, h1 = h, 
e2 = fT, f2 = eT−1, h2 = c − h. 

These are the standard Chevalley generators defining slc2 as the Kac–Moody algebra 
corresponding to the Cartan matrix . 

3.2 Automorphism π 

The Lie algebra slc2 has an automorphism π, 

 π: c 7→ c, eTi →7 fTi, fTi 7→ eTi, hTi 7→ −hTi. 
3.3 Verma modules 

We fix k ∈ C and assume that the central element c acts on all our representations by multiplication 
by k. 

For m ∈ C, let V (m,k − m) be the slc2 Verma module with generating vector v. The Verma module 

is generated by v subject to the relations 

 e1v = 0, e2v = 0, h1v = mv, h2v = (k − m)v. 

Let nˆ  be the Lie subalgebra generated by f1, f2 and Unˆ− its enveloping algebra. The map 
Unˆ− → V (m,k − m), F 7→ Fv, is an isomorphism of Unˆ−-modules. 

The space V (m,k − m) has a Z2≥0-grading: a vector fi1 ···fipv with ij ∈ {1,2} has degree (p1,p2), if pi 

is the number of i’s in the sequence i1,...,ip. For γ ∈ Z2≥0, denote by V (m,k − m)γ ⊂ V (m,k − m) the 

corresponding γ-homogeneous component. 
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A homogeneous nonzero vector ω in V (m,k − m), non-proportional to v, is called a singular 

vector if e1ω = e2ω = 0. The Verma module V (m,k − m) is reducible, if and only if it contains a 
singular vector. 

3.4 Reducibility conditions 

See Kac–Kazhdan [3]. Set 

κ = k + 2. 

The Verma module V (m,k −m) is reducible if and only if at least one of the following relations 
holds: 

(a) m − l + 1 + (a − 1)κ = 0, 

(b) m + l + 1 − aκ = 0, 

(c) κ = 0, 

where l,a ∈ Z>0. If (m,κ) satisfies exactly one of the conditions (a), (b), then V (m,k − m) contains a 
unique proper submodule, and this submodule is generated by a singular vector of degree (la,l(a 
− 1)) for condition (a) and of degree (l(a − 1),la) for condition (b). 

These singular vectors are highly nontrivial and are given by the following theorem. 

Theorem 3.1 (Malikov–Feigin–Fuchs, [6]). For a,l ∈ Z>0 and κ ∈ C, the monomials 

F12(l,a,κ) = f1l+(a−1)κf2l+(a−2)κf1l+(a−3)κ ···f2l−(a−2)κf1l−(a−1)κ, 

F21(l,a,κ) = f2l+(a−1)κf1l+(a−2)κf2l+(a−3)κ ···f1l−(a−2)κf2l−(a−1)κ 

are well-defined as elements of Unˆ−. If m = l−1−(a−1)κ, then F12(l,a,κ)v ∈ V (m,k−m) is a singular 
vector of degree (la,l(a−1)) and if m = −l−1+aκ, then F21(l,a,κ)v ∈ V (m,k−m) is a singular vector of 
degree (l(a − 1),la). 

An explanation of the meaning of complex powers in these formulas see in [6]. 
For example for m = −2 + κ, we have 

 

and for m = −2 + 2κ, we have 

 
3.5 Shapovalov form 

The Shapovalov form on an slc2 Verma module V with generating vector v is the unique symmetric 
bilinear form S(·,·) on V such that 

 S(v,v) = 1, S(fix,y) = S(x,eiy) for i = 1,2; x,y ∈ V. 

For γ ∈ Z2≥0, let  be the vector space dual to Vγ. Define . The space V ∗ is an 
-module with the -action defined by the formulas: 
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 hfiφ,xi = hφ,eixi, , 
where φ ∈ V ∗, x ∈ V , i = 1,2. The sl2-module V ∗ is called the contragradient Verma module. 

The Shapovalov form S considered as a map S: V −→ V ∗ is a morphism of -modules. 

3.6 Bases in V and V∗ 

Let V be an slc2 Verma module V . For every γ = (p1,p2) ∈ Z≥20 with p1 =6 p2, we fix a basis in the 

homogeneous component Vγ ⊂ V . 
For p1 > p2, we fix the basis 

 , 

where 

 0 ≤ ia ≤ ia−1 ≤ ··· ≤ i1, 1 ≤ jb ≤ jb−1 ≤ ··· ≤ j1, 1 ≤ kc ≤ kc−1 ≤ ··· ≤ k1; 
 b b 

(3.1) 

For p1 < p2, we fix the basis 

 , 

with the indices satisfying (3.1). Notice that for any x ∈ sl2 the elements  and  commute. 
These collections of vectors are bases by the Poincar´e–Birkhoff–Witt theorem. 
For any γ, we fix a basis in the γ-homogeneous component  as the basis dual of the basis 

in Vγ specified above. If {wi} is a basis in Vγ, then we denote by {(wi)∗} the dual basis in . 

3.7 Main formula 

Theorem 3.2 ([9, Theorem 5.12]). For m,k ∈ C and a ∈ Z>0, the following identities hold in the 

contragradient Verma module V (m,k − m)∗, 

 , (3.2) 

 , (3.3) 
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where v is the generating vector of the Verma module V (m,k − m). 

Theorem 3.2 was announced in [9]. The proof of Theorem 3.2 is the main result of this paper. 
The theorem is proved in Section 5. 

Remark. The right-hand sides of formulas (3.2) and (3.3) have the factors m + (a − 1)(k + 2) and 
a(k + 2) − m − 2. The vanishing of these factors corresponds to the resonance conditions mi + (a − 
1)κ = 0 and mn+1 + 2 − aκ = 0 for the de Rham complex in Section 2.3, if we recall that κ = k + 2. 

Remark. Theorem 3.2 says that the action of the element  of degree (a,a − 1) on the covector 
(v)∗ can be expressed in terms of the actions of the elements  and  of smaller degree on some 
other covectors. Similarly the action of the element  of degree (a − 1,a) on the covector (v)∗ can 
be expressed in terms of the actions of the elements  of smaller degree on some other 
covectors. 

3.8 Relation to Malikov–Feigin–Fuchs vectors 

Let 

S: V (m,k − m) → V (m,k − m)∗ 

be the Shapovalov form. Denote 

 , 

For generic values of m and k, the Shapovalov form S is non-degenerate and Xa and Ya are well 
defined elements of V (m,k − m). The chosen basis in V (m,k − m) allows us to compare these 
vectors for different values of k, m. The vectors Xa(m,k − m), Ya(m,k − m) are holomorphic functions 
of k, m for generic k, m. 

Recall the resonance lines in the (m,k)-plane, given by the equations 

 m − l + 1 + (a − 1)(k + 2) = 0, m + l + 1 − a(k + 2) = 0, k + 2 = 0, 

for some a,l ∈ Z>0, see Section 3.4. 

Theorem 3.3 ([9, Theorem 6.2]). For a ∈ Z>0 let (m0,k0) be a point of the line m+(a−1)(k+ 2) = 0, 
which does not belong to other resonance lines. Then the function Xa(m,k − m) can be analytically 
continued to the point (m0,k0), and Xa(m0,k0 −m0) is a (nonzero) singular vector of V (m0,k0 −m0), 
hence it is proportional to the Malikov–Feigin–Fuchs vector F12(1,a,k0 +2). 

Similarly, for a ∈ Z>0 let (m0,k0) be a point of the line m+2−a(k +2) = 0, which does not belong to 
other resonance lines. Then the function Ya(m,k−m) can be analytically continued to the point 
(m0,k0), and Ya(m0,k0 −m0) is a (nonzero) singular vector of V (m0,k0 −m0), hence it is proportional to 
the Malikov–Feigin–Fuchs vector F21(1,a,k0 + 2). 
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4 Homomorphism of complexes 

4.1 Lie algebra sl2(U) 

Recall that {z1,...,zn,zn+1 = ∞} are pairwise distinct points of the complex projective line P1 and U = 
P1−{z1,...,zn,zn+1}. Fix local coordinates t−z1,...,t−zn,1/t on P1 at these points, respectively. Let sl2(U) 
be the Lie algebra of sl2-valued rational functions on P1 regular on U, with the pointwise bracket. 
Thus, an element of sl2(U) has the form e ⊗ u1 + h ⊗ u2 + f ⊗ u3 with ui ∈ Ω0(U), and the bracket is 
defined by the formula [x ⊗ u1,y ⊗ u2] = [x,y] ⊗ (u1u2). 

4.2 sl2(U)-modules 

We say that an -module W has the finiteness property, if for any w ∈ W and x ∈ sl2, we have xTj · 
w = 0 for all 0. For example, the contragradient Verma module has the finiteness property. 

Let W1,...,Wn+1 be slc2-modules with the finiteness property. Then the Lie algebra sl2(U) acts on 
W1 ⊗ ··· ⊗ Wn+1 by the formula 

 

where for x ⊗ u ∈ sl2(U) the symbol [x ⊗ u(t)](zj) denotes the Laurent expansion of x ⊗ u at t = zj 

and [  denotes the Laurent expansion at t = ∞; the symbol π in the last term denotes 
the sl2-automorphism defined in Section 3.2. 

The finiteness property of the tensor factors ensures that the actions of the Laurent series are 
well-defined. 

The slc2-action gives us a map 

 . (4.1) 

4.3 Chain complex 

For a Lie algebra g and a g-module W we denote by C•(g,W) the standard chain complex of g with 
coefficients in W, where 

Cp(g,W) = ∧pg ⊗ W, 
p 

d(gp ∧ ··· ∧ g1 ⊗ w) = X(−1)i−1gp ∧ ··· ∧ gbi ∧ ··· ∧ g1 ⊗ giw 
i=1 

+ X (−1)i+jgp ∧ ··· ∧ gbj ∧ ··· ∧ gbi ∧ ··· ∧ g1 ⊗ [gj,gi]w. 
1≤i<j≤p 
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4.4 Two complexes 

4.4.1 

Let m1,...,mn,k ∈ C, k + 2 6= 0. Define mn+1 = m1 + ··· + mn − 2. For j = 1,...,n + 1, let Vj be the slc2 Verma 
module V (mj,k −mj) and Vj∗ the corresponding contragradient Verma module. Consider the chain 

complex  and its last two terms 

, 
where d = µ, see formula (4.1). 

We assign degree 0 to the term  of this complex and assign degree 1 to the differential 
d, so that the whole complex sits in the non-positive area. 

4.4.2 

Consider the twisted de Rham complex in (2.1) corresponding to κ = k +2 with degrees shifted by 
1, namely, the complex Ω•(U)[1], 

0 → Ω0(U) −∂→ Ω1(U) → 0, where the shift [1] means that we assign 

degree p − 1 to the term Ωp(U). 

4.5 Construction 

Define a linear map 

 

by the formulas 

 ,
 (4.2) 

(4.3) 

for a > 0. Define a linear map 

 

by the formulas 

  (4.4) 

for a > 0; 



Twisted de Rham Complex on Line and Singular Vectors in slc2 Verma Modules 11 

  (4.5) 

for a ≥ 0. 

Theorem 4.1 ([9, Theorem 5.12]). Formulas (4.2)–(4.5) define a homomorphism of complexes 

, namely we have 

dη0 = η1∂. 

The homomorphism is injective. 
Theorem 4.1 was announced in [9]. Here is a proof of the theorem. 

Proof. First we calculate η1(∂((t − zp)−a)), 

 

Then we calculate d , 
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In this calculation we use formula (3.2) to express the action of  on (vp)∗. These formulas show 
that d . 

Now we calculate η1(∂(ta)), 

 

Then we calculate d , 
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In this calculation we use formula (3.3) to express the action of  on (vn+1)∗. Notice also that 
calculating the action on  we use the automorphism π, see Section 3.2.These formulas show 
that d  
 Clearly the maps η1, η2 are injective. Theorem 4.1 is proved.  
4.6 Image of logarithmic subcomplex 

Under the monomorphism η of Theorem 4.1 the image of the logarithmic subcomplex (Ω 
is the chain complex  of the nilpotent subalgebra n− ⊂ sl2 generated by f. More 
precisely, we have 

 η: 1 7→ f ⊗ (v1)∗ ⊗ ··· ⊗ (vn+1)∗, , 

j = 1,...,n, and 

. 

Far-reaching generalizations of this identification of the logarithmic subcomplex with the chain 
complex of the nilpotent Lie algebra n− see in [8]. 
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5 Proof of Theorem 3.2 

5.1 Formula (3.3) follows from formula (3.2) 

The Lie algebra slc2 has an automorphism ρ, corresponding to the involution of the Dynkin 
diagram: 

 ρ(ei) = e3−i, ρ(fi) = f3−i, ρ(hi) = h3−i, i = 1,2. 

We have ρ2 = id. In other words, ρ acts by the formulas 

 e ↔ fT, f ↔ eT−1, h ↔ c − h. 

Lemma 5.1. For i ∈ Z>0, we have 

 , , . 

Proof. We have 

, 

Similarly we prove that .  

 End(V (m,k−m)) be the Verma module structure. Let 
End(V (m,k − m)) be the twisted module structure. 

Clearly the -modules (σm ◦ ρ,V (m,k − m)) and (σm−k,V (m − k,m)) are isomorphic. If vm ∈ V 
(m,k − m) and vk−m ∈ V (k − m,m) are generating vectors, then an isomorphism χ: (σm ◦ ρ,V (m,k − 
m)) → (σm−k,V (m − k,m)) is defined by the formula, 

fil ···fi1vk−m 7→ f3−il ···f3−i1vm, 

for any i1,...,il ∈ {1,2}. The isomorphism χ restricts to isomorphisms of the graded components, V 
(k − m,m)(p1,p2) → V (m,k − m)(p2,p1). 

In Section 3.6 we fixed bases of the homogeneous components V(p1,p2) with p1 6= p2 of any Verma 
module V . By Lemma 5.1, under the isomorphism χ the chosen basis of V (k−m,m)(p1,p2) is mapped 
to the chosen basis of V (m,k − m)(p2,p1) up to multiplication of the basis vectors by ±1. This ±1 

appears due to the formula . In particular, we have 

 , . 
 Let ) be the contragradient Verma module structure. Let 

 End(V (m,k −m)∗) be the twisted module structure. The isomorphism χ induces 
an isomorphism of modules  

In Section 3.6 we fixed bases in the homogeneous components  of any con- 
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tragradient Verma module V ∗. Under the isomorphism χ∗, the chosen basis of  
is mapped to the chosen basis of  up to multiplication of the basis vectors by ±1. 
In particular, we have 

 , . 

Assume that the relation in formula (3.2) holds in every contragradient Verma module V ∗. Then 
in V (k − m,m)∗ it takes the form 

. 

The isomorphism χ∗ sends this relation to the relation in V (m,k − m)∗, 

, 

which is exactly the relation in formula (3.3). Thus formula (3.2) implies formula (3.3). 

5.2 Auxiliary lemma 

Let 

 V = V (m,k − m) and V ∗ = V (m,k − m)∗. 

Lemma 5.2. For x ∈ V , φ ∈ V ∗, k ∈ Z≥0, we have 

 , , . 

Proof. The proof is by induction. We prove the first equality, the others are proved similarly. 
We have [ , hence [f1,[f2,f1]] = 2Tf . Similarly [e1,[e2,e1]] = 2eT. So for k = 1, we have 

. 

We have , hence . Similarly, . Then 

 .  

5.3 The structure of the proof of formula (3.2) 

We reformulate formula (3.2) as 
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 , (5.1) 

and will prove it in this form. 
Each term in (5.1) is an element of the homogeneous component . In Section 3.6 we 

specified a basis of the dual component V(a,a−1). We will calculate the value of the right-hand side 
in (5.1) on an arbitrary basis vector and will obtain the value of the left-hand side on that vector. 

The basis in V(a,a−1) consists of the vectors 

 

where 

 0 ≤ ir ≤ ir−1 ≤ ··· ≤ i1, 1 ≤ js ≤ js−1 ≤ ··· ≤ j1, 1 ≤ lr−1 ≤ lr−2 ≤ ··· ≤ l1; 
r s r−1 X X X 

 iu + ju + lu = a − 1. 
 u=1 u=1 u=1 

We partition the basis in four groups. Group O consists of the single basis vector T af−1v. Group 

I consists of all basis vectors with r = 1, but different from . Group II consists of all basis 
vectors with r = 2. Group III consists of all basis vectors with r ≥ 3. 

Notice that the value of the left-hand side of (5.1) on the basis vector  equals m + (a − 1)(k 

+ 2). Hence we need to show that the value of the right-hand side on the basis vector  equals 
m + (a − 1)(k + 2). Similarly the value of the left-hand side on any basis vector of Groups I–III 
equals zero. Hence we need to prove that the value of the right-hand side on any basis vector of 
Groups I–III equals zero. These four statements are the content of Propositions 5.3, 5.4, 5.7, and 
5.9 below. These propositions prove Theorem 3.2. 

5.4 Group O 

Proposition 5.3. The value of the right-hand side of (5.1) on the basis vector  equals m + (a − 
1)(k + 2). Proof. By Lemma 5.2 we have 

 

since eTa−1v is of degree (−a,−a + 1), hence zero. 
By Lemma 5.2, for ` ∈ {1,...,a − 1} we have 

. 
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By Lemma 5.2 for ` ∈ {1,...,a − 1} we have 

, 

since fT`v is of degree (−` + 1,−`) ≤ (0,−1), hence zero. Therefore, 

 

Proposition 5.3 is proved.  

5.5 Group I 

Proposition 5.4. The value of the right-hand side of (5.1) on any basis vector of Group I equals zero. 

Proof. Group I consists of basis vectors of the form 

  where n ∈ {1,...,a − 1}, j1 + ··· + js = n, ji ≥ 1. 

Lemma 5.5. In the notation above, if s = 1, then 

if ` = n, 
if ` > a − 1 − n, (5.2) if ` ≤ a − 1 − n, if ` ≤ n, , if ` > n. 

Note that the first line in (5.2) is not mutually 
exclusive with the second and third lines in (5.2). 

Proof. We have . Then 

 



 

 

Note that  is of degree (−a + n,−a + 1 + n) ≤ (−1,0), so that = 0. Hence 

 

We have 

, 

Note that the second summand is nonzero if and only if ` = n. In that case we have 

 

For the first summand, if ` + n − a + 1 ≤ 0, then  is a basis vector and so pairing 

with  gives zero. If ` + n − a + 1 > 0, then 

, 

where we used fT`+n−a+1v = 0. 
Finally, 

, 

since fT`v = 0. Note that (a−1−n)+(n−`) = a−1−`, hence if i = a−1−n and j = n−` 
(or vice versa depending on what is greater) we have 

, 

whenever n − ` ≥ 0 and zero otherwise. The lemma is proved.  

For s = 1 Proposition 5.4 follows from Lemma 5.5: 
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Lemma 5.6. For s ≥ 2, we have 

  (5.3) 

  (5.4) 

 . (5.5) 

Proof. Recall that  with j1 + ··· + js = n. We have 

 

We have = 0, since hTn commutes with all . Indeed, we have n > ji since j1 + ··· + 
js = n, ji ≥ 1, and s ≥ 2. 

 We also have = 0 since  is of degree (−a+n,−a+ 
1 + n) ≤ (−1,0), hence zero. This proves (5.3). 

We prove (5.4) by induction on s. For s = 2 we have 

 

Note that for  to give a nonzero pairing with  we need ` = n, which 
implies that hT` commutes with  and since j1 + j2 = n = ` and ji ≥ 1), so that 

 gives zero for all `. 
Also note that whenever  is a basis vector and so pairing 

with  gives zero. If ` > a − 1 − n, then 

  (5.6) 

If ` ≤ a − 1 − n + j1, the first summand gives zero when pairing with , since for such
 is a basis vector. For ` > a − 1 − n + j1, we have 
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since fT`−a+1+n−j1v is of degree (−` + a − 1 − n + j1 + 1,−` + a − 1 − n + j1) ≤ (0,−1), hence must be equal 
to zero. So for ` ∈ {a − 1 − n + j1 + 1,...,a − 1} we get 

 
and zero for other values of `. The total number of elements in the set {a−1−n+j1+1,...,a−1} equals 
j2. 

Whereas, for the second summand in (5.6) we have 

 

since fT`−a+1+nv is of degree (−` + a − 1 − n + 1,−` + a − 1 − n) ≤ (0,−1), hence must be equal to zero. 
If ` > a−1−n+j2, then fT`−a+1+n−j2v is of degree (−`+a−1−n+j2+1,−`+a−1−n+j2) ≤ (0,−1), hence must 

be equal to zero. If ` ≤ a − 1 − n + j2, then 

 

The second summand gives zero when pairing with . So for ` ∈ {a−1−n+1,...,a− 
1 − n + j2} we get 

 

and zero for other values of `. The total number of elements in the set {a − 1 − n + 1,...,a − 1 − n + 
j2} equals j2. 

Therefore, 

 

and so for s = 2 we proved (5.4). 
Now suppose that (5.4) holds for all natural numbers up to s. Then 

 

Note that for  to give a nonzero pairing with  we need ` = n. 
That assumption implies that hT` commutes with  for all i ∈ {1,...,s + 1} since ` > ji as j1 + ··· + js+1 = 
n = ` and ji ≥ 1. Hence  gives zero for all `. 

Also note that whenever ` ≤ a − 1 − n, the vector  is a basis vector and 
so pairing with  gives zero. 

If ` > a − 1 − n, then 

 (5.7) 
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Note that by induction hypothesis we have 

 

. 

So we add this zero term multiplied by −2 to the first summand in (5.7) to get 

(5.8) 
where in the last step we use commutation relations. 

Note that for  to give a nonzero pairing with  we need 

` = n−j1. That assumption implies that hT` commutes with  for all i ∈ {2,...,s+1} since 

` > ji as j2 + ··· + js+1 = n − j1 = ` and ji ≥ 1. Hence  gives zero for all `. 
For the second summand in (5.7) we have 

 

In (5.9) we note that 

 

Note that in both terms the number of h’s is less than or equal to s, so we use the exact same 
reasoning as in (5.8) to show that 
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, 

which implies that the expression in (5.9) equals zero. Similarly, one shows that in (5.10), 

 

the factor fT−a+1+n+` can be pulled to the right by using the same argument (first commute 

fT−a+1+n+` with  and then pull fT−a+1+n−j3+` to the left). Ultimately, we get 

, 

since ` > a − 1 − n and so fT−a+1+n+`v = 0. Therefore, 

, 

and formula (5.4) is proved. 
We prove formula (5.5) by induction on s. For s = 2, we have 

, 

Note that  is of degree (n−`+1,n−`), hence nonzero only if ` ≤ n. For such ` we 
have 

 

If ` ≤ j1, then the first summand in (5.11) gives zero when pairing with any vector with two f’s. If ` 
> j1, then 

 

If ` > j2, then the second summand in (5.11) is zero simply because fT`−j2v = 0. If ` ≤ j2, then 

 

since  is a basis vector, hence pairing with a vector consisting of two f’s gives 
zero. Therefore, 



Twisted de Rham Complex on Line and Singular Vectors in slc2 Verma Modules 23 

 
(5.12) 

 . (5.13) 

Note that in the expression in (5.12) for each ` ∈ {j1 +1,...,n} there exists exactly one pair of indices 
(i,j) = (max{a−1−n,n−`},min{a−1−n,n−`}) that gives 4 when pairing. All other pairs (i,j) give zero. 
Similarly, the expression in (5.13) equals −4 for each ` ∈ {1,...,j2} and exactly one corresponding 
pair (i,j), and zero otherwise. Also note that the number of elements in each set {j1 + 1,...,n} and 
{1,...,j2} equals j2. Hence we get 

4j2 − 4j2 = 0. 

Therefore, formula (5.5) is proved for s = 2. 
Now suppose that formula (5.5) holds for all natural numbers up to s. Then 

  (5.14) 

Note that if ` ≤ j1, then the first summand in (5.14) is a basis vector and hence its pairing with a 
vector consisting of two f’s gives zero. If ` > j1 we have 
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by induction hypothesis. For the second summand in (5.14) we have 

  (5.15) 

Note that 

 

 

where in each vector the number of h’s is less than or equal to s. Repeating the argument above, 
we see that by induction hypothesis we get 

. 

Now in the second summand in (5.15), 

 

we pull fT` to the right and at each step we use induction hypothesis to argue that we keep getting 
zeros. Ultimately, we get a vector 

 

which is zero, since fT` has grading (−` + 1,−`) ≤ (0,−1) and so fT`v = 0. Therefore, 

. 
Formula (5.5) and Lemma 5.6 are proved.  
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Proposition 5.4 is proved.  
5.6 Group II 

Proposition 5.7. The value on the right-hand side of (5.1) on any basis vector from Group II equals 
zero. 

Proof. Group II consists of vectors 

 

Lemma 5.8. We have 

(5.16) 

if i1 = i2 = a − 1 − `, 

, if i1 6= i2 and i1 or i2 = a − 1 − `, (5.17) 
otherwise, 

 e f f ∗ −2s(m − lk),
if ` = a − 1 − i1 − i2, 

(5.18) 
T T T 0, otherwise. i+j=a−1−` i≥j≥0 

Proof. We have 

 

Note that  is of degree (−i1 − 1,−i1) ≤ (−1,0), hence 

= 0. In the first summand in (5.19) we pull hTa−1−i1 to the right to get 

 

where at each step we do not write monomials of negative degree, since they give zero when 
applied to v. This proves formula (5.16). We have 
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Note that the vector  after pulling hT` to the right either becomes a zero 
vector or a vector with two f’s, which of course gives zero when pairing with a basis vector with 
one f. Also, note that the only possibility for the vector to give a nonzero 
pairing with  is when i2 = a−1−`. Similarly gives a nonzero 
number only if i1 = a − 1 − `. First consider the case i1 = i2 = a − 1 − `. We have 

 

Note that  is of degree (−j1,−j1) ≤ (−1,−1), hence 

. 

So we get 

 

where at each step we don’t write monomials of negative degree, since they give zero when 
applied to v. 

For i1 = a − 1 − ` 6= i2 and i2 = a − 1 − ` 6= i1 we have 

, 

where we performed the exact same computation as above. Therefore, formula (5.17) is proved. 
We have 

 

The only nonzero pairing happens when ̀  is such that i1 + i2 = a − 1 − ̀ . In that case  

has degree (−j1,−j1) ≤ (−1,−1), hence = 0. Therefore we 
have 

 

where we pulled fT`−j1 to the right and did not write monomials of negative degree, since they give 
zero when applied to v. Hence we get 

 
Therefore, 
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, 

since for i = i1, j = i2 we get −2s(m − lk) and zero for other pairs (i,j). Formula (5.18) and 
Lemma 5.8 are proved. By 

Lemma 5.8, we have 
 

 

Note that 

 

in both cases i1 = i2 and i1 6= i2. Also note that 

 

only if ` is such that i1 + i2 = a − 1 − `. Therefore, Proposition 5.7 is proved.  
5.7 Group III 

Proposition 5.9. The value of the right-hand side of (5.1) on any basis vector of Group III equals 
zero. 

Proof. A vector in Group III has the form 

 

where r ≥ 3. 

Lemma 5.10. For every ` ∈ {1,...,a − 1}, we have 

  (5.20) 

  (5.21) 

 . (5.22) 

Proof. We have 
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. 

Note that  is of degree (−i1 − 1,−i1) ≤ (−1,0), hence 
zero. So we have 

. 

As above, note that  is of degree (−i2 − 1,−i2) ≤ 
(−1,0), hence zero. Therefore we obtain 

, 

since is of degree (−i3−···−ir−r+2,−i2−···−ir) ≤ (−1,0) for r ≥ 3, 
hence zero. Formula (5.20) is proved. 

We have 

(5.23) 

(5.24) 
Observe that for ` ≤ i1 in (5.23) we have a basis vector, hence it gives zero when pairing with 

. If ̀  > i1, then we pull fT`−i1 to the right and notice that no matter how fT`−i1 interacts with 
h’s and e’s, it does not affect the number of f’s, which is greater or equal than two. Hence, the vector 
in (5.23) gives zero when pairing with . 

In (5.24) note that 

 

so that either hT` is pulled to the right not affecting the number of f’s or it gives fT`−i2, for which we 
apply the same argument as above after pulling it to the right to argue that the pairing of the vector 

in (5.24) with  is zero. Formula (5.21) is proved. We have 

, 

As in formula (5.21), no matter how fT` interacts with h’s and e’s, the number of f’s remains 

unchanged, i.e., we have more than or equal to three f’s, so that pairing with  is zero. 
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Formula (5.22) is proved.  

Proposition 5.9 follows from Lemma 5.10.  

Theorem 3.2 is proved. 
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