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Abstract—In many domains, organizations must model per-
sonnel and corresponding data access privileges as fine-grained
hierarchical access control models. One class of such models,
Role-based Access Control (RBAC) models, has been widely
accepted and deployed. However, RBAC models are often used
without involving cryptographic keys nor considering confiden-
tiality/privacy at the data level. How to design, implement and
dynamically modify such a hierarchy, ensure user and data
privacy and distribute and manage necessary cryptographic
keys are issues of the utmost importance. One elegant solution
for cryptography-based hierarchical access control combines
the collusion-resistant and privacy-preserving Access Control
Polynomial (ACP) and Atallah’s Dynamic and Efficient Extended
Key Management scheme. Such a model involves cryptographic
keys used to encrypt data, can address confidentiality/privacy
at the data level and can efficiently support dynamic changes
to the RBAC access hierarchy. In this paper, we discuss several
implementation challenges and propose solutions when deploying
such a system including: data encryption and decryption, key
storage and key distribution. Furthermore, we provide analysis
of the efficiency and scalability of the resulting system.

Index Terms—Cryptography-Based Hierarchical Access Con-
trol, Role-Based Access Control, Key Management, Secure Group
Communication, Information Security

I. INTRODUCTION

In recent years, the amount of data created, stored and
leveraged by individuals and organizations has increased at
a remarkable, exponential rate [20]. Within many domains,
such as health-care and military domains, this data contains
or reveals sensitive information. Therefore, this data must
be secured and kept private from those not granted explicit,
corresponding access privileges.

On the other hand, Cryptography-based (Hierarchical) Access
Control (CHAC) models [3] have been proposed in order
to directly address user and data privacy issues. However,
how to equip RBAC with cryptographic keys, robustly ad-
dress confidentiality/privacy issues and implement and deploy
RBAC models in real-world, data-sensitive applications raises
several additional important issues, such as key management
and secure group communication. Furthermore, due to ever-
increasing amounts of data, any viable solution must address
each of these issues in such a way that supports robust
efficiency and scalability.

In this paper, we propose a comprehensive access control
system inspired by the Dual-Level Key Management (DLKM)
scheme [33]. The proposed system augments an RBAC model
with encryption and privacy-preservation capabilities through
the combination of several techniques including: the Access
Polynomial (ACP) technique [32] and Atallah’s Dynamic and
Efficient (Extended) Key Management scheme [4]. The re-
sulting system provides a comprehensive solution that directly
addresses the issues of access control, key management and
secure group communication with fine-granularity. In addition
to system design, we address several implementation details
and analyze the efficiency and scalability of the resulting
system.

In particular, this paper provides the following contribu-
tions:

1) A detailed presentation of how to employ Atallah’s

Scheme [4] in order to facilitate a Role-based Access
Control (RBAC) model [11], [24].

In order to provide a fine-grained, efficient mechanism to 2) A specific proposal of how to leverage the Access
manage data access privileges, researchers have proposed and Control Polynomial (ACP) technique [32] in order to
investigated many access control models over the years [10]— distribute a secure shared secret between group members
[16], [23]-[25]. One such class of access control models, efficiently and only as needed.

Role-based Access Control (RBAC) models [11], [24], groups 3) A detailed description of how to leverage the resulting

users and assigns privileges based on users’ hierarchical roles
within an organization. As many organizations naturally model
personnel groupings and data privileges based on roles within
the organization, RBAC models have seen wide acceptance
and adoption. Unfortunately, the traditional RBAC model does
not involve cryptographic keys, and does not consider privacy-
preservation of users and data as a coherent part of its model.

system’s key management scheme in order to perform
encryption and decryption of sensitive data using two
algorithms. The second algorithm, which we name Self-
Authenticated Encryption/Decryption, is a novel method
that allows the mapping between user groups (or roles)
and corresponding data privileges to be kept private.

4) Identification of several other important implementation
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challenges and the proposal of how to address them,
including key storage and distribution strategies.

The paper is organized as follows: in Sec. II, we begin
by outlining popular techniques which aim to address the
issues of access control, key management and secure group
communication. Next, in Sec. III, we outline the design of
a comprehensive system which is able to robustly address
each issue in an efficient and scalable manner. In Sec. IV,
we provide multiple solutions, each with respective advan-
tages and disadvantages, to several implementation challenges.
Then, in Sec. V, we provide analysis of the computational and
memory scalability of the system. Finally, in Sec. VI, we offer
concluding remarks.

II. RELATED WORK

Access control of sensitive data is an important and well-
studied issue. Many access control models have been proposed
and widely accepted in several domains. Discretionary Access
Control (DAC) models [10], [25], where each user is given
an explicit set of privileges, were once popular in commercial
domains because of their flexibility and fine-granularity. Un-
fortunately, DAC models do not scale well as large numbers
of users, each with their own set of privileges, become
increasingly difficult to manage. Mandatory Access Control
(MAC) models [15], [23] introduced levels of privileges for
accessing the data objects in a system. In a MAC model, a
user is assigned a privilege level and granted access to all the
data objects of equal or lower privilege level. Unfortunately,
MAC models are not well-fit for high security domains where
many data objects should be accessible by only a small set
of corresponding users. As the restrictions of DAC and MAC
schemes were recognized, Role-based Access Control (RBAC)
models [11], [24] saw wide acceptance and adoption. In RBAC
models, privileges are assigned to groups of users. RBAC
simplifies privilege management when a user’s activities in
the system change and also facilitates complex data privilege
hierarchies with fine-granularity. As a result, RBAC models
are well-suited for organizations which group their personnel
in hierarchical roles. Other access control models, such as
Relation-based Access Control (ReBAC) models [12], [13] and
Attribute-based Access Control (ABAC) models [14], [16],
have also been recently proposed. Due to the complexity of
these recently proposed models, their acceptance and adoption
has been limited. Currently, RBAC models are still the most
widely accepted and deployed method of access control [29].

In order to provide data and user privacy, Cryptography-
based (Hierarchical) Access Control (CHAC) models [3] have
been proposed. In order to facilitate a CHAC model, additional
issues, such as key distribution and management, must be ad-
dressed. Many proposed CHAC models and key management
schemes can be used to facilitate an RBAC model. However,
many of these schemes have scalability and design issues
which prevent their application in demanding domains. Many
schemes, including [3], involve division of two large primes
which is computationally expensive as the number of bits in
the primes increases. Other schemes often restrict the design
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of hierarchy to a tree-like structure [18], [26], [27]. This leads
to these schemes being unfit for many domains which require
flexible and complex hierarchies. Besides these early works,
more comprehensive schemes [7], [8], [19], [31] have been
proposed to support efficient modification operations on a
hierarchy. Unfortunately, many of these schemes do not handle
modifications locally within a hierarchy. This leads to a trusted
group controller needing to re-compute and re-distribute keys
to large sets of users upon hierarchy modifications. One
elegant scheme, Atallah’s Dynamic and Efficient (Extended)
Key Management scheme [4], is able to facilitate arbitrary
directed acylic graph (DAG) hierarchies. Furthermore, Atal-
lah’s Scheme handles modification operations locally within a
hierarchy. This promotes system efficiency and scalability as
there is much less need to re-compute and re-distribute keys
when performing modifications.

Another important issue, secure group communication, ad-
dresses how to handle key synchronization among users in the
same group within a hierarchical access control model. Many
different protocols have been proposed, including: distributed
group key distribution [2], distributed contributory group key
agreement [6], decentralized group key management [21] and
centralized group key distribution [17]. One interesting solu-
tion, the Access Control Polynomial (ACP) [32], is a provably
privacy-preserving and attack-resistant method of distributing
a shared secret to a group of users.

III. SYSTEM DESIGN

In this section, we discuss the design of a comprehensive
system which robustly addresses the issues of access control,
key management and secure group communication. The design
of the proposed system is based upon the Dual-Level Key
Management (DLKM) scheme proposed by [33]. The DLKM
scheme addresses these issues at both the user-group and
group-hierarchy levels. The user-group level of DLKM makes
use of the privacy-preserving and collusion resistant Access
Control Polynomial (ACP) [32] in order to distribute a shared
secret among a group of users. The next level of the DLKM
scheme involves the use of Atallah’s Scheme [4] in order to
build and efficiently facilitate a hierarchical Role-based Access
Control (RBAC) model [11], [24].

The system involves cooperation and communication be-
tween a client, an authorization/key management server (AS)
and a database/application sever (DS). The system assumes
the AS is trusted as it will store all hierarchy data and contain
all necessary keys to decrypt any encrypted data stored within
the DS. Furthermore, we assume a trusted group controller
(GC) exists who has access to the AS and is able to trigger
modifications to the hierarchical RBAC model. We assume a
secure communication channel exists between the client, AS
and DS.

A. Access Control Polynomial

After grouping users based upon their role and data priv-
ileges within an organization, our system makes use of the
ACP [32] in order to distribute a shared secret among a group’s
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Fig. 1. Example hierarchical RBAC model built using Atallah’s Scheme.

members. An ACP is a polynomial, A(x), computed over finite
field F, where q is a large y-bit prime:

[ [(x—f(s1Dil2))

iev¥

Alx)

ey

In order to compute A(x), each user \; in group ¥ shares
a private random integer input, SID; € Fq, with the AS. A
user’s SID could be derived by information stored on the AS
during enrollment, e.g. the user’s password hash. For each
user i, the trusted AS then concatenates their SID; with
public value z € F4 and hashes the result by a public one-
way function f : {0, 1}* — {0, 1}Y. This results in f(SID||z)
for ;.

The AS utilizes each user’s f(SID;||z) to compute A(x) as
shown in Equation 1. The AS then uses the resulting A(x) in
order to compute public polynomial P(x):

P(x) = A(x) +s

(@)

where s € Fq is a secret integer to be shared among users in
group V. As shown in Equation 2, s will be mixed with and
masked by the constant term of A(x) during the computation
of P(x). Finally, the AS publicizes (z,P(x)) to group ¥ by
multicasting it to each user ;. Each time the AS wishes to
re-distribute (z,P(x)) to each {; € ¥, it dynamically updates
z as 2’ € Fq, computes the resulting A’(x) and P’(x) and
multicasts (z’, P’(x)) to all {y.

It can be seen that any user \; in group ¥ can retrieve
shared secret s by simply computing s = P(f(SID;lz)).
Furthermore, it can also be seen that public polynomial P(x)
is both collusion and privacy-preserving. Consider the case in
which a proper subset of users, ® C ¥, wish to collude to de-
rive the private input, f(SID;||z), of user {; ¢ ®. Any mem-
ber of the colluding subset, \; € @, may compute the group’s
shared secret s by simply computing s = P(f(SIDjllz)).
Using s, the colluding group can compute A(x) = P(x) — s,
set A(x) = 0 and use a root-finding algorithm in order to
compute all f(SIDy||z) used to compute A(x). Even in the
most extreme case where the colluding group is made up of all
group members besides the target group member, ® = W —1;,
SID; is computationally infeasible to derive from f(SID;||z)
(assuming finite field Fq is sufficiently large).
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These robust security and privacy features of the ACP can
be further augmented by the inclusion of dummy values in the
trusted AS’s computation of A(x):

[[x—fsmillz) J] (x—VIDy)

iew j=1...d

Ax) 3)

where the additional second term is made up of d dummy
values VID; € Fq randomly chosen by the AS. Without
knowledge of the dummy values, it is impossible for any
colluding subset @ to successfully determine which roots of
A(x) are dummy values, VIDj;, and which roots are user
inputs, f(SIDy||z).

B. Atallah’s Scheme

After using the ACP to distribute shared secrets among
group members, our system then organizes groups into a hi-
erarchical RBAC model using Atallah’s Scheme [4]. Atallah’s
Scheme involves modeling hierarchical relationships between
user groups through the use of a directed acyclic graph (DAG),
G = (VE,0), where V is a set of vertices of cardinatlity
V]| n, E is a set of edges of cardinality [E|] = m and
O is a set of data objects of cardinality |O] = p. Atallah’s
Scheme requires the trusted GC to carry out hierarchy creation
and maintenance. It also makes use of public hash function
f:{0,1}* — {0,1}Y and symmetric encryption scheme ¢. ¢
is made up of polynomial-time encryption function Encsg :
m — ¢ and decryption function Decsk : € — . where SK
is an input encryption/decryption cryptographic key, m is a
plaintext message and c is the ciphertext encryption of m.

Each vertex v; € V represents a group of users, ¥, in an
organization with a corresponding role and data privileges.
Each v; is assigned a random public label, 1; € {0,1}Y, and
uses a corresponding ACP in order to distribute a shared secret,
si, to each of its group members, \; € ¥. Using s;, any of
vi’s group members can derive two private cryptographic keys.
The first private key, ki = f(si|/0]|l;), where ki € {0, 1} is
used for data encryption/decryption. The second private key,
t; = f(sil/T]|ly), where t; € {0, 1} is used for derivation of
other groups’ private keys.

Each object o; € O represents a data object belonging
to an organization which requires certain privileges in order
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to access. Function @ : V — 2° maps a vertex to a
corresponding set of objects for which it is granted access
such that |O(vi)| > 0 and Vivj, O(vi) N O(v;) = 0 if and
only if i # j. Each data object o; € O(v;) is encrypted using
Ki.

Each directed edge (vi,v;) € E is used to denote hi-
erarchical relationships between user groups. Any directed
edge, (vi,vj), from v; to vj requires two values. The first
value, i3 = f(tilll;), is kept private and the second value,
Yij = Ency; (tllk;), is publicized as (vi,v;)’s label. If a path
exists between some vertex, Vi, to a descendant, vj, v; will be
able to derive v;’s data encryption/decryption key, k;, using
only public group and edge labels as well as t; (see Alg. 1).
This will, in effect, grant any group v; access privilege to any
O(v;) where vj is a descendant of v;.

For each node, v;, Atallah’s Scheme [4] defines the set of all
descendants of v; as Desc(vi, G) where G is the public com-
ponents of the DAG. Likewise, Atallah’s Scheme defines all
ancestors of v; as Anc(vi, G). We consider v; € Desc(vi, G)
and vi € Anc(vi, G). This means v; will be able to derive
the private keys of any k; where v; € Desc(vi, G) (but v;
will be unable to derive sj). Furthermore, Atallah’s Scheme
defines the set of all immediate successors and predecessors of
v; as Succ(vi, G) and Pred(vyi, G), respectively. We consider
vi € Succ(vi, G) and v; ¢ Pred(vy, G).

Finally, using these constructs, Atallah’s Scheme [4] defines
a Derive(Vsource, Vtarget, G) algorithm shown in Alg. 1. Us-
ing this algorithm, any user in group v; is able to use her own
t; along with public node and edge labels in order to derive
the private keys of any of its descendants v; € Desc(vi, G).

An example six node (or role) hierarchical RBAC model
built using Atallah’s Scheme can be seen in Fig. 1. For each
node, vi, only 1; and s; must be stored by group members.
The private keys, ki and t;, do not need to be stored by v;
and can instead be derived from s; as needed.

C. Efficient Group and Hierarchy Modification Operations

As a result of the use of the ACP [32] and Atallah’s
Scheme [4], the resulting DLKM system supports efficient
RBAC model modification operations. These operations in-
clude modifications at the group-hierarchy level as well as
at the user-group level. Here, we discuss the details of how
to perform each of these modification operations and their
resulting computational complexities.

Insertion of a new node. When adding a new node, v;, to
the graph, v; is first treated as if it does not have any edges
connected to it or any users assigned to it. The GC creates the
new node by computing and assigning its secret and public
information. This involves assigning the new node v; a random
public label, 1; € {0,1}Y, and a random secret, s; € {0,1}".
Then, v;’s two private keys can be computed whenever they
are needed as: ki = f(s¢||0||l;) and t; = f(si]|1]|ly). After
assigning this secret and public information, connecting edges
and new users can be sequentially added by use of the insertion
of a new edge and user acceptance operations shown later in
this section.
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Algorithm 1: Atallah’s Scheme method of deriving de-
scendant keys.

Derive (Vsource) Vtarget) G)

if Vsource = Vtarget then
| return vgource.get_k

end

if Path(G)VsourceavtaTQEt) = @ then
| return null

else

RIS B L

Vi = Vsource
ki = Vsource-QEt_k
ti = Vsource-get_t
for Vj € Path(GaVsourceyvtarget) do
Ty = f(tilly)
tJ”kJ = DeCTij (yu)
ti=1
ki = k;j
end
return k;

11
12
13
14
15
16
17
18
19

end

Insertion of a new edge. Suppose v; is to be assigned
the privilege to access to O(v;). A new edge, (vi,Vv;), must
therefore be inserted into the graph so that v; will be able
to compute k;. In this case, the GC must first compute 1i; =
f(tilll;), and then use the resulting Ti; to compute the public
label of the new edge, yi; = Enc,; (tjl[k;). These values are
assigned to the new edge, (vi, Vj ), and, as a result, v; is granted
access to O(v;). The GC should note that, in addition to v,
all groups v, € Anc(vi, G) will also be granted access to
O(\)j )

Deletion of an edge. The main security concern when
performing deletion of an edge, (vi,Vvj), from the graph is
that the group members of v; may still be able to access
O(vy) if the deletion is not well performed. Suppose the edge
(vi,vj) is going to be deleted from the graph by the GC. First,
any public label, l,, of v;’s descendants, vy, € Desc(vj, G),
should be reassigned a new random value, l}/1 € {0,1}Y in
order to prevent access to O(vy) by v; or any of its ancestors,
vk € Anc(vi, G). After updating public label 1y, to 1}, for each
vh € Desc(vj, G), vi’s two private keys will automatically
updated as kj, = f(snllO|[l},) and t}, f(snllTI1},). This
means secret information sy does not need to be updated
during an edge deletion. The updated private keys, k} and
t},, will not be accessible by v; or any of its ancestors as
the path connecting them to vy, € Desc(vj, G) will no longer
exist after the deletion of (vi,V;) (assuming there exists no
other path(s) connecting v; or any of its ancestors to vy ). The
detailed steps for carrying out an edge deletion are as follows:

1) For each node vi, € Desc(vj, G), the GC must assign
Vh a new random public label 1}, and recompute ky
and tn as mentioned above: ki, = f(snll0|[l},) and t} =
Flsnl1IL,).

2) Next, edges connected to any node vy, € Desc(vj, G)
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should be updated by the GC according to the new labels
ln/ and private keys, k}, and t},. For each vy, the GC
must find vy’s predecessors, v, € Pred(vh,G), and
update any edge, (Vp,Vvi), such that i, = f(tplll})
and y;h = Encr;’h (th},). This will allow v, and its
ancestors to have the ability derive k{l in the future and,
as a result, have continued access to O(vp).

Deletion of a node. There are three steps involved in
deletion of a node vj;:

1) Using the edge deletion operation defined earlier, the
GC sequentially deletes all edges (vi,v;) and (vp,V;)
where v; € Succ(vi, G) and v, € Pred(vi, G). This
will isolate node v; such that when it is deleted, no ex-
group member of v; will be able to derive any key k;.
Next, using the edge insertion operation discussed ear-
lier, the GC must insert edges (vp,v;) for all v; €
Succ(vi, G) and v, € Pred(vi, G). This will allow
any of vi’s ancestors to have continued access to its
descendants’ private keys.

Finally, the GC must delete any record of v; from the
system, including its keys and public label.

2)

3)

Update secret key. If there arises a need to change a node
v;i’s secret information, s;, four steps should be carried out:

1) First, the GC must assign v; a new random secret, s’i S
{0, 1}¥. As a result, the v;’s private keys will be updated
based on the new secret key: ki = f(s{||0][l;) and t]
f(sf1TI1L).

Next, for each edge (vp,v;i) where v, € Pred(vyi, G),
the GC must update y;)i = Enc,,, (k).

Then, for each edge (vi,vn) where vy, € Succ(vi, G),
the GC first computes 1, = f(t}||ln), and then updates
Yin = Ency (tnllkn).

Finally, the GC must recompute its ACP based on the
new secret s;. During this re-computation, public value
z should be randomly assigned to a new value z' € Fy.
The resulting ACP re-computation is follows as:

A'(x) = [Liew(x = f(SIDillz")) T[;_; _ 4(x — VID;)
P'(x) =A'(x)+ s’

The GC then must send the new ACP to every user in
group 1 to finish updating the secret key of the node.

2)

3)

4)

User acceptance. Most of the operations above don’t
involve user-group level operations, which enables them to
perform modifications efficiently. Suppose a new user with
SID,, is going to join group v;. No group-hierarchy level
operations will need to be performed. Instead, the GC only
recomputes vi’s ACP with new value z’ € Fq as follows:

A'(x) = (x — f(SIDy, 2'))
# [ Tiew(x — F(SID:lIz')) [ ;¢ (x — VIDj)
P'(x) =A'(x)+s
User revocation. Suppose a user, \;, leaves or is to be
removed from their group, vi:
1) To prevent the leaving user, \;, from future access to
the k; or k; where v; € Desc(vi, G), the user is first
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TABLE I
TIME COMPLEXITY OF MODIFICATION OPERATIONS

[ Operation Time Complexity ||
[ Insertion of a node oM i
[ Insertion of an edge o(Mm i
[ Deletion of an edge Om) |
[ Deletion of a node O(n) |
[ Key derivation O(n) |
H Update secret key O(n +k?) H
H User acceptance 0(k?) H
H User revocation O(n +k?%) H

removed by the GC from v; such that vi’s user group
becomes ¥ = (¥ — ;).

Then, v;’s secret, si, should be updated using the update
secret information operation described previously in this
section. This will result in re-computation of v;’s ACP
with the exclusion of removed user \{;i’s SID;. As a
result, \; will be revoked future access to k;.

Finally, the leaving user, 1\);, must also be revoked access
from any k; where v; € Desc(vi, G). Each s does not
need to be updated, but k; does in case ; stored them.
Changing each k; can be simply realized by changing
vj’s public label, 1;, i.e., the GC updates 1; to l; and
updating any public edge values, yji, connecting any
two descendants of vi. As any k; and t; are derived
from both s; and 1, they will automatically be updated
by these modifications.

2)

3)

In Table I, we provide the time complexity for each of the
modification operations. Suppose there are |V| = 1. nodes in
total, with [W| = k users assigned to each node on average.
Thus, traversal and derivation of Desc(vi,G) is an O(n)
operation as Desc(vi, G) may be made up of any subset of V.
Multiplying each (x — f(SIDj||z)) term, applying k modulo
operations and additions during ACP computation results in
a complexity of O(k) operation. Thus, computing an ACP of
size k is an O(k?) operation. Data communication between
the server and all the users under in a group will take O(k) at
most. If multicast is possible, distribution of public ACP data
will then be O(1).

IV. IMPLEMENTATION CHALLENGES AND PROPOSED
SOLUTIONS

The design of the two-level hierarchical access control
scheme given in Sec. III is elegant, flexible, attack-resistant,
and efficient. However, challenges exist when implementing
the above design in real systems. These challenges, among
others, include: (1) How to encrypt data fields such that users
may only access the data for which they have the correct
corresponding privileges, but also in such a way to facilitate
decryption which can be performed correctly, practically and
efficiently? (2) Besides SID;, does a user need to store
and carry other secret key(s), particularly, how can a user
access their privileged data while moving and logging into
the system from different computers at different locations? (3)
How can the server distribute a shared secret to groups of users
efficiently, regardless of whether multicast channels exist? We
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will discuss each of these issues and propose practical and
possible solutions below.

A. Data Encryption and Decryption

We define a plaintext dataset, D € R™€, as a matrix of
T data records, each with c¢ features. Likewise, we define an
encrypted dataset as C € R™¢. We consider each feature (or
column) of the matrices as an object 0o; € O which requires
any user from group vi € V to posses an access privilege
in order to decrypt. An object (or column), Otqrget, of C
can therefore be obtained and decrypted by v; if and only
if Otarget € O(Vtarget) and Vtarget € DeSC(ViaG)- We
use notation D, in order to obtain object (or column) o;
from matrix D. Furthermore, the value of object o5 for data
record (or row) T can be obtained using the notation D, .
We assume all objects are assigned to a single corresponding
group. If there exist objects that every group v; € V should be
able to access, these objects may be assigned to a single node,
vj, and then edges (vi,V;) can be inserted into the graph for
each node v; € V.

We implement two schemes of data encryption and decryp-
tion. Both schemes employ MD5 [22] as their public hash
function, f : {0,1}* — {0,1}Y, and AES [9] using EAX
mode [5] as their public symmetric encryption scheme, €. One
scheme assumes that the group-to-object mapping function,
O, is public. Therefore, given an object they wish decrypt,
Otarget, @ member of group v; can use public O in order to
see any group with access t0 Otarget: Vh € ANC(Viarget, G)
where Otarget € O(Viarget). Unfortunately, in some high
security domains, such as health-care or military domains, it
may be improper to publicize O and allow anyone to see which
objects are accessible by which groups. Therefore, we design
a second scheme which assumes O is hidden to everyone but
the GC. In both schemes, the GC is responsible for encryption
of the data, and users can later derive the desired data based
only on public information and their secret keys.

1) Data encryption and decryption with mapping function
O public: In this case, the GC performs encryption of D as
follows:

e (Algo. 2, Line 3-5) For each node vi € V, the GC
derives its private key, ki, and finds all the data fields
corresponding to objects O(vy).

e (Algo. 2, Line 5-7) For each 0; € O(v;), the GC encrypts
every row in the plaintext column Dy, using ki.

Decryption is straightforward when O is public. Suppose
the user in group vi wants to access a target object Otqrget:
e (Algo. 2, Line 3-6) Using the public mapping function,
O, the user should find the node Viqrget of which the
Otarget belongs to.

e (Algo. 2, Line 9-12) Next, the user determines if
Viarget € Desc(vy). If not, access to data corresponding
t0 Otarget should be denied. Therefore, the user should
not be able to derive the target node’s key, Kiarget-
Otherwise, the user can derive kKiqrget using the derive
key algorithm mentioned above (see Algo. 1).
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Algorithm 2: Data encryption and decryption assuming
group-to-object mapping function, O, is public.

1 Encryption (G,D,0O)

2 C«D

3 for vi € V do

4 ki « vi.get_k

5 for o; € O(v;) do

6 for r — 0 to D.rows do

7 ‘ Cr;o}- — Encki (DT;O]')

8 end

9 end

10 end

1 return C

1 Decryption (G, C, Otarget) O, Vsource)
2 DOturget — COturget

3 Viarget = null

4 for v; € Desc(Vsource, G) do

5 if 0target € O(vi) then

6 | Viarget ¢ Vi

7 end

8 end

9 if Vigrget = null then

10 ‘ return null

11 else

12 ktarget — Deﬁvve(vsourceavtaw'geta G)
13 forr < 0to Co,,,,. . TOWs do
14 ‘ DT',OLurgeL — DeckmrgeL(CT;OLurget)
15 end

16 return Do, ..,

17 end

o (Algo. 2, Line 13-14) Once the user derives Kiqrget, they
can decrypt the data row-by-row using Kiarget.

2) Data encryption and decryption without mapping infor-
mation: When the users cannot access the group-to-object
mapping function O, there should be some additional informa-
tion which users can employ to perform decryption correctly
(if they have the correct privileges). We propose a novel
encryption/decryption method dubbed Self-Authenticated En-
cryption/Decryption. The modified encryption process is as
follows:

e (Algo. 3, Line 3-5) For each node v; € V, the GC
derives its private key, ki, and finds all the data fields
corresponding to objects O(v).

 (Algo. 3, Line 5-7) For each o; € O(v;), the GC
encrypts every row in the plaintext column D, using
ki. When the GC encrypts the r-th record in D, it
encrypts the concatenation of the key and the actual data
as: Ency, (killDyyo; ).

With the mapping function O private, no user is able to
directly determine which node, Viqrget, corresponds to the
object they wish to decrypt, Otqrget. Therefore, when trying
to decrypt Otarget, a user, i € vi, must sequentially derive
and try all the keys k; where v; € Desc(v;, G). The user will
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Algorithm 3: Data encryption and decryption assuming
group-to-object mapping function, O, is private.

TABLE II
TIME COMPLEXITY OF DATA ENCRYPTION AND DECRYPTION

1 Encryption (G,D,0)

2 C«D

3 for vi € V do

4 ki « vi.get_k

5 for o; € O(v;) do

6 for r +— 0 to D.rows do

7 ‘ CT;Oj — ETLCki (ki”Dr;Oj)

8 end

9 end

10 end

1 return C

1 Decryption (G) Ca Otargetavsource)

2 Doturgct — COturgct

3 Viarget = null

4 for v; € Desc(Vsource, G) do

5 ki Deﬁ-\)e(vsourcevvi) G)

6 r—20

7 ktargetHDr;oj — Decki(cr;otmgm)

8 if ki = Kiarget then

9 ‘ Vtarget Vi

10 end

11 end

12 if Viarget = null then

13 | return null

14 else

15 ktarget — Deﬁ've(vsource»vtarget) G)

16 forr —0to Co,,, .. .TOWS do

17 ktargetHDT;otmget —
Decktarget(cr;oturgct)

18 end

19 return Do, ..,

20 end

know they have derived the correct Kiqrget only when they
they decrypt a field in C,,,,,., and the decryption contains
a matching Kiqrget appended to plaintext data. Suppose the
user in group vi wants to access Otqrget- The user should
carry out the following three steps:

o (Algo. 3, Line 4) The user first needs to get Desc(vi, G)
from the public graph information.

« (Algo. 3, Line 4-13) For each node v; € Desc(vi, G),
compute k; and use k; to decrypt the first record in
within Co,,,,.,- If the key contained in the decrypted
data matches k;, set Viqrget as vj. If no key k; of any
vj € Desc(vi, G) matches the decrypted key, this means
the user should be denied access to the data corresponding
{0 Otarget-

e (Algo. 3, Line 16-17) After kiqrget is found, the user
can decrypt C,,,,., row-by-row with it. Within the de-
crypted data fields, the origin data can be seen appended
to ktarget-

In Table II, we provide time complexity of encryption and
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( [ Encryption
|| Time Complexity | O(nm)

Public Mapping [ Private Mapping

Decryption
O(n +1log(n)) |

[ Encryption
O(nm)

|
Decryption ||
o2n) |

decryption for each scheme. Suppose the hierarchy DAG is
balanced and there are |V/| n nodes in total, each with
|O(vi)| = m data privileges on average. In both methods,
encryption will take O(nm) time as the GC has access to
all keys stored in the AS and the node-to-object mapping, O.
For decryption, both schemes first require that a user in v;
spend O(n) time finding the the set of nodes Desc(vi, G).
In the case of the first scheme, the user in v; can then
check if the target object they wish to decrypt in access
belongs to any node v; € Desc(vi, G). If so, she must spend
an additional O(log(n)) time to derive the corresponding
target key along the path of descendants. In the case of Self-
Authenticated Encryption/Decryption, O is not public so the
user in v; must spend O(n) time to try all keys they can
derive from Desc(vi, G). As a result, both schemes have an
overall complexity of O(n) to gather the necessary keys before
decryption, but the Self-Authenticated Encryption/Decryption
will take O(n) to perform decryption without public O(v;),
while the first scheme will take O(log(n)) with public O(vy).

B. Key Storage

Key storage is another important implementation issue. As
mentioned in Sec. III, the AS will house all keys and hierarchy
data. The trusted GC will have access to the AS and will
perform all key management operations. Meanwhile, the DS
will contain all the encrypted data for which user can be
granted access. The AS will serve as an intermediary between
clients and the DS.

Through our use of the ACP technique [32], we assume each
user’s SID is stored by the server for quick re-computation and
re-distribution of A(x) and P(x). Unfortunately, this makes
the AS a single point of failure. While it can be made
computationally infeasible for an attacker to derive f(SID;l|z)
from the P(x), the attacker could instead try to infiltrate the
AS. In the case the attacker is successfully able to infiltrate the
AS, they will be able to retrieve all encryption/decryption keys
along with all the SID values. While system design assumes
all encryption/decryption keys must be stored on the AS, it
is possible for the SID values to be stored elsewhere. Here
we describe two key storage strategies: (1) storing each user’s
SID in the AS and (2) storing each user’s SID on the client.
For both strategies, it should be noted that, as mentioned in
Sec. III, we assume a secure communication channel exists
between the client AS and DS.

1) Storing Keys on Server: In Sec. III, we assume that each
user’s SID is derived from information, such as a hash of the
user’s password, and stored on the AS during enrollment. In
this way, both the client and the server will have access to
the SID of a user. This means that when a user 1{; is to be
added to a group, the server will simply add 1;’s SIDj to the
ACP computation for this group (as all other necessary SIDs
are already stored and possessed by the AS). The AS updates
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public value z, computes A(x) and adds s; in order to get
P(x).

At this point the AS can send (P(x),z), and the public
components of the RBAC DAG graph, G, to the client. Since
the client knows their own login information, they can derive
their SIDs and hash it with public value z. Plugging the
resulting value into P(x) will result in the secret key s; if
and only if the user is a valid member of the group. Then, the
client can store their secret si, use it to derive it’s private key
ki and t;, and use it to derive other private keys.

When a user would like to access data, they can send a
request for the data they desire along with necessary private
keys to the AS. The request and parameters can then be
forwarded to the DS. The DS will use this information to
decrypt the requested objects and send the resulting decrypted
information back to the client. An example of this protocol
can be seen in Fig. 2.

If the DS is not trustworthy, the AS could simply request
the encrypted data object from the DS. Then, the trusted AS
could use the client’s provided key to decrypt the data and
forward it to the client. The AS could also instead forward
the encrypted data to the client and allow the client to decrypt
the data herself (in which case the client would only need to
indicate the target data object, Otqrget, and not provide the
AS with a decryption key, Kiarget)-

When storing the secret s;, the client must know if they have
the most up-to-date version. In some situations, such as user
revocation, the secret s; must be updated by the GC and AS.
The client must be made aware of this change. One solution
would be for the AS to assign secret s; a version number
and increment the version number after updates. Then, when
sending the ACP information, the AS could also send the client
the corresponding version number. The client may then ask
the server for the current version number upon login. If the
version the client is storing differs from the server’s version,
the client then knows that they must request the updated ACP
information in order to calculate the new secret s;.

2) Storing Keys on Client: In this section, we discuss how
to ensure the privacy of the SIDs by storing the SIDs only on
the client side. In this scheme, after any user 1;’s enrollment,
the user needs to pick a random number z; € (0, 1)Y, compute
f(SID{||z;) and store SID; and z;. When the user is added
to some group, the AS will need the user to send their
f(SID{||zi), and then AS can then add f(SIDy||z;) to its ACP
computation. This way, even if the AS is compromised, an
attacker will only obtain the set of f(SID;||z;) used in the ACP
computation. As noted previously, it is computationally expen-
sive to retrieve the original SID; values from the f(SIDj|lz;)
hashes. To further augment system security, the AS can discard
the f(SIDil|z;) values after ACP computation. In this case,
the AS will need to request all the users in the group resend
f(SID4l|zi) when re-computation of ACP is necessary. If some
users are offline or unable to send back their hashed SIDs in a
certain amount of time, the server will just compute a new ACP
based on the SIDs it receives. The absent user(s) can then re-
join the group by sending their f(SIDjl|z;) value(s) the next
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Fig. 2. Client, key management/authorization and application/database server
carrying out enrollment, authentication and decryption protocols.

time the server requests them. This may reduce the size of
ACP as some group members are sometimes excluded, but as
long as there is at least one user involved in the computation,
their SIDs and s; will be hidden by the ACP dummy values,
VID;.

The AS only needs to publicize P(x), the public components
of G, and the version number of the secret s; to the client. If
a user has a different key version number, she must request
that the AS recompute P(x) with the inclusion of her hashed
SID. Otherwise, she must plug their pre-computed f(SID;||z)
into P(x) to s;. In order for this scheme to work, it must be
assumed that those users requesting ACP should be able to
send their hashed SIDs to the server. This will require some
coordination from clients and the AS.

In either of the two schemes, the system can support remote
access from different machines and locations. Assuming the
user is able to provide their SIDs to the client, authorization
and key derivation should work as previously explained.

Users accessing the system from devices with little compu-
tational power can also be accommodated by the AS. As long
as the AS server stores either the plain SIDs or hashed SIDs,
the server could carry out key derivation and decryption on
behalf of the client. If this were to occur, robust authentication
of users would be necessary before performing decryption for
the user or providing the user the resulting decrypted data.

C. Key Distribution

One important concern is how information is distributed
between the client and the AS. Ideally, it would be best to use
multicast to send public information to the clients. Thus, public
information for each group of users would only have to be sent
once. If unicast is used, then the AS will have to establish
a connection between every user and send information to
each one individually. This does not scale well, particularly in
organizations with roles containing a large number of users.
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Runtimes For Data Decryption Algorithms
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Fig. 3. Computational analysis of encryption/decryption Algorithm 2 and
Algorithm 3 as graph size increases.

However, multicast has some drawbacks that could lead to
unicast being a better choice despite it’s inefficiency. Gener-
ally, multicast is only implemented on local area networks
(LANs) and may require additional network configuration
before it can be used. This is fine if the data within the DS
is intended to only be accessible at one physical location, but
this will create problems if the data within DS is intended to
be accessed over the internet.

For most applications it is likely that clients will need to be
able to communicate with the AS and DS over the internet. In
this situation, unicast is likely the better choice as it requires
no additional setup and can be used to communicate with
clients over the internet. While unicast is less efficient, it is
easier to use and will provide the client with more mobility. If
unicast is used, any unicast packets must be encrypted so that
information is not sent in plaintext. This can be solved by the
use of TLS/SSL which will create an encrypted link between
client, AS and DS. Securing the transport layer in this way is
a standard and widely adopted practice that will protect the
data from being deciphered if it is intercepted.

V. EXPERIMENT

In this section, we offer computational and memory scala-
bility analysis of the resulting system. Each experiment was
ran on a simple Lenovo Thinkpad 13 Ultrabook laptop with
a Intel i5-6200U CPU and 8GB of RAM. Both experiments
suggest that the experiment is quite scalable and can easily
accommodate organizations which organize themselves into
complex hierarchies with hundreds of roles and thousands of
personnel members.

A. Data Decryption Experiment

In Sec. III, we offer theoretical analysis of the computational
complexity of many different hierarchy modification opera-
tions. Decryption of target data objects needs to be performed

Memory Consumption

Megabytes

0 T T T T
20 40 60 80
Nodes

T
100

Fig. 4. Memory usage required as DAG size increases.
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in real-time when deployed in many real-world systems.
We therefore examine the run-times of the two proposed
decryption methods (see Algo. 2 and Algo. 3 in Sec. IV) as
hierarchy DAG size increases. We performed this experiment
by beginning with a 10-node graph and incremented the
number of nodes until we reached a 100-node graph. Each
node added to the graph was assigned a group of 100 users.
For each graph size, we randomly generated a corresponding
DAG with random edges. It should be noted that we did not
add any random edges which would create a cycle in the graph.
Then, for each randomly created DAG, we selected a random
source node and target object belonging to one of the source
node’s descendants. The source node carried out decryption
using both methods. For each graph size, we repeated each
step three times and recorded the average of the results.

The results of the experiment can be seen in Fig. 3. The
x-axis represents the number of nodes used while the y-
axis represents the amount of time in seconds to complete
the decryption algorithm. The first version of the decryption
algorithm uses the object mapping technique of Algo. 2 while
the second version of the decryption algorithm uses the Self-
Authenticated Decryption method of Algo. 3.

Due to the random nature of our experiment, decryption
time does not monotonically increase as DAG size increases.
For all of the DAG sizes, Algo. 3 has higher run-times. This
is to be expected as Algo. 3 assumes the object mapping is
private. Therefore, the keys of all descendants of the source
node must be computed and used during decryption. As a
result, it is certain that Algo. 3 will take as long (in the
best case) or longer than Algo. 2. Fortunately, Algo. 3 only
takes an additional ~0.005sec longer than Algo. 2 on average.
Depending on the domain the proposed system is deployed
in, this additional ~0.005sec may be a worthwhile trade-off
in order to keep the group-to-object mapping, O, private. It
should be noted that the ~0.005sec additional time for Algo. 3
is not fixed. There may be cases where Algo. 3 takes far
greater time than Algo. 2. This would be dependant on the
path length from some source to target node and the amount
of descendants of the source node. It should also be noted
that Algo. 3 has the disadvantage that a user must brute-force
try all descendant keys before realizing they do not have the
correct permissions to access a target data object (as the group-
to-object mapping, O, private). This differs from Algo. 2 in
that a user can utilize their set of descendants and the public
group-to-object mapping, O, in order to directly determine if
they have access to a target data object.

Both algorithms are able to consistently decrypt data within
a tenth second on the simple Lenovo laptop, even when the
graph contains hundreds of nodes and thousands of users. This
provides strong indication that the system can scale easily and
be used by large organizations.

B. Memory Consumption Experiment

The experiment provided analysis of memory consumption
by the system. Again, the x-axis represents the number of
nodes in the randomly generated DAG. The y-axis represents
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the amount of megabytes used for this DAG object and all
associated data in memory.

The results of this experiment can be seen in Fig. 4. The
memory consumption of the DAG clearly grows linearly with
respect to size of the graph. This is because each node being
added to the graph requires storage of a fixed set of data.
Each node being added requires storage of: a secret key s;, a
public label 1;, edges, users, and an ACP. In this experiment
the amount of users per node is kept constant so the amount
of bytes will not vary much but it is to be expected that node
memory consumption will depend on the amount of users.
Since the amount of users in each node is the same, memory
consumption increases linearly. At the largest DAG size of 100
nodes and 10,000 users, the required memory consumption is
less than 4MB. This small memory consumption also provides
strong indication that the system can scale well to large
organizations.

VI. CONCLUSION

In this paper, we presented the system design, imple-
mentation details and scalability analysis of a fine-grained,
efficient and privacy-preserving hierarchical key management
system. The system supports fine-grained access control and
efficient modification operations at both the user-group level
through the use of the ACP technique [32] and at the group-
hierarchy level through the use of Atallah’s Scheme [4].
This fine-granularity and efficiency, paired with the robust
computational and memory scalability demonstrated by our
experiment, illustrates that the proposed system is suitable
for deployment in demanding, complex real-world applica-
tions. In addition to system design, we have also discussed
several implementation challenges and solutions such as: data
encryption and decryption, key storage and key distribution.
For each of these issues, we have offered multiple solutions,
each with corresponding advantages and disadvantages. A
system designer may use these insights to fine-tune the system
to the needs of their specific application. Our Python code
implementation is provided for open use at [1].
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