Efficient verification of network fault tolerance
via counterexample-guided refinement*

Nick Giannarakis', Ryan Beckett?, Ratul Mahajan®*, and David Walker!

! Princeton University, Princeton NJ 08544, USA
{ng8,dpw}@cs.princeton.edu
2 Microsoft Research, Redmond WA 98052, USA
ryan.beckett@microsoft.com
3 University of Washington, Seattle WA 98195, USA
4 Intentionet, Seattle WA, USA
ratul@cs.washington.edu

Abstract. We show how to verify that large data center networks sat-
isfy key properties such as all-pairs reachability under a bounded num-
ber of faults. To scale the analysis, we develop algorithms that identify
network symmetries and compute small abstract networks from large
concrete ones. Using counter-example guided abstraction refinement, we
successively refine the computed abstractions until the given property
may be verified. The soundness of our approach relies on a novel notion
of network approximation: routing paths in the concrete network are not
precisely simulated by those in the abstract network but are guaranteed
to be “at least as good.” We implement our algorithms in a tool called
Origami and use them to verify reachability under faults for standard
data center topologies. We find that Origami computes abstract net-
works with 1-3 orders of magnitude fewer edges, which makes it possible
to verify large networks that are out of reach of existing techniques.

1 Introduction

Most networks decide how to route packets from point A to B by executing
one or more distributed routing protocols such as the Border Gateway Protocol
(BGP) and Open Shortest Path First (OSPF). To achieve end-to-end policy
objectives related to cost, load balancing, security, etc., network operators author
configurations for each router. These configurations control various aspects of the
route computation such as filtering and ranking route information received from
neighbors, information injection from one protocol to another, and so on.

This flexibility, however, comes at a cost: Configuring individual routers to
enforce the desired policies of the distributed system is complex and error-
prone [15,21]. The problem of configuration is further compounded by three
challenges. The first is network scale. Large networks such as those of cloud

* This work was supported in part by NSF Grants 1703493 and 1837030, and gifts from
Cisco and Facebook. Any opinions, findings, and conclusions expressed are those of
the authors and do not necessarily reflect those of the NSF, Cisco or Facebook.

2 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

providers can consist of millions of lines of configuration spread across thou-
sands of devices. The second is that operators must account for the interaction
with external neighbors who may sent arbitrary routing messages. Finally one
has to deal with failures. Hardware failures are common [14] and lead to a com-
binatorial explosion of different possible network behaviors.

To combat the complexity of distributed routing configurations, researchers
have suggested a wide range of network verification [2,13,25] and simulation
[11,12,23] techniques. These techniques are effective on small and medium-sized
networks, but they cannot analyze data centers with 1000s of routers and all
their possible failures. To enable scalable analyses, it seems necessary to exploit
the symmetries that exist in most large real networks. Indeed, other researchers
have exploited symmetries to scale verification in the past [3,22]. However, it has
never been possible to account for failures, as they introduce asymmetries that
change routing behaviors in unpredictable ways.

To address this challenge, we develop a new algorithm for verifying reacha-
bility in networks in the presence of faults, based on the idea of counterexample-
guided abstraction refinement (CEGAR) [5]. The algorithm starts by factoring
out symmetries using techniques developed in prior work [3] and then attempts
verification of the abstract network using an SMT solver. If verification succeeds,
we are done. However, if verification fails, we examine the counter-example to
decide whether we have a true failure or we must refine the network further and
attempt verification anew. By focusing on reachability, the refinement procedure
can be accelerated by using efficient graph algorithms, such as min cut, to rule
out invalid abstractions in the middle of the CEGAR loop.

We prove the correctness of our algorithm using a new theory of faulty net-
works that accounts for the impact of all combinations of k failures. Our key
insight is that, while routes computed in the abstract network may not simulate
those of the concrete network exactly, under the right conditions they are guar-
anteed to approximate them. The approximation relation between concrete and
abstract networks suffices to verify key properties such as reachability.

We implemented our algorithms in a tool called Origami and measured their
performance on common data center network topologies. We find that Origami
computes abstract networks with 1-3 orders of magnitude fewer edges. This
reduction speeds verification dramatically and enables verification of networks
that are out of reach of current state-of-the-art tools [2].

2 Key Ideas

The goal of Origami is to speed up network verification in the presence of faults,
and it does so by computing small, abstract networks with similar behavior to
a given concrete network.

As a first approximation, one can view a network as a directed graph cap-
turing the physical topology, and its routing solution as a subgraph where the
remaining edges denote the forwarding decision at each node for some fixed des-
tination. In the absence of faults, given a concrete and abstract network, one

Efficient verification of network fault tolerance 3

(4) © (4) (&)
@(9)@ ® @@)@ @.@

) ® O O

(a) (b) (c) (d)
Fig.1: All graph edges shown correspond to edges in the network topology, and we
draw edges as directed to denote the direction of forwarding eventually determined for
each node by the distributed routing protocols for a fixed destination d. In (a) nodes
use shortest path routing to route to the destination d. (b) shows a compressed network
that precisely captures the forwarding behavior of (a). Figure (c) shows how forwarding

is impacted by a link failure, shown as a red line. Figure (d) shows a compressed network
that is sound approximation of the original network for any single link failure.

can define a natural notion of similarity as a graph homomorphism: assigning
each concrete node a corresponding abstract node such that, for any solution to
the routing problem, the concrete node forwards “in the same direction” as the
corresponding abstract node. For example, the concrete network in Figure 1a is
related to its abstract counterpart in Figure 1b according to the node colors.

Unfortunately, we run into two significant problems when defining abstrac-
tions in this manner in the presence of faults. First, the concrete nodes of Fig-
ure la have at least 2 disjoint paths to the destination whereas abstract nodes
of Figure 1b have just one path to the destination, so the abstract network does
not preserve the desired fault tolerance properties. Second, consider Figure lc,
which illustrates how the routing decisions change when a failure occurs. Here,
the nodes (b in particular) no longer route “in the same direction” as the orig-
inal network or its abstraction. Hence the invariant connecting concrete and
abstract networks is violated.

Lossy compression.

To achieve compression given a bounded number of link failures, we relax
the notion of similarity between concrete and abstract nodes: A node in the
abstract network may merely approzimate the behavior of concrete nodes. This
makes it possible to compress nodes that, in the presence of failures, may route
differently. In general, when we fail a single link in the abstract network, we
are over-approximating the failures in the concrete network by failing multiple
concrete links, possibly more than desired. Nevertheless, the paths taken in the
concrete network can only deviate so much from the paths found in the abstract
network:

Property 1. If a node has a route to the destination in the presence of k link
failures then it has a route that is “at least as good” (as prescribed by the routing
protocol) in the presence of k" link failures for k¥’ < k.

This relation suffices to verify important network reliability properties, such
as reachability, in the presence of faults. Just as importantly, it allows us to
achieve effective network compression to scale verification.

4 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

Revisiting our example, consider the new abstract network of Figure 1d.
When the link between b5 and d has failed, b15 still captures the behavior of by
precisely. However, bo has a better (in this case better means shorter) path to
d. Despite this difference, if the operator’s goal was to prove reachability to the
destination under any single fault, then this abstract network suffices.

From specification to algorithm. It is not too difficult to find abstract net-
works that approximate a concrete network; the challenge is finding a valid
abstract network that is small enough to make verification feasible and yet large
enough to include sufficiently many paths to verify the given fault tolerance
property. Rather than attempting to compute a single abstract network with
the right properties all in one shot, we search the space of abstract networks
using an algorithm based on counter-example guided abstraction refinement [5].

The CEGAR algorithm begins by computing the smallest possible valid ab-
stract network. In the example above, this corresponds to the original compressed
network in Figure 1b, which faithfully approximates the original network when
there are no link failures. However, if we try to verify reachability in the pres-
ence of a single fault, we will conclude that nodes b and @ have no route to the
destination when the link between b and d fails. The counterexample due to this
failure could of course be spurious (and indeed it is). Fortunately, we can easily
distinguish whether such a failure is due to lack of connectivity or an artifact of
over-abstracting, by calculating the number of corresponding concrete failures.
In this example a failure on the link (b,d) corresponds to 3 concrete failures.
Since we are interested in verifying reachability for a single failure this cannot
constitute an actual counterexample.

The next step is to refine our abstraction by splitting some of the abstract
nodes. The idea is to use the counterexample from the previous iteration to split
the abstract network in a way that avoids giving rise to the same spurious coun-
terexample in the next iteration (Section 5). Doing so results in the somewhat
larger network of Figure 1d. A second verification pass over this larger network
takes longer, but succeeds.

3 The Network Model

Though there are a wide variety of routing protocols in use today, they share
a lot in common. Griffin et al. [16] showed that protocols like BGP and others
solve instances of the stable paths problem, a generalization of the shortest paths
problem, and Sobrinho [24] demonstrated their semantics and properties can be
modelled using routing algebras. We extend these foundations by defining stable
paths problems with faults (SPPFs), an extension of the classic Stable Paths
Problem that admits the possibility of a bounded number of link failures. In
later sections, we use this network model to develop generic network compression
algorithms and reason about their correctness.

Stable path problems with faults (SPPFs): An SPPF is an instance
of the stable paths problem with faults. Informally, each instance defines the
routing behavior of an operational network. The definition includes both the

Efficient verification of network fault tolerance 5

network topology as well as the routing policy. The policy specifies the way
routing messages are transformed as they travel along links and through the
user-configured import and export filters/transformers of the devices, and also
how the preferred routes are chosen at a given device. In our formulation, each
problem instance also incorporates a specification of the possible failures and
their impact on the routing solutions.

Formally, an SPPF is a tuple with six components:

—_

. A graph G = (V, E) denoting the network topology.

2. A set of “attributes” (i.e., routing messages) Ao, = AU {oo} that may be
exchanged between devices. The symbol oo represents the absence of a route.

3. A destination d € V' and its initial route announcement ag € A. For simplic-
ity, each SPPF has exactly one destination (d). (To model a network with
many destinations, one would use a set of SPPFs.)

4. A partial order < C A, X A, ranks attributes. If a < b then we say route a
is preferred over route b. Any route a € A is preferred to no route (a < 00).

5. A function trans : E — A, — A, that denotes how messages are processed
across edges. This function models the route maps and filters that transform
route announcements as they enter or leave routers.

6. A bound k on the maximum number of link failures that may occur.

Examples: By choosing an appropriate set of routing attributes, a prefer-
ence relation and a transfer function, one can model the semantics of commonly
used routing protocols. For instance, the Routing Information Protocol (RIP)
is a simple shortest paths protocol. It can be modelled by an SPPF where (1)
the set of attributes A is the set of integers between 0 and 15 (i.e., the set
of permitted path lengths), (2) the preference relation is integer inequality so
shorter paths are preferred, and (3) the transfer function increments the received
attribute by 1 or drops the route if it exceeds the maximum hop count of 15:

; (e,) 00 ifa>15
rans(e,a) =]
a+1 otherwise

Going beyond simple shortest paths, BGP is a complex, policy-driven proto-
col that drives the Internet, and increasingly, data centers [18]. Operators often
choose BGP due to its high expressiveness. We can model a version of BGP (sim-
plified for presentation) using messages consisting of triples (LP, Comm, Path)
where LP is an integer-valued local preference, Comm is a set of community val-
ues (which are essentially string tags) and Path is a list of nodes, representing
the path a routing message has traversed. The transfer function always adds the
current device to the Path (or drops the message if a loop is detected) and will
modify the LP and Comm components of the attribute according to the device
configuration. For instance, one device may attach a community tag to a route
and another device may filter or modify routes that have the tag attached.

The protocol semantics dictates the preference relation (preferring routes
with higher local preference first, and shorter paths second). A more complete
BGP model is not fundamentally harder to model—it simply has additional
attribute fields and more complex transfer and preference relations [20].

6 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

SPPF Solutions: In a network, routers will repeatedly exchange messages,
applying their transfer functions to neighbor routes and selecting a current best
route based on the preference relation, until the network reaches a fixpoint (sta-
ble state). Interestingly, Griffin et al. [16] showed that all routing solutions can
be described via a set of local stability constraints. We exploit this insight to
define a series of logical constraints that capture all possible routing behaviors
in a setting that includes link failures. More specifically, we define a solution
(aka, stable state) S of an SPPF to be a pair (£, F) of a labelling £ and a failure
scenario F. The labelling £ is an assignment of the final attributes to nodes in
the network. If an attribute a is assigned to node v, we say that node has selected
(or prefers) that attribute over other attributes available to it. The chosen route
also determines packet forwarding. If a node X selects a route from neighbor Y,
then X will forward packets to Y. The failure scenario F is an assignment of 0
(has not failed) or 1 (has failed) to each edge in the network.

A solution § = (£, F') to an SPPF = (G, A, aq4, <, trans, k) is a stable state
satisfying the following conditions:

aq u=d
L(u) = § o0 choicess(u) =0
min<({a | (e,a) € choicess(u)}) choicess(u) # 0
subject to Y F(e) <k
eclE
where the choices from the neighbors of node u are defined as:

choicess(u) = {(e,a) | e = (u,v), a =trans(e, L(v)), a # oo, F(e) =0}

The constraints require that every node has selected the best attribute (accord-
ing to its preference relation) amongst those available from its neighbors. The
destination’s label must always be the initial attribute a4. For verification, this
attribute (or parts of it) may be symbolic, which helps model potentially un-
known routing announcements from peers outside our network. For other nodes
u, the selected attribute a is the minimal attribute from the choices available
to u. Intuitively, to find the choices available to u, we consider the attributes
b chosen by neighbors v of w. Then, if the edge between v and w is not failed,
we push b along that edge, modifying it according to the trans function. Finally,
failure scenarios are constrained so that the sum of the failures is at most k.

4 Network approximation theory

Given a concrete SPPF and an abstract S/P—P\F, a network abstraction is a pair of
functions (f, h) that relate the two. The topology abstraction f :V — V maps
each node in the concrete network to a node in the abstract network, while the
attribute abstraction h : Ao, — Ao maps a concrete attribute to an abstract
attribute. The latter allows us to relate networks running protocols where nodes
may appear in the attributes (e.g. as in the Path component of BGP).

The goal of Origami is to compute compact SPPFs that may be used for
verification. These compact SPPFs must be closely related to their concrete

Efficient verification of network fault tolerance 7

counterparts. Otherwise, properties verified on the compact SPPF will not be
true of their concrete counterpart. Section 4.1 defines label approzimation, which
provides an intuitive, high-level, semantic relationship between abstract and con-
crete networks. We also explain some of the consequences of this definition and
its limitations. Unfortunately, while this broad definition serves as an impor-
tant theoretical objective, it is difficult to use directly in an efficient algorithm.
Section 4.2 continues our development by explaining two well-formedness re-
quirements of network policies that play a key role in establishing label approx-
imation indirectly. Finally, Section 4.3 defines effective SPPF approzimation for
well-formed SPPFs. This definition is more conservative than label approxima-
tion, but has the advantage that it is easier to work with algorithmically and,
moreover, it implies label approximation. See the appendix [?] for proofs.

4.1 Label approximation

Intuitively, we say the abstract SPPF label-approximates the concrete SPPF
when SPPF has at least as good a route at every node as SPPF does.

Definition 1 (Label Approximation). Consider any solutions S to SPPF

and S to SPPF and their respective labelling components L and L. We say SPPF
label-approzimates SPPF when Yu € V. h(L(w)) < L(f(u))

If we can establish a label approximation relation between a concrete and an
abstract network, we can typically verify a number of properties of the abstract
network and be sure they hold of the concrete network. However, the details of
exactly which properties we can verify depend on the specifics of the preference
relation (<). For example, in an OSPF network, preference is determined by
weighted path length. Therefore, if we know an abstract node has a path of
weighted length n, we know that its concrete counterparts have paths of weighted
length of at most n. More importantly, since “no route” is the worst route, we
know that if a node has any route to the destination in the abstract network, so
do its concrete counterparts.

Limitations. Some properties are beyond the scope of our tool (indepen-
dent of the preference relation). For example, our model cannot reason about
quantitative properties such as bandwidth, probability of congestion, or latency.

4.2 Well-formed SPPFs

Not all SPPFs are well-behaved. For example, some never converge and oth-
ers do not provide sensible models of any real network. To avoid dealing with
such poorly-behaved models, we demand henceforth that all SPPFs are well-
formed. Well-formedness entails that an SPPF is strictly monotonic and isotonic:
Ya,e. a# 0o = a < trans(e, a) strict monotonicity
Ya,b,e. a =b = trans(e,a) < trans(e,b) isotonicity

8 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

Fig.2: Concrete network (left) and its corresponding abstraction (right). Nodes
c1, co prefer to route through by (resp. b2), or g over a. Node by (resp. be) drops
routing messages that have traversed bs (resp. b1). Red lines indicate a failed
link. Dotted lines show a topologically available but unused link. A purple arrow
show a route unuseable by traffic from b;.

Monotonicity and isotonicity properties are often cited [7,8] as desirable prop-
erties of routing policies because they guarantee network convergence and pre-
vent persistent oscillation. In practice too, prior studies have revealed that almost
all real network configurations have these properties [13,19].

In our case, these properties help establish additional invariants that tie
the routing behavior of concrete and abstract networks together. To gain some
intuition as to why, consider the networks of Figure 2. The concrete network
on the left runs BGP with the routing policy that node ¢; (and c¢) prefers to
route through node g instead of a, and that b; drops announcements coming
from by. In this scenario, the similarly configured abstract node b2 can reach
the destination—it simply takes a route that happens to be less preferred by ¢12
than it would if there had been no failure. However, in the concrete analogue,
b1, is unable to reach the destination because ¢; only sends it the route through
by, which it cannot use. In this case, the concrete network has more topological
paths than the abstract network, but, counterintuitively, due to the network’s
routing policy, this turns out to be a disadvantage. Hence having more paths
does not necessarily make nodes more accessible. As a consequence, in general,
abstract networks cannot soundly overapproximate the number of failures in a
concrete network—an important property for the soundness of our theory.

The underlying issue here is that the networks of Figure 2 are not iso-
tonic: suppose L'(c1) is the route from ¢; to the destination through node
a, we have that L(c1) < L'(c1) but since the transfer function over (b1, cq)
drops routes that have traversed node by, we have that trans({by,c1), L(c1)) £
trans((b1,c1), L' (c1)). Notice that £'(cq) is essentially the route that the ab-

stract network uses i.e. h(L'(c1)) = L(¢é12), hence the formula above implies
that h(L(b1)) A L(b12) which violates the notion of label approximation.

Fortunately, if a network is strictly monotonic and isotonic, such situations
never arise. Moreover, we check these properties via an SMT solver using a local
and efficient test.

Efficient verification of network fault tolerance 9

4.3 Effective SPPF approximation

We seek abstract networks that label-approximate given concrete networks. Un-
fortunately, to directly check that a particular abstract network label approx-
imates a concrete network one must effectively compute their solutions. Doing
so would defeat the entire purpose of abstraction, which seeks to analyze large
concrete networks without the expense of computing their solutions directly.

In order to turn approximation into a useful computational tool, we define
effective approximation, a set of simple conditions on the abstraction functions f
and h that are local and can be checked efficiently. When true those conditions
imply label approximation. Intuitively effective approximations impose three
main restrictions on the abstraction functions :

1. The topology abstraction conforms to the V3—abstraction condition; this
requires that there is an abstract edge (@,) iff for every concrete node u
such that f(u) = u there is some node v such that f(v) =v and (u,v) € E.

2. The abstraction preserves the rank of attributes (rank-equivalence):

Va,b. a < b <= h(a) < h(b)

3. The transfer function and the abstraction functions commute (trans-equivalence):

Ve, a. h(trans(e, a)) = trans(f(e), h(a))

We prove that when these conditions hold, we can approximate any solution
of the concrete network with a solution of the abstract network.

Theorem 1. Given a well-formed SPPF and its effective approximation ﬁ,

for any solution S € SPPF there exists a solution S e ﬁ, such that their
labelling functions are label approrimate.

5 The verification procedure

The first step of verification is to compute a small abstract network that satis-
fies our SPPF effective approximation conditions. We do so by grouping network
nodes and edges with equivalent policy and checking the forall-exists topological
condition, using an algorithm reminiscent of earlier work [3]. Typically, how-
ever, this minimal abstraction will not contain enough paths to prove any fault-
tolerance property. To identify a finer abstraction for which we can prove a
fault-tolerance property we repeatedly:

1. Search the set of candidate refinements for the smallest plausible abstraction.

2. If the candidate abstraction satisfies the desired property, terminate the
procedure. (We have successfully verified our concrete network.)

3. If not, examine whether the returned counterexample is an actual counterex-
ample. We do so, by computing the number of concrete failures and check
that it does not exceed the desired bound of link failures. (If so, we have
found a property violation.)

4. If not, use the counterexample to learn how to expand the abstract network
into a larger abstraction and repeat.

10 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

® @ o
5N
© ¥ ® ®
(b) () (d)

Fig. 3: Eight nodes in (a) are represented using two nodes in the abstract network (b).
Pictures (c) and (d) show two possible ways to refine the abstract network (b).

Both the search for plausible candidates and the way we learn a new abstrac-
tion to continue the counterexample-guided loop are explained below.

5.1 Searching for plausible candidates

Though we might know an abstraction is not sufficient to verify a given fault
tolerance property, there are many possible refinements. Consider, for example,
Figure 3(a) presents a simple concrete network that will tolerate a single link
failure, and Figure 3(b) presents an initial abstraction. The initial abstraction
will not tolerate any link failure, so we must refine the network. To do so, we
choose an abstract node to divide into two abstract nodes for the next iteration.
We must also decide which concrete nodes correspond to each abstract node. For
example, in Figure 3(c), node @ has been split into d;3 and da4. The subscripts
indicate the assignment of concrete nodes to abstract ones.

A significant complication is that once we have generated a new abstraction,
we must check that it continues to satisfy the effective approximation conditions,
and if not, we must do more work. Figure 3 (c) satisfies those conditions, but
if we were to split @ into a2 and as4 rather than a;3 and ao4, the forall-exists
condition would be violated—some of the concrete nodes associated with b are
connected to the concrete nodes in a5 but not to the ones in as4 and vice versa.
To repair the violation of the forall-exists condition, we need to split additional
nodes. In this case, the b node, giving rise to diagram (3d).

Overall, the process of splitting nodes and then recursively splitting further
nodes to repair the forall-exists condition generates many possible candidate
abstractions to consider. A key question is which candidate should we select to
proceed with the abstraction refinement algorithm?

One consideration is size: A smaller abstraction avoids taxing the verifier,
which is the ultimate goal. However, there are many small abstractions that we
can quickly dismiss. Technically, we say an abstraction is plausible if all nodes
of interest have at least k + 1 paths to the destination. Implausible abstractions
cause nodes to become unreachable with k failures. To check whether an ab-
straction is plausible, we compute the min-cut of the graph. Figure 3(d) is an
example of an implausible abstraction that arose after a poorly-chosen split of
node a. In this case, no node has 2 or more paths to the destination and hence
they might not be able to reach the destination when there is a failure.

Efficient verification of network fault tolerance 11

Clearly verification using an implausible abstraction will fail. Instead of con-
sidering such abstractions as candidates for running verification on, the refine-
ment algorithm tries refining them further. A key decision the algorithm needs
to make when refining an abstraction is which abstract node to split. For in-
stance, the optimal refinement of Figure 3(b) is Figure 3(c). If we were to split
node b instead of @ we would end up with a sub-optimal (in terms of size) ab-
straction. Intuitively, splitting a node that lies on the min-cut and can reach the
destination (e.g.) will increase the number of paths that its neighbors on the
unreachable part of the min-cut (e.g. l;) can use to reach the destination.

To summarize, the search for new candidate abstractions involves (1) splitting
nodes in the initial abstraction, (2) repairing the abstraction to ensure the forall-
exists condition holds, (3) checking that the generated abstraction is plausible,
and if not, (4) splitting additional nodes on the min cut. This iterative process
will often generate many candidates. The breadth parameter of the search bounds
the total number of plausible candidates we will generate in between verification
efforts. Of all the plausible candidates generated, we choose the smallest one to
verify using the SMT solver.

5.2 Learning from counterexamples

Any nodes of an abstraction that have a min cut of less than k+1 definitely can-
not tolerate k faults. If an abstraction is plausible, it satisfies a necessary condi-
tion for source-destination connectivity, but not a sufficient one—misconfigured
routing policy can still cause nodes to be unreachable by modifying and/or
subsequently dropping routing messages. For instance, the abstract network of
Figure 3c is plausible for one failure, but if b’s routing policy blocks routes of
either @13 or @o4 then the abstract network will not be 1-fault tolerant. Indeed, it
is the complexity of routing policy that necessitates a heavy-weight verification
procedure in the first place, rather than a simpler graph algorithm alone.

In a plausible abstraction, if the verifier computes a solution to the network
that violates the desired fault-tolerance property, some node could not reach
the destination because one or more of their paths to the destination could not
be used to route traffic. We use the generated counterexample to learn edges
that could not be used to route traffic due to the policy on them. To do so,
we inspect the computed solution to find nodes @ that (1) lack a route to the
destination (i.e. £(@) = o), (2) have a neighbor ¥ that has a valid route to
the destination, and (3) the link between u and ¥ is not failed. These conditions
imply the absence of a valid route to the destination not because link failures
disabled all paths to the destination, but because the network policy dropped
some routes. For example, in picture Figure 3c, consider the case where b does
not advertise routes from @3 and @yq; if the link between @3 and d fails, then
a13 has no route the destination and we learn that the edge (b, a13) cannot be
used. In fact, since @;3 and a1 belonged to the same abstract group a before
we split them, their routing policies are equal modulo the abstraction function
by trans-equivalence. Hence, we can infer that in a symmetric scenario, the link
(b, @24) will also be unusable.

12 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

Refining using learned paths:

Given a set of unuseable edges, learned from a counterexample, we restrict the
min cut problems that define the plausible abstractions, by disallowing the use of
those edges. Essentially, we enrich the refinement algorithm’s topological based
analysis (based on min-cut) with knowledge about the policy; the algorithm will
have to generate abstractions that are plausible without using those edges. With
those edges disabled, the refinement process continues as before.

6 Implementation

Origami uses the Batfish network analysis framework [12] to parse network con-
figurations, and then translate them into a pure functional intermediate repre-
sentation (IR) designed for network verification. This IR represents the structure
of routing messages and the semantics of transfer and preference relations using
standard functional data structures.

The translation generates a separate functional program for each destina-
tion subnet. In other words, if a network has 100 top-of-rack switches and each
such switch announces the subnets for 30 adjacent hosts, then Origami gener-
ates 100 functional programs (i.e. problem instances). We separately apply our
algorithms to each problem instance, converting the functional program to an
SMT formula when necessary according to the algorithm described earlier. Since
vendor routing configuration languages have limited expressive power (e.g., no
loops or recursion) the translation requires no user-provided invariants. We use
Z3 [10] to determine satisfiability of the SMT problems. Solving the problems
separately (and in parallel) provides a speedup over solving the routing problem
for all destinations simultaneously: The individual problems are specialized to a
particular destination. By doing so, opportunities for optimizations that reduce
the problem size, such as dead code elimination, arise.

Optimizing refinement: During the course of implementing Origami, we
discovered a number of optimizations to the refinement phase.

— If the min-cut between the destination and a vertex w is less than or equal
to the desired number of disjoint paths, then we do not need to compute
another min-cut for the nodes in the unreachable portion of vertices T'; we
know nodes in T" can be disconnected from the destination. This significantly
reduces the number of min-cut computations.

— We stop exploring abstractions that are larger in size than the smallest
plausible abstraction computed since the last invocation of the SMT solver.

— We bias our refinement process to explore the smallest abstractions first.
When combined the previous optimization, this prunes our search space
from some abstractions that were unnecessary large.

Minimizing counterexamples: When the SMT solver returns a coun-
terexample, it often uses the maximum number of failures. This is not surprising
as maximizing failures simplifies the SMT problem. Unfortunately, it also con-
founds our analysis to determine whether a counterexample is real or spurious.

Efficient verification of network fault tolerance 13

Topo|Con V/E |FaillAbs V/E| Ratio [Abs Time/SMT Calls|SMT Time
1 9/20 55.5/400 0.1 1 0.1
3 40/192 | 12.5/41.67 1.0 2 7.6
FT20 500/8000 | 51 g6 /700 | 5.20/11.1 2.5 2 248
10 | 59/440 | 8.48/18.18 0.9 - -
1 12/28 |166.7/2285.7 0.1 1 0.1
FT40|2000/64000(3 45/220 | 44.4/290.9 33 2 12.3
5 | 109/880 |18.34/72.72 762.3 2 184.1
1 13/32 153.8/2000 0.2 1 0.1
SP40|2000/64000| 3 39/176 | 51.3/363.6 30.3 1 2
5 79/522 | 25.3/122.6 372.2 1 22
1 | 20/66 | 37.2/164.8 0.1 3 1
FbFT| 744/10880 | 3 57/360 | 13.05/30.22 1 4 18.3
5| 93/684 | 8/15.9 408.9 - -

Fig. 4: Compression results. Topo: the network topology. Con V /E: Number of
nodes/edges of concrete network. Fail: Number of failures. Abs V/E: Number
of nodes/edges of the best abstraction. Ratio: Compression ratio (nodes/edges).
Abs Time: Time taken to find abstractions (sec.). SMT Calls: Number of calls
to the SMT solver. SMT Time: Time taken by the SMT solver (sec.).

To mitigate the effect of this problem, we could ask the solver to minimize
the returned counterexample, returning a counterexample that corresponds to
the fewest concrete link failures. We could do so by providing the solver with
additional constraints specifying the number of concrete links that correspond
to each abstract link and then asking the solver to return a counterexample that
minimizes this sum of concrete failures. Of course, doing so requires we solve a
more expensive optimization problem. Instead, given an initial (possibly spuri-
ous counter-example), we simple ask the solver to find a new counterexample
that (additionally) satisfies this constraint. If it succeeds, we have found a real
counterexample. If it fails, we use it to refine our abstraction.

7 Evaluation

We evaluate Origami on a collection of synthetic data center networks that are
using BGP to implement shortest-paths routing policies over common industrial
datacenter topologies. Data centers are good fit for our algorithms as they can
be very large but are highly symmetrical and designed for fault tolerance. Data
center topologies (often called fattree topologies) are typically organized in lay-
ers, with each layer containing many routers. Each router in a layer is connected
to a number of routers in the layer above (and below) it. The precise number of
neighbors to which a router is connected, and the pattern of said connections,
is part of the topology definition. We focus on two common topologies: fattree
topologies used at Google (labelled FT20, FT40 and SP40 below) and a different
fattree used at Facebook (labelled FB12). These are relatively large data center
topologies ranging from 500 to 2000 nodes and 8000 to 64000 edges.

14 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

SP40 uses a pure shortest paths routing policy. For other experiments (FT20,
FT40, FB12”, we augment shortest paths with additional policy that selectively
drops routing announcements, for example disabling “valley routing” in various
places which allows up-down-up-down routes through the data centers instead
of just up-down routes. The pure shortest paths policy represents a best-case
scenario for our technology as it gives rise to perfect symmetry and makes our
heuristics especially effective. By adding variations in routing policy, we provide
a greater challenge for our tool.

Experiments were done on a Mac with a 4GHz i7 CPU and 16GB memory.

7.1 Compression results

Figure 4 shows the level of compression achieved, along with the required time
for compression and verification. In most cases, we achieve a high compression
ratio especially in terms of links. This drastically reduces the possible failure
combinations for the underlying verification process. The cases of 10 link fail-
ures on FT20 and 5 link failures on FbFT demonstrate another aspect of our
algorithm. Both topologies cannot sustain that many link failures, i.e. some con-
crete nodes have less than 10 (resp. 5) neighbors. We can determine this as we
refine the abstraction; there are (abstract) nodes that do not satisfy the min
cut requirement and we cannot refine them further. This constitutes an actual
counterexample and explains why the abstraction of FT20 for 10 link failures is
smaller than the one for 5 link failures. Importantly, we did not use the SMT
solver to find this counterexample. Likewise, we did not need to run a min cut on
the much larger concrete topology. Intuitively, the rest of the network remained
abstract, while the part that led to the counterexample became fully concrete.

7.2 Verification performance

The verification time of Origami is dominated by abstraction time and SMT
time, which can be seen in Figure 4. In practice, there is also some time taken
to parse and pre-process the configurations but it is negligible. The abstraction
time is highly dependent on the size of the network and the abstraction search
breadth used. In this case, the breadth was set to 25, a relatively high value.

While the verification time for a high number of link failures is not negligible,
we found that verification without abstraction is essentially impossible. We used
Minesweeper[2], the state-of-the-art SMT-based network verifier, to verify the
same fault tolerance properties and it was unable to solve any of our queries.
This is not surprising, as SMT-based verifiers do not scale to networks beyond
the size of FT20 even without any link failures.

7.3 Refinement effectiveness

We now evaluate the effectiveness of our search and refinement techniques.

Effectiveness of search. To assess the effectiveness of the search procedure, we
compute an initial abstraction of the FT20 network suitable for 5 link failures,

Efficient verification of network fault tolerance 15

FT20 Abstractions

- 2624 2624
_38 %gg 2080 2080 2080 2080 1920 1920 2176 1990 2176 1990
<}
*
(o)
S
wn
5
'rd‘ 458 458 458 444
S 75
=
%
e
<
1 5 15 25
Search Breadth
‘DDHeuristics off Reachable off Common off All Heuristics ‘

Fig. 5: The initial abstraction of FT20 for 5 link failures using different heuristics
and search breadth. On top of the bars is the number of edges of each abstraction.

using different values of the search breadth. On top of this, we additionally
consider the impact of some of the heuristics described in Section 5. Figure 5
presents the size (the number of nodes are on the y axis and the number of edges
on top of the bars) of the computed abstractions with respect to various values
for the breadth of search and sets of heuristics:

— Heuristics off means that (almost) all heuristics are turned off. We still try
to split nodes that are on the cut-set.

— Reachable off means that we do not bias towards splitting of nodes in the
reachable portion of the cut-set.

— Common off means that we do not bias towards splitting reachable nodes
that have the most connections to unreachable nodes.

The results of this experiment show that in order to achieve effective compres-
sion ratios we need to employ both smart heuristics and a wide search through
the space of abstractions. It is possible that increasing the search breadth would
make the heuristics redundant, however, in most cases this would make the re-
finement process exceed acceptable time limits.

Use of counterexamples. We now assess how important it is to 1) use symme-
tries in policy to infer more information from counterexamples, and 2) minimize
the counterexample provided by the solver.

We see in Figure 6 that disabling them increases number of refinement iter-
ations. While each of these refinements is performed quickly, the same cannot
be guaranteed of the verification process that runs between them. Hence, it is
important to keep refinement iterations as low as possible.

8 Related work

Our approach to network fault-tolerance verification draws heavily from ideas in
prior work exploiting symmetry and abstraction in model checking [17,4,6] and
automatic abstraction refinement via CEGAR [1,5,9]. However, we apply these

16 Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

ideas to network routing, which introduces different challenges and opportunities.

For example, our notion of abstraction (V3—abstraction) differs from the typical

existential abstraction used in model checking [6]. In addition, we have to deal

with network topological structure and asymmetries introduced by failures.
Bonsai [3] and Surgeries [22] both

leverage abstraction to accelerate verifica-

tion for routing pI‘OtOCOlS and packet for- FT20 Counterexample Optimizations

warding respectively. Both tools compute 015 6

a single abstract network that is bisimi-

lar to the original concrete network. Alas,

neither approach can be used to reason

about properties when faults may occur.
Minesweeper [2] is a general approach 22 5

to control plane verification based on a m

253
248 2

SMT time

3 5

Link Failures

stable state encoding, which leverages an
SMT solver in the back-end. It supports a
wide range of routing protocols and prop-

. . . 00 Symmetric policies off
erties, including fault tolerance proper- Minimize counterexamples off
ties. Our compression is complementary All Optimizations
to such tools; it is used to alleviate the
scaling problem that Minesweeper faces Fig.6: Effectiveness of minimizing
with large networks. counterexamples and of learning un-

With respect to verification of fault used edges. On top of the bars is the
tolerance, ARC [13] translates a limited number of SMT calls.
class of routing policies to a weighted
graph where fault-tolerance properties can be checked using graph algorithms.
However, ARC only handles shortest path routing and cannot support stateful
features such as BGP communities, or local preference, etc. While ARC applies
graph algorithms on a statically-computed graph, we use graph algorithms as
part of a refinement loop in conjunction with a general purpose solver.

9 Conclusions

We present a new theory of distributed routing protocols in the presence of
bounded link failures, and we use the theory to develop algorithms for network
compression and counterexample-guided verification of fault tolerance proper-
ties. In doing so, we observe that (1) even though abstract networks route differ-
ently from concrete ones in the presence of failures, the concrete routes wind up
being “at least as good” as the abstract ones when networks satisfy reasonable
well-formedness constraints, and (2) using efficient graph algorithms (min cut)
in the middle of the CEGAR loop speeds the search for refinements.

We implemented our algorithms in a network verification tool called Origami.
Evaluation of the tool on synthetic networks shows that our algorithms accelerate
verification of fault tolerance properties significantly, making it possible to verify
networks out of reach of other state-of-the-art tools.

Efficient verification of network fault tolerance 17

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings of the 2001 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI). pp. 203-213
(2001)

Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network
configuration verification. In: SIGCOMM (August 2017)

Beckett, R., Gupta, A., Mahajan, R., Walker, D.: Control plane compression. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. pp. 476-489. ACM (2018)

Clarke, E.M., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model
checking. In: Computer Aided Verification, 5th International Conference, CAV,
Proceedings. pp. 450-462 (1993)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, 12th International Con-
ference, CAV, Proceedings. pp. 154-169 (2000)

Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512-1542 (September 1994)

Daggitt, M.L., Gurney, A.J.T., Griffin, T.G.: Asynchronous convergence of policy-
rich distributed bellman-ford routing protocols. pp. 103-116. SIGCOMM (2018)
Daggitt, M.L., Gurney, A.J., Griffin, T.G.: Asynchronous convergence of policy-rich
distributed bellman-ford routing protocols. In: Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication. pp. 103-116. ACM
(2018)

Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In:
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science.
pp. 51— LICS ’01 (2001)

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
Feamster, N., Rexford, J.: Network-wide prediction of BGP routes. IEEE/ACM
Trans. Networking 15(2) (2007)

Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan,
R., Millstein, T.: A general approach to network configuration analysis. In: NSDI
(2015)

Gember-Jacobson, A., Viswanathan, R., Akella, A., Mahajan, R.: Fast control
plane analysis using an abstract representation. In: SIGCOMM (2016)

Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers:
Measurement, analysis, and implications. In: SIGCOMM (2011)

Godfrey, J.: The summer of network miscon-
figurations. https://blog.algosec.com/2016/08/
business-outages-caused-misconfigurations-headline-news-summer.html
(2016)

Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-

main routing. IEEE/ACM Trans. Networking 10(2) (2002)

Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of practical
formal verification. Software Tools for Technology Transfer 4, 2000 (2000)
Lapukhov, P., Premji, A., Mitchell, J.: Use of BGP for routing in large-scale data
centers. Internet draft (2015)

Lopes, N.P., Rybalchenko, A.: Fast bgp simulation of large datacenters. In: Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation.
pp. 386-408. Springer (2019)

18

20.

21.

22.

23.

24.

25.

Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

Lougheed, K.: A border gateway protocol (bgp). RFC 1163, RFC Editor (1989),
http://www.rfc-editor.org/rfc/rfc1163.txt, http://www.rfc-editor.org/
rfc/rfcl1163.txt

Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration.
In: SIGCOMM (2002)

Plotkin, G.D., Bjgrner, N., Lopes, N.P., Rybalchenko, A., Varghese, G.: Scaling
network verification using symmetry and surgery. In: POPL (2016)

Quoitin, B., Uhlig, S.: Modeling the routing of an autonomous system with c-bgp.
Netwrk. Mag. of Global Internetwkg. 19(6), 12-19 (November 2005)

Sobrinho, J.a.L.: An algebraic theory of dynamic network routing. IEEE/ACM
Trans. Netw. 13(5), 1160-1173 (October 2005)

Weitz, K., Woos, D., Torlak, E., Ernst, M.D., Krishnamurthy, A., Tatlock, Z.:
Formal semantics and automated verification for the border gateway protocol. In:
NetPL (2016)

