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The Kodaira vanishing theorem says that for an ample line bundle L on a smooth
projective variety X over a field of characteristic zero,

H i(X,KX + L) = 0

for all i > 0. (Here KX denotes the canonical bundle, and we use additive notation
for line bundles.) This result and its generalizations are central to the classification
of algebraic varieties. For example, Kodaira vanishing can sometimes be used to
show that there are only finitely many varieties with given intrinsic invariants, up to
deformation equivalence. Unfortunately, Raynaud showed that Kodaira vanishing
fails already for surfaces in any characteristic p > 0 [21].

For the minimal model program (MMP) in positive characteristic, it has been
important to find out whether Kodaira vanishing holds for special classes of va-
rieties, notably for Fano varieties (varieties with −KX ample). By taking cones,
this is related to the question of whether the singularities arising in the MMP (klt,
canonical, and so on) have the good properties (such as Cohen-Macaulayness or
rational singularities) familiar from characteristic zero.

For example, Kodaira vanishing holds for smooth del Pezzo surfaces in any
characteristic [4, Theorem II.1.6]. Also, klt surface singularities in characteristic
p > 5 are strongly F-regular and hence Cohen-Macaulay; this is the key reason why
the MMP for 3-folds is only known in characteristic p > 5 (or zero) [10, Theorem
3.1]. There are in fact some striking counterexamples in characteristics 2 and 3.
Maddock found a regular (but not smooth) del Pezzo surface X over an imperfect
field of characteristic 2 with H1(X,O) 6= 0, which violates Kodaira vanishing [20].
And Cascini-Tanaka and Bernasconi found klt 3-folds over algebraically closed fields
of characteristic 2 or 3 which are not Cohen-Macaulay [3, Theorem 1.3], [2, Theorem
1.2].

So far, the only known example of a smooth Fano variety on which Kodaira
vanishing fails has been a 6-fold in characteristic 2 discovered by Haboush and
Lauritzen [8, 19]. In this paper, however, we find that Kodaira vanishing fails for
smooth Fano varieties in every characteristic p > 0. One family of examples has
dimension 5 for p = 2 and 2p− 1 for p ≥ 3 (Theorem 3.1). (Thus, in characteristics
2 and 3, this is a 5-fold rather than a 6-fold.)

Our examples are projective homogeneous varieties with non-reduced stabilizer,
as in the Haboush-Lauritzen example. Projective homogeneous varieties are smooth
and rational in any characteristic p > 0, but most of them are not Fano (apart
from the familiar flag varieties, where the stabilizer subgroup is reduced). A point
that seems to have been overlooked is that certain infinite families of “nontrivial”
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homogeneous varieties are Fano. We disprove Kodaira vanishing for some of these
varieties.

Kovács found that for the Haboush-Lauritzen Fano 6-fold X in characteristic 2,
Kodaira vanishing fails already for the ample line bundle −2KX ; explicitly, we have
H1(X,−KX) 6= 0 [16]. By taking a cone over X, he gave an example of a canonical
singularity which is not Cohen-Macaulay, on a 7-fold in characteristic 2. Yasuda
had earlier constructed quotient singularities of any characteristic p > 0 which are
canonical but not Cohen-Macaulay [25, Proposition 6.9], [9, Remark 5.3].

We find an even better phenomenon among Fano varieties in every characteristic
p > 2. Namely, there is a smooth Fano variety X in characteristic p such that −KX

is divisible by 2, −KX = 2A, and Kodaira vanishing fails for the ample line bundle
3A; explicitly, we have H1(X,A) 6= 0 (Theorem 2.1). Here X has dimension 2p+ 1.
By taking a cone over X, we give a first example of a terminal singularity which
is not Cohen-Macaulay. Moreover, we have such examples in every characteristic
p > 2.

After these results were announced, Takehiko Yasuda showed that there are also
quotient singularities of any characteristic p > 0 which are terminal but not Cohen-
Macaulay [26], summarized in section 4. Inspired by Yasuda’s examples (which
are quotients by a finite group acting linearly), we construct a new example in the
lowest possible dimension: a terminal singularity of dimension 3 over F2 which is
not Cohen-Macaulay (Theorem 5.1). Our singularity is the quotient of a smooth
variety by a non-linear action of the group Z/2, and such quotients should be a rich
source of further examples. The paper concludes with some open questions.

I thank Omprokash Das, John Ottem, and Takehiko Yasuda for useful discus-
sions. This work was supported by NSF grant DMS-1701237.

1 Projective homogeneous varieties with non-reduced
stabilizer group

In this section, we describe the projective homogeneous varieties with non-reduced
stabilizer group. More details are given by Haboush and Lauritzen [8]. They assume
that the base field is algebraically closed. We will construct projective homogeneous
varieties over any field, but all the properties we consider can be checked after
passage to an algebraically closed field.

LetG be a simply connected split semisimple group over a field k of characteristic
p > 0. Let T be a split maximal torus in G and B a Borel subgroup containing
T . Let Φ ⊂ X(T ) be the set of roots of G with respect to T , and define the
subset Φ+ of positive roots to be the roots of G that are not roots of B. Let ∆
be the associated set of simple roots. Choose a numbering of the simple roots,
∆ = {α1, . . . , αl}, where l is the rank of G (the dimension of T ). For each root β,
there is an associated root subgroup Uβ ⊂ G isomorphic to the additive group Ga,
the unique Ga subgroup normalized by T on which T acts by β.

Let f be a function from ∆ to the set of natural numbers together with∞. The
function f determines a subgroup scheme P of G containing B, as follows. Every
positive root β can be written uniquely as a linear combination of simple roots with
nonnegative coefficients. The support of β means the set of simple roots whose
coefficient in β is positive. Extend the function f : ∆→ N∪∞ to a function on all
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the positive roots, by defining

f(β) = inf
α∈supp(β)

f(α).

For a natural number r, let αpr be the subgroup scheme of Ga defined by xp
r

= 0.
Let Pred be the parabolic subgroup generated by B and the root subgroup Uβ for
each simple root β with f(β) = ∞. Finally, define the subgroup scheme P (with
underlying reduced subgroup Pred) as the product (in any order) of P and the
subgroup scheme αpr of Uβ for each positive root β with f(β) = r < ∞. Wenzel
showed that if p ≥ 5, or if G is simply laced, then every subgroup scheme of G
containing B is of this form for some function f [23, Theorem 14]. For our purpose,
it is enough to use these examples of subgroup schemes.

The natural surjection G/Pred → G/P is finite and purely inseparable. The
homogeneous variety G/P is smooth and projective over k (even though P is not
smooth). Lauritzen showed that G/P has a cell decomposition over k, coming from
the Bruhat decomposition of G/Pred [18]. In particular, G/P is rational over k, and
H i(G/P,Ωj) = 0 for i 6= j.

If the function f takes only one value r apart from ∞, then P is the subgroup
scheme generated by Pred and the rth Frobenius kernel of G. In that case, G/P is
isomorphic to G/Pred as a variety. (In terms of such an isomorphism, the surjection
G/Pred → G/P is the rth power of the Frobenius endomorphism of G/Pred.) By
contrast, for more general functions f , there can be intriguing differences between
the properties of G/P and those of the familiar flag variety G/Pred.

The Picard group Pic(G/P ) can be identified with a subgroup of Pic(G/Pred),
or of Pic(G/B) = X(T ), by pullback. For each root α in X(T ), write α∨ for the
corresponding coroot in Y (T ) = Hom(X(T ),Z). Then X(T ) has a basis given by
the fundamental weights ω1, . . . , ωl, which are characterized by:

〈ωi, α∨j 〉 = δij .

The subgroup Pic(G/Pred) is the subgroup generated by the ωi with f(i) <∞. And
Pic(G/P ) is the subgroup generated by pf(i)ωi, for each i with f(i) <∞ [8, section
2, Corollary 7]. A line bundle on G/P is ample if and only if its pullback to G/Pred

is ample, which means that the coefficient of ωi is positive for every i ∈ {1, . . . , l}
with f(i) < ∞. Moreover, Lauritzen showed that every ample line bundle on a
homogeneous variety G/P is very ample (that is, it has enough sections to embed
G/P into projective space) [17, Theorem 1].

The anticanonical bundle of X = G/P is given by [8, section 3, Proposition 7]

−KX =
∑
β∈Φ+

f(β)<∞

pf(β)β.

Haboush and Lauritzen showed that G/P is never Fano when Pred = B and
p ≥ 5, except when the function f is constant, in which case X is isomorphic to the
full flag variety G/B [8, section 4, proof of Theorem 3]. By contrast, inseparable
images of some partial flag varieties can be Fano without being isomorphic to the
partial flag variety. The example we use in this paper is: let G = SL(n) for n ≥ 3
over a field k of characteristic p > 0. As is standard, write the weight lattice
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as X(T ) = Z{L1, . . . , Ln}/(L1 + · · · + Ln = 0) [7, section 15.1]. The positive
roots are Li − Lj for 1 ≤ i < j ≤ n. The fundamental weights are given by
ωi = L1 + · · ·+Li and the simple roots are αi = Li−Li+1, for 1 ≤ i ≤ n− 1. Thus
αi = −ωi−1 + 2ωi − ωi+1 for 1 ≤ i ≤ n− 1, with the convention that ω0 and ωn are
zero. Let P be the subgroup scheme associated to the function

f(αi) =


1 if i = 1.

0 if i = 2

∞ if 3 ≤ i ≤ n− 1.

Then G/Pred is the flag manifold Fl(1, 2, n), of dimension 2n−3 and Picard number
2, and so X := G/P also has dimension 2n−3 and Picard number 2. By the formula
above, X has anticanonical bundle

−KX = p(L1 − L2) +
n∑
i=3

(L2 − Li) +

n∑
i=3

(L1 − Li)

= (p+ n− 2)L1 + (−p+ n− 2)L2 − 2(L3 + · · ·+ Ln)

= 2pω1 + (n− p)ω2.

Thus −KX is ample if and only if 2p > 0 and n− p > 0, which means that p < n.

2 Terminal cones that are not Cohen-Macaulay

Theorem 2.1. Let p be a prime number at least 3. Then there is a smooth Fano
variety X over Fp such that −KX is divisible by 2, −KX = 2A, and H1(X,A) 6= 0.
Here X has dimension 2p+ 1 and Picard number 2.

Moreover, for p ≥ 5, the Euler characteristic χ(X,A) is negative.

Thus Kodaira vanishing fails for the ample line bundle 3A. These are the first
examples of smooth Fano varieties in characteristic greater than 2 for which Ko-
daira vanishing fails. Haboush and Lauritzen exhibited a smooth Fano 6-fold in
characteristic 2 for which Kodaira vanishing fails. (This is [8, section 6, Example 4]
or [19, section 2]. Both papers give examples of the failure of Kodaira vanishing in
any characteristic, but the variety they consider is Fano only in characteristic 2.)

In the cases where χ(X,A) is negative, one amusing consequence is that the
smooth Fano variety X does not lift to characteristic zero, even over a ramified
extension R of the p-adic integers. Indeed, given such a lift X , the result H2(X,O) =
0 from section 1 implies that there is no obstruction to lifting a line bundle from X to
the formal scheme X [11, Corollary 8.5.5]. Applying this to the ample line bundle
A, Grothendieck’s algebraization theorem implies that X extends to a projective
scheme over R on which A is ample [11, Corollary 8.5.6]. But then χ(X,A) would
be nonnegative, by Kodaira vanishing in characteristic zero.

Corollary 2.2. Let p be a prime number at least 3. Then there is an isolated termi-
nal singularity over Fp which is not Cohen-Macaulay. One can take its dimension
to be 2p+ 2.
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These were the first examples of terminal singularities that are not Cohen-
Macaulay. After these results were announced, Yasuda gave lower-dimensional ex-
amples, described in section 4. That in turn inspired the 3-dimensional example in
this paper (Theorem 5.1).

Proof. (Corollary 2.2) In the notation of Theorem 2.1, let Y be the affine cone over
the smooth Fano variety X with respect to the ample line bundle A, meaning

Y = Spec⊕m≥0H
0(X,mA).

A cone Y is terminal if and only if the ample line bundle A is Q-linearly equivalent
to a(−KX) for some 0 < a < 1, as is the case here (with a = 1/2) [15, 3.1]. Also,
a cone Y is Cohen-Macaulay if and only if H i(X,mA) = 0 for all 0 < i < dim(X)
and all m ∈ Z [15, 3.11]. Since H1(X,A) 6= 0 and X has dimension 2p + 1 > 1, Y
is not Cohen-Macaulay.

Proof. (Theorem 2.1) Let n = p + 2, and let X = G/P be the smooth projective
homogeneous variety for G = SL(n) over Fp associated to the function f from
section 1. Thus X has dimension 2n− 3 = 2p+ 1, and

−KX = 2pω1 + (n− p)ω2

= 2pω1 + 2ω2.

Because 2p and 2 are positive, −KX is ample. Because Pic(X) has a basis given by
pω1 and ω2, −KX is divisible by 2 in Pic(X), −KX = 2A, with A := pω1 +ω2. As
discussed in section 1, the ample line bundle A on X is in fact very ample.

In the notation of section 1, let Q be the parabolic subgroup of G associated to
the function

h(αi) =

{
∞ if 1 ≤ i ≤ n− 1 and i 6= 2

0 if i = 2.

Because f ≤ h, P is contained in Q. The morphism G/P → G/Q is a P1-bundle,
and G/Q is the Grassmannian Gr(2, n). In more detail, G/P is the Frobenius twist
of the obvious P1-bundle over this Grassmannian. We analyze the cohomology of
A using this P1-bundle, as Haboush and Lauritzen did in a similar situation [8,
section 6].

Write α for the simple root α1, the one with f(α) = 1. For any line bundle
on G/P , identified with a weight λ, 〈λ, α∨〉 is a multiple of p, and the degree of
λ on the P1 fibers of G/P → G/Q is 〈λ, α∨〉/p. For the line bundle A, we have
〈A,α∨〉 = p, and so A has degree 1 on the fibers of G/P → G/Q.

Consider the commutative diagram

G/B //

γ $$

G/P

π
��

G/Q.

Since the line bundle A has degree 1 on the P1 fibers of G/P → G/Q, it has no
higher cohomology on the fibers, and so H i(G/P,A) ∼= H i(G/Q, π∗(A)) for all i.
Moreover, since h0(P1, O(1)) = 2, π∗(A) is a vector bundle of rank 2 on G/Q.
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Next, the morphism γ : G/B → G/Q has fibers isomorphic to Q/B, which is a
projective homogeneous variety (with reduced stabilizer groups). Explicitly, Q/B is
the fiber of the map Fl(1, 2, . . . , n)→ Gr(2, n), which is P1 times the flag manifold
of SL(n−2). Therefore, H i(Q/B,O) = 0 for i > 0, and hence Rγ∗(OG/B) = OG/Q.
By the projection formula, it follows that H i(G/Q, π∗(A)) ∼= H i(G/B, γ∗π∗A) for
all i. This and the previous isomorphism are isomorphisms of G-modules.

Finally, γ∗π∗A is a G-equivariant rank-2 vector bundle on G/B, and so it corre-
sponds to a 2-dimensional representation M of B [12, section II.4.2]. Every repre-
sentation of B is an extension of 1-dimensional representations k(µ), corresponding
to weights µ of T [12, section II.2.1(2)]. In this case, a direct computation [8, section
6, Proposition 2] shows that M is an extension

0→ k(λ− pα)→M → k(λ)→ 0,

where λ := pω1 + ω2 is the weight corresponding to the line bundle A.
As a result, the long exact sequence of cohomology on G/B takes the form:

0→ H0(G/B, λ− pα)→ H0(G/P,A)→ H0(G/B, λ)→ H1(G/B, λ− pα)→ · · · .

At this point, we could compute the Euler characteristic χ(G/P,A) = χ(G/B, λ) +
χ(G/B, λ− pα) by the Riemann-Roch theorem on G/B (essentially the Weyl char-
acter formula), and see that χ(G/P,A) is negative for p ≥ 5. That would suffice
to disprove Kodaira vanishing for A. However, we choose to give a more detailed
analysis of the cohomology of A, which will apply to the case p = 3 as well.

Let ρ ∈ X(T ) be half the sum of the positive roots; this is also the sum of the
fundamental weights. As is standard in Lie theory, consider the “dot action” of the
Weyl group W of G on the weight lattice:

w · µ = w(µ+ ρ)− ρ.

Let sβ ∈W be the reflection associated to a root β, sβ(µ) = µ− 〈µ, β∨〉β.
We use the following result of Andersen on the cohomology of line bundles on

the flag variety [12, Proposition II.5.4(d)]:

Theorem 2.3. For a reductive group G in characteristic p > 0, a simple root β,
and a weight µ with 〈µ, β∨〉 of the form spm− 1 for some s,m ∈ N with 0 < s < p,
there is an isomorphism of G-modules for each integer i:

H i(G/B, µ) ∼= H i+1(G/B, sβ · µ).

For the weight λ and simple root α considered above, we have 〈λ−α, α∨〉 = p−2
and sα · (λ − α) = λ − pα. Here p − 2 is in the range where Theorem 2.3 applies,
and so we have

H i(G/B, λ− α) ∼= H i+1(G/B, sα · (λ− α)).

Explicitly, λ − α = (p − 2)ω1 + 2ω2, which is a dominant weight (like λ). By
Kempf’s vanishing theorem, it follows that the line bundles λ and λ − α on G/B
have cohomology concentrated in degree zero [12, Proposition II.4.5]. Assembling
all these results, we have an exact sequence of G-modules:

0→ H0(G/P,A)→ H0(G/B, λ)→ H0(G/B, λ− α)→ H1(G/P,A)→ 0,
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and H i(G/P,A) = 0 for i ≥ 2.
In view of Kempf’s vanishing theorem, the dimensions of the Schur modules

H0(G/B, λ) and H0(G/B, λ − α) are given by the Weyl dimension formula, as in
characteristic zero. For SL(n), the formula says [7, Theorem 6.3(1)]: for a dominant
weight µ = a1ω1 + · · ·+ an−1ωn−1,

h0(G/B, µ) =
∏

1≤i<j≤n

ai + · · ·+ aj−1 + j − i
j − i

.

We read off that

h0(G/B, λ) =

(
2p+ 2

p

)
(p+ 1)

and

h0(G/B, λ− α) =

(
2p+ 1

p

)
(p+ 2)(p− 1)

2
.

To compare these numbers, compute the ratio:

h0(G/B, λ− α)

h0(G/B, λ)
=

(p− 1)(p+ 2)2

4(p+ 1)2
.

This is greater than 1 if p ≥ 5 (since then p− 1 ≥ 4). By the previous paragraph’s
exact sequence, it follows that the Euler characteristic χ(G/P,A) is negative for p ≥
5. Since A has no cohomology in degrees at least 2, we must have H1(G/P,A) 6= 0,
as we want.

For p = 3, h0(G/B, λ) is 224 whereas h0(G/B, λ − α) is 175, and so the di-
mensions would allow the G-linear map ϕ : H0(G/B, λ) → H0(G/B, λ − α) to be
surjective. But in fact it is not surjective (and hence H1(G/P,A) is not zero), as
we now show.

For a dominant weight µ, write L(µ) for the simple G-module with highest
weight µ. For a reductive group G in any characteristic and a dominant weight
µ, Chevalley showed that the socle (maximal semisimple submodule) of the Schur
module H0(G/B, µ) is simple, written L(µ). Moreover, this construction gives a
one-to-one correspondence between the simple G-modules and the dominant weights
[12, Corollary II.2.7].

The Steinberg tensor product theorem describes all simple G-modules in terms
of those whose highest weight has coefficients less than p [12, Corollary II.3.17]. In
particular, since λ = pω1 + ω2, the theorem says that

L(λ) ∼= L(ω1)[1] ⊗ L(ω2),

writing M [1] for the Frobenius twist of a G-module M . For SL(n) in any charac-
teristic, the simple module associated to the fundamental weight ωi is the exterior
power Λi(V ) with V the standard n-dimensional representation [12, section II.2.15].
So L(λ) has dimension

(
n
2

)
n =

(
p+2

2

)
(p + 2). Also, because λ > λ − α in the par-

tial ordering of the weight lattice given by the positive roots, the weight λ does
not occur in the G-module H0(G/B, λ − α). It follows that the G-linear map
ϕ : H0(G/B, λ)→ H0(G/B, λ− α) is zero on the simple submodule L(λ).

For p = 3, H0(λ)/L(λ) has dimension 224 − 50 = 174, whereas H0(λ − α) has
dimension 175. It follows that ϕ is not surjective. Equivalently, H1(G/P,A) 6= 0,
as we want.
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3 Lower-dimensional failure of Kodaira vanishing for
Fano varieties

In this section, we give slightly lower-dimensional examples of smooth Fano varieties
X in any characteristic p > 0 for which Kodaira vanishing fails: dimension 2p − 1
rather than 2p + 1 for p ≥ 3, and dimension 5 for p = 2. (In particular, the
examples in characteristics 2 or 3 have dimension 5, which is smaller than the
dimension 6 of Haboush-Lauritzen’s smooth Fano variety in characteristic 2 where
Kodaira vanishing fails.) In return for this improvement, we consider ample line
bundles that are not rational multiples of −KX .

Theorem 3.1. Let p be a prime number. Then there is a smooth Fano variety X
over Fp and a very ample line bundle A on X such that H1(X,KX +A) 6= 0. Here
X has dimension 2p− 1 for p ≥ 3 and dimension 5 for p = 2. Also, X has Picard
number 2.

Moreover, in the examples with p 6= 3, the Euler characteristic χ(X,KX +A) is
negative.

Proof. First assume p ≥ 3. At the end, we will give the example for p = 2.
As in the proof of Theorem 2.1, let X be the homogenous variety over Fp

defined in section 1, but now with n equal to p + 1 rather than p + 2. Thus X is
a smooth projective homogenous variety for SL(n) of dimension 2n − 3 = 2p − 1.
The anticanonical bundle of X is

−KX = 2pω1 + (n− p)ω2

= 2pω1 + ω2.

Because 2p and 1 are positive, −KX is ample. (In this case, −KX is not divisible
by 2.)

The Picard group of X has a basis consisting of pω1 and ω2. Therefore, the
weight λ := 3pω1 + ω2 corresponds to another ample line bundle A on X. In fact,
A is very ample, as discussed in section 1. The weight µ := KX +λ is equal to pω1.
Because the simple root α := α1 = 2ω1−ω2 has 〈µ, α∨〉 = p and 〈µ−α, α∨〉 = p−2
(which is less than p), the same argument as in the proof of Theorem 2.1 gives an
exact sequence of G-modules:

0→ H0(G/P,KX+A)→ H0(G/B, µ)→ H0(G/B, µ−α)→ H1(G/P,KX+A)→ 0,

and H i(G/P,KX +A) = 0 for i ≥ 2.
Write V for the n-dimensional representation H0(G/B, ω1) of G = SL(n).

Since µ = pω1, H0(G/B, µ) is the symmetric power Sp(V ), which has dimension(
n+p−1
n−1

)
=
(

2p
p

)
[12, Proposition I.5.12 and section II.2.16]. Also, µ − α is equal to

(p− 2)ω1 + ω2, which is also dominant, and the Weyl dimension formula gives that
h0(G/B, µ−α) is

(
2p−1
p−1

)
(p−1). It follows that the ratio h0(G/B, µ−α)/h0(G/B, µ)

is equal to (p − 1)/2. Now suppose that p ≥ 5. Then H0(G/B, µ − α) has bigger
dimension than H0(G/B, µ). By the exact sequence above, it follows that the Euler
characteristic χ(X,KX+A) is negative. Since KX+A has no cohomology in degrees
at least 2, it follows that H1(X,KX +A) 6= 0 for p ≥ 5, as we want.

Next, let p = 3. Then G = SL(4), and the G-modules H0(G/B, µ) = S3V
and H0(G/B, µ − α) both have dimension 20. However, because µ > µ − α in
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the partial order of the weight lattice given by the positive roots, the weight µ
occurs in H0(G/B, µ) and not in H0(G/B, µ − α). Therefore, the G-linear map
ϕ : H0(G/B, µ)→ H0(G/B, µ−α) is not an isomorphism, and hence not surjective.
By the exact sequence above, it follows that H1(X,KX +A) 6= 0.

Finally, let p = 2. In this case, let n be p + 2 = 4 (not p + 1 as above). Let X
be the homogeneous variety for SL(n) over F2 described in section 1. Then X is a
smooth Fano variety of dimension 2n− 3 = 5 and Picard number 2.

The Picard group of X is generated by pω1 = 2ω1 and ω2. The anticanonical
bundle−KX is 2pω1+(n−p)ω2 = 4ω1+2ω2. Let A be the ample line bundle 6ω1+ω2

on X. It is in fact very ample, as discussed in section 1. Let µ = KX+A = 2ω1−ω2.
Because of the negative coefficient, H0(X,µ) = 0 (for example by the inclusion
H0(X,µ) ⊂ H0(G/B, µ) given by pullback). So Kodaira vanishing would imply
that H i(X,µ) = 0 for all i.

To disprove that, we compute the Euler characteristic. As in the proof of The-
orem 2.1, X is a P1-bundle over the Grassmannian Gr(2, n). The degree of a line
bundle ν on the P1 fibers is 〈ν, α∨〉/p, where α is the simple root α1 and p = 2. So
µ has degree 1 on those fibers. As in the proof of Theorem 2.1, it follows that there
is a long exact sequence of G-modules:

→ H i(G/B, µ− pα)→ H i(X,µ)→ H i(G/B, µ)→ H i+1(G/B, µ− pα)→

Therefore, in terms of Euler characteristics,

χ(X,µ) = χ(G/B, µ) + χ(G/B, µ− pα).

Here G = SL(4) and µ = 2ω1 − ω2, and so µ − pα = −2ω1 + ω2. The Weyl
dimension formula says that

χ(G/B, a1ω1 + a2ω2 + a3ω3)

=
(a1 + 1)(a2 + 1)(a3 + 1)(a1 + a2 + 2)(a2 + a3 + 2)(a1 + a2 + a3 + 3)

12
.

It follows that χ(G/B, µ) = 0 and χ(G/B, µ− pα) = −1, and hence χ(X,µ) = −1.
Because this is negative, Kodaira vanishing fails on the smooth Fano 5-fold X in
characteristic 2.

To prove the full statement of Theorem 3.1, we want to show more specifically
that H1(X,KX +A) = H1(X,µ) is not zero. It suffices to show that H i(X,µ) = 0
for i > 1. By the exact sequence above, this follows if the line bundles µ = 2ω1−ω2

and µ − pα = −2ω1 + ω2 on G/B have no cohomology in degrees greater than 1.
Because 〈µ, α∨2 〉 = −1 (that is, µ has degree −1 on the fibers of one of the P1-
fibrations of G/B), µ actually has no cohomology in any degree [12, Proposition
II.5.4(a)]. Next, the trivial line bundle on G/B has cohomology only in degree zero
by Kempf’s vanishing theorem, and sα ·0 = −2ω1 +ω2 = µ−pα. Beause 〈0, µ∨〉 = 0
is of the form spm − 1 for some s,m ∈ N with 0 < s < p, Theorem 2.3 gives that

H i(G/B,O) ∼= H i+1(G/B, µ− pα)

for all i. Thus µ− pα has cohomology only in degree 1, as we want.
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4 Quotient singularities

In this section, we describe Yasuda’s examples of quotient singularities of any char-
acteristic p > 0 which are terminal but not Cohen-Macaulay [26]. Again, the
dimension increases with p, but more slowly than in the examples above.

For p ≥ 5, his construction is as follows. Let G be the cyclic group Z/p and k
a field of characteristic p. For each 1 ≤ n ≤ p, there is a unique indecomposable
representation V of G over k of dimension n, with a generator of G acting by a single
Jordan block. Assume that p ≥ n ≥ 4. By [26, Corollary 1.4], X := V/G is klt if
and only if n(n− 1)/2 ≥ p, and X is terminal if and only if n(n− 1)/2 > p. On the
other hand, because the fixed point set V G has dimension 1, which has codimension
at least 3 in V , X is not Cohen-Macaulay, by Ellingsrud-Skjelbred [5] or Fogarty [6].
By a similar construction (using decomposable representations of Z/p), Yasuda finds
non-Cohen-Macaulay terminal quotient singularities of dimension 6 in characteristic
2 and of dimension 5 in characteristic 3.

5 A 3-dimensional terminal singularity that is not Cohen-
Macaulay

Inspired by Yasuda’s examples [26], we now give the first example of a terminal
3-fold singularity which is not Cohen-Macaulay. The base field can be taken to be
any field of characteristic 2, say F2. Write Gm = A1 − {0} for the multiplicative
group.

Theorem 5.1. Let X be the 3-fold (Gm)3/(Z/2) over the field F2, where the gen-
erator σ of Z/2 acts by

σ(x1, x2, x3) =

(
1

x1
,

1

x2
,

1

x3

)
.

Then X is terminal but not Cohen-Macaulay.

Proof. Let Y be the 3-fold (Gm)3 over the field k = F2. Clearly G = Z/2 acts freely
outside the point (1, 1, 1) in Y . By Fogarty, when the group G = Z/p acts on a
regular scheme Y in characteristic p such that the fixed point set has an irreducible
component of codimension at least 3, Y/G is not Cohen-Macaulay [6].

It remains to show that X = Y/G is terminal. Most of the work is to construct
an explicit resolution of singularities of X. We do that by performing G-equivariant
blow-ups of Y until the quotient variety becomes smooth over k. In characteristic
0, the quotient of a smooth variety by a cyclic group of prime order is smooth if and
only if every irreducible component of the fixed point set has codimension at most
1. That fails for actions of Z/p in characteristic p, but there is a useful substitute
by Király and Lütkebohmert [13, Theorem 2]:

Theorem 5.2. Let G by a cyclic group of prime order which acts on a regular
scheme X. If the fixed point scheme XG is a Cartier divisor in X, then the quotient
space X/G is regular.

Since we work with varieties over the perfect field k = F2, being regular is the
same as being smooth over k.
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In checking the properties of the blow-up, it is helpful to observe that the sin-
gularity X = Y/G has an enormous automorphism group. Namely, GL(3,Z) acts
by automorphisms of the torus Y = (Gm)3, and this commutes with the action of
G = Z/2 (which corresponds to the diagonal matrix −1 in GL(3,Z)). Therefore,
GL(3,Z) acts on X (through its quotient PGL(3,Z), clearly). The formal comple-
tion of X at its singular point has an action of an even bigger group, PGL(3,Z2).

Remark 5.3. By analogy with the study of infinite discrete automorphism groups
of projective varieties, this example suggests that it could be interesting to study
profinite groups acting on formal completions of singularities in characteristic p.

We now begin to blow up. Identify Y with Y0 = (A1−{1})3 over k by yi = xi+1
for i = 1, 2, 3. Then G acts on Y0 by

σ(y1, y2, y3) =

(
y1

1 + y1
,

y2

1 + y2
,

y3

1 + y3

)
.

We do this so that the point fixed by G is (y1, y2, y3) = (0, 0, 0). Let Y1 be the
blow-up of Y0 at this point. Thus

Y1 = {((y1, y2, y3), [w1, w2, w3]) ∈ Y0×P2 : y1w2 = y2w1, y1w3 = y3w1, y2w3 = y3w2}.

The group G acts on Y1 by

σ((y1, y2, y3), [w1, w2, w3]) =

(
y1

1 + y1
,

y2

1 + y2
,

y3

1 + y3

)
,

[
w1

1 + y1
,
w2

1 + y2
,
w3

1 + y3

]
.

Because GL(3,Z) fixes the origin in Y0, the action of GL(3,Z) on Y0 lifts to an
action on the blow-up Y1. (This includes the obvious action of the symmetric group
S3.)

To compute the fixed point scheme of G on Y1, work in the open subset U1 with
w1 = 1; this will suffice, by the S3-symmetry of Y1. We can view U1 as the open
subset of A3 = {(y1, w2, w3)} defined by y1 6= 1, y1w2 6= 1, and y1w3 6= 1 (using
that y2 = y1w2 and y3 = y1w3). The action of G on U1 is given by

σ(y1, w2, w3) =

(
y1

y1 + 1
,
w2(y1 + 1)

y1w2 + 1
,
w3(y1 + 1)

y1w3 + 1

)
.

So the fixed point scheme (U1)G is defined by the equations

y1 =
y1

y1 + 1
, w2 =

w2(y1 + 1)

y1w2 + 1
, w3 =

w3(y1 + 1)

y1w3 + 1
.

Equivalently, y2
1 = 0, y1w2(w2 + 1) = 0, and y1w3(w3 + 1) = 0. Thus the scheme

(U1)G is not a Cartier divisor; it is equal to the Cartier divisor y1 = 0 (the ex-
ceptional divisor) except at the points (y1, w2, w3) = (0, 0, 0), (0, 0, 1), (0, 1, 0), and
(0, 1, 1).

In view of the S3-symmetry of Y1, it follows that the fixed point scheme (Y1)G

is equal to the exceptional divisor E ∼= P2 with multiplicity 1 except at 7 points on
that divisor, where (y1, y2, y3) = (0, 0, 0) and [w1, w2, w3] is one of [1, 0, 0], [0, 1, 0],
[0, 0, 1], [1, 1, 0], [1, 0, 1], [1, 1, 0], or [1, 1, 1]. Note that GL(3,Z) acts through its
quotient group GL(3,F2) on the divisor E, and it permutes these 7 points transi-
tively. Therefore, to resolve the singularities of Y1/G, it will suffice to blow Y1 up
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at the point [1, 0, 0]; the blow-ups at the rest of the 7 points work exactly the same
way.

The point we are blowing up is in the open set U1 of Y1 defined above, namely
(y1, w2, w3) = (0, 0, 0) in

U1 = {(y1, w2, w3)} ∈ A3 : y1 6= 1, y1w2 6= 1, and y1w3 6= 1}.

The resulting blow-up Y2 is:

{((y1, w2, w3), [v1, v2, v3]) ∈ U1 ×P2 : y1v2 = w2v1, y1v3 = w3v1, w2v3 = w3v2}.

The group G acts on Y2 by:

σ((y1, w2, w3), [v1, v2, v3]) =(
y1

y1 + 1
,
w2(y1 + 1)

y1w2 + 1
,
w3(y1 + 1)

y1w3 + 1

)
,

[
v1

y1 + 1
,
v2(y1 + 1)

y1w2 + 1
,
v3(y1 + 1)

y1w3 + 1

]
.

To compute the fixed point scheme of G on Y2, work first in the open set v1 = 1.
In those coordinates, G acts by:

σ(y1, v2, v3) =

(
y1

y1 + 1
,
v2(y1 + 1)2

y2
1v2 + 1

,
v3(y1 + 1)2

y2
1v3 + 1

)
(using that w2 = y1v2 and w3 = y1v3). The fixed point scheme of G on this open
set is given by the equations y2

1 = 0, y2
1v2(v2 + 1) = 0, and y2

1v3(v3 + 1) = 0, which
just say that y2

1 = 0. Thus the fixed point scheme (Y2)G is a Cartier divisor in this
open set: 2 times the new exceptional divisor E1.

We next compute the fixed point scheme (Y2)G in the open set v2 = 1; we
will not need to consider the remaining open set v3 = 1 separately, in view of the
symmetry between v2 and v3 in the action of G on Y2. Namely, G acts on the open
set v2 = 1 by

σ(w2, v1, v3) =

(
w2(w2v1 + 1)

w2
2v1 + 1

,
v1(w2

2v1 + 1)

(w2v1 + 1)2
,
v3(w2

2v1 + 1)

w2
2v1v3 + 1

)
(using that y1 = w2v1 and w3 = w2v3). The fixed point scheme of G on this open
set is given by the equations

w2
2v1(w2 + 1) = 0, w2

2v
2
1(v1 + 1) = 0, and w2

2v1v3(v3 + 1) = 0.

Note that we defined Y2 by blowing up only one of the 7 points listed earlier in Y1,
the one with (y1, w2, w3) = (0, 0, 0); since we are not concerned with the other 6
points here, we can assume that w2 6= 1. Then the first equation defining (Y2)G

gives that w2
2v1 = 0, and that implies the other two equations. That is, we have

shown that (Y2)G is a Cartier divisor in the open set v2 = 1 near the exceptional
divisor E1: it is E0 + 2E1, where E0 is the proper transform of the exceptional
divisor E in Y1 (given by v1 = 0 in these coordinates).

By the symmetry between v2 and v3 in the equations for Y2, the same calculation
applies to the open set v3 = 1. Thus we have shown that the fixed point scheme
(Y2)G is Cartier near the exceptional divisor E1.
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From now on, write Y2 for the blow-up of Y1 at all 7 points listed above. By
the previous calculation together with the GL(3,Z)-symmetry of Y2, the fixed point
scheme (Y2)G is the Cartier divisor

E0 + 2

7∑
j=1

Ej ,

where E1, . . . , E7 are the 7 exceptional divisors of Y2 → Y1. By Theorem 5.2, it
follows that Y2/G is smooth over k. Thus Y2/G is a resolution of singularities of
X = Y0/G.

Write F0, F1, . . . , F7 for the images in Y2/G of the exceptional divisors E0, E1, . . . , E7.
Note that although G fixes each divisor Ej in Y2, the morphism Ej → Fj is a finite
purely inseparable morphism, not necessarily an isomorphism. (Indeed, G = Z/2
is not linearly reductive in characteristic 2. So if G acts on an affine scheme T
preserving a closed subscheme S, the morphism S/G → T/G need not be a closed
immersion. Equivalently, the G-equivariant surjection O(T )→ O(S) need not yield
a surjection O(T )G → O(S)G.) In any case, our construction shows that the dual
complex of the resolution Y2/G→ X is a star, with one edge from the vertex F0 to
each of the other 7 vertices F1, . . . , F7.

This generalizes Artin’s observation that the analogous singularity one dimension
lower, (Gm)2/(Z/2) in characteristic 2, is a D4 surface singularity. That is, the dual
graph of its minimal resolution is again a star, with one central vertex connected to
3 other vertices [1, p. 64].

The divisor class KX is Cartier on X = Y0/G, because G preserves the volume
form (dx1/x1) ∧ (dx2/x2) ∧ (dx3/x3) on the torus Y0

∼= (Gm)3. So we can write

KY2/G = π∗KX +
7∑
j=0

ajFj

for some (unique) integers aj , where the sum runs over all exceptional divisors Fj of
Y2/G→ X. The variety X is terminal if and only if the discrepancy aj is positive for
all j [15, Corollary 2.12]. (Note that this characterization of terminal singularities
applies to any resolution of singularities; there is no need for

∑
j Fj to be a normal

crossing divisor.) Here and below, we write π for all the relevant contractions, which
in the formula above means π : Y2/G→ Y0/G = X.

The analogous formula for Y2 is easy, because Y2 is obtained from Y0 by blowing
up points. First, since Y1 is the blow-up of the smooth 3-fold Y0 at a point,

KY1 = π∗KY0 + 2E.
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Next, Y2 is the blow-up of Y1 at 7 points on the exceptional divisor E, and so

KY2 = π∗KY1 + 2
7∑
j=1

Ej

= π∗KY0 + 2E0 + 4

7∑
j=1

Ej ,

using that π∗E = E0 +
∑7

j=1Ej .
Write f for the quotient map Y0 → Y0/G or Y2 → Y2/G. It remains to compute

the ramification index of each divisor Ej in Y2 (the positive integer ej such that
f∗Fj = ejEj) and the coefficient cj of Ej in the ramification divisor (meaning that
KY2 = f∗KY2/G +

∑
j cjEj). Another name for cj is the valuation of the different

vL(DL/K), where L is the function field k(Y2), K = k(Y2/G), and vL is the valuation
of L associated to the divisor Ej . Here ejfj = 2, where fj is the degree of the field
extension k(Ej) over k(Fj) (which is purely inseparable in the case at hand).

We want to compute these numbers without actually finding equations for the
quotient variety Y2/G. This can be done using the Artin and Swan ramification
numbers of the G-action on Y2, defined as:

i(σ) = inf
a∈OL

vL(σ(a)− a)

s(σ) = inf
a∈L∗

vL(σ(a)a−1 − 1).

Here OL is the ring of integers of L = k(Y2) with respect to the valuation vL
associated to a given divisor Ej . We have already computed i(σ) for each Ej : it is
the multiplicity of Ej in the fixed point scheme (Y2)G, which is 1 for E0 and 2 for
Ej with 1 ≤ j ≤ 7. Then, more generally for an action of Z/p on a normal scheme
of characteristic p that fixes an irreducible divisor, we have s(σ) > 0, and either
i(σ) = s(σ) + 1, in which case e = p and f = 1, or i(σ) = s(σ), in which case e = 1
and f = p [24, section 2.1]. The first case is called wild ramification, and the second
is called fierce ramification. In both cases, the valuation of the different vL(DL/K)
is equal to (p− 1)i(σ).

In particular, returning to our example with p = 2, we have computed i(σ) for
each divisor Ej (the multiplicity of Ej in the fixed point scheme (Y2)G), and (by
the formula above for vL(DL/K)) this computes the ramification divisor of f : Y2 →
Y2/G. Namely,

KY2 = f∗KY2/G + E0 + 2

7∑
j=1

Ej .

The next step is to compute the ramification index of f along each exceptional
divisor Ej . For E0, we have i(σ) = 1 (the multiplicity of E0 in the fixed point
scheme (Y2)G). Then the results above imply that Y2 → Y2/G is fiercely ramified
along E0, and so s(σ) = 1. In particular, e0 = 1, meaning that f∗F0 = E0.

For Ej with 1 ≤ j ≤ 7, we have i(σ) = 2 (the multiplicity of Ej in the fixed point
scheme (Y2)G), which implies that s(σ) is 1 or 2 by the results above. To resolve this
ambiguity, note that it suffices to compute s(σ) for E1, because the automorphism
group GL(3,Z) of Y2 (commuting with G) permutes E1, . . . , E7 transitively. And
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we showed that E1 is defined in the coordinate chart v1 = 1 by the equation y1 = 0,
on which G acts by σ(y1) = y1/(y1 +1). So vL(σ(y1)y−1

1 −1) = vL(y1/(y1 +1)) = 1.
Since s(σ) = infa∈L∗ vL(σ(a)a−1 − 1), it follows that s(σ) is 1, not 2. Thus Y2 →
Y2/G is wildly (rather than fiercely) ramified along Ej for 1 ≤ j ≤ 7. In particular,
f∗Fj = 2Ej .

Thus, we have shown that

KY2 = f∗KY2/G + E0 + 2

7∑
j=1

Ej

and that f∗F0 = E0 and f∗Fj = 2Ej for 1 ≤ j ≤ 7. Since f : Y0 → Y0/G is étale in
codimension 1, we have KY0 = f∗KY0/G. It follows that

f∗KY2/G = KY2 − E0 − 2
7∑
j=1

Ej

=

(
π∗KY0 + 2E0 + 4

7∑
j=1

Ej

)
− E0 − 2

7∑
j=1

Ej

= π∗f∗KY0/G + E0 + 2
7∑
j=1

Ej

= f∗
(
π∗KY0/G + F0 +

7∑
j=1

Fj

)
.

Therefore,

KY2/G = π∗KY0/G + F0 +
7∑
j=1

Fj .

Because the coefficient of every exceptional divisor Fj is positive, and Y2/G is a
resolution of singularities of Y0/G, X = Y0/G is terminal.

6 Open questions

One question suggested by these examples is whether, for each positive integer n,
there is a number p0(n) such that Fano varieties of dimension n in characteristic
p ≥ p0(n) satisfy Kodaira vanishing. (One could ask this for smooth Fanos, or
in greater generality.) This is related to the fundamental question of whether the
smooth Fano varieties of given dimension form a bounded family over Z, as they do
in characteristic zero by Kollár-Miyaoka-Mori [14, Corollary V.2.3].

A related question is whether, for each positive integer n, there is a number
p0(n) such that klt singularities of dimension n in characteristic p ≥ p0(n) are
Cohen-Macaulay. This was shown by Hacon and Witaszek for n = 3, although no
explicit value for p0(3) is known [9, Theorem 1.1].
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