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Modeling cell migration regulated by cell extracellular-matrix micromechanical coupling
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Cell migration in fibrous extracellular matrix (ECM) is crucial to many physiological and pathological
processes such as tissue regeneration, immune response, and cancer progression. During migration, individual
cells can generate active pulling forces via actomyosin contraction, which are transmitted to the ECM fibers
through focal adhesion complexes, remodel the ECM, and eventually propagate to and can be sensed by other
cells in the system. The microstructure and physical properties of the ECM can also significantly influence cell
migration, e.g., via durotaxis and contact guidance. Here, we develop a computational model for two-dimensional
cell migration regulated by cell-ECM micromechanical coupling. Our model explicitly takes into account a
variety of cellular-level processes, including focal adhesion formation and disassembly, active traction force
generation and cell locomotion due to actin filament contraction, transmission and propagation of tensile forces in
the ECM, as well as the resulting ECM remodeling. We validate our model by accurately reproducing single-cell
dynamics of MCF-10A breast cancer cells migrating on collagen gels and show that the durotaxis and contact
guidance effects naturally arise as a consequence of the cell-ECM micromechanical interactions considered
in the model. Moreover, our model predicts strongly correlated multicellular migration dynamics, which are
resulted from the ECM-mediated mechanical coupling among the migrating cell and are subsequently verified
in in vitro experiments using MCF-10A cells. Our computational model provides a robust tool to investigate
emergent collective dynamics of multicellular systems in complex in vivo microenvironment and can be utilized
to design in vitro microenvironments to guide collective behaviors and self-organization of cells.

DOI: 10.1103/PhysRevE.100.043303

I. INTRODUCTION

Cell migration in fibrous extracellular matrix (ECM) is
a complex dynamic process involving a series of intracel-
lular and extracellular activities, including the development
of filopodia, formation of focal adhesion sites, locomotion
due to actin filament contraction, and detachment of the rear
end [1,2]. Collective cell migration in a complex microen-
vironment is crucial to many physiological and pathological
processes including tissue regeneration, immune response,
and cancer progression [3–6]. Besides the well-established
chemotaxis [7], the microstructure and physical properties
of the ECM can also significantly influence cell migration
via durotaxis [8–10], haptotaxis [11], and contact guidance
[12–14]. For example, in durotaxis, a cell can sense and
respond to the rigidity gradient in the local microenvironment,
which in turn guides its migration [10].
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A migrating cell also generates active pulling forces
[15–17], which are transmitted to the ECM fibers via focal
adhesion complexes [18–20]. Such active forces remodel the
local ECM, e.g., by reorienting the collagen fibers, forming
fiber bundles, and increasing the local stiffness of ECM
[21–27]. Recent studies have indicated that a delicate balance
among the magnitude of the pulling forces, the cell-ECM ad-
hesion strength, and the ECM rigidity is required to achieve an
optimal mode of single cell migration [28]. In a multicellular
system, the pulling forces generated by individual cells can
give rise to a dynamically evolving force network (carried
by the ECM fibers) in the system [29–37]. In other words,
the active pulling forces generated by individual cells can
propagate in the ECM and can be sensed by distant cells. This
ECM-mediated mechanical coupling among the cells could
further influence the migration of the individual cells, which
in turn alters the ECM structure and properties, and thus the
tensile force network. This feedback loop between the force
network and cell migration could lead to a rich spectrum of
collective migratory behaviors [36].

A variety of computational models have been developed
to investigate the migration dynamics of both single cell and
multicellular systems [38–40] as well as various sub-cellular

2470-0045/2019/100(4)/043303(13) 043303-1 ©2019 American Physical Society

https://orcid.org/0000-0001-6501-8787
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.043303&domain=pdf&date_stamp=2019-10-11
https://doi.org/10.1103/PhysRevE.100.043303


YU ZHENG et al. PHYSICAL REVIEW E 100, 043303 (2019)

processes involved in cell migration [41–46]. For example,
a migrating cell can be modelled as an “active particle”
whose dynamics is mainly determined by an active self-
propelling force, a random drift and various effective particle-
particle and/or particle-environment interactions [47,48]. A
wide spectrum of collective dynamics have been observed and
investigated in active-particle systems [48]. However, vertex-
based models [49] and multistate cellular Potts models [50]
are usually employed to investigate the collective dynamics of
densely packed sheets of cells, including the spontaneous cell
sorting driven by differential adhesion and the epithelial to
mesenchymal transition (EMT). In addition, cellular automa-
ton models which explicitly consider the migration of invasive
tumor cells following least-resistance paths have been devised
to study the emergence of invasive dendritic structures com-
posed of highly malignant tumor cells emanating from the
primary tumor mass [51–54].

Recently, the influences of the cell-ECM interactions
and/or ECM-mediated indirect cell-cell interactions on in-
dividual and collective migration dynamics are started to
be explicitly considered and incorporated in cell migration
models [55,56]. For example, Goychuk et al. [57] introduced
a cellular Potts model for cell migration that includes basic
cell-ECM coupling. A computational model based on contin-
uum mechanics has been developed that explicitly considers
the micromechanical coupling of a migrating cell and the
2D substrate [58]. Durotaxis effects have been successfully
reproduced from this model. Moreover, a novel model for
investigating cell migration in a model 2D ECM network
guided by external mechanical cues has been developed by
considering coarse-grained cytoskeleton of a migrating cell
as a part of the ECM network [59]. Very recently, the 2D
vertex cell model is coupled to an elastic network of springs
modeling the ECM, through dynamic focal adhesions attached
to the network nodes, which has been employed to understand
the effect of substrate stiffness on collective migration during
wound healing and to measure traction forces during cell mi-
gration [60–62]. A recently developed migration model based
on mechanical coupling of a model cell and lattice model
of ECM network has successfully reproduced the durotaxis
and contact guidance effects [63]. In addition, a variety of
models have been developed for 3D cell migration in complex
microenvironments [64–66].

Here, we develop a computational model for 2D migration
of nonmetastatic breast cancer cells on top of a 3D collagen
gel, which is mainly regulated by cell-ECM micromechan-
ical coupling. Our model takes into account a variety of
cellular-level processes including focal adhesion formation
and disassembly, active traction force generation and cell
locomotion due to actin filament contraction, transmission and
propagation of tensile forces in the ECM. We employ a node-
bond (i.e., graph) representation to model the complex 3D
ECM network microstructure, which is reconstructed based
on confocal imaging data. In addition, we use a nonlinear
mechanical model for the ECM networks, which incorporates
buckling of collagen fibers upon compression and strain-
hardening upon stretching. We consider that the active forces
generated by actin filament contraction are locally balanced
at the focal adhesion site via the deformation of the ECM,
which provides both mechanical support for cell migration

and a medium for the propagation and transmission of the
active cellular forces.

We validate our model by accurately reproducing single-
cell dynamics of MCF-10A breast cancer cells migrating
on collagen gels and show that the durotaxis and contact
guidance effects naturally arise as a consequence of the cell-
ECM micromechanical interactions considered in the model.
Moreover, our model predicts strongly correlated multicellu-
lar migration dynamics, which are resulted from the ECM-
mediated mechanical coupling among the migrating cells and
are subsequently verified in in vitro experiments using MCF-
10A cells. The current model can be readily generalized to
model 3D cell migration in ECM and could eventually be
employed to investigate collective migratory behaviors and
emergent self-organizing multicellular patterns resulted from
ECM-mediated mechanical signaling among the cells.

The rest of the paper is organized as follows: In Sec. II, we
describe the microstructural and mechanical models of the 3D
ECM (mainly collagen I) networks. In Sec. III, we introduce
our cell migration model and discuss the associated assump-
tions and limitations. In Sec. IV, we validate our model by
producing single-cell migration dynamics of MCF-10A breast
cancer cells on isotropic collagen networks and investigate
the cell migration dynamics on heterogeneous networks with
stiffness gradient and aligned fibers. In Sec. V, we investi-
gate collective multicellular dynamics resulting from ECM-
mediated mechanical coupling among the migrating cells, and
we validate our results via in vitro experiments. In Sec. VI, we
provide concluding remarks.

II. MICROSTRUCTURE AND MECHANICAL
MODELS OF 3D ECM NETWORK

A. Modeling ECM network via statistical descriptors
and stochastic reconstruction

In this section, we briefly describe the microstructural
and micromechanical models for the 3D ECM networks.
The detailed descriptions of these models are provided in
Refs. [67] and [35], respectively. The 3D ECM, mainly
composed of type I collagen gel, is modeled as a discrete
network with a “graph” (i.e., node-bond) representation in a
cubic simulation domain with linear size L (∼300 μm), which
is composed of Mn nodes and Mb bonds, depending on the
collagen concentration. The average coordination number Z ,
i.e., the average number of bonds connected to each node, is
given by Z = 2Mb/Mn. We mainly use fixed boundary (FB)
conditions (i.e., the nodes within a certain distance δL ∼ 5 μm
from the boundaries of the simulation domain are fixed) in
our simulations, but also confirm that using periodic boundary
(PB) conditions does not affect the results for the large L
values used in our simulations.

We employ a set of statistical descriptors for quantifying
the network geometry and topology [67,68], which include the
node density ρ (corresponding to the collagen concentration),
the fiber (or bond) length distribution function Pf , the distribu-
tion of coordination number (i.e., the number of neighbors of
a node) PZ , and the average fiber orientation �. In particular,
� is defined as the average cosine value associated with the
acute angles of the fibers made with respect to a prescribed
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FIG. 1. Realizations of 3D ECM networks with randomly ori-
ented fibers with � = 0.5 (a) and horizontally aligned fibers with
� = 0.88 (b), generated using stochastic reconstruction techniques.
For better visualization, only small subnetworks with a linear size
of 50 μm are shown here. Panels (c) and (d), respectively, show
the coordination distribution PZ and fiber length distribution Pf for
the networks, which are computed based on confocal images of a
2 mg/ml collagen gel. The statistical descriptors of the simulated
networks almost perfectly match the corresponding target descriptors
obtained from the experiments and thus, are visually indistinguish-
able from one another.

direction (typically along one of the three orthogonal axis
of the simulation box). These statistical descriptors can be
computed from the 3D ECM network extracted from the con-
focal images via skeletonization techniques [22]. Figures 1(c)
and 1(d), respectively, show the coordination distribution PZ

and fiber length distribution Pf for homogeneous collagen
networks with a collagen concentration of 2 mg/ml, which
will be used in our subsequent investigations. The average
fiber length is 1.96 μm and the average coordination num-
ber Z = 3.4 [35]. Since the fibers are randomly oriented in
homogeneous networks, the average fiber orientation metric
� ≈ 0.5. The node number density ρ ≈ 0.185/μm3.

For a given set of network statistics (e.g., P∗
Z , P∗

f , �∗, and
ρ∗), we can generate realizations of the networks associated
with the prescribed descriptors using stochastic reconstruc-
tion [67]. In particular, we start from a randomly generated
initial network with the prescribed node number density ρ∗.
From this initial network, the descriptors Pf , PZ , and � are
computed and compared to the corresponding prescribed de-
scriptors. An energy functional E is defined as the sum of the
squared differences between the computed and corresponding
prescribed the descriptors [67], i.e.,

E =
∑

r

|PZ (r) − P∗
Z (r)|2

+
∑

r

|Pf (r) − P∗
f (r)|2 + |� − �∗|2. (1)

Next, the initial network is perturbed by randomly displacing
a node and/or removing/adding a bond to randomly selected
pairs of nodes. A new energy for the new network is com-
puted. If the new energy Enew is lower than the old energy
Eold, the new network replaces the old one. Otherwise, the
new network configuration replaces the old network with
the probability e(Eold−Enew )/T , where T is a virtual tempera-
ture, which possesses a large initial value and is gradually
decreased. The network is continuously evolved in this way
(more precisely, via simulated annealing method [69] to allow
energy-increasing network configurations during the initial
stages) until E ≈ 0, i.e., the computed descriptors match
the prescribed ones within a prescribed small tolerance. The
details of this technique is provided in Ref. [67].

We note that one can either use experimentally obtained
network statistics as the target descriptors in the recon-
struction or can construct a set of feasible hypothetical
statistical descriptors in order to control the geometry and
topology of the constructed random network. Figure 1(a)
shows a reconstructed network based on the experimentally
obtained statistics of the 2 mg/ml collagen gels, in which
the fibers are randomly oriented. To investigate the effects of
fiber alignment on cell migration dynamics, we also gener-
ate realizations of networks with horizontally aligned fibers
[see Fig. 1(b)]. This is achieved by setting �∗ = 1 with
respect to the x direction, and using the same P∗

Z , P∗
f , and ρ∗

of the homogeneous network. We note that the optimized � of
the reconstructed network is in fact a little smaller than unity
(� ∼ 0.88), due to the additional topological and geometrical
constraints specified by P∗

Z and P∗
f . Nevertheless, the fiber

alignment is already very significant in the reconstructed
networks.

B. Micromechanical model of ECM networks

The ECM (collagen) fibers are highly nonlinear, typically
exhibiting buckling, strain-hardening and plastic behaviors
[22,70–75], which can significantly affect the propagation
of the active forces in the system. The nonlinearity of the
ECM fibers also induces a nontrivial coupling with the cell
contractility, i.e., for small contraction, the fibers may be in
the linear elastic regime, while for large contraction, the fibers
may be in the strain-hardening or plastic regime [35]. This in
turns can affect the overall cell migration dynamics [28].

In this work, we will use a nonlinear micromechanical
model for the ECM fiber, which is schematically illustrated
in Fig. 2 [35,72]. In particular, upon stretching, a fiber first
enters a linear elastic regime, which is followed by a strong
strain-hardening regime once the elongation is larger than
a prescribed threshold. Upon compression, we consider the
fiber immediately buckles and thus, possesses a much smaller
compression modulus. The elongation stiffness k of the fiber
is thus given by

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρEA/�, λ < 0,

EA/�, 0 < λ < λs,

EA exp[(λ − λs)/λ0]/�, λ > λs.

(2)
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FIG. 2. Schematic illustration of the nonlinear elastic fiber
model, including a linear elastic regime, which is followed by a
strong strain-hardening regime upon compression and buckling upon
compression.

where E and A are, respectively, the Young’s modulus and
cross-sectional area of the fiber bundle, and we use EA =
8×10−7N [22]; λ = δ�/� is elongation strain, � is the original
fiber length, and λs = 0.02 and λ0 = 0.05 are parameters for
the strain-hardening model [72]; ρ = 0.1 describes the effects
of buckling [35]. In addition, we consider the fiber segments
as well as the cross links (nodes) can resist bending and
employ a first-order bending approximation [73], for which
the bending energy Eb is a function of transverse displacement
u of the two nodes of a fiber, i.e., Eb = αEIu2/�0, where the
bending modulus EI = 5×10−22 Nm2 [22], I is the second
moment of area, �0 is the original length of the fiber segment,
and α = 1.8. We also note that the effects of interstitial fluid,
which quickly dissipates the kinetic energy generated due to
cell contraction, are not explicitly considered.

Plasticity of the fibers is modeled as a time-dependent
elongation of the fiber with a constant flow rate γ , i.e.,
δlP = γ t , once the stretching force on the fiber is larger than
a prescribed threshold fP. The flow rate can be calibrated
based on experimental data available in literature [26]. We
note that this elongation due to plasticity effectively reduces
the stiffness of the fiber, i.e., k = EA/(� + δ�P ). In addition,
we can easily construct a stiffness gradient in the ECM
network, by introducing a position-dependent scaling factor,
i.e., E (x) = EC0(x), where C0(x) = (1 + x/L). It is clear that
other forms of C0(x) than the simple linear scaling could be
employed to model more complex stiffness gradient. We note
that a more realistic implementation of the stiffness gradient
is to vary the mesh size of the network. This can be achieved
using the stochastic network reconstruction technique, in
which node density is systematically varied from low to high
along the direction of varying stiffness. Nonetheless, we ex-
pect the artificial approach used here would not significantly
change the physics involved in cell-ECM interaction in the
context of local durotaxis: In both cases (artificially varying
stiffness/varying mesh size), a cell “feels” the local stiffness
via the displacement at focal adhesion once active pulling is
applied. Therefore, in the subsequent studies, we will use the
simple constant gradient to investigate the durotaxis effects.

Once the cell contractions are applied (as described in
Sec. III), an iteration procedure [35] will be employed to

find the force-balanced state of the network and obtain the
forces on the fibers. The numerical procedure can be easily
parallelized using OpenMP for large networks.

III. MODELING CELL MIGRATION REGULATED
BY CELL-ECM MICROMECHANICAL COUPLING

In this section, we present in detail the cell migration
model, which is coupled with the ECM network model. We
note that the current model is targeted for motile but non-
metastatic cancer cells, such as the MCF-10A breast cancer
cells, which move on top of a thick layer of collagen gel. In
this case, the migrating cells are coupled with the ECM via
their micromechanical interactions, without any ECM degra-
dation (such as that through cell-secreted MMP in the case
of metastatic MDA-MB-231 breast cancer cells). Therefore,
we do not consider ECM degradation in the current model
and the associated cell invasion into the ECM layer. However,
including such events is straightforward, as we will discuss
briefly in Sec. VI.

As illustrated in Fig. 3, our cell model consists of an
elastic sphere representing the exclusion volume associated
with cytoplasm and a set of actin filaments that can extend
beyond the cytoplasm sphere to develop protrusions, which
are attached to the ECM network via focal adhesion at the
network nodes. As a starting point, we will not explicitly
consider microtubule, and intermediate filaments, and only
focus on the contractility of the actin filaments. The plasma
membrane is then modeled as the minimal hull enclosing
the end points of the filaments [see Fig. 3(a)]. In the be-
ginning of the simulation, a cell (i.e., a cytoplasm sphere
and the associated cytoskeleton filaments) is introduced in
the collagen network, and a random persistent direction n0

is selected. The migration process is decomposed into cycles
of successive events, including (i) development of protrusion
(due to active actin filaments polymerization) and formation
of new adhesion sites, (ii) contraction of actin filaments and
the resulting locomotion of the cell, and (iii) breaking of old
adhesion sites. These events are modeled and simulated as
described below:

(i) Protrusions are generated by the elongation (polymer-
ization) of the actin filaments, which can be attached to the
ECM fibers via focal adhesion complexes. This process is
modeled by adding new filaments connecting the center of
mass of the cell (i.e., the center of the cytoplasm sphere) to a
node of the ECM network within δRs ∼ 5 μm (effective pro-
trusion length) from the cell surface [see Figs. 3(a) and 3(b)],
selected with the probability pa given by

pa ∼ c1(n0 · d) + c2σ f , (3)

where n0 is the persistent direction of the cell, d is vector
connecting the cell center and the network node, σ f is the
largest stress on the fibers connected to the node, c1 = 1/|d|
(where |d| is the length of the vector d)and c2 = 1/σ0 (where
σ0 is the average stress over all fibers in the network) are
proportionality constants. The relative probability pi

a for pos-
sible new filament i is first computed according to Eq. (3)
for all possible new filaments, and then is normalized by
the factor

∑
i pi

a. This model implies that the actin filament
polymerization is more likely to occur in the polarized region
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FIG. 3. Schematic illustration of the computational model for a migrating cell. (a) Protrusions (yellow dashed lines) generated by
polymerization of actin filaments can lead to focal adhesion formation (yellow dots) in a region within δRs (effective protrusion length)
from the cell surface (red sphere), which is enclosed by the dashed circle. (b) New focal adhesion (red dots) formation is modeled by adding
new filaments (yellow solid lines) connecting the center of mass of the cell (i.e., the center of the cytoplasm sphere) to a randomly selected node
of the ECM network within δRs from the cell surface, with a probability depending on the persistent direction of the cell (dashed arrow) and
the local stress state of the fibers. (c) Active contraction of actin filaments generates active forces in the ECM network and leads to deformation
of ECM. (d) Locomotion of the cell due to actin filament contraction.

of the cell [15]; and that it is more likely to form an adhesion
site on highly stressed fibers [18,20]. Each adhesion site has a
finite life span Ta and breaks once Ta is reached.

(ii) The contraction of an actin filament connecting the
cytoplasm sphere and a network node can generate a traction
force ft (∼1 nN) along the filament direction [76–79] and a
shrinkage of the filament length δl (∼10% of the original
length); see Fig. 3(c). This active force is transmitted to
the ECM network through the “focal adhesion” node. Force
boundary condition is imposed to this node (and other nodes
connected to contracting filaments) and the deformed force-
balanced network configuration is obtained as described in
Sec. II B. The length d ′ of the filament connecting the center
cell and the displaced node is then computed. We then con-
sider the contraction of this filament generates a displacement
component for the cell enter, i.e.,

δx = max{δl − (d − d ′), 0} · d′
0, (4)

where δl is the intrinsic contraction of the filament, d and
d ′ are, respectively, the distance between the cell center and
the adhesion node before and after ECM deformation due to
filament contraction, and d′

0 is the unitary direction vector
along the filament direction after ECM deformation.

(iii) Once the displacement components associated with all
filaments are computed, the center of mass position of the cell
is updated as follows [see Fig. 3(d)]:

xt+1 = xt +
∑

i

δxi, (5)

where the sum is taken for all filaments, and δxi is the
displacement component associated with the ith filament. The
persistent direction n0 is updated as the direction of the cell
displacement (i.e.,

∑
i δxi). We note that Eqs. (4) and (5)

imply that cell locomotion is due to actin filament contraction
and depends on the stiffness of the local ECM.

(iv) All of the current adhesion sites (nodes) are checked
and those reach their life span Ta will break, leading to the
detachment of the cell from the ECM network.

In the simulation, time is discretized such that a migra-
tion cycle is completed during the elapsing of one time
step dt ∼ 1 min. In other words, one time step includes all
cellular processes (e.g., protrusion, focal adhesion formation,
actin contraction, locomotion and bond breaking, etc.) for a

complete migration cycle. The actual time associated with a
particular cellular process is not resolved within a migration
cycle. The life span of a focal adhesion Ta is chosen such
that the adhesion bond is broken after two complete migra-
tion cycles, i.e., Ta = 2dt . This is calibrated based on the
experimental data (see Sec. IV for details), and allows us to
successfully reproduce the experimentally observed migration
dynamic with the correct time scale. Choosing a larger Ta

will effectively slow down the migration in the simulations,
but will not qualitatively change the migration behavior. The
life span can also be randomly chosen from a distribution.
However, we expect that this would not affect the overall
simulated migration dynamics on this level of time resolution.
Once an entire migration cycle is completed, the position of
the cytoplasm sphere (and thus, the center of mass of the
cell) is updated and the cell starts the next migration cycle,
by repeating the steps (i) to (iv).

We also note that the cell-cell contact adhesion is not
explicitly considered in this model, since our focus here is
motile mesenchymal breast cancer cells with relatively weak
cell-cell adhesion. In addition, we employ a minimal model
for the contact inhibition effect for multicellular systems. In
particular, we consider that if a pair of cells with radius Rs

(=10 μm) overlap, they feel a mutual repulsive force propor-
tional to the linear overlap distance, i.e., Fr = κδR, where κ

is an effective elastic constant depending on the modulus of
the cell, δR = 2Rs − ds is the overlap distance, and ds is the
cell center separation distance. In the current model, since
the cells are constrained to only move on the surface of the
ECM, we do not explicitly consider the mechanical interac-
tion between the cytoplasm exclusion sphere and the ECM
fibers.

The key model parameters discussed above are summa-
rized in Table I. The key steps for implementing the cell
migration model are summarized below:

(i) Initialization: ECM network is initialized; the cell (cy-
toplasm sphere) is introduced at a prescribed position on the
top surface of the ECM network; an initial persistent direction
is assigned.

(ii) Focal adhesion formation: Check all nodes of the
network within a distance of δRs from the cell surface; connect
the nodes to the cell center with probability pa [cf. Eq. (3)] by
a (virtual) filament.
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TABLE I. Summary of key parameters for the cell migration model.

Symbol Definition Numerical Value

Rs Cell radius 10 μm
δRs Effective protrusion length from the cell surface 5 μm
n0 Persistent direction of cell migration —
d0 Unitary vector connecting cell center to a focal adhesion node —
d Distance from the cell center to a focal adhesion node —
d′

0 Unitary vector connecting cell center to a focal adhesion node after the ECM deformation —
d ′ Distance from the cell center to a focal adhesion node after the ECM deformation —
pa Probability of focal adhesion formation cf. Eq. (3)
ft Active tensile force generated via actin filament contraction 1 nN
δl Shrinkage of effective actin filament length 10% of the original length
Ta Lifespan of focal adhesion bond two migration cycles
κ Effective stiffness of a cell 1 nN/μm
dt Discrete time step 1 min

(iii) Actin filament contraction: For each network node
connecting to the cell center by a filament, impose the force
boundary condition by applying a tensile force of 1 nN at the
node pointing to the cell center; solve the forces and the defor-
mation of all fibers of the network using the micromechanical
model described in Sec. II B.

(iv) Cell locomotion: For each filament i, compute its
contribution to the cell center displacement δxi according to
Eq. (4); then compute the displacement of the cell center by
superposing the displacement contributions from all filaments
[cf. Eq. (5)]; update the center position according to Eq. (5);
update the length of all filaments.

(v) Breaking adhesion bond: Check the life of all existing
filaments and delete those that have reached their life span Ta.

(vi) Repeat steps (ii)–(v) for a prescribed number of cell
cycles.

In the subsequent sections, we will validate our model
using single-cell migration experiments and employ the model
to predict multicell migration dynamics.

IV. SINGLE-CELL MIGRATION DYNAMICS

In this section, we employ our model to investigate single
cell migration dynamics and its regulation by the microstruc-
ture and mechanical properties of the microenvironment (i.e.,
the ECM network). We mainly focus on nonmetastatic MCF-
10A breast cancer cells in our simulations [80]. These cells
have relatively high motility but are not able to invade since
the pores in the ECM are too small and the cells cannot pro-
duce MMP to degrade the ECM (in contrast to the metastatic
MB-MDA-231 cells). For the 2 mg/ml collagen used in the
study, the average fiber length is about 2 μm, and the average
pore size is about 5 μm, which is much smaller the linear
size of the cell (∼20 μm). In addition, there is no “driving
force” such as a nutrient/glucose gradient for the cells to
invade. Although not being able to invade, the strong motility
of the MCF-10A cells induces strong cell-ECM mechanical
coupling and can generate strong contractile forces during
migration [80]. Using a thick layer of collagen gel is crucial
to ensuring the propagation of the contractile forces through
the ECM, which in turn induces correlated cell dynamics.
Therefore, this system provides an ideal platform for testing

our model. In the following discussions, we will directly use
the experimental results to validate our model predictions. The
experimental details are provided in Ref. [80].

A. Migration dynamics of MCF-10A cells
on isotropic collagen gel

We first employ our model to study the migration dynamics
of individual MCF-10A breast cancer cells on top of a thick
layer of isotropic collagen gel with randomly oriented fibers.
It is well established that in this case, the overall cell dynamics
can be captured by the active-particle model [48], i.e.,

γ dr/dt = F ê + ξ, (6)

where r is the particle center of mass, γ is an effective friction
coefficient, F is an effective constant self-propelling force,
ê is the persistent direction which is subject to a random
rotational diffusion and ξ is a white-noise random vector [48].
The associated theoretical mean-squared displacement (MSD)
σ 2 is given by [48]

σ 2(t ) = [4D + 2v2τR]t + 2v2τ 2
R[e−t/τR − 1], (7)

where D is the diffusivity of the particle, v is the persistent
velocity and τR is the relaxation time for rotation diffusion
of the persistent direction. It can be seen from Eq. (7) that
for small t , the particle exhibits ballistic dynamics with
σ 2 ∝ t2. At large t , the system is diffusive, with σ 2 ∝ D̄t ,
where D̄ = 4D + 2v2τR is the effective diffusivity.

Figure 4 shows the 3D visualization of a single MCF-10A
cell migrating on an isotropic collagen gel with randomly
oriented fibers (see the left panel). The 3D collagen network
model is obtained via stochastic reconstruction based on
the structural statistics extracted from confocal images, as
described in Sec. II A. The contraction of the actin filaments
generates active tensile forces, which are transmitted to the
collagen fibers and propagate in the ECM network. The fibers
carrying large tensile forces are highlighted in red color. The
right panel of the figure shows a confocal microscopy image
of a migrating MCF-10A cell (bright blue) on an isotropic
collagen gel. It can be seen that the collagen fibers in the
vicinity of the cell surface tend to orient perpendicularly to
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FIG. 4. Left panel: 3D visualization of a single MCF-10A cell
migrating on isotropic collagen gel with randomly oriented fibers.
The contraction of the actin filaments generates active tensile forces,
which are transmitted to the collagen fibers (shown in red or dark
gray in print version). Right panel: Confocal microscopy image of a
migrating MCF-10A cell (bright blue) on collagen gel. The collagen
fibers are shown in dark blue (or dark gray in print version). The
linear size of the system is ∼100 μm.

the cell surface, implying that the cell generates traction forces
and pulls the fibers, consistent with the simulation results.

Figure 5 shows the mean-squared displacement (MSD) of
a single MCF-10A cell migrating on isotropic collagen gel
with randomly oriented fibers, respectively, obtained from
computer simulation (left panel) and in vitro experiment
(right panel). The reported results are, respectively, ensemble
averages of 15 independent experiments and 20 independent
simulations. The regions enclosed by the dashed lines rep-
resent the range of standard deviations. The details of the
experiments are provided in Ref. [80]. Here, we only present
the experimental results relevant to our model. The initial
ballistic dynamics (i.e., σ 2 ∝ t2) can be clearly seen, which
is followed by the diffusive dynamics (i.e., σ 2 ∝ D̄t). The
effective diffusivity of the cell obtained from the simula-
tions and experiments are, respectively, D̄ ≈ 94 μm2/min and
D̄ ≈ 103 μm2/min, which agree well with one another.

The insets of Fig. 5 show the trajectories associated with an
ensemble of migrating cells, respectively, obtained from the
simulations and experiments. It can be clearly seen that the
cell migration is isotropic, as expected for a cell in a homoge-
neous microenvironment without any externally applied cues.

FIG. 5. Comparison of the mean-squared displacement (MSD)
of a single MCF-10A cell migrating on isotropic collagen gel with
randomly oriented fibers, respectively, obtained from computer sim-
ulation (left panel) and in vitro experiment (right panel). The reported
results are, respectively, ensemble averages of 15 independent exper-
iments and 20 independent simulations. The regions enclosed by the
dashed lines represent the range of standard deviations. The insets
show the trajectories of the cells.

FIG. 6. A typical trajectory of MCF-10A cell migrating on
3D collagen gel with horizontally aligned fibers obtained from
simulations.

We note that some trajectories from the experiments appear to
be more persistent than those in the simulations. We believe
the major reason for the apparent stronger persistence is that
the experimental system exhibits larger fluctuations (as can
be seen by the larger regions enclosed by the dashed lines
representing the standard deviations). The more persistent
trajectories are more apparent in the plot, and there are also
less persistent trajectories that are masked in the center region
of the plot. Nonetheless, the average dynamics as quantified
by the MSD is consistent with the simulation results. These
results clearly indicate the validity of our model.

B. Migration dynamics of MCF-10A cells on collagen
gel with aligned fibers

With our model validated by experiments, we now employ
it to study cell migration in complex microenvironment, such
as collagen gels with aligned fibers, which are difficult to
fabricate experimentally. The 3D virtual ECM networks are
stochastically constructed by maximizing the fiber orientation
metric � along the x direction (see Sec. II A for details). This
leads to model networks with fibers mainly aligned along the
x direction (see Fig. 6).

Figure 6 shows a typical trajectory of a MCF-10A cell
migrating on a 3D collagen gel with horizontally aligned
fibers obtained from simulations. It can be clearly seen that
the cell tends to migrate along the direction consistent with the
fiber alignment direction (e.g., in this case, x direction). This
can also been seen quantitatively seen from the MSD analysis.
Figure 7 shows the MSD of the migrating cell, respectively,
along the x direction (left panel) and y direction (right panel).
Anisotropy in the migration can be clearly observed, i.e., the
cell moves much faster long the fiber alignment direction than
the perpendicular direction. The effective diffusivity along the
fiber alignment direction and the perpendicular direction is,
respectively, D̄‖ ≈ 168 μm2/min and D̄⊥ ≈ 104 μm2/min.

We note that the phenomenon that cells tend to migrate
along the fiber alignment direction is well known and termed
as “contact guidance” [12,13]. In particular, the symmetry
is broken along the fiber alignment direction, and the cells
can move both forward and backward (i.e., bidirectional),
leading to stronger mixed persistent-diffusive migration be-
havior along this direction than the perpendicular direction.
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FIG. 7. Mean-squared displacement (MSD) of MCF-10A cell
migrating on 3D collagen gel with horizontally aligned fibers (along
the x direction), respectively, along the x direction (left panel) and
y direction (right panel). Anisotropy in migration can be clearly
observed, i.e., the cell tends to move along the direction of fiber
aligned, a phenomenon known as contact guidance. The reported
results are ensemble averages of 20 independent simulations. The
regions enclosed by the dashed lines represent the range of standard
deviations.

However, we are not able to separately characterize the diffu-
sive and persistent behaviors in the migration dynamics at this
stage. In our simulations, as the migrating cell pulls the ECM
fibers, the large tensile forces are mainly carried by certain
chains of aligned fibers, which are typically referred to as the
“force chains” [35,67]. The high-stress fibers along the force
chains are effectively stiffer (e.g., due to strain hardening) and
thus, can support large-magnitude locomotion steps along the
chain directions, and in this case, the fiber alignment direction.
The simulated migration dynamics are consistent with those
reported in Ref. [63].

C. Migration dynamics of MCF-10A cells on collagen
gel with a stiffness gradient

We now employ our model to study cell migration dynam-
ics on collagen gels with a stiffness gradient. As described in
Sec. II A, the structural model of the 3D ECM is constructed
based on the experimentally obtained statistics of a 2 mg/ml
collagen gel with randomly oriented fibers. Once the 3D struc-
tural model is obtained, a linear stiffness distribution along x
direction with a constant gradient is built. This is achieved
by rescaling the Young’s modulus of the fiber according to
E (x) = E (1 + x/L), where x is the x coordinate of the center
of the fibers.

Figure 8 shows a typical trajectory of a MCF-10A cell
migrating on a 3D collagen gel with a stiffness gradient along
the x direction. Similar to the case of contact guidance, it
can be clearly seen that the cell tends to migrate along the
direction against the stiffness gradient, i.e., the positive x
direction. This can also been seen quantitatively seen from the
MSD analysis. Figure 9 shows the MSD of the migrating cell,
respectively, along the x direction (left panel) and y direction
(right panel). Anisotropy in the migration can be clearly
observed, i.e., the cell moves much faster long the stiffness
gradient direction than the perpendicular direction. The effec-
tive diffusivity along the stiffness gradient direction and the
perpendicular direction is, respectively, D̄‖ ≈ 146 μm2/min
and D̄⊥ ≈ 117 μm2/min.

FIG. 8. A typical trajectory of MCF-10A cell migrating on 3D
collagen gel with a stiffness gradient along the x direction obtained
from simulations.

The phenomenon that cells migrate against the stiffness
gradient of the ECM is well known and termed as “durotaxis”
[8–10]. In our simulations, as the migrating cell pulls the
ECM fibers, the stiffer fibers will possess smaller deforma-
tion, which in turn can support larger locomotion components
towards these fibers [cf. Eq. (4)]. The accumulated effect of
many local migration steps is the overall biased migration up
the stiffness gradient as observed in the experiments.

We note that an important distinction between the migra-
tion anisotropy in this case and the contact guidance case
is that here the cell migration is unidirectional, i.e., up the
stiffness gradient; while in the contact guidance case, the
migration is bidirectional, i.e., along the fiber alignment di-
rection but the cells can move in both ways. Therefore, the
migration dynamics for the durotaxis case is more ballistic
as can be seen from the MSD data in Fig. 9. In particular,
the quadratic part in the MSD remains significant for a longer
time compared to the contact guidance case (see Fig. 7), but
eventually the dynamics becomes diffusive. The simulated
migration dynamics are consistent with those reported in
Ref. [63].

FIG. 9. Mean-squared displacement (MSD) of MCF-10A cell
migrating on 3D collagen gel with a stiffness gradient (along the
x direction), respectively, along the x direction (left panel) and
y direction (right panel). Anisotropy in migration can be clearly
observed, i.e., the cell tends to move up against the stiffness gradient,
a phenomenon known as durotaxis. The reported results are ensemble
averages of 20 independent simulations. The regions enclosed by the
dashed lines represent the range of standard deviations.
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FIG. 10. Left panel: 3D visualization of two closely spaced
MCF-10A cells migrating on an isotropic collagen gel with randomly
oriented fibers. The collagen fibers carrying large tensile forces
generated by actin filament contraction are highlighted in red. Right
panel: Confocal microscopy image of a pair of migrating MCF-10A
cells (bright blue) on collagen gel. The collagen fibers are shown in
dark blue (or dark gray in print version).

V. STRONGLY CORRELATED MULTICELLULAR
DYNAMICS

In Sec. IV, we show that our computational model can
capture the salient features of single-cell migration dynamics
in both homogeneous and complex microenvironment. In this
section, we employ the model to investigate multicellular
migration dynamics. As mentioned in Sec. III, we do not
explicitly model cell-cell adhesion here (due to very low cell
density considered here ∼0.0002 μm−2) and use a minimal
model for cell-cell repulsion due to contact inhibition (see
Sec. III for details). In addition, in this study, we focus on
relatively small system, containing ∼20 cells.

Figure 10(a) shows 3D visualization of a small portion
(with a linear size ∼50 μm) of the simulation box which
contains two closely spaced MCF-10A cells migrating on
isotropic collagen gel with randomly oriented fibers. The
active tensile forces generated by the cells (due to actin
filament contraction) are transmitted to the collagen fibers.
The collagen fibers carrying large tensile forces (i.e., those
that are larger than 10% of the maximal pulling force among
all fibers) are highlighted in red. Figure 10(b) shows the
confocal microscopy image of a pair of migrating MCF-10A
cells (bright blue) on collagen gel. It can be clearly seen that
the collagen fibers (dark blue) between the two cells form
a mesoscopic scale structure, which is clearly distinguished
from original homogeneous ECM network and is consistent
with the mesoscale structure carrying the majority of tensile
forces in between two contractile cells in our simulations.

We also quantify the average orientation of the fibers
between the two cells using the orientation metric �∗, which
is computed as the average cosine of the acute angles made
by the fibers in this region with respect to the line connect-
ing the cell centers. The orientation metric computed from
the simulation and experimental data are, respectively, �∗ =
0.794 and 0.823, which is consistent with the observation
based on the images. One possible reason for the observed
stronger alignment of ECM fibers in the experimental system
is that the ECM might also be chemically remodeled (e.g.,
forming fiber bundles and thus more visible under confocal

FIG. 11. Comparison of the velocity correlation function S(r)
(see the text for definition) of MCF-10A cells migrating on isotropic
collagen gels with randomly oriented fibers, respectively, obtained
from computer simulation (solid curve) and in vitro experiment
(dashed curve).

microscopy) besides the mechanical remodeling as considered
in the simulations.

To quantify the correlations in the collective migration
dynamics of multiple MCF-10A cells, we employ the velocity
correlation function S(r), i.e.,

S(r) = 〈vi(x) · v j (x + r)〉/(|vi(x)||v j (x + r)|), (8)

where r = |r|, i, j denote a pair of cells connected by the
remodeled mesoscale ECM structures and 〈, 〉 denotes en-
semble average over all different cell pairs. We note that in
computing S(r), we only consider a subsets of cell pairs,
i.e., those between which the mesoscale fiber structures are
formed. This allows us to clearly obtain the effects of such
mesostructure on the collective dynamics of the cells, if any.
Due to the mutual exclusion effects among the cells, S(r) = 0
for r < D∗ and D∗ is roughly the diameter of a cell. In
addition, two cells separated by very large distances are not
correlated, i.e., S(r) ≈ 0 for large r values. A positive S(r)
indicates that the cells tend to move in the same direction,
implying a net “flow” of cells in the system. However, a neg-
ative S(r) indicates that the cells move towards or away from
one another. In the former case (i.e., cells moving towards one
another), this implies the formation of aggregation or clusters
at high cell densities.

We also note that although the radius of the idealized
spherical cell in our modal is exactly 10 μm, consistent with
the effective size of actual cells in the experiments (defined
through equivalent area), the cell-center separation distance
when two cells in contact in the experiments can signifi-
cantly fluctuate (e.g., typically between 5 and 15 μm) due
to the deformation of cell shapes. This can lead to unreliable
statistics for the correlation function for small distances in
the experimental case. Therefore, we have chosen a larger
starting distance, i.e., D∗ = 25 μm (instead of 20 μm) for the
correlation function calculation.
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FIG. 12. Successive snapshots over 30 min showing the positions
of two nearby cells obtained from simulations (upper panels) and
experiments (lower panels). These results indicate the two cells move
towards one another, as indicated by the short-range negative values
of the corresponding velocity correlation functions shown in Fig. 11.

Figure 11 shows the velocity correlation function S(r) of
MCF-10A cells migrating on isotropic collagen gels with ran-
domly oriented fibers, respectively, obtained from computer
simulations (solid curve) and in vitro experiments (dashed
curve). It can be seen that the simulation results agree very
well with the experimental data. Interestingly, the S(r) func-
tions (beyond the trivial exclusion region) start from a very
negative value (close to the minimal value −1) around D∗ ≈
25 μm, slowly increase to zero and then fluctuate around
zero. Together with the visualizations of the simulation results
(see Fig. 12), this indicates the cells tend to move towards
one another, facilitated by the mesoscopic structures of the
remodeled ECM, which is also confirmed by the time-lapse
confocal data [80].

Our results indicate that strongly correlated cell migration
dynamics is correlated with the mesoscale ECM structures
due to cell remodeling. One possible reason is that the
mesostructures are composed of many force chains (or a
“force network”), which are in turn composed of fibers carry-
ing large tensile forces. Therefore, the fibers in the mesostruc-
tures (at least in our simulations) are stiffer than the remain-
ing stress-free fibers, which indicates that the mesostructures
themselves are stiffer than the surrounding ECM. These stiffer
mesostructures can then facilitate correlated cell migration
via durotaxis, and also facilitate indirect mechanical coupling
between the migrating cells.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we develop a computational model for cell
migration in complex microenvironment, which explicitly
takes into account a variety of cellular-level processes includ-
ing focal adhesion formation and disassembly, active traction

force generation and cell locomotion due to actin filament
contraction, transmission and propagation of tensile forces
in the ECM. We employ statistical descriptors obtainable
from confocal microscopy to quantify and control the 3D
ECM network microstructure and use a nonlinear mechanical
model for the ECM networks, which incorporates buckling
of collagen fibers upon compression and strain-hardening
upon stretching. We validate our model by accurately re-
producing single-cell dynamics of MCF-10A breast cancer
cells migrating on collagen gels and show that the durotaxis
and contact guidance effects naturally arise as a consequence
of the cell-ECM micromechanical interactions considered in
the model. Moreover, our model predicts strongly correlated
multicellular migration dynamics, which are resulted from
the ECM-mediated mechanical coupling among the migrating
cells and are subsequently verified in in vitro experiments
using MCF-10A cells.

Although focusing on the nonmetastatic MCF-10A breast
cancer cells migrating on top of thick layers of collagen
gels, our model can be easily generalize to investigate the
migration of mesenchymal cells (e.g., invasive MDA-MB-231
breast cancer cells) in 3D ECM. The key modification is
to explicitly model ECM degradation by the cells, which
can be achieved using the following rule: A migrating cell
degrades collagen fibers with a probability pb ∝ exp(−r),
with r being the distance from the fiber to the cell mem-
brane. A degraded fiber is removed from the network in
subsequent simulation steps. In addition, cell-cell adhesion
can also be easily incorporated into the model to investigate
a wide range of cell lines with different phenotypes. With
proper modifications and generalizations, as well as efficient
parallel implementations, it is expected that the model could
be employed to investigate collective migratory behaviors and
emergent self-organizing multicellular patterns resulted from
ECM-mediated mechanical signaling among the cells.
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