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A smooth projective variety X over a field is said to satisfy Bott vanishing if
HI(X, Q% ®L)=0

for all ample line bundles L, all ¢ > 0, and all j > 0. Bott proved this when X
is projective space. Danilov and Steenbrink extended Bott vanishing to all smooth
projective toric varieties; proofs can be found in [4} 7, 28] [15].

What does Bott vanishing mean? It does not have a clear geometric interpre-
tation in terms of the classification of algebraic varieties. But it is useful when
it holds, as a sort of preprocessing step, since the vanishing of higher cohomology
lets us compute the spaces of sections of various important vector bundles. Bott
vanishing includes Kodaira vanishing as a special case (where i equals n := dim X),
but it says much more.

For example, any Fano variety that satisfies Bott vanishing must be rigid, since
HY (X, TX) = H(X,Q% ' ® K%) = 0 for X Fano. So Bott vanishing holds for
only finitely many smooth complex Fano varieties in each dimension. Even among
rigid Fano varieties, Bott vanishing fails for quadrics of dimension at least 3 and
for Grassmannians other than projective space [7), section 4]. As a result, Achinger,
Witaszek, and Zdanowicz asked whether a rationally connected variety that satisfies
Bott vanishing must be a toric variety [I, after Theorem 4].

In this paper, we exhibit several new classes of varieties that satisfy Bott vanish-
ing. First, we answer Achinger-Witaszek-Zdanowicz’s question: there are non-toric
rationally connected varieties that satisfy Bott vanishing, since Bott vanishing holds
for the quintic del Pezzo surface (Theorem . Over an algebraically closed field,
a quintic del Pezzo surface is isomorphic to the moduli space My of 5-pointed
stable curves of genus zero. It is the only rigid del Pezzo surface that is not toric:
del Pezzo surfaces of degree at least 5 are rigid, and those of degree at least 6 are
toric. (The quintic del Pezzo surface also does not have a lift of the Frobenius en-
domorphism from Z/p to Z/p?, a property known to imply Bott vanishing [7], [I
Proposition 7.1.4].) In view of this example, there is a good hope of finding more
Fano or rationally connected varieties that satisfy Bott vanishing.

We also consider varieties that are not rationally connected, with most of the
paper devoted to K3 surfaces. Bott vanishing holds for abelian varieties over any
field: it reduces to Kodaira vanishing, since the tangent bundle is trivial. On the
other hand, Riemann-Roch shows that Bott vanishing fails for all K3 surfaces of
degree less than 20 (Theorem [3.1). But recent work of Ciliberto-Dedieu-Sernesi
and Feyzbakhsh [9] [I4] implies: Bott vanishing holds for all K3 surfaces of degree
20 or at least 24 with Picard number 1 (Theorem . Version 2 of this paper on



the arXiv gave a more elementary proof, not using Feyzbakhsh’s work on Mukai’s
program (reconstructing a K3 surface from a curve), but here we give a short proof
using her work. Surprisingly, Bott vanishing fails in degree 22.

More strongly, we end up with a clear geometric understanding of the meaning
of Bott vanishing for a K3 surface with any Picard number; see Theorems
and The key question is whether H1(X, Q% ® B) is zero for an ample line
bundle B. This cohomology group has a direct geometric meaning, related to the
map from the moduli space of curves on K3 surfaces to the moduli space of curves
(section [3).

Roughly speaking, the failure of this vanishing for a K3 surface is caused either
by elliptic curves of low degree on the surface, or by the existence of a (possibly
singular) Fano 3-fold in which the K3 surface is a hyperplane section. The proofs
build on a long development, starting with the work of Beauville, Mori, and Mukai
about moduli spaces of K3 surfaces, and leading up to recent advances by Arbarello-
Bruno-Sernesi and Ciliberto-Dedieu-Sernesi [5], 26, 27, B, 0]. We give a complete
description of all K3 surfaces X with an ample line bundle B of high degree such
that H!(X, Q% ®B) is not zero. The most novel aspect of the paper is our analysis of
what happens when there is an elliptic curve of low degree (Theorem. (In other
terminology, this concerns K3 surfaces that are monogonal, hyperelliptic, trigonal,
or tetragonal.) It turns out that the crucial issue is whether an elliptic fibration has
a certain special type of singular fiber.
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1 Notation

We take a wvariety over a field k£ to mean an integral separated scheme of finite
type over k. A curve means a variety of dimension 1. So, in particular, a curve
is irreducible. A property is said to hold for general (resp. very general) complex
points of a variety Y if it holds outside a finite (resp. countable) union of closed
subvarieties not equal to Y.

On a smooth variety, we often identify line bundles with divisors modulo linear
equivalence. For example, the tensor product A ® B of two line bundles may also
be written as A+ B. A line bundle is primitive if it cannot be written as a positive
integer at least 2 times some line bundle.

2 Bott vanishing for the quintic del Pezzo surface
Theorem 2.1. Let X be a del Pezzo surface of degree 5 over a field k. Then X
satisfies Bott vanishing, but is not toric.

Proof. 1t suffices to prove the theorem after extending k, and so we can assume
that k is algebraically closed. In this case, there is a unique del Pezzo surface X (a



smooth projective surface with ample anticanonical bundle K% ) of degree 5 over k,
up to isomorphism. It can be described as the blow-up of P? at any set of 4 points
with no three on a line [23] Remark 24.4.1]. Here X has finite automorphism group,
because any automorphism of X in the identity component of Aut(X) would pass
to an automorphism of P? (that is, an element of PGL(3, k)) that fixes the 4 chosen
points, and such an automorphism must be the identity. In particular, X is not a
toric variety. (In fact, the automorphism group of X is the symmetric group Ss,
but we will not use that.)

The Picard group of X is isomorphic to Z°, and so Bott vanishing must be
checked for a fairly large (infinite) class of ample line bundles. We argue as follows.
Recall the Kodaira-Akizuki-Nakano vanishing theorem [22] Theorem 4.2.3], [13]:

Theorem 2.2. (1) Every smooth projective variety over a field of characteristic
zero satisfies Kodaira-Akizuki-Nakano vanishing:

HI(X,Q'®L)=0

for all ample line bundles L and all i + j > dim(X).

(2) Let X be a smooth projective variety over a perfect field of characteristic
p > 0. If X lifts to Wa(k) and X has dimension < p, then X satisfies KAN
vanishing (as in (1)).

It follows that the quintic del Pezzo surface X satisfies KAN vanishing: the
hypotheses of (2) hold if the algebraically closed field k has characteristic p. (For
example, if we view X as the blow-up of P? at four k-points, then those points can
be lifted to Wa(k), and so X lifts to Wa(k).) Thus we know that H/(X,Q?® L) =0
for all ample line bundles L and all j > 0. Since K% = (Q%)* is ample, it follows
that H/(X,L) = 0 for ample L and j > 0. Also by KAN vanishing, we have
H?(X,Q' ® L) = 0 for ample L. To prove Bott vanishing, it remains to show that
HY (X, Q' ® L) = 0 for ample L.

For any del Pezzo surface X of degree at most 7, the cone of curves is spanned by
the finitely many lines in X (or equivalently, (—1)-curves, meaning curves C' in X
isomorphic to P! with 02 = —1; then (—Kx)-C = 1) [I2} section 6.5]. Therefore, a
line bundle L on X is nef if and only if it has nonnegative degree on all (—1)-curves
in X, and it is ample if and only if it has positive degree on all (—1)-curves in X.

We return to the del Pezzo surface X of degree 5 (in which case there are 10
(—1)-curves, shown in Figure . Let L be any ample line bundle on X, and let a
be the minimum degree of L on the (—1)-curves, which is a positive integer. Since
—Kx has degree 1 on each (—1)-curve, L can be written (using additive notation
for line bundles) as

L=a(—-Kx)+ M

for some nef line bundle M on X which has degree zero on some (—1)-curve.

Choose a (—1)-curve E on which M has degree zero, and let Y be the smooth
projective surface obtained by contracting E (by Castelnuovo’s contraction theo-
rem). Then Y is a del Pezzo surface of degree 6, and such a surface is toric. Since
M has degree 0 on E, the isomorphism Pic(X) = Pic(Y) @ Z for a blow-up implies
that M is pulled back from a line bundle on Y, which we also call M. Clearly M is
nef on Y. By Bott vanishing on Y, we have

HY Y, Q' @ K3 @ M) =0,



Figure 1: Dual graph of the 10 (—1)-curves on the quintic del Pezzo surface

using that K3 is ample. Here (), @ K3 2 TY (as on any surface), and so
HYY,TY ® M) = 0.

For any blow-up m: X — Y of a point y on a smooth surface Y, we have
Rr(TX) = m(TX) =2TY ®1,/y, where I,y is the ideal sheaf of y in Y. (That is,
vector fields on X are equivalent to vector fields on Y that vanish at y.) We have
an exact sequence of coherent sheaves on Y,

0—>Iy/y—>0y—>0y—>0.
Tensoring with the vector bundle TY ® M gives another exact sequence,
0=TY M@,y -TY @M — (TY @ M)|, — 0.

Combining this with the isomorphism above gives a long exact sequence of coho-
mology:

HYY,TY @ M) = (TY @ M)|, - H'(X,TX @ 7*(M)) — H'(Y,TY @ M).

Here HY(Y,TY ® M) = 0 by Bott vanishing as above. Therefore, to show that
HY (X, TX @7*(M)) = 0, it suffices to show that the rank-2 vector bundle TY ® M
is spanned at the point y by its global sections. This follows if we can show that
TY and M are spanned at y by their global sections. For TY, this is clear by the
vector fields coming from the action of the torus T = (G,,)? on Y, since y must be
in the open T-orbit. (The blow-up of Y at a point not in the open T-orbit would
contain a (—2)-curve and hence could not be a del Pezzo surface.) Also, every nef
line bundle M on a toric variety Y is basepoint-free [16, section 3.4]. Thus we have
shown that HY{(X,TX @ n*(M)) = 0.

To prove Bott vanishing for X, as discussed above, we have to show that
HY (X, Q' ® (K%)®* @ n*(M)) = 0 for all positive integers a. Equivalently, we
want H1(X,TX @ (K%)®* ! ® 7*(M)) = 0 for all positive integers a. We have
proved this for ¢ = 1. By induction, suppose we know this statement for a, and
then we will show that HY(X,TX @ (K%)®* @ n*(M)) = 0.

On X (as on any del Pezzo surface of degree at least 3), the line bundle K%
is very ample, and so it has a section whose zero locus is a smooth curve C. By
the adjunction formula, K¢ is trivial; that is, C' has genus 1. We have an exact
sequence

0—Ox(—C)—0Ox - Oc —0



of coherent sheaves on X, where O(—C') & Kx. Tensoring with the vector bundle
TX @ (K%)®* @ n*(M) gives another exact sequence of sheaves, and hence a long
exact sequence of cohomology:

HY (X, TX @ (Ky)® '@ r*(M)) - H'(X,TX @ (K%)®* @ n*(M))
— HY(C,(TX ® (K%)®* @ 7" (M))|c).

By induction, the first group shown is zero. Also, the restriction of TX to C' is
an extension
0—=TC—TX|c— Ngx =0,

where N¢/x = (K% )|c by definition of C. Since C' has genus 1, this says that the
restriction of TX to C is an extension of two line bundles of nonnegative degree.
Since K% is ample on X, 7*(M) is nef, and a is positive, it follows that TX ®
(K%)®* @ 7 (M) restricted to C' is an extension of two line bundles of positive
degree. Since C has genus 1, H' of every line bundle of positive degree on C is zero.
We conclude that the group on the right of the exact sequence above is zero (like
the group on the left). Therefore,

HY X, TX ® (K%)%* @ n*(M)) = 0,
which completes the induction. We have shown that X satisfies Bott vanishing. [

There are also higher-dimensional Fano varieties which satisfy Bott vanishing
but are not toric, in view of:

Lemma 2.3. Let X andY be smooth projective varieties over an algebraically closed
field. Suppose that H'(X,0) = 0. If X and Y satisfy Bott vanishing, then so does
X xY.

Proof. Since H'(X,0) = 0, we have Pic(X x Y) = Pic(X) @ Pic(Y) [I8, exercise
I11.12.6]. That is, every line bundle on X x Y has the form 7f L ® 75 M for some line

bundles L on X and M on Y, where 7 and mo are the two projections of X x Y.
By the Kiinneth formula [33 Tag 0BEC],

HY X xY,miL@mM) = H(X,L) @, H'(Y, M).

Therefore, 77 L ® w3 M is very ample on X x Y if and only if L and M are very
ample. It follows that 7L @ 73 M is ample on X x Y if and only if L and M are
ample.

Assume that X and Y satisfy Bott vanishing. We need to show that

HI (X xY,Q%. vy @7TiL@7sM) =0

for all 7 > 0, ¢ > 0, and L and M ample line bundles. Here Qg(xy = Oy Y ®
730%™, So the desired vanishing follows from Bott vanishing on X and Y using
the Kiinneth formula. O

Remark 2.4. The Kawamata-Viehweg vanishing theorem extends Kodaira vanishing
to nef and big line bundles, but it seems unreasonable to ask when Bott vanishing
holds for nef and big line bundles. Indeed, Bott vanishing fails for a nef and big line
bundle on the blow-up of P? at a point, which is about as simple as you can get.
Even KAN vanishing fails for a nef and big line bundle on the blow-up of P? at a
point [22, Example 4.3.4].



3 Bott vanishing for K3 surfaces of Picard number 1

We now show that Bott vanishing fails for K3 surfaces of degree less than 20 or
equal to 22, while it holds for all K3 surfaces of degree 20 or at least 24 with Picard
number 1. We give a quick proof by applying recent work of Ciliberto-Dedieu-
Sernesi, Arbarello-Bruno-Sernesi, and Feyzbakhsh, which we discuss in more detail
in section[4] In later sections, we consider what happens for K3 surfaces with Picard
number greater than 1.

The less precise statement that Bott vanishing holds for very general K3 surfaces
of degree 20 or at least 24 follows from the work of Beauville, Mori, and Mukai in
the 1980s [5}, section 5.2], 26, Theorem 1], [27, Theorem 7].

Note that Ciliberto, Dedieu, Galati, and Knutsen recently proved the analog
of Beauville-Mori-Mukai’s result for Enriques surfaces, in particular computing
H'(X,Q'® B) for (X, B) a general member of any component of the moduli space
of polarized Enriques surfaces [§]. By analogy with the results in this paper for K3
surfaces, it would be interesting to describe the precise locus where H'(X, Q! ® B)
is not zero.

We define a K3 surface to be a smooth projective surface X with trivial canonical
bundle and H'(X,0) = 0. A polarized K3 surface of degree 2a is a K3 surface X
together with a primitive ample line bundle B such that B? = 2a. The degree of
a polarized K3 surface must be even, because the intersection form on H?(X,Z) is
even. Sometimes we call (X, B) simply a K3 surface of degree 2a.

Theorem 3.1. Let X be a K3 surface with an ample line bundle A of degree A?
less than 20. Then Bott vanishing fails for X.

Proof. Tt suffices to show that H'(X, QL ® A) is not zero. That holds if the Euler
characteristic x (X, Q% ® A) is negative. Writing z for the class of a point in H*(X),
Riemann-Roch gives:

(X, Q% @A) = /X td(TX) ch(Q% @ A)

:/(1+0—|—22)(2+0—242)(1+01(A)+01(A)2/2)
X
= c1(A)? — 20.
O

We deduce the following result from the work of Ciliberto-Dedieu-Sernesi and
Feyzbakhsh [9] 14].

Theorem 3.2. Let (X, B) be a polarized complex K3 surface with Picard number
1 and of degree 20 or at least 24. Then H'(X, Q}( ® B) = 0. On the other hand,
for every polarized K3 surface (X, B) of degree 22, H'(X,Q} @ B) # 0.

Note that B is a primitive ample line bundle in Theorem There is an
irreducible (19-dimensional) moduli space of polarized complex K3 surfaces of degree
2a, for each positive integer a [19, Corollary 6.4.4]. Moreover, a very general K3
surface X in this moduli space has Picard number 1 [I9] proof of Corollary 14.3.1].



Proof. Let Py be the moduli stack of pairs (X,C) with X a K3 surface and C a
smooth curve of genus g in X such that O(C) is a primitive ample line bundle on
X. (Then O(C) has degree 29 —2 on X.) Let M, be the moduli stack of curves of
genus g. There is a morphism of stacks

fg: Py — Mg,

taking (X,C) to the curve C. Beauville observed that H'(X,Q @ O(C))* =
HYX,TX ® O(—C)) can be identified with the kernel of the derivative of f, at
(X,C) [B, section 5.2]. Therefore, Theorem for general polarized K3 surfaces
reduces to Mukai’s theorem (completing his work with Mori) that f, is generically
finite if and only if ¢ = 11 or g > 13 (corresponding to polarized K3 surfaces of
degree 20 or at least 24) |26, Theorem 1], [27, Theorem 7]. From this point of view,
describing the locus where H'(X, Q4 ® B) is not zero amounts to determining the
ramification locus of the morphism f,.

Arbarello-Bruno-Sernesi and Feyzbakhsh recently strengthened Mukai’s result
by showing that when g = 11 or g > 13, the morphism f, is injective at all pairs
(X,C) with X of Picard number 1 [2, [14]. We want to show that when g = 11 or
g > 13, the derivative of f, is also injective at all pairs (X,C) with X of Picard
number 1.

The failure of Bott vanishing for K3 surfaces (X, B) of degree 22 follows from
the existence of a smooth Fano 3-fold W with Picard group generated by — Ky, and
genus 12 [27, Proposition 6]. (The genus g is defined by (—Kyw)? = 2g — 2. The
possible genera of smooth Fano 3-folds with Picard group generated by — Ky are
2 < g <10 and g = 12.) Indeed, Beauville showed by a short deformation-theory
argument that a general hyperplane section of a general deformation W’ of W gives
a general K3 surface X of degree 22. But then a hyperplane section C' C X is
the intersection of W’ with a codimension-2 linear space. So there is a whole P?
of K3 surfaces (generically not isomorphic) which all have the same curve C as a
hyperplane section. That is, fi2: P12 — M is not generically finite, and hence
Bott vanishing fails for all K3 surfaces (X, B) of degree 22.

Now let (X, B) be any polarized K3 surface of degree 20 or at least 24 with Picard
number 1. The assumptions imply that any smooth curve C in the linear system of
B has Clifford index at least 3, as discussed in section 4} Using this together with
B? > 20, Ciliberto-Dedieu-Sernesi showed that k' (X, Q' ® B) = dim(ker(dfy|(x,c)))
is equal to the fiber dimension dim(f," L(C)) near (X,C) [9, Theorem 2.6]. Using
that X has Picard number 1 and B? is 20 or at least 24, Arbarello-Bruno-Sernesi
and Feyzbakhsh showed that C lies on a unique K3 surface of Picard number 1 [2],
[14, Theorem 1.1]. Therefore, f;l(C’) is a single point in a neighborhood of (X, C).
Combining these two results shows that H'(X,Q! ® B) = 0. O

We now deduce the full statement of Bott vanishing for K3 surfaces with Picard
number 1:

Theorem 3.3. Let X be a complex polarized K3 surface with Picard number 1 and
of degree 20 or at least 24. Then X satisfies Bott vanishing.

Note that, without the assumption of Picard number 1, Bott vanishing does not
hold for any nonempty Zariski open subset of the moduli space of K3 surfaces of



given degree 2a > 20. Indeed, there is a countably infinite set of divisors in that
moduli space corresponding to K3 surfaces that also have an ample line bundle of
degree < 20, and Bott vanishing fails for those K3 surfaces by Theorem

On the other hand, it is arguably more natural to ask when Bott vanishing
holds for positive multiples of the given line bundle B, rather than for all ample
line bundles. By Lemma [3.5] it is equivalent to determine the locus of polarized K3
surfaces (X, B) such that H'(X,Q% ® B) is not zero. The rest of the paper will
focus on that problem.

Proof. (Theorem Write Pic(X) = Z - B with B ample. Then every ample line
bundle on X is a positive multiple of B.

Kodaira vanishing (Theorem gives that H'(X,Q3% ® L) = 0 for L ample
and i > 0. Since Ky = Q% is trivial, it follows that H*(X, L) = 0 for L ample and
i > 0. Next, KAN vanishing (Theorem gives that H*(X,Q% ® L) = 0 for L
ample.

It remains to show that H'(X, Q% ® L) = 0 for every ample line bundle L on X.
By Theorem since B? is 20 or at least 24, we know that H(X,Q} ® B) =0,
where B is the ample generator. We will go from there to the result for all positive
multiples of B (thus for all ample line bundles on X).

We recall Saint-Donat’s sharp results about linear systems on K3 surfaces [32],
[25, Theorem 5]:

Theorem 3.4. Let X be a K3 surface over an algebraically closed field of charac-
teristic not 2. Let B be a nef line bundle on X. Then:

(1) B is not basepoint-free if and only if there is a curve E in X such that
E?’=0and B-E =1.

(2) Assume that B% > 4. Then B is not very ample if and only if there is (a) a
curve E with E* = 0 such that B-E is 1 or 2, (b) a curve E such that E*> = 2 and
B ~ 2E, or (¢) a curve E such that E*> = —2 and B - E = 0. (So, if B is ample
and B% > 10, B fails to be very ample if and only if there is a curve E in X such
that E> =0 and B- E is 1 or 2.)

The following lemma completes the proof of Theorem [3.3] O

Lemma 3.5. Let X be a complex K3 surface with a basepoint-free ample line bundle
B. (In particular, this holds if Pic(X) = Z-B and B is ample.) If H*(X,Q, ®B) =
0, then HY(X, QL% ® B®)) =0 for all j > 1.

Proof. First, if Pic(X) = Z- B and B is ample, then B is basepoint-free by Theorem
B4

Let X be a complex K3 surface with a basepoint-free ample line bundle B. By
Bertini’s theorem, there is a smooth curve D in the linear system |B|. This gives a
short exact sequence of sheaves 0 — Ox — B — B|p — 0. Tensoring with 2} and
taking cohomology gives an exact sequence

HY(X, 0% ® B) - HYD, Q% ® B) - H*(X,Q%).

We are given that HY(X,Q! ® B) is zero, and H?(X,QY) is zero since X is a
K3 surface; so Hl(D,Qﬁ( ® B) = 0. Next, since B restricted to the curve D is



basepoint-free, it is represented by an effective divisor S on D. This gives a short
exact sequence of sheaves 0 — Op — B|p — B|s — 0, and hence a surjection

HY(D,Q% @ B®~1) - HY(D, 0}  B®)

for any j € Z (using that S has dimension 0). By induction on j, it follows that
HY(D, Qﬁ( ® B®7) = 0 for all j > 1. We now make another induction on j using
the analogous exact sequence on X:

HY(X,0% ® B! - HY(X, 0% @ B¥) - HY(D,Q} ® B¥).

Since HY(X, QL ® B) =0, it follows that HY(X,Q} ® B®) =0 forall j > 1. O

4 Failure of Bott vanishing on a K3 surface in terms of
elliptic curves of low degree

Theorem clarifies the meaning of Bott vanishing for a K3 surface X. Namely, if
HY(X,Q% ® B) # 0 for an ample line bundle B, then one of three conditions must
hold: B? is less than 20, there is an elliptic curve of low degree with respect to B,
or X is an anticanonical divisor in a singular Fano 3-fold Y with B = — Ky |x. The
proof is based on recent work of Ciliberto, Dedieu, and Sernesi, which in turn buids
on the work of Arbarello, Bruno, and Sernesi [3], 9].

The main result of Arbarello-Bruno-Sernesi was that a Brill-Noether general
curve C of genus at least 12 is the hyperplane section of a (possibly singular) K3
surface, or of a limit of K3 surfaces (a “fake K3”), if and only if the Wahl map of C
is not surjective. The proof was based on a new vanishing theorem for the square
of the ideal sheaf of a projective curve. Ciliberto-Dedieu-Sernesi applied that work
on curves to give criteria for a projective K3 surface to be a hyperplane section of
a (possibly singular) Fano 3-fold.

Theorem characterizes exactly when H'(X, Q! ® B) is zero except when X
contains an elliptic curve of low degree. That case is studied in section [6] which
includes a complete answer for B of high degree.

The classification of Fano 3-folds with canonical Gorenstein singularities remains
open. As a result, Theorem is not as explicit an answer as one might like.
Nonetheless, it is a strong statement, from which we draw more specific consequences
in the rest of the paper. For our purpose, we only want the classification of Fano
3-folds with isolated canonical Gorenstein singularities, which may be within reach.

In particular, Theorem implies that for K3 surfaces (X, B) with no ellip-
tic curve of low degree, the nonvanishing of H'(X, Q! ® B) is a Noether-Lefschetz
condition. More precisely, this group is nonzero if and only if (X, B) belongs to
certain irreducible components of the space of K3 surfaces with Picard group con-
taining one of a finite list of lattices. (This follows from Theorem by Beauville’s
deformation-theory argument, which works with no change for Fano 3-folds with
isolated singularities [5, Theorem].) The lattices that occur are exactly the Picard
lattices of the Fano 3-folds with isolated canonical Gorenstein singularities, these
being not yet known.

Theorem 4.1. Let X be a compler K3 surface with an ample line bundle B such
that there is no curve E in X with E> =0 and1 < B-E < 4. Then HY(X,Q'®B) #



0 if and only if B < 20 or X is a smooth anticanonical divisor in some Fano 3-fold
Y with at most isolated canonical Gorenstein singularities such that B = —Ky|x.

Note that any curve E in a K3 surface with E2 = 0 is a fiber of an elliptic
fibration, for example by Theorem Using work of Prokhorov, the final case of
Theorem implies that B% < 72 (Theorem [5.1)).

Proof. If B < 20, then H'(X, Q% ® B) # 0 by Riemann-Roch (Theorem . If
X is a smooth anticanonical divisor in some Fano 3-fold Y with at most isolated
canonical Gorenstein singularities such that B = —Ky |x, then H1(X, Q% ® B) # 0.
This follows from Lvovski’s theorem on extensions of projective varieties [9, Theorem
0.1, Lemma 3.5]. (One could also prove this by extending Mukai’s argument from
section ) Conversely, assume that B2 > 20. We want to show that if H'(X,Q} ®
B) # 0, then X is an anticanonical divisor.

By Theorem m, B is very ample, giving an embedding X C PY where B? =
2g — 2. Choose a smooth hyperplane section C' in X (so C' has genus g, and the
embedding C' — PY~! is the canonical embedding).

For a line bundle L on a smooth projective curve C, the Clifford index Cliff(C, L)
is deg(L) — 2h%(C, L) + 2. For C of genus at least 4, the Clifford index of C is

Cliff(C) := min{Cliff(C, L) : h°(C, L) > 2 and h'(C, L) > 2}.

I claim that the curve C' C X above has Clifford index at least 3. Several
approaches are possible, but we use the following result of Knutsen, inspired by
earlier work of Green-Lazarsfeld and Martens [20, Lemma 8.3], [17, 24].

Lemma 4.2. Let B be a basepoint-free line bundle on a K3 surface X with B? =
29 — 2> 2. Let ¢ be the Clifford index of a smooth curve C in |B|.

Ifc < [(g—1)/2], then there is a smooth curve E on X such that 0 < E? < c+2
and B-E = E? + ¢+ 2.

In our case, we have B2 > 20. Also, the Hodge index theorem gives that
(B?)(E?) —(B-E)? <0 [18, Remark V.1.9.1]. Combining these results with Lemma
shows that if C has Clifford index ¢ at most 2, then the curve E given by the
lemma has E? = 0. (Otherwise, (¢, E?, B - E) is either (0,2,4), (1,2,5), (2,2,6),
or (2,4,8), all of which are ruled out by the Hodge index theorem since B? > 20.)
But then 1 < B- F < 4 by Lemma contradicting our assumptions. So C has
Clifford index at least 3.

For a smooth projective curve C, the Wahl map

dc: A°HY(C, K¢) — H(C,KE?)

is defined by s At — sdt —tds. Wahl showed that the Wahl map of a curve of genus
at least 2 contained in some K3 surface is not surjective; that is, corank(®¢c) > 1
[35]. When g > 11 and Cliff(C') > 3 (as here), Ciliberto-Dedieu-Sernesi proved the
more precise statement:

corank(®¢) = W' (X, Q% @ B) +1

[9, Corollary 2.8].
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Let r = h' (X, Q'®B). By Ciliberto-Dedieu-Sernesi, again using that g > 11 and
Cliff(C') > 3, there is an arithmetically Gorenstein normal variety Z of dimension
r+2in P9*" not a cone, containing the curve C' C P971 as the section by a linear
space of dimension g — 1. Moreover, Z contains X C PY as the section by a linear
space of dimension g [9, section 2.2].

Thus, if H'(X,Q' ® B) # 0, then Z has dimension at least 3. Let Y be the
intersection of Z with a general linear space of dimension g + 1 that contains X;
then Y C P9"! is an arithmetically Gorenstein 3-fold with —Ky = O(1). Because
Y has a smooth hyperplane section X and Z is not a cone, Y has at most isolated
canonical singularities [9, Corollary 5.6]. Theorem is proved. O

5 K3 surfaces of high degree

In the rest of the paper, we analyze which ample line bundles B on a K3 surface X
have H'(X, Q! ® B) = 0, without assuming that X has Picard number 1. We give
complete answers when B has high enough degree. Ciliberto-Dedieu-Sernesi proved
a first step, using Prokhorov’s work on Fano 3-folds: in high degrees, the locus where
H'(X,Q'®B) # 0 is contained in the locus of K3 surfaces that contain “low-degree”
elliptic curves [9, Corollaries 2.8 and 2.10]. They used slightly different language,
and so we formulate the statement as Theorem [5.1l The result is analogous to
Saint-Donat’s theorem on very ampleness, Theorem Theorem will analyze
the case when there is a low-degree elliptic curve.

Theorem 5.1. Let B be an ample line bundle on a compler K3 surface X with
B? > 74. If HY(X,Q% ® B) # 0, then there is a curve E in X with E* = 0 and
1<B-E<A4.

As mentioned earlier, any such curve F is a fiber of an elliptic fibration of X.

Proof. Suppose that there is no curve E in X with E2 =0and 1 < B- E < 4, and
that H'(X, Q% ® B) is not zero. By Theorem X is a smooth anticanonical divi-
sor in some Fano 3-fold Y with at most isolated canonical Gorenstein singularities
such that B = —Ky|x.

Prokhorov showed that a Fano 3-fold Y with canonical Gorenstein singularities
has (—Ky)3 < 72 [29, Theorem 1.5, [30, Lemma 5.9]. (For comparison, a smooth
Fano 3-fold Y has (—Ky)3 < 64.) So we reach a contradiction if B? > 74. O

The degree bound 74 in Theorem [5.1] is sharp, by the following example.

Example 5.2. Let X be the double cover of P? ramified over a very general sextic
curve. Let A be the pullback of the line bundle Op2(1). Here (X, A) is a polarized
K3 surface of degree 2 and Picard number 1. I claim that the line bundle B = 6 A
has B? = 72 and H(X, Q4 ® B) # 0, while there is no curve F in X with E? =0
and 1 < B- F < 4. (Thus Theorem fails in degree 72.)

Proof: By the assumption of generality, Pic(X) = Z - A. So there is no curve E
in X with E? = 0.

By considering the graded ring associated to A, X embeds as a hypersurface
of degree 6 in the weighted projective space Y = P(3,1,1,1). Here Y is a Fano
3-fold with canonical Gorenstein singularities, — Ky = O(6), and (—Ky)? = 72 [29,
Theorem 1.5]. In particular, B = —Ky|x.
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By Lvovski’s theorem as in the proof of Theorem because (X, B) is an
anticanonical section of a Fano 3-fold Y, we have H(X, Q% ® B) # 0. (Ciliberto-
Lopez-Miranda claimed that H'(X, Q% ® B) = 0 in this case, because of an error
in the proof of [10), Lemma 2.3(e)]: in the description of the tangent bundle of a
ramified cover, N, should be 7*Opg(6), not 7*Opg(3).)

Thus we have examples of K3 surfaces X with Picard number 1 and an ample
line bundle B of degree 72 such that H'(X, Q4 ® B) # 0, showing the optimality
of Theorem [5.1} This does not contradict Theorem because B = 6A is not
primitive.

Example 5.3. There is a K3 surface X with a primitive ample line bundle B of
degree 62 such that H'(X, Q% ® B) # 0 and there is no curve E in X with £ =0
and 1 < B+ FE < 4. (Thus Theorem fails for primitive ample line bundles of
degree 62.)

Proof: Let Y be the Fano 3-fold P(O @ O(2)) — P?, which has (—Ky)? = 62
and — Ky primitive. Let X be a smooth divisor in the linear system of —Ky. Then
X is a K3 surface with a primitive ample line bundle B = — Ky |x of degree 62, and
H'(X,Q'® B) # 0 by Lvovski’s theorem again. For X very general, the restriction
homomorphism Pic(Y) = Z{R, S} — Pic(X) is an isomorphism. Given that, it is
straightforward to compute the intersection form on X (it has R? = 2, RS = 5,
and S? = 10). This quadratic form does not represent zero nontrivially, and so X
contains no curve E with E? = 0. Thus Theorem fails for (X, B), as promised.

6 Elliptic K3 surfaces

We now analyze which K3 surfaces (X, B) have H*(X, Q% ® B) # 0 when there
isacurve Ein X with E2=0and 1< B-E < 4; these are the cases left out of
Theoremm The answer is complete if B-F = 1 or also if B? is large enough (with
explicit bounds). Surprisingly, the answer depends on whether an elliptic fibration
of X has a certain special type of singular fiber.

In particular, when 1 < B - E < 3, we give examples with B? arbitrarily large
such that H!(X, Qﬁ( ® B) # 0, showing that these cases are genuine exceptions to
Theorem By contrast, when B - E = 4, this cohomology group is in fact zero
for B? > 194. (This bound is probably not optimal.)

Theorem 6.1. Let B be an ample line bundle on a compler K8 surface X. Suppose
that there is a curve E in X with E*> = 0 and r := B - E between 1 and 4. Let
7 X — Pl be the elliptic fibration associated to E. If r = 1 and 7 has a fiber of
type II, or r = 2 and 7 has a fiber of type III, or r = 3 and 7 has a fiber of type IV,
then HY(X, QL ® B) # 0. The converse holds if in addition r = 1 and B* > 40, or
r=2 and B> > 92, orr =3 and B> > 140, or r = 4 and B? > 194.

In Kodaira’s classification of the singular fibers of an elliptic surface [11, Corol-
lary 5.2.3], type II is a cuspidal cubic curve, type III is two copies of P! tangent at
a point, and type IV is three copies of P! through a point (Figure .

We first consider the case where B - E' = 1, in which case (X, B) is said to be
momnogonal. In this case, we have an even stronger statement than Theorem we
can describe exactly when H'(X, Q% @ B) is not zero, without having to assume
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Figure 2: Singular fibers of types II, III, IV

that B2 > 40. Most of the proof of the following theorem was suggested by Ben
Bakker.

Theorem 6.2. Let B be an ample line bundle on a complex K38 surface X. Suppose
that there is a curve E in X with E? =0 and B-E = 1. Let m: X — P! be the
elliptic fibration associated to E. Then HY(X,Q% @ B) # 0 if and only if B> < 38
or some fiber of 7 is of type Il (a cuspidal cubic).

In particular, there are polarized K3 surfaces (X, B) with B? arbitrarily large
such that there is a curve E in X with E? = 0 and B-E = 1 while H!(X, QY ® B) #
0. To construct such examples, let 7: X — P! be an elliptic K3 surface with a
section By such that there are 22 fibers of type I; (a nodal cubic) and one fiber of
type II (a cuspidal cubic). Such a surface is easy to construct, using a Weierstrass
equation. Let E be a fiber of m; then Bg = -2, E>=0, and By - E = 1. For any
integer m > 2, it is straightforward to check that B := By + mFE is ample, and we
have B2 =2m —2 and B-E = 1. Since B- E = 1, B is primitive. By Theorem
HY(X, Q% ® B) is not zero, no matter how big B? is.

Theoremshows that the locus of polarized K3 surfaces (X, B) with H'(X, QL ®
B) # 0 is not a Noether-Lefschetz locus when there is an elliptic curve of low degree.
(That is, this property cannot always be read from the Picard lattice of X.) Indeed,
the condition that an elliptic fibration 7: X — P! has a cuspidal fiber is not deter-
mined by the Picard lattice of X. A general elliptic K3 surface as in the previous
paragraph has Picard lattice Z - {By, E} with B2 = -2, E? =0, and By - E = 1,
whether there is a cuspidal fiber or not.

Proof. (Theorem By the Riemann-Roch calculation in Theorem |3.1] we know
that HY(X, QL ® B) # 0 if B < 20. So we can assume from now on that B? > 20.

Every fiber of 7: X — P! is an effective divisor linearly equivalent to E. Since
B is ample and B - E = 1, every fiber of 7 is irreducible and has multiplicity 1. By
Kodaira’s classification, every singular fiber of 7 is of type I; (a nodal cubic) or II
(a cuspidal cubic).
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By Riemann-Roch, B can be represented by an effective divisor. Since B-E =1,
this divisor must be the sum of a section By of m with some curves supported in
fibers. Then By = P!, and so B2 = —2. Because all fibers of 7 are irreducible, it
follows that B is linearly equivalent to By + mE, where B? = 2m — 2.

We have the following exact sequence of coherent sheaves on X:

1

X/Pl — 0.

0— 7 Qp = O = Q
The sheaf Qi( /pt of relative Kéahler differentials is torsion-free but not reflexive, by
a direct computation at singular fibers of w. It is related to the relative dualizing
sheaf wy p1 (a line bundle) by another exact sequence:

1
0= Qyp1 = wy/pt = wx/p! ls =0,

where S is the non-smooth locus of w. Here S is a closed subscheme of degree 24 in
X, supported at the singular points of fibers of .

Let us compute the degree of the 0-dimensional scheme S at each singular point
of a fiber of 7. In local analytic coordinates, 7 is given by 7(z,y) = 2% — ¢ (at a
node), 7(x,y) = 2 — 3> (at a fiber of type II), w(z,y) = z(x — y?) (at type III), or
7(z,y) = x(2? — y?) (at type IV). The scheme S is defined by 7 /dx = dr/dy = 0.
Because 7 is quasi-homogeneous in these coordinates, S is contained (as a scheme) in
the fiber, 771(0). The degree of S in these cases is: (I) dimc Clx,y]/(2%, —2y) = 1,
(IT) dimg Clx,y]/(27, —3y?) = 2, (III) dimc C[z,y]/(2z — y?, —2zy) = 3, and (IV)
dimg Clz, y] /(322 — y?, —2xy) = 4.

Since the line bundle Q%,l is isomorphic to O(-2), Tr*Qijl is isomorphic to
O(—2F). Tensoring the first exact sequence with B and taking cohomology gives
an exact sequence of complex vector spaces:

HY(X,B -2E) - H'(X,04 ® B) - HY(X, Q;/Pl ® B) — H*(X, B — 2E).
We arranged that B? > 20, and so m > 11. (For what follows, m > 4 would
be enough.) Therefore, B — 2E = By + (m — 2)E is nef and big. So HY(X, B —
2F) = H?(X,B — 2F) = 0 by Kawamata-Viehweg vanishing. We deduce that
H'(X, Q% ® B) maps isomorphically to H'(X, Qﬁ(/Pl ® B).

Outside the O-dimensional subscheme S of X, the first exact sequence above
is an exact sequence of vector bundles. Taking determinants shows that Qﬁ( /P! is
isomorphic to O(2F) outside S, using that Kx is trivial. Because wy,pt is a line
bundle on all of X, it follows that wy p1 = O(2FE). So the second exact sequence
(tensored with B) gives a long exact sequence of cohomology:

H(X,0(B+2E)) — H°(S,0(B+2E)) - H'(X,Q% ® B) - H'(X,0(B+2E)).

Here B + 2F is nef and big, and so the last cohomology group is zero. We conclude
that H1(X, Q% @ B) = 0 if and only if the subscheme S imposes linearly indepen-
dent conditions on sections of the line bundle B + 2E. Thus for elliptic K3s, Bott
vanishing reduces to a question about sections of a line bundle, which is much easier
to analyze.

In the case at hand, we can describe all sections of B +2E = By + (m + 2)E
explicitly. We have h°(L) = (L? + 4)/2 for L nef and big on a K3 surface X, and
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so h(B + 2FE) = m + 3. But we get an (m + 3)-dimensional space of sections of
O(B +2E) = O(By) ® 7*O(m +2) by pulling back sections of O(m +2) on P!, and
so those are all the sections. In other words, the linear system of B + 2F is exactly
the set of divisors By + E1 + - -+ 4+ Epyo for some fibers 1, ..., Epyo of 7.

If 7 has a fiber Ey with a cusp p, then the subscheme S has degree 2 at p (and
is contained in Ey), as shown above; so S does not impose linearly independent
conditions on sections of B + 2F in this case. Otherwise, all singular fibers of m
have a single node, and so S consists of 24 points in distinct fibers of 7. It follows
that S imposes linearly independent conditions on sections of B + 2F if and only if
m + 2 > 23, that is, B> > 40. O

We now address the cases where B+ E is 2, 3, or 4. The K3 surface (X, B) is said
to be hyperelliptic, trigonal, or tetragonal, respectively (because all smooth curves
in the linear system of B have the given gonality).

Before proving Theorem [6.1) we use it to give examples such that B - F is 1,
2, or 3 and H'(X, Q% ® B) # 0 for arbitrarily large values of B, in contrast to
Theorem (This was done above when B-E = 1.) When B- E = 4, by contrast,
the theorem says that H'(X, Q% ® B) = 0 whenever B? > 194.

Example 6.3. There are polarized K3 surfaces (X, B) with B? arbitrarily large such
that there is a curve E in X with E? =0 and B- E = 2, while H(X, Q}( ® B) # 0.

Let X be the double cover of Y = P! x P! ramified along a smooth curve D
in the linear system of —2Ky = O(4,4). Then X is a K3 surface, with two elliptic
fibrations defined by the two compositions X — Y — P, Write 7: X — P! for
the first fibration, E for a fiber of w, and Cy for a fiber of the second fibration;
then Cy - £ = 2. Let S be the non-smooth locus of 7, a closed subscheme of degree
24 in X. By choosing D to have intersection with one curve p x P! equal to a
single point with multiplicity 4, we can arrange that the corresponding fiber of m
is of type III (two Pls tangent at one point). Let B = Cy + mE. By Theorem
HY(X,Q% ® B) # 0, while B? = 4m can be arbitrarily large. (One can give
a similar example with B? = 2 (mod 4) by taking X to be a double cover of
P(O @ O(1)) — P!, rather than of P! x P1.)

Example 6.4. There are polarized K3 surfaces (X, B) with B? arbitrarily large such
that there is a curve E in X with E? =0 and B+ E = 3, while H(X, Q% ® B) # 0.

To see this, let X be a smooth anticanonical divisor in P! x P? such that one
fiber Ey of the elliptic fibration 7: X — P! consists of three lines through a point
(thus, a fiber of type IV). Let A be the pullback to X of O(1) on P2, and let E be
the pullback of O(1) on P!; then A2 =2, A-E =3, and E> =0. Let B = A+ mE.
By Theorem HY(X,Q% ® B) # 0, while B2 = 6m + 2 can be arbitrarily large.

Proof. (Theorem Let r = B - E. For r = 1, the theorem follows from Theorem
From now on, assume that 2 < r < 4.

We use the following analysis of K3 surfaces of low Clifford genus, due to Reid,
Brawner, and Stevens [31], section 2.11], [0, Tables A.1-A.4], [34, table in section 1].

Proposition 6.5. Let X be a complex K3 surface with a line bundle L. Suppose
that there is a curve E in X with E> =0 and r := L - E between 1 and 4. Suppose
that L + sE is ample for some integer s. Finally, suppose that r = 1 and L*> > 2,
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orr=2and L>>8, orr =3 and L*> > 14, or r = 4 and L?> > 26. Then L is nef,
and h°(L) — (L — E) =r.

Proof. The references cited determine the possible values of the sequence of integers
h°(L 4+ mE). (For r > 2, that sequence describes the scroll P(O(e1) @ ---O(e,)) —
P! that contains the image of X under the morphism to projective space given by
L 4+ mE for m large.) In particular, these results say that h%(L) — h%(L — E) = r
under our assumption on L2. It follows that h°(L — E) is given by Riemann-Roch
and hence that h'(L — E) = 0 (because h?(L — E) is easily seen to be zero). By
Knutsen and Lopez’s characterization of line bundles with vanishing cohomology
on a K3 surface, it follows that L — E has degree at least —1 on any (—2)-curve in
X [21, Theorem]. Using that plus the fact that L + mE is ample for m large, we
deduce that L is nef. O

As in the proof of Theorem let S be the non-smooth locus of m, viewed as a
closed subscheme of degree 24 in X, supported at the singular points of fibers of 7.
We computed that S has degree 1 at nodes, 2 at cusps (on fibers of type II), 3 at
type III, and 4 at type IV. Moreover, each connected component of S is contained
(as a scheme) in a fiber of 7.

By the proof of Theorem if H1(X, Q% ® B) is zero, then S imposes linearly
independent conditions on sections of B + 2FE. Moreover, the converse holds if
B — 2F is nef and big. Suppose that » = 2 and 7 has a fiber of type III, or r = 3
and 7 has a fiber of type IV. (We are assuming r > 2 now, but the argument
would be the same in the case where r = 1 and 7 has a fiber of type II.) Let Sy
be the connected component of S at the given singular point. Then Sy has degree
r + 1. On the other hand, the line bundle B + 2F is ample and has degree r on
the given fiber Ey (which has r irreducible components), and so it has degree only
1 on each component. It follows that h°(Ey, B 4+ 2E) is only r. So the restriction
map H(X, B + 2FE) — H°(Sy, B + 2E) = C™*! is not surjective. So S does not
impose independent conditions on sections of B+ 2F, and hence H' (X, Q% ® B) is
not zero. The first part of the theorem is proved.

For the converse, suppose that » = 2 and B%2 > 92, or » = 3 and B? > 140,
or = 4 and B% > 194. Also, if r = 2, assume that 7 has no fiber of type III,
and if » = 3, assume that 7 has no fiber of type IV. We want to deduce that
HY (X, Q4% ®B) =0.

Let L = B — 21E, so that L? = B? — 42r. Thus either »r = 2 and L? > 8, or
r=3and L? > 14, or r = 4 and L? > 26. By Proposition (using that L+21F is
ample), L is nef, and h°(L) —h°(L — E) = r. So, for each fiber Ey of 7, the image of
the restriction H(X, L) — H°(Ejp, L) has dimension r. Using again that L + 21F
is ample, the line bundle L is ample on Ey, with degree r < 4. It follows that FEj
has at most r irreducible components. So Ey has type I, for n < r or II or III (with
r equal to 3 or 4) or IV (with r = 4). By Riemann-Roch for 1-dimensional schemes
[33, Tag 0BS6] plus Serre duality, H(Ep, L) has dimension r. (Use that FEj is
Gorenstein, with trivial canonical bundle.) So H°(X, L) — H°(Ey, L) is surjective,
for each fiber Ey of .

We have shown that L = B — 21F is nef, and it is big since L? > 0. So
B — 2F is also nef and big. Using that, the proof of Theorem shows that
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HY(X,Q% ® B) = 0 (as we want) if and only if S imposes independent conditions
on sections of B + 2F. Here B+ 2E = L + 23F.

Let Eg be any singular fiber of 7, and let So = SNFEy, which is an open subscheme
of S. We showed above that H(X, L) — H°(Ey, L) is surjective. Also, L is ample
on Ey. It follows that HY(FEy, L) — H%(Sp, L) is surjective, by inspection of the
possible types of singular fibers (since we have excluded the case where r = 2 and
Ey is of type III, or r = 3 and Ej is of type IV). Therefore, H(X, L) — H°(Sy, L)
is surjective. It is then clear that H°(X, L + 23E) — H(S, L + 23FE) is surjective,
using sections of O(23F) that vanish on all singular fibers of 7 except one. (We are
using that the number of singular fibers is at most 24.) Since B + 2F = L + 23FE,
this completes the proof that H*(X, Q% ® B) = 0. O
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