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Abstract—In many domains, organizations must model per-
sonnel and corresponding data access privileges as fine-grained
hierarchical access control models. One class of such models,
Role-based Access Control (RBAC) models, has been widely
accepted and deployed. However, RBAC models are often used
without involving cryptographic keys nor considering confiden-
tiality/privacy at the data level. How to design, implement and
dynamically modify such a hierarchy, ensure user and data
privacy and distribute and manage necessary cryptographic
keys are issues of the utmost importance. One elegant solution
for cryptography-based hierarchical access control combines
the collusion-resistant and privacy-preserving Access Control
Polynomial (ACP) and Atallah’s Dynamic and Efficient Extended
Key Management scheme. Such a model involves cryptographic
keys used to encrypt data, can address confidentiality/privacy
at the data level and can efficiently support dynamic changes
to the RBAC access hierarchy. In this paper, we discuss several
implementation challenges and propose solutions when deploying
such a system including: data encryption and decryption, key
storage and key distribution. Furthermore, we provide analysis
of the efficiency and scalability of the resulting system.

Index Terms—Cryptography-Based Hierarchical Access Con-
trol, Role-Based Access Control, Key Management, Secure Group
Communication, Information Security

I. INTRODUCTION

In recent years, the amount of data created, stored and

leveraged by individuals and organizations has increased at

a remarkable, exponential rate [20]. Within many domains,

such as health-care and military domains, this data contains

or reveals sensitive information. Therefore, this data must

be secured and kept private from those not granted explicit,

corresponding access privileges.
In order to provide a fine-grained, efficient mechanism to

manage data access privileges, researchers have proposed and

investigated many access control models over the years [10]–

[16], [23]–[25]. One such class of access control models,

Role-based Access Control (RBAC) models [11], [24], groups

users and assigns privileges based on users’ hierarchical roles

within an organization. As many organizations naturally model

personnel groupings and data privileges based on roles within

the organization, RBAC models have seen wide acceptance

and adoption. Unfortunately, the traditional RBAC model does

not involve cryptographic keys, and does not consider privacy-

preservation of users and data as a coherent part of its model.

On the other hand, Cryptography-based (Hierarchical) Access

Control (CHAC) models [3] have been proposed in order

to directly address user and data privacy issues. However,

how to equip RBAC with cryptographic keys, robustly ad-

dress confidentiality/privacy issues and implement and deploy

RBAC models in real-world, data-sensitive applications raises

several additional important issues, such as key management

and secure group communication. Furthermore, due to ever-

increasing amounts of data, any viable solution must address

each of these issues in such a way that supports robust

efficiency and scalability.
In this paper, we propose a comprehensive access control

system inspired by the Dual-Level Key Management (DLKM)

scheme [33]. The proposed system augments an RBAC model

with encryption and privacy-preservation capabilities through

the combination of several techniques including: the Access

Polynomial (ACP) technique [32] and Atallah’s Dynamic and

Efficient (Extended) Key Management scheme [4]. The re-

sulting system provides a comprehensive solution that directly

addresses the issues of access control, key management and

secure group communication with fine-granularity. In addition

to system design, we address several implementation details

and analyze the efficiency and scalability of the resulting

system.
In particular, this paper provides the following contribu-

tions:

1) A detailed presentation of how to employ Atallah’s

Scheme [4] in order to facilitate a Role-based Access

Control (RBAC) model [11], [24].

2) A specific proposal of how to leverage the Access

Control Polynomial (ACP) technique [32] in order to

distribute a secure shared secret between group members

efficiently and only as needed.

3) A detailed description of how to leverage the resulting

system’s key management scheme in order to perform

encryption and decryption of sensitive data using two

algorithms. The second algorithm, which we name Self-

Authenticated Encryption/Decryption, is a novel method

that allows the mapping between user groups (or roles)

and corresponding data privileges to be kept private.

4) Identification of several other important implementation
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challenges and the proposal of how to address them,

including key storage and distribution strategies.

The paper is organized as follows: in Sec. II, we begin

by outlining popular techniques which aim to address the

issues of access control, key management and secure group

communication. Next, in Sec. III, we outline the design of

a comprehensive system which is able to robustly address

each issue in an efficient and scalable manner. In Sec. IV,

we provide multiple solutions, each with respective advan-

tages and disadvantages, to several implementation challenges.

Then, in Sec. V, we provide analysis of the computational and

memory scalability of the system. Finally, in Sec. VI, we offer

concluding remarks.

II. RELATED WORK

Access control of sensitive data is an important and well-

studied issue. Many access control models have been proposed

and widely accepted in several domains. Discretionary Access

Control (DAC) models [10], [25], where each user is given

an explicit set of privileges, were once popular in commercial

domains because of their flexibility and fine-granularity. Un-

fortunately, DAC models do not scale well as large numbers

of users, each with their own set of privileges, become

increasingly difficult to manage. Mandatory Access Control

(MAC) models [15], [23] introduced levels of privileges for

accessing the data objects in a system. In a MAC model, a

user is assigned a privilege level and granted access to all the

data objects of equal or lower privilege level. Unfortunately,

MAC models are not well-fit for high security domains where

many data objects should be accessible by only a small set

of corresponding users. As the restrictions of DAC and MAC

schemes were recognized, Role-based Access Control (RBAC)

models [11], [24] saw wide acceptance and adoption. In RBAC

models, privileges are assigned to groups of users. RBAC

simplifies privilege management when a user’s activities in

the system change and also facilitates complex data privilege

hierarchies with fine-granularity. As a result, RBAC models

are well-suited for organizations which group their personnel

in hierarchical roles. Other access control models, such as

Relation-based Access Control (ReBAC) models [12], [13] and

Attribute-based Access Control (ABAC) models [14], [16],

have also been recently proposed. Due to the complexity of

these recently proposed models, their acceptance and adoption

has been limited. Currently, RBAC models are still the most

widely accepted and deployed method of access control [29].

In order to provide data and user privacy, Cryptography-

based (Hierarchical) Access Control (CHAC) models [3] have

been proposed. In order to facilitate a CHAC model, additional

issues, such as key distribution and management, must be ad-

dressed. Many proposed CHAC models and key management

schemes can be used to facilitate an RBAC model. However,

many of these schemes have scalability and design issues

which prevent their application in demanding domains. Many

schemes, including [3], involve division of two large primes

which is computationally expensive as the number of bits in

the primes increases. Other schemes often restrict the design

of hierarchy to a tree-like structure [18], [26], [27]. This leads

to these schemes being unfit for many domains which require

flexible and complex hierarchies. Besides these early works,

more comprehensive schemes [7], [8], [19], [31] have been

proposed to support efficient modification operations on a

hierarchy. Unfortunately, many of these schemes do not handle

modifications locally within a hierarchy. This leads to a trusted

group controller needing to re-compute and re-distribute keys

to large sets of users upon hierarchy modifications. One

elegant scheme, Atallah’s Dynamic and Efficient (Extended)

Key Management scheme [4], is able to facilitate arbitrary

directed acylic graph (DAG) hierarchies. Furthermore, Atal-

lah’s Scheme handles modification operations locally within a

hierarchy. This promotes system efficiency and scalability as

there is much less need to re-compute and re-distribute keys

when performing modifications.

Another important issue, secure group communication, ad-

dresses how to handle key synchronization among users in the

same group within a hierarchical access control model. Many

different protocols have been proposed, including: distributed

group key distribution [2], distributed contributory group key

agreement [6], decentralized group key management [21] and

centralized group key distribution [17]. One interesting solu-

tion, the Access Control Polynomial (ACP) [32], is a provably

privacy-preserving and attack-resistant method of distributing

a shared secret to a group of users.

III. SYSTEM DESIGN

In this section, we discuss the design of a comprehensive

system which robustly addresses the issues of access control,

key management and secure group communication. The design

of the proposed system is based upon the Dual-Level Key

Management (DLKM) scheme proposed by [33]. The DLKM

scheme addresses these issues at both the user-group and

group-hierarchy levels. The user-group level of DLKM makes

use of the privacy-preserving and collusion resistant Access

Control Polynomial (ACP) [32] in order to distribute a shared

secret among a group of users. The next level of the DLKM

scheme involves the use of Atallah’s Scheme [4] in order to

build and efficiently facilitate a hierarchical Role-based Access

Control (RBAC) model [11], [24].

The system involves cooperation and communication be-

tween a client, an authorization/key management server (AS)

and a database/application sever (DS). The system assumes

the AS is trusted as it will store all hierarchy data and contain

all necessary keys to decrypt any encrypted data stored within

the DS. Furthermore, we assume a trusted group controller

(GC) exists who has access to the AS and is able to trigger

modifications to the hierarchical RBAC model. We assume a

secure communication channel exists between the client, AS

and DS.

A. Access Control Polynomial

After grouping users based upon their role and data priv-

ileges within an organization, our system makes use of the

ACP [32] in order to distribute a shared secret among a group’s
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Fig. 1. Example hierarchical RBAC model built using Atallah’s Scheme.

members. An ACP is a polynomial, A(x), computed over finite

field Fq where q is a large γ-bit prime:

A(x) =
∏
i∈Ψ

(x− f(SIDi||z)) (1)

In order to compute A(x), each user ψi in group Ψ shares

a private random integer input, SIDi ∈ Fq, with the AS. A

user’s SID could be derived by information stored on the AS

during enrollment, e.g. the user’s password hash. For each

user ψi, the trusted AS then concatenates their SIDi with

public value z ∈ Fq and hashes the result by a public one-

way function f : {0, 1}∗ → {0, 1}γ. This results in f(SIDi||z)
for ψi.

The AS utilizes each user’s f(SIDi||z) to compute A(x) as

shown in Equation 1. The AS then uses the resulting A(x) in

order to compute public polynomial P(x):

P(x) = A(x) + s (2)

where s ∈ Fq is a secret integer to be shared among users in

group Ψ. As shown in Equation 2, s will be mixed with and

masked by the constant term of A(x) during the computation

of P(x). Finally, the AS publicizes (z, P(x)) to group Ψ by

multicasting it to each user ψi. Each time the AS wishes to

re-distribute (z, P(x)) to each ψi ∈ Ψ, it dynamically updates

z as z′ ∈ Fq, computes the resulting A′(x) and P′(x) and

multicasts (z′, P′(x)) to all ψi.

It can be seen that any user ψi in group Ψ can retrieve

shared secret s by simply computing s = P(f(SIDi||z)).
Furthermore, it can also be seen that public polynomial P(x)
is both collusion and privacy-preserving. Consider the case in

which a proper subset of users, Φ ⊂ Ψ, wish to collude to de-

rive the private input, f(SIDi||z), of user ψi /∈ Φ. Any mem-

ber of the colluding subset, ψj ∈ Φ, may compute the group’s

shared secret s by simply computing s = P(f(SIDj||z)).
Using s, the colluding group can compute A(x) = P(x) − s,

set A(x) = 0 and use a root-finding algorithm in order to

compute all f(SIDk||z) used to compute A(x). Even in the

most extreme case where the colluding group is made up of all

group members besides the target group member, Φ = Ψ−ψi,

SIDi is computationally infeasible to derive from f(SIDi||z)
(assuming finite field Fq is sufficiently large).

These robust security and privacy features of the ACP can

be further augmented by the inclusion of dummy values in the

trusted AS’s computation of A(x):

A(x) =
∏
i∈Ψ

(x− f(SIDi||z))
∏

j=1...d

(x− VIDj) (3)

where the additional second term is made up of d dummy

values VIDj ∈ Fq randomly chosen by the AS. Without

knowledge of the dummy values, it is impossible for any

colluding subset Φ to successfully determine which roots of

A(x) are dummy values, VIDj, and which roots are user

inputs, f(SIDk||z).

B. Atallah’s Scheme

After using the ACP to distribute shared secrets among

group members, our system then organizes groups into a hi-

erarchical RBAC model using Atallah’s Scheme [4]. Atallah’s

Scheme involves modeling hierarchical relationships between

user groups through the use of a directed acyclic graph (DAG),

G = (V, E,O), where V is a set of vertices of cardinatlity

|V | = n, E is a set of edges of cardinality |E| = m and

O is a set of data objects of cardinality |O| = p. Atallah’s

Scheme requires the trusted GC to carry out hierarchy creation

and maintenance. It also makes use of public hash function

f : {0, 1}∗ → {0, 1}γ and symmetric encryption scheme ε. ε
is made up of polynomial-time encryption function EncSK :
m → c and decryption function DecSK : ĉ → m̂ where SK
is an input encryption/decryption cryptographic key, m is a

plaintext message and c is the ciphertext encryption of m.

Each vertex vi ∈ V represents a group of users, Ψ, in an

organization with a corresponding role and data privileges.

Each vi is assigned a random public label, li ∈ {0, 1}γ, and

uses a corresponding ACP in order to distribute a shared secret,

si, to each of its group members, ψj ∈ Ψ. Using si, any of

vi’s group members can derive two private cryptographic keys.

The first private key, ki = f(si||0||li), where ki ∈ {0, 1}γ is

used for data encryption/decryption. The second private key,

ti = f(si||1||li), where ti ∈ {0, 1}γ is used for derivation of

other groups’ private keys.

Each object oi ∈ O represents a data object belonging

to an organization which requires certain privileges in order
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to access. Function O : V → 2O maps a vertex to a

corresponding set of objects for which it is granted access

such that |O(vi)| > 0 and ∀i∀j,O(vi) ∩ O(vj) = ∅ if and

only if i �= j. Each data object oj ∈ O(vi) is encrypted using

ki.

Each directed edge (vi, vj) ∈ E is used to denote hi-

erarchical relationships between user groups. Any directed

edge, (vi, vj), from vi to vj requires two values. The first

value, rij = f(ti||lj), is kept private and the second value,

yij = Encrij(tj||kj), is publicized as (vi, vj)’s label. If a path

exists between some vertex, vi, to a descendant, vj, vi will be

able to derive vj’s data encryption/decryption key, kj, using

only public group and edge labels as well as ti (see Alg. 1).

This will, in effect, grant any group vi access privilege to any

O(vj) where vj is a descendant of vi.

For each node, vi, Atallah’s Scheme [4] defines the set of all

descendants of vi as Desc(vi, G) where G is the public com-

ponents of the DAG. Likewise, Atallah’s Scheme defines all

ancestors of vi as Anc(vi, G). We consider vi ∈ Desc(vi, G)
and vi ∈ Anc(vi, G). This means vi will be able to derive

the private keys of any kj where vj ∈ Desc(vi, G) (but vi
will be unable to derive sj). Furthermore, Atallah’s Scheme

defines the set of all immediate successors and predecessors of

vi as Succ(vi, G) and Pred(vi, G), respectively. We consider

vi /∈ Succ(vi, G) and vi /∈ Pred(vi, G).
Finally, using these constructs, Atallah’s Scheme [4] defines

a Derive(vsource, vtarget, G) algorithm shown in Alg. 1. Us-

ing this algorithm, any user in group vi is able to use her own

ti along with public node and edge labels in order to derive

the private keys of any of its descendants vj ∈ Desc(vi, G).
An example six node (or role) hierarchical RBAC model

built using Atallah’s Scheme can be seen in Fig. 1. For each

node, vi, only li and si must be stored by group members.

The private keys, ki and ti, do not need to be stored by vi
and can instead be derived from si as needed.

C. Efficient Group and Hierarchy Modification Operations

As a result of the use of the ACP [32] and Atallah’s

Scheme [4], the resulting DLKM system supports efficient

RBAC model modification operations. These operations in-

clude modifications at the group-hierarchy level as well as

at the user-group level. Here, we discuss the details of how

to perform each of these modification operations and their

resulting computational complexities.

Insertion of a new node. When adding a new node, vi, to

the graph, vi is first treated as if it does not have any edges

connected to it or any users assigned to it. The GC creates the

new node by computing and assigning its secret and public

information. This involves assigning the new node vi a random

public label, li ∈ {0, 1}γ, and a random secret, si ∈ {0, 1}γ.

Then, vi’s two private keys can be computed whenever they

are needed as: ki = f(si||0||li) and ti = f(si||1||li). After

assigning this secret and public information, connecting edges

and new users can be sequentially added by use of the insertion

of a new edge and user acceptance operations shown later in

this section.

Algorithm 1: Atallah’s Scheme method of deriving de-

scendant keys.

1 Derive (vsource, vtarget, G)
2 if vsource = vtarget then
3 return vsource.get k
4 end
5 if Path(G, vsource, vtarget) = ∅ then
77 return null
8 else
9 vi = vsource

10 ki = vsource.get k
11 ti = vsource.get t
12 for vj ∈ Path(G, vsource, vtarget) do
13 rij = f(ti||lj)
14 tj||kj = Decrij(yij)
15 ti = tj
16 ki = kj
17 end
18 return ki
19 end

Insertion of a new edge. Suppose vi is to be assigned

the privilege to access to O(vj). A new edge, (vi, vj), must

therefore be inserted into the graph so that vi will be able

to compute kj. In this case, the GC must first compute rij =

f(ti||lj), and then use the resulting rij to compute the public

label of the new edge, yij = Encrij(tj||kj). These values are

assigned to the new edge, (vi, vj), and, as a result, vi is granted

access to O(vj). The GC should note that, in addition to vi,
all groups va ∈ Anc(vi, G) will also be granted access to

O(vj).
Deletion of an edge. The main security concern when

performing deletion of an edge, (vi, vj), from the graph is

that the group members of vi may still be able to access

O(vj) if the deletion is not well performed. Suppose the edge

(vi, vj) is going to be deleted from the graph by the GC. First,

any public label, lh, of vj’s descendants, vh ∈ Desc(vj, G),
should be reassigned a new random value, l

′
h ∈ {0, 1}γ in

order to prevent access to O(vh) by vi or any of its ancestors,

vk ∈ Anc(vi, G). After updating public label lh to l′h for each

vh ∈ Desc(vj, G), vh’s two private keys will automatically

updated as k′h = f(sh||0||l
′
h) and t′h = f(sh||1||l

′
h). This

means secret information sh does not need to be updated

during an edge deletion. The updated private keys, k′h and

t′h, will not be accessible by vi or any of its ancestors as

the path connecting them to vh ∈ Desc(vj, G) will no longer

exist after the deletion of (vi, vj) (assuming there exists no

other path(s) connecting vi or any of its ancestors to vh). The

detailed steps for carrying out an edge deletion are as follows:

1) For each node vh ∈ Desc(vj, G), the GC must assign

vh a new random public label l′h, and recompute kh
and th as mentioned above: k′h = f(sh||0||l

′
h) and t′h =

f(sh||1||l
′
h).

2) Next, edges connected to any node vh ∈ Desc(vj, G)
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should be updated by the GC according to the new labels

lh′ and private keys, k′h and t′h. For each vh, the GC

must find vh’s predecessors, vp ∈ Pred(vh, G), and

update any edge, (vp, vk), such that r′ph = f(tp||l
′
h)

and y′
ph = Encr′

ph
(t′h||k

′
h). This will allow vp and its

ancestors to have the ability derive k′h in the future and,

as a result, have continued access to O(vh).

Deletion of a node. There are three steps involved in

deletion of a node vi:

1) Using the edge deletion operation defined earlier, the

GC sequentially deletes all edges (vi, vj) and (vp, vi)
where vj ∈ Succ(vi, G) and vp ∈ Pred(vi, G). This

will isolate node vi such that when it is deleted, no ex-

group member of vi will be able to derive any key kj.
2) Next, using the edge insertion operation discussed ear-

lier, the GC must insert edges (vp, vj) for all vj ∈
Succ(vi, G) and vp ∈ Pred(vi, G). This will allow

any of vi’s ancestors to have continued access to its

descendants’ private keys.

3) Finally, the GC must delete any record of vi from the

system, including its keys and public label.

Update secret key. If there arises a need to change a node

vi’s secret information, si, four steps should be carried out:

1) First, the GC must assign vi a new random secret, s′i ∈
{0, 1}γ. As a result, the vi’s private keys will be updated

based on the new secret key: k′i = f(s′i||0||li) and t′i =
f(s′i||1||li).

2) Next, for each edge (vp, vi) where vp ∈ Pred(vi, G),
the GC must update y′

pi = Encrpi
(t′i||k

′
i).

3) Then, for each edge (vi, vh) where vh ∈ Succ(vi, G),
the GC first computes r′ih = f(t′i||lh), and then updates

y′
ih = Encr′

ih
(th||kh).

4) Finally, the GC must recompute its ACP based on the

new secret s′i. During this re-computation, public value

z should be randomly assigned to a new value z′ ∈ Fq.

The resulting ACP re-computation is follows as:

A′(x) =
∏

i∈Ψ(x− f(SIDi||z
′))

∏
j=1...d(x− VIDj)

P′(x) = A′(x) + s′

The GC then must send the new ACP to every user in

group ψ to finish updating the secret key of the node.

User acceptance. Most of the operations above don’t

involve user-group level operations, which enables them to

perform modifications efficiently. Suppose a new user with

SIDn is going to join group vi. No group-hierarchy level

operations will need to be performed. Instead, the GC only

recomputes vi’s ACP with new value z′ ∈ Fq as follows:

A′(x) = (x− f(SIDn, z
′))

∗∏i∈Ψ(x− f(SIDi||z
′))

∏
j=1...d(x− VIDj)

P′(x) = A′(x) + s

User revocation. Suppose a user, ψi, leaves or is to be

removed from their group, vi:

1) To prevent the leaving user, ψi, from future access to

the ki or kj where vj ∈ Desc(vi, G), the user is first

TABLE I
TIME COMPLEXITY OF MODIFICATION OPERATIONS

Operation Time Complexity

Insertion of a node O(1)

Insertion of an edge O(1)

Deletion of an edge O(n)

Deletion of a node O(n)

Key derivation O(n)

Update secret key O(n + k2)

User acceptance O(k2)

User revocation O(n + k2)

removed by the GC from vi such that vi’s user group

becomes Ψ′ = (Ψ−ψi).
2) Then, vi’s secret, si, should be updated using the update

secret information operation described previously in this

section. This will result in re-computation of vi’s ACP

with the exclusion of removed user ψi’s SIDi. As a

result, ψi will be revoked future access to ki.
3) Finally, the leaving user, ψi, must also be revoked access

from any kj where vj ∈ Desc(vi, G). Each sj does not

need to be updated, but kj does in case ψi stored them.

Changing each kj can be simply realized by changing

vj’s public label, lj, i.e., the GC updates lj to l′j and

updating any public edge values, yjk, connecting any

two descendants of vi. As any kj and tj are derived

from both sj and lj, they will automatically be updated

by these modifications.

In Table I, we provide the time complexity for each of the

modification operations. Suppose there are |V | = n nodes in

total, with |Ψ| = k users assigned to each node on average.

Thus, traversal and derivation of Desc(vi, G) is an O(n)
operation as Desc(vi, G) may be made up of any subset of V .

Multiplying each (x − f(SIDi||z)) term, applying k modulo

operations and additions during ACP computation results in

a complexity of O(k) operation. Thus, computing an ACP of

size k is an O(k2) operation. Data communication between

the server and all the users under in a group will take O(k) at

most. If multicast is possible, distribution of public ACP data

will then be O(1).

IV. IMPLEMENTATION CHALLENGES AND PROPOSED

SOLUTIONS

The design of the two-level hierarchical access control

scheme given in Sec. III is elegant, flexible, attack-resistant,

and efficient. However, challenges exist when implementing

the above design in real systems. These challenges, among

others, include: (1) How to encrypt data fields such that users

may only access the data for which they have the correct

corresponding privileges, but also in such a way to facilitate

decryption which can be performed correctly, practically and

efficiently? (2) Besides SIDi, does a user need to store

and carry other secret key(s), particularly, how can a user

access their privileged data while moving and logging into

the system from different computers at different locations? (3)

How can the server distribute a shared secret to groups of users

efficiently, regardless of whether multicast channels exist? We
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will discuss each of these issues and propose practical and

possible solutions below.

A. Data Encryption and Decryption

We define a plaintext dataset, D ∈ R
r,c, as a matrix of

r data records, each with c features. Likewise, we define an

encrypted dataset as C ∈ R
r,c. We consider each feature (or

column) of the matrices as an object oj ∈ O which requires

any user from group vi ∈ V to posses an access privilege

in order to decrypt. An object (or column), otarget, of C
can therefore be obtained and decrypted by vi if and only

if otarget ∈ O(vtarget) and vtarget ∈ Desc(vi, G). We

use notation Doj
in order to obtain object (or column) oj

from matrix D. Furthermore, the value of object oj for data

record (or row) r can be obtained using the notation Dr;oi
.

We assume all objects are assigned to a single corresponding

group. If there exist objects that every group vi ∈ V should be

able to access, these objects may be assigned to a single node,

vj, and then edges (vi, vj) can be inserted into the graph for

each node vi ∈ V .

We implement two schemes of data encryption and decryp-

tion. Both schemes employ MD5 [22] as their public hash

function, f : {0, 1}∗ → {0, 1}γ, and AES [9] using EAX

mode [5] as their public symmetric encryption scheme, ε. One

scheme assumes that the group-to-object mapping function,

O, is public. Therefore, given an object they wish decrypt,

otarget, a member of group vi can use public O in order to

see any group with access to otarget: vh ∈ Anc(vtarget, G)
where otarget ∈ O(vtarget). Unfortunately, in some high

security domains, such as health-care or military domains, it

may be improper to publicize O and allow anyone to see which

objects are accessible by which groups. Therefore, we design

a second scheme which assumes O is hidden to everyone but

the GC. In both schemes, the GC is responsible for encryption

of the data, and users can later derive the desired data based

only on public information and their secret keys.

1) Data encryption and decryption with mapping function
O public: In this case, the GC performs encryption of D as

follows:

• (Algo. 2, Line 3–5) For each node vi ∈ V , the GC

derives its private key, ki, and finds all the data fields

corresponding to objects O(vi).
• (Algo. 2, Line 5–7) For each oj ∈ O(vi), the GC encrypts

every row in the plaintext column Doj
using ki.

Decryption is straightforward when O is public. Suppose

the user in group vi wants to access a target object otarget:

• (Algo. 2, Line 3–6) Using the public mapping function,

O, the user should find the node vtarget of which the

otarget belongs to.

• (Algo. 2, Line 9–12) Next, the user determines if

vtarget ∈ Desc(vi). If not, access to data corresponding

to otarget should be denied. Therefore, the user should

not be able to derive the target node’s key, ktarget.

Otherwise, the user can derive ktarget using the derive

key algorithm mentioned above (see Algo. 1).

Algorithm 2: Data encryption and decryption assuming

group-to-object mapping function, O, is public.

1 Encryption (G,D,O)
2 C ← D
3 for vi ∈ V do
4 ki ← vi.get k
5 for oj ∈ O(vi) do
6 for r ← 0 to D.rows do
7 Cr;oj

← Encki
(Dr;oj

)
8 end
9 end

10 end
11 return C
1 Decryption (G,C, otarget,O, vsource)
2 Dotarget

← Cotarget

3 vtarget = null
4 for vi ∈ Desc(vsource, G) do
5 if otarget ∈ O(vi) then
6 vtarget ← vi
7 end
8 end
9 if vtarget = null then

10 return null
11 else
12 ktarget ← Derive(vsource, vtarget, G)
13 for r ← 0 to Cotarget

.rows do
14 Dr;otarget

← Decktarget
(Cr;otarget

)
15 end
16 return Dotarget

17 end

• (Algo. 2, Line 13–14) Once the user derives ktarget, they

can decrypt the data row-by-row using ktarget.

2) Data encryption and decryption without mapping infor-
mation: When the users cannot access the group-to-object

mapping function O, there should be some additional informa-

tion which users can employ to perform decryption correctly

(if they have the correct privileges). We propose a novel

encryption/decryption method dubbed Self-Authenticated En-

cryption/Decryption. The modified encryption process is as

follows:

• (Algo. 3, Line 3–5) For each node vi ∈ V , the GC

derives its private key, ki, and finds all the data fields

corresponding to objects O(vi).
• (Algo. 3, Line 5–7) For each oj ∈ O(vi), the GC

encrypts every row in the plaintext column Doj
using

ki. When the GC encrypts the r-th record in Doj
, it

encrypts the concatenation of the key and the actual data

as: Encki
(ki||Dr;oj

).

With the mapping function O private, no user is able to

directly determine which node, vtarget, corresponds to the

object they wish to decrypt, otarget. Therefore, when trying

to decrypt otarget, a user, ψi ∈ vi, must sequentially derive

and try all the keys kj where vj ∈ Desc(vi, G). The user will
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Algorithm 3: Data encryption and decryption assuming

group-to-object mapping function, O, is private.

1 Encryption (G,D,O)
2 C ← D
3 for vi ∈ V do
4 ki ← vi.get k
5 for oj ∈ O(vi) do
6 for r ← 0 to D.rows do
7 Cr;oj

← Encki
(ki||Dr;oj

)
8 end
9 end

10 end
11 return C
1 Decryption (G,C, otarget, vsource)
2 Dotarget

← Cotarget

3 vtarget = null
4 for vi ∈ Desc(vsource, G) do
5 ki ← Derive(vsource, vi, G)
6 r ← 0
7 ktarget||Dr;oj

← Decki
(Cr;otarget

)
8 if ki = ktarget then
9 vtarget ← vi

10 end
11 end
12 if vtarget = null then
13 return null
14 else
15 ktarget ← Derive(vsource, vtarget, G)
16 for r ← 0 to Cotarget

.rows do
17 ktarget||Dr;otarget

←
Decktarget

(Cr;otarget
)

18 end
19 return Dotarget

20 end

know they have derived the correct ktarget only when they

they decrypt a field in Cotarget
and the decryption contains

a matching ktarget appended to plaintext data. Suppose the

user in group vi wants to access otarget. The user should

carry out the following three steps:

• (Algo. 3, Line 4) The user first needs to get Desc(vi, G)
from the public graph information.

• (Algo. 3, Line 4–13) For each node vj ∈ Desc(vi, G),
compute kj and use kj to decrypt the first record in

within Cotarget
. If the key contained in the decrypted

data matches kj, set vtarget as vj. If no key kj of any

vj ∈ Desc(vi, G) matches the decrypted key, this means

the user should be denied access to the data corresponding

to otarget.

• (Algo. 3, Line 16–17) After ktarget is found, the user

can decrypt Cotarget
row-by-row with it. Within the de-

crypted data fields, the origin data can be seen appended

to ktarget.

In Table II, we provide time complexity of encryption and

TABLE II
TIME COMPLEXITY OF DATA ENCRYPTION AND DECRYPTION

Public Mapping Private Mapping

Encryption Decryption Encryption Decryption
Time Complexity O(nm) O(n + log(n)) O(nm) O(2n)

decryption for each scheme. Suppose the hierarchy DAG is

balanced and there are |V | = n nodes in total, each with

|O(vi)| = m data privileges on average. In both methods,

encryption will take O(nm) time as the GC has access to

all keys stored in the AS and the node-to-object mapping, O.

For decryption, both schemes first require that a user in vi
spend O(n) time finding the the set of nodes Desc(vi, G).
In the case of the first scheme, the user in vi can then

check if the target object they wish to decrypt in access

belongs to any node vj ∈ Desc(vi, G). If so, she must spend

an additional O(log(n)) time to derive the corresponding

target key along the path of descendants. In the case of Self-

Authenticated Encryption/Decryption, O is not public so the

user in vi must spend O(n) time to try all keys they can

derive from Desc(vi, G). As a result, both schemes have an

overall complexity of O(n) to gather the necessary keys before

decryption, but the Self-Authenticated Encryption/Decryption

will take O(n) to perform decryption without public O(vi),
while the first scheme will take O(log(n)) with public O(vi).

B. Key Storage

Key storage is another important implementation issue. As

mentioned in Sec. III, the AS will house all keys and hierarchy

data. The trusted GC will have access to the AS and will

perform all key management operations. Meanwhile, the DS

will contain all the encrypted data for which user can be

granted access. The AS will serve as an intermediary between

clients and the DS.

Through our use of the ACP technique [32], we assume each

user’s SID is stored by the server for quick re-computation and

re-distribution of A(x) and P(x). Unfortunately, this makes

the AS a single point of failure. While it can be made

computationally infeasible for an attacker to derive f(SIDi||z)
from the P(x), the attacker could instead try to infiltrate the

AS. In the case the attacker is successfully able to infiltrate the

AS, they will be able to retrieve all encryption/decryption keys

along with all the SID values. While system design assumes

all encryption/decryption keys must be stored on the AS, it

is possible for the SID values to be stored elsewhere. Here

we describe two key storage strategies: (1) storing each user’s

SID in the AS and (2) storing each user’s SID on the client.

For both strategies, it should be noted that, as mentioned in

Sec. III, we assume a secure communication channel exists

between the client AS and DS.

1) Storing Keys on Server: In Sec. III, we assume that each

user’s SID is derived from information, such as a hash of the

user’s password, and stored on the AS during enrollment. In

this way, both the client and the server will have access to

the SID of a user. This means that when a user ψj is to be

added to a group, the server will simply add ψj’s SIDj to the

ACP computation for this group (as all other necessary SIDs

are already stored and possessed by the AS). The AS updates
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public value z, computes A(x) and adds si in order to get

P(x).
At this point the AS can send (P(x), z), and the public

components of the RBAC DAG graph, G, to the client. Since

the client knows their own login information, they can derive

their SIDs and hash it with public value z. Plugging the

resulting value into P(x) will result in the secret key si if

and only if the user is a valid member of the group. Then, the

client can store their secret si, use it to derive it’s private key

ki and ti, and use it to derive other private keys.

When a user would like to access data, they can send a

request for the data they desire along with necessary private

keys to the AS. The request and parameters can then be

forwarded to the DS. The DS will use this information to

decrypt the requested objects and send the resulting decrypted

information back to the client. An example of this protocol

can be seen in Fig. 2.

If the DS is not trustworthy, the AS could simply request

the encrypted data object from the DS. Then, the trusted AS

could use the client’s provided key to decrypt the data and

forward it to the client. The AS could also instead forward

the encrypted data to the client and allow the client to decrypt

the data herself (in which case the client would only need to

indicate the target data object, otarget, and not provide the

AS with a decryption key, ktarget).

When storing the secret si, the client must know if they have

the most up-to-date version. In some situations, such as user

revocation, the secret si must be updated by the GC and AS.

The client must be made aware of this change. One solution

would be for the AS to assign secret si a version number

and increment the version number after updates. Then, when

sending the ACP information, the AS could also send the client

the corresponding version number. The client may then ask

the server for the current version number upon login. If the

version the client is storing differs from the server’s version,

the client then knows that they must request the updated ACP

information in order to calculate the new secret si.
2) Storing Keys on Client: In this section, we discuss how

to ensure the privacy of the SIDs by storing the SIDs only on

the client side. In this scheme, after any user ψi’s enrollment,

the user needs to pick a random number zi ∈ (0, 1)γ, compute

f(SIDi||zi) and store SIDi and zi. When the user is added

to some group, the AS will need the user to send their

f(SIDi||zi), and then AS can then add f(SIDi||zi) to its ACP

computation. This way, even if the AS is compromised, an

attacker will only obtain the set of f(SIDi||zi) used in the ACP

computation. As noted previously, it is computationally expen-

sive to retrieve the original SIDi values from the f(SIDi||zi)
hashes. To further augment system security, the AS can discard

the f(SIDi||zi) values after ACP computation. In this case,

the AS will need to request all the users in the group resend

f(SIDi||zi) when re-computation of ACP is necessary. If some

users are offline or unable to send back their hashed SIDs in a

certain amount of time, the server will just compute a new ACP

based on the SIDs it receives. The absent user(s) can then re-

join the group by sending their f(SIDi||zi) value(s) the next

Database/Application
Server

Authorization/Key
Management

Server
Client

EnrollmentStore
SID,

Calculate
ACP Successful

Enrollment Store
SID

Authenticate
Validate

Successful
Authentication,
Send Public G

Àand ACP
Generate

and
Derive
Private
Keys

Time Time Time

Fig. 2. Client, key management/authorization and application/database server
carrying out enrollment, authentication and decryption protocols.

time the server requests them. This may reduce the size of

ACP as some group members are sometimes excluded, but as

long as there is at least one user involved in the computation,

their SIDs and si will be hidden by the ACP dummy values,

VIDj.

The AS only needs to publicize P(x), the public components

of G, and the version number of the secret si to the client. If

a user has a different key version number, she must request

that the AS recompute P(x) with the inclusion of her hashed

SID. Otherwise, she must plug their pre-computed f(SIDi||z)
into P(x) to si. In order for this scheme to work, it must be

assumed that those users requesting ACP should be able to

send their hashed SIDs to the server. This will require some

coordination from clients and the AS.

In either of the two schemes, the system can support remote

access from different machines and locations. Assuming the

user is able to provide their SIDs to the client, authorization

and key derivation should work as previously explained.

Users accessing the system from devices with little compu-

tational power can also be accommodated by the AS. As long

as the AS server stores either the plain SIDs or hashed SIDs,

the server could carry out key derivation and decryption on

behalf of the client. If this were to occur, robust authentication

of users would be necessary before performing decryption for

the user or providing the user the resulting decrypted data.

C. Key Distribution

One important concern is how information is distributed

between the client and the AS. Ideally, it would be best to use

multicast to send public information to the clients. Thus, public

information for each group of users would only have to be sent

once. If unicast is used, then the AS will have to establish

a connection between every user and send information to

each one individually. This does not scale well, particularly in

organizations with roles containing a large number of users.
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Fig. 3. Computational analysis of encryption/decryption Algorithm 2 and
Algorithm 3 as graph size increases.

However, multicast has some drawbacks that could lead to

unicast being a better choice despite it’s inefficiency. Gener-

ally, multicast is only implemented on local area networks

(LANs) and may require additional network configuration

before it can be used. This is fine if the data within the DS

is intended to only be accessible at one physical location, but

this will create problems if the data within DS is intended to

be accessed over the internet.

For most applications it is likely that clients will need to be

able to communicate with the AS and DS over the internet. In

this situation, unicast is likely the better choice as it requires

no additional setup and can be used to communicate with

clients over the internet. While unicast is less efficient, it is

easier to use and will provide the client with more mobility. If

unicast is used, any unicast packets must be encrypted so that

information is not sent in plaintext. This can be solved by the

use of TLS/SSL which will create an encrypted link between

client, AS and DS. Securing the transport layer in this way is

a standard and widely adopted practice that will protect the

data from being deciphered if it is intercepted.

V. EXPERIMENT

In this section, we offer computational and memory scala-

bility analysis of the resulting system. Each experiment was

ran on a simple Lenovo Thinkpad 13 Ultrabook laptop with

a Intel i5-6200U CPU and 8GB of RAM. Both experiments

suggest that the experiment is quite scalable and can easily

accommodate organizations which organize themselves into

complex hierarchies with hundreds of roles and thousands of

personnel members.

A. Data Decryption Experiment

In Sec. III, we offer theoretical analysis of the computational

complexity of many different hierarchy modification opera-

tions. Decryption of target data objects needs to be performed
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Fig. 4. Memory usage required as DAG size increases.

in real-time when deployed in many real-world systems.

We therefore examine the run-times of the two proposed

decryption methods (see Algo. 2 and Algo. 3 in Sec. IV) as

hierarchy DAG size increases. We performed this experiment

by beginning with a 10-node graph and incremented the

number of nodes until we reached a 100-node graph. Each

node added to the graph was assigned a group of 100 users.

For each graph size, we randomly generated a corresponding

DAG with random edges. It should be noted that we did not

add any random edges which would create a cycle in the graph.

Then, for each randomly created DAG, we selected a random

source node and target object belonging to one of the source

node’s descendants. The source node carried out decryption

using both methods. For each graph size, we repeated each

step three times and recorded the average of the results.

The results of the experiment can be seen in Fig. 3. The

x-axis represents the number of nodes used while the y-

axis represents the amount of time in seconds to complete

the decryption algorithm. The first version of the decryption

algorithm uses the object mapping technique of Algo. 2 while

the second version of the decryption algorithm uses the Self-

Authenticated Decryption method of Algo. 3.

Due to the random nature of our experiment, decryption

time does not monotonically increase as DAG size increases.

For all of the DAG sizes, Algo. 3 has higher run-times. This

is to be expected as Algo. 3 assumes the object mapping is

private. Therefore, the keys of all descendants of the source

node must be computed and used during decryption. As a

result, it is certain that Algo. 3 will take as long (in the

best case) or longer than Algo. 2. Fortunately, Algo. 3 only

takes an additional ∼0.005sec longer than Algo. 2 on average.

Depending on the domain the proposed system is deployed

in, this additional ∼0.005sec may be a worthwhile trade-off

in order to keep the group-to-object mapping, O, private. It

should be noted that the ∼0.005sec additional time for Algo. 3

is not fixed. There may be cases where Algo. 3 takes far

greater time than Algo. 2. This would be dependant on the

path length from some source to target node and the amount

of descendants of the source node. It should also be noted

that Algo. 3 has the disadvantage that a user must brute-force

try all descendant keys before realizing they do not have the

correct permissions to access a target data object (as the group-

to-object mapping, O, private). This differs from Algo. 2 in

that a user can utilize their set of descendants and the public

group-to-object mapping, O, in order to directly determine if

they have access to a target data object.

Both algorithms are able to consistently decrypt data within

a tenth second on the simple Lenovo laptop, even when the

graph contains hundreds of nodes and thousands of users. This

provides strong indication that the system can scale easily and

be used by large organizations.

B. Memory Consumption Experiment

The experiment provided analysis of memory consumption

by the system. Again, the x-axis represents the number of

nodes in the randomly generated DAG. The y-axis represents
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the amount of megabytes used for this DAG object and all

associated data in memory.

The results of this experiment can be seen in Fig. 4. The

memory consumption of the DAG clearly grows linearly with

respect to size of the graph. This is because each node being

added to the graph requires storage of a fixed set of data.

Each node being added requires storage of: a secret key si, a

public label li, edges, users, and an ACP. In this experiment

the amount of users per node is kept constant so the amount

of bytes will not vary much but it is to be expected that node

memory consumption will depend on the amount of users.

Since the amount of users in each node is the same, memory

consumption increases linearly. At the largest DAG size of 100

nodes and 10,000 users, the required memory consumption is

less than 4MB. This small memory consumption also provides

strong indication that the system can scale well to large

organizations.

VI. CONCLUSION

In this paper, we presented the system design, imple-

mentation details and scalability analysis of a fine-grained,

efficient and privacy-preserving hierarchical key management

system. The system supports fine-grained access control and

efficient modification operations at both the user-group level

through the use of the ACP technique [32] and at the group-

hierarchy level through the use of Atallah’s Scheme [4].

This fine-granularity and efficiency, paired with the robust

computational and memory scalability demonstrated by our

experiment, illustrates that the proposed system is suitable

for deployment in demanding, complex real-world applica-

tions. In addition to system design, we have also discussed

several implementation challenges and solutions such as: data

encryption and decryption, key storage and key distribution.

For each of these issues, we have offered multiple solutions,

each with corresponding advantages and disadvantages. A

system designer may use these insights to fine-tune the system

to the needs of their specific application. Our Python code

implementation is provided for open use at [1].
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