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Abstract. An abstract system of congruences describes a way of partition-

ing a space into finitely many pieces satisfying certain congruence relations.
Examples of abstract systems of congruences include paradoxical decomposi-

tions and n-divisibility of actions. We consider the general question of when

there are realizations of abstract systems of congruences satisfying various
measurability constraints. We completely characterize which abstract systems

of congruences can be realized by nonmeager Baire measurable pieces of the

sphere under the action of rotations on the 2-sphere. This answers a question
of Wagon. We also construct Borel realizations of abstract systems of congru-

ences for the action of PSL2(Z) on P1(R). The combinatorial underpinnings

of our proof are certain types of decomposition of Borel graphs into paths.
We also use these decompositions to obtain some results about measurable

unfriendly colorings.

1. Introduction

Recently, several results have been proved about the extent to which realizations
of geometrical paradoxes can be found with sets having measurability properties
such as being Borel, Lebesgue measurable, or Baire measurable (see for instance
[CS][DF][GMP16][GMP17][Ma][MU16][MU17]). This is a growing area of study
at the interface of descriptive set theory, combinatorics, and ergodic theory. This
paper is a contribution to this study. One of the earliest results in this vein is the
theorem of Dougherty and Foreman [DF] that the Banach-Tarski paradox can be
realized using Baire measurable pieces. In contrast to the classical Banach-Tarski
paradox which uses five pieces, Dougherty and Foreman’s Baire measurable solution
uses six pieces. A result of Wehrung [Weh] implies that this is optimal; there is no
Baire measurable realization of the Banach-Tarski paradox with five pieces. This
suggests a subtle difference between the classical and Baire measurable contexts.

In this paper, we consider a refined framework called “abstract systems of con-
gruence” for describing when an action can be partitioned into finitely many pieces
satisfying certain congruence relations. As one application, we give an exact charac-
terization of which abstract systems of congruences can be realized in the 2-sphere
with arbitrary pieces versus nonmeager Baire measurable pieces. This refines the
dual results of Wehrung [Weh], and Dougherty and Foreman [DF].

We formally define abstract systems of congruences as follows. Given a set S, its
proper powerset Ppr(S) is Ppr(S) = {R ⊆ S : R ̸= ∅∧R ̸= S}. Following Wagon
[W, Definition 4.10], an abstract system of congruences on n = {0, . . . , n− 1}
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is an equivalence relation E on Ppr(n), so that if U E V , then U c E V c. Here U c

denotes the complement of U . Suppose a : Γ ↷ X is an action of a group on a set
X. Then we say that A,B ⊆ X are a-congruent if there is a group element γ ∈ Γ
such that γ · A = B. An a-realization of an abstract system of congruences E
is a partition {A0, . . . , An−1} of X such that for all U, V ∈ Ppr(n) with U E V ,
we have that

⋃︁
i∈U Ai and

⋃︁
i∈V Ai are a-congruent. The definition of an abstract

system of congruences reflects that fact that congruence is an equivalence relation,
and that if A,B ⊆ X are congruent, then Ac and Bc are also congruent.

An important example of an abstract system of congruences is the smallest
abstract system of congruences E on Ppr(4) containing the relations {0} E {0, 1, 2}
and {1} E {0, 1, 3}. A realization of this system gives a paradoxical decomposition,
since {0, 3} and {1, 2} partition {0, 1, 2, 3}. The translation action of the free group
on two generators F2 on itself is an example of an action realizing this system of
congruences [W, Theorem 4.2]. Another important example of an abstract system
of congruences is the smallest abstract system of congruences E on Ppr(n) where
{i} E {j} for every i, j ∈ n. An action is said to be n-divisible if it satisfies this
system of congruences (that it, is can be partitioned into n congruent pieces). For
example, it is easy to see that the action of the rotation group SO3 on the 2-sphere
is not 2-divisible by considering the “poles” of the rotation. However, this action
is n-divisible for n ≥ 3 (see [W, Corollary 4.14]).

Wagon has characterized which abstract systems of congruences can be realized
in the action of the group SO3 of rotations on the 2-sphere. We say that an abstract
system of congruences E on n is non-complementing if there is no set X ∈ Ppr(n)
such that X E Xc.

Theorem 1.1 ([W, Corollary 4.12]). Suppose E is an abstract system of congru-
ences. E can be realized in the action of SO3 on the 2-sphere if and only if E is
non-complementing.

We show that in order to realize an abstract system of congruences with Baire
measurable pieces in the sphere, we need one additional property. Say that an
abstract system of congruences E on Ppr(n) is non-expanding if there do not
exist sequences of sets (Vi)i≤k and (Wi)i≤k where Vi E Wi for every i ≤ k and
Wi ⊆ Vi+1 for every i < k, such that Wk ⊊ V0. Hence,

V0 E W0 ⊆ V1 E W1 ⊆ . . . Vk E Wk ⊊ V0.

Theorem 1.2. Suppose E is an abstract system of congruences. Then E can be
realized in action of SO3 on the 2-sphere with Baire measurable pieces each of which
is nonmeager if and only if E is non-complementing and non-expanding.

This theorem positively answers Wagon’s question [W, Page 47] of whether the
2-sphere is n-divisible with Baire measurable pieces for n ≥ 3. Indeed, the smallest
abstract system of congruences E containing the relations {1} E {2} E . . . E {n}
is clearly noncomplementing and nonexpanding for n ≥ 3, and hence has a Baire
measurable realization in the action of SO3 on the 2-sphere. Wagon has also asked
whether the 2-sphere is n-divisible into Lebesgue measurable pieces. This remains
an open problem.

Let Fn be the free group on n generators. Our proof of Theorem 1.2 shows
more generally that if n ≥ 2, then any free Borel action of Fn on a Polish space
X can realize an abstract system of congruences that is non-expanding and non-
complementing using Baire measurable pieces. (See Lemma 3.6).
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Our main tool for proving Theorem 1.2 is a decomposition lemma for acyclic
Borel graphs into sets of paths with a property concerning how the paths from
different sets may overlap.

Definition 1.3. Suppose G is a graph and G0, G1, . . . is a sequence of subgraphs
of G. Then we say G0, G1, . . . is end-ordered if for all vertices x in G, if x is a
vertex in Gi and Gj where i < j, then x is a leaf in Gj . Similarly, if S0, S1, . . .
are sets of subgraphs of G, then we say that S0, S1, . . . is end-ordered if for all
vertices x in G, if x is vertex in H ∈ Si and a vertex in H ′ ∈ Sj where i < j, then
x is a leaf in H ′.

Definition 1.4. Suppose G is an acyclic Borel graph. Then a path decomposi-
tion of G is a sequence P0, P1, . . . of sets of paths in G such that P0, P1, . . . is end
ordered, every Pi consists of vertex disjoint paths, and for every edge e in G, there
exists exactly one Pi so that e appears in a path in Pi. We say that a path decom-
position is Borel if each set Pi is Borel, and the path decomposition has length at
least n if every path has length at least n.

Roughly, a path decomposition is a way of covering the graph with sets of paths
P0, P1, . . . so that all the paths in Pj have interiors that are disjoint from the paths
in Pi, for i < j.

One of our main lemmas (Lemma 3.4) says that if G is a locally finite acyclic
Borel graph, then for all n, there is a comeager set on which G has a Borel path
decomposition of length at least n.

A different case in which we have Borel path decompositions is when we have
Borel end selections. Recall that if G is a graph on X, a ray is an infinite simple
path in G, and that two rays (xi)i∈N and (yi)i∈N are end-equivalent if for ev-
ery finite set S ⊆ X, the rays (xi) and (yi) eventually lie in the same connected
component of G ↾ (X \ S). An end of G is an end-equivalence class of G. If G
is a Borel graph on X, we say that G admits a Borel selection of finitely k
ends in each connected component if there are Borel functions r0, . . . , rk−1

sending each x ∈ X to k end-inequivalent rays r0(x), . . . , rk(x) in the connected
component of x such that if y are in the same connected component of G as x, then
{r0(x), . . . , rk−1(x)} and {r0(y), . . . , rk−1(y)} are representatives of the same set of
ends. We say that G admits a Borel selection of finitely many ends in each
connected component if G can be partitioned into countably many invariant
Borel sets A0, A1, . . . so that for each i, there is some k so that G ↾ Ai has a Borel
selection of k ends in each connected component.

We show that if G is an acyclic bounded degree Borel graph on X such that there
is a Borel selection of finitely many ends in every connected component of G, then
for every n we can find a Borel path decompositions of G of length at least n (see
Lemma 4.2). We construct explicit realizations of abstract systems of congruences
for the action of PSL2(Z) on P 1(R), by combining this lemma with an explicit end
selection defined using continued fraction expansions.

Theorem 1.5. Suppose E is an abstract system of congruences which is non-
complementing and non-expanding. Then E can be realized in the action of PSL2(Z)
on P 1(R) by Borel pieces.

For example, this action is n-divisible using Borel pieces for n ≥ 3.

Open Problem 1.6. Characterize the abstract systems of congruences which can
be realized in the action of PSL2(Z) on P 1(R) by Borel pieces.
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It is a theorem of Adams [JKL, Lemma 3.21] that if G is a locally finite graph
on a standard probability space (X,µ) and G is µ-hyperfinite, then G admits a
µ-measurable selection of finitely many ends. Using Adams’s theorem, we also
show that any µ-hyperfinite action of F2 on a standard probability space (X,µ)
has a µ-measurable realization of any abstract system of congruences E, if E is
non-complementing and non-expanding. (See Theorem 4.3).

Our decomposition lemmas have some other applications in Borel combinatorics.
Simon Thomas has asked whether every locally finite Borel graph has an unfriendly
Borel coloring, where an unfriendly coloring of a graph G on X is a function
f : X → 2 such that for every x,

|{y ∈ N(x) : c(x) ̸= c(y)}| ≥ |{y ∈ N(x) : c(x) = c(y)}|.
Thomas’s question is partially motivated by the open problem in classical combi-
natorics of whether every countable graph admits an unfriendly coloring. If G is a
graph on X, say that a function f : X → 2 is strongly unfriendly if for every x,
|{y ∈ N(x) : c(x) = c(y)} ≤ 1.

We use our decomposition lemma to prove the following result:

Theorem 1.7. Suppose G is a locally finite acyclic Borel graph on a Polish space
X that admits a Borel path decomposition of length at least 5. Then G has a
Borel strongly unfriendly coloring. Hence, if G is a locally finite acyclic Borel
graphs of degree at least 2, then G admits a Baire measurable strongly unfriendly
colorings, and G admits a µ-measurable strongly unfriendly colorings for every Borel
probability measure on X rendering G µ-hyperfinite.

In Section 5 we also discuss some further applications of our decompositions, such
as new proofs of Baire measurable and µ-measurable edge-coloring and matchings.

Acknowledgments. The authors would like to thank Anton Bernshteyn, Benson
Farb, and Alekos Kechris for helpful discussions about the material of the paper.
The authors would also like to thank the anonymous referee for their excellent
suggestions and thorough reading of the paper.

2. Preliminaries

Our notation for graph theory is standard, see [D]. We recall a few notions. By
a graph on X we mean a simple undirected graph with vertex set X. The degree
of a vertex is its number of neighbors. Two vertices are adjacent if there is an edge
between them. A vertex is a leaf if it has degree 1, and is a splitting vertex if it
has degree at least 3. By a path we mean a simple path of finite length x0, . . . , xn.
The endpoints of the path are x0 and xn, and the remaining vertices are interior
vertices of the path. By a ray, we mean a simple infinite path (xi)i∈N.

If G is a graph, we say a set of vertices is independent if it does not contain
two adjacent vertices. We say that a set A is k-independent if for all distinct
x, y ∈ A, we have d(x, y) > k.

Suppose G is a graph on X. A subgraph H of G is a graph on a subset of X
so that every edge in H is an edge in G. If Y ⊆ X, the restriction of G to Y or
induced subgraph on Y , denoted G ↾ Y , is the graph on Y where the edges of
G ↾ Y are all edges in G with vertices in Y .

A Borel graph is a graph on a Polish space X whose edge relation is Borel. For
background on Borel graphs see [KM]. An important example of a Borel graph
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arises from Borel group actions. If a is a Borel action of a countable group Γ on a
Polish space X and S ⊆ Γ is a symmetric set of group elements, then we let G(a, S)
be the graph on X where x, y are adjacent if there exists some γ ∈ S such that
γ · x = y.

If G is a Borel graph on X, the set of all paths of G is a Borel subset of
⋃︁

n X
n,

and hence a standard Borel space. Hence we may speak about a set of paths in G
being Borel.

We note that in contrast to Lemmas 3.4 and 4.2 there exist Borel graphs which
do not admit Borel path decompositions of length at least 3.

Theorem 2.1. Suppose that G is Borel graph of degree at least 3 on a Polish
space X that admits an invariant measure µ. Then G does not admit a Borel path
decomposition on any µ-conull Borel set.

Proof. Let P0, P1, . . . be a Borel path decomposition. Note that every vertex x
must be the endpoint vertex of some unique path p(x) ∈ Pi since G has degree at
least 3. Define a Borel function f : X → X where f(x) is the vertex adjacent to x in
p(x). Then f is a compression function contradicting µ being measure preserving.
[N] □

We will use the following lemma giving a criterion for the existence of abstract
systems of congruences without any measurability properties.

Definition 2.2. Suppose E is an abstract system of congruences. Say that a
relation R on a set X generates the equivalence relation E on X if the smallest
abstract system of congruences containing R is equal to E. Say that a generating
set R for E is good if R contains all pairs (U, V ) ∈ E such that U = V c. Finally,
a minimal good generating set of E is a good generating set R so that there is no
proper subset of R that is a good generating set for E.

Lemma 2.3 (See also [W, Section 4]). Suppose that E is an abstract system of
congruences on n, and R = {(S1, T1), . . . , (Sk, Tk)} is a minimal good generating
set of E. Suppose a : Γ ↷ X is an action of

Γ = ⟨γ1 . . . γk | {γ2
i = 1: Ti = Si

c}⟩.
Suppose finally that for every x ∈ X, Stab({x}) is cyclic. Then there is an a-
realization {A0, . . . , An−1} of E, witnessed by

(*) γi ·
⋃︂
j∈Si

Aj =
⋃︂
j∈Ti

Aj .

Proof. This Lemma is proved in [W, Section 4] when E is non-complementing.
Using the axiom of choice, it suffices to prove the lemma when the action has the

single orbit. Since the stabilizer of every point is cyclic, the graph G(a, {γi : i ≤ k})
has at most one cycle.

Suppose there is a cycle x0, x1, . . . , xl = x0. Let g be the group element g =
gl−1 . . . g1g0 so that xi+1 = gi . . . g1g0 · x0, and gi ∈ {γ±

1 , . . . , γ±
k }. We claim we

can assign elements of this cycle to A0, . . . , An−1 in a way that is consistent with
(*). First, define functions X and Y on the generators by letting X(γj) = Sj ,
Y (γj) = Tj , X(γ−1) = Tj , and Y (γ−1) = Sj , so obeying (*) corresponds to having

xi ∈
⋃︂

j∈X(gi)

Aj iff xi+1 ∈
⋃︂

j∈Y (gi)

Aj .
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Let i+ denote i+ 1 mod k.
Case 1: Suppose there is some i < l such that X(gi+) ̸= Y (gi) and X(gi+) ̸=

Y (gi)
c
. Then we claim we can assign x0, . . . , xl to A0, . . . , An−1 in a way that

satisfies (*). For example, suppose there is r, s ∈ X(gi+) such that r ∈ Y (gi)
and s ∈ Y (gi)

c
. Start by assigning xi++ to an arbitrary element of Y (gi+). Then

proceed around the cycle, assigning elements in a way consistent with (*). Finish
by assigning xi+ to Ar if xi ∈ X(gi), or assigning xi+ to As if xi /∈ X(gi). The
other cases are essentially identical.

Case 2: Suppose for all i < l, X(gi+) = Y (gi) or X(gi+) = Y (gi)
c
. In this case,

we claim that if there is no way to assign x0, . . . , xl to A0, . . . , An−1 in a way that
satisfies (*), then R is not a minimal good generating set, which is a contradiction.

Let V (0) = X(g0), and then inductively define V (i + 1) = Y (gi) if V (i) =
X(gi), and otherwise V (i + 1) = V (gi)

c
if V (i) = X(gi)

c
. Hence V (0) E V (1) E

V (2) . . . E V (l). Since there is no way to assign x0, . . . , xl to A0, . . . , An−1 in a
way that satisfies (*), we must have that V (0) = V (l)

c
. Now take a minimal length

subsequence V (i), . . . , V (j) of V (0), . . . , V (l) such that

(**) j − i ≥ 2 and V (i) = V (j) or V (i) = V (j)
c
.

It is clear that if gi = γm, then we can remove the pair (Sm, Tm) from R and
we would still generate E. This is because if V (i) = V (j), then V (i) E V (i + 1)
follows from V (i + 1) E V (i + 2) . . . E V (j) = V (i). If V (i) = V (j)

c
, then the

fact that V (i) E V (i + 1) follows from V (i + 1) E V (i + 2) . . . E V (j) = V (i)
c
,

and since by the definition of a good generating set, the pair V (j) E V (i)
c
must

appear in R. (Note that here we are using the minimal length of this subsequence
among those with (**) and the fact that g is a reduced word to ensure that the
equivalences V (i) E V (i+1) and V (i) E V (i+ 1)

c
do not appear in the equivalences

V (i+ 1) E . . . E V (j)). This finishes Case 2.
Now that we assigned the elements of the cycle to A0, . . . , An−1, if a cycle exists,

for the remaining acyclic portion of the graph, we clearly iteratively assign the
vertices to A0, . . . , An−1 in a way that satisfies (*). □

Throughout we will be working with actions of such groups Γ that are free
products of copies of Z and Z/2Z, and where the generators of Γ of order 2 will
witnesses congruences of the form U E U c.

3. Baire measurable realizations

In this section we prove Theorem 1.2. We begin with a decomposition lemma for
acyclic locally finite Borel graphs (Lemma 3.4). As an intermediate step towards
this lemma, we consider decompositions into certain types of trees that themselves
have suitable decompositions into paths. Recall that a tree is a connected acyclic
graph, a leaf of a tree is a vertex of degree 1, and a splitting vertex is a vertex of
degree at least 3. Say that a tree T is n-spindly if there is at most one leaf l of T
so that for all distinct leaves x, y, if l /∈ {x, y}, then d(x, y) > 2n, and if l ∈ {x, y},
then d(x, y) ≥ n. The utility of spindly trees is the following lemma:

Lemma 3.1. Every finite n-spindly tree T can be written as a union of edge-disjoint
paths p0, p1, . . . each having length at least n, and which are end-ordered.

Proof. We construct p0, p1, . . . , pk by induction. Let p0 be a path from one leaf
to another leaf, having minimal length among such paths between leaves. Let the
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endpoints of p0 be x and y. We may assume x ̸= l for the distinguished leaf l if it
exists.

For each vertex z not in p0, let Vz be the set of w such that there is a path p from
z to w such that no interior vertex of p is in p0. Since T is a tree, there is exactly
one vertex in T ↾ Vz which is contained in p0. Let this vertex be lz, which is a leaf
in T ↾ Vz. For any leaf w in T ↾ Vz, the distance d(x, lz) ≤ d(w, lz). Otherwise if
d(w, lz) < d(x, lz), the path from w to y would have smaller length than p0, but
p0 has minimal length. Hence, d(w, lz) ≥ n since otherwise d(x, lz) ≤ d(w, lz) < n
which implies that d(x,w) < 2n contradicting T being n-spindly, since neither x
nor w are equal to l. It follows that T ↾ Vz is n-spindly witnessed by lz.

The lemma follows by inductively applying the lemma to all these n-spindly
subgraphs of the form T ↾ Vy. □

Remark 3.2. Every locally finite n-spindly tree T can be written as a union of
edge-disjoint paths p0, p1, . . . that are of length at least n and which are end-ordered.
That is, Lemma 3.1 remains true for infinite n-spindly trees. This is by an infinite
iteration of the same process in the proof of Lemma 3.1 (or by a compactness
argument).

As an intermediate step towards our path decomposition, we prove a lemma
decomposing into n-spindly trees.

Lemma 3.3. Suppose G is a locally finite acyclic graph on a Polish space X of
degree at least 2, and n ≥ 1. Then there are a G-invariant comeager Borel set
D and edge-disjoint Borel subgraphs G0, G1, . . . such that

⋃︁
i Gi = G ↾ D, every

connected component of Gi is a finite n-spindly tree, and the sequence G0, G1, . . .
is end-ordered.

Proof. We give a construction in countably many steps. Let d(i) = 3n6i. By
[MU16, Lemma 3.1], let (Ai)i∈N be subsets of X such that the elements of Ai

are pairwise of distance greater than 3d(i), and D =
⋃︁

i Ai is comeager and G-
invariant. Before step s we will have constructed edge-disjoint Borel subgraphs
G0, G1, . . . , Gs−1. Let Hi =

⋃︁
j≤i Gj . Let Hi,k for k ≤ i be all the connected

components C in Hi where k is least such that C is also a connected component of
Hk. So Hi is the disjoint union Hi =

⋃︁
k≤i Hi,k.

Our induction hypotheses are as follows:

(1) For every i < s and x ∈ Ai, there is an edge incident to x in Hi.
(2) For every k ≤ s− 1, the diameter of any connected component of Hs−1,k is

at most d(k).
(3) For every k ≤ s − 1, the distance between any two connected components

of Hs−1,k is at least 2d(k).
(4) The distance between any two connected components of Hs−1 is greater

than 2n.

Note that these hypotheses imply that every edge in G ↾ D will appear in some
Gi. To see this suppose x, x′ are adjacent where x ∈ As and x′ ∈ As′ . Then x and
x′ must both be in connected components of Hmax(s,s′) by (1), and hence the same
connected component by (4). Thus the edge (x, x′) must be in Hmax(s,s′) since G
is acyclic.

Below we inductively define Gs, then prove each connected component of Gs

is n-spindly. Note that to satisfy part (1) of the induction hypothesis, we need
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to add an edge incident to each x ∈ As to Gs if there is not one already one in
Hs−1. However, simply adding such edges by themselves may violate induction
hypothesis (4). So we will need to inductively define Gs to include paths to all
nearby connected components of Hs−1,k so they all become the same connected
component in Hs. Hypotheses (2) and (3) give us control over this process so we
can satisfy (4).

To begin, let Gs,0 be the graph consisting of all vertices in As (and no edges).
Inductively, for 0 < i ≤ s, let Gs,i ⊇ Gs,i−1 be the union of Gs,i−1 with all
paths of length at most d(s − i) in the graph G \Hs−1 from vertices in Gs,i−1 to
connected components of Hs−1,s−i. Since elements of As have pairwise distance at
least 3d(s) it is clear by induction that components of Gs,i have diameter at most
2d(s − 1) + . . . + 2d(s − i), and hence components of Gs,s have diameter at most
2d(s− 1) + . . .+ 2d(0). Similarly, the components of Gs,s are pairwise of distance
at least 3d(s)− 2d(s− 1)− . . .− 2d(0).

Let A0
s be the set of x ∈ As that are not incident to any edge of Hs−1 or Gs,s.

(Hence, every x ∈ A0
s has d(x,Hs−1) > d(0) ≥ 3n). For each x ∈ A0

s, let p(x) be
the lex-least path of length n in G starting at x. Let A1

s be the set of x ∈ As that
are leaves in Gs,s. For x ∈ A1

s, let p(x) be the lex-least path of length n starting at
x in G\(Gs,s∪Hs−1). Such a path exists since every vertex in G has degree at least
2, and since if y is a neighbor of x that is not in Gs,s, then there is no simple path
of length at most d(0) ≥ 3n beginning x, y, . . . that ends in an element of Hs−1 by
the definition of Gs,s. Let Js = {p(x) : x ∈ A0

s ∨ x ∈ A1
s} and let Gs = Gs,s ∪ Js.

Clearly Hs satisfies (1) by definition.
Suppose C is a connected component of Gs. We want to prove C is n-spindly.

Now C contains a unique x ∈ As. We consider three cases. Case 1: if x ∈ A0
s, then

clearly C is just a path of length n, hence C is n-spindly. Case 2: if x ∈ A1
s, then

let p(x) = x, . . . , z have endpoint z. In this case, z is the distinguished leaf C; if l
is any other leaf of C, then d(z, l) ≥ n since p(x) has length n. By the definition of
Gs, any leaf in C not equal to z is the endpoint of a path from Gs,i−1 to Hs−1,s−i

for some i. Since any two connected components of Hs−1 have distance at least 2n
by (4), all these leaves have distance pairwise greater than 2n. So C is n-spindly.
Case 3: if x /∈ A0

s and x /∈ A1
s, then all leaves of C are endpoints of paths from

Gs,i−1 to Hs−1 and have distance greater than 2n, so C is n-spindly.
Now we verify parts (2) and (3) of the induction hypothesis. By construction

of Gs, every connected component of Gs has diameter at most 2d(s − 1) + . . . +
2d(0)+n ≤ d(s)−2d(s−1). Since connected components of Hs−1 have diameter at
most d(s− 1) by our induction hypothesis, connected components of Hs,s therefore
have diameter at most d(s). Similarly, the distance between any two connected
components of Gs is at least 3d(s)−2d(s−1)− . . .−2d(0)−2n ≥ 2d(s)+2d(s−1).
Hence, connected components of Hs,s have pairwise of distance at least 2d(s), since
connected components of Hs−1 have diameter at most d(s − 1). Note that if C is
a connected component of Hs,k, then it is also a connected component of Hs′,k for
all s′ < s. Hence, part (2) and (3) of the induction hypothesis are also true for all
k < s. This verifies parts (2) and (3) of the induction hypothesis.

Now we show that part (4) of the induction hypothesis holds. Suppose C is a
connected component of Hs,s. We want to show that distance from y ∈ C to any
other connected component C ′ of Hs,k is greater than 2n for k ≤ s. When k = s,
this follows from (3), so assume k < s. For a contradiction, let y be a vertex in C



MEASURABLE REALIZATIONS OF ABSTRACT SYSTEMS OF CONGRUENCES 9

with d(y, C ′) ≤ 2n. We may assume that y ∈ Gs, since if y ∈ Gs′ for s
′ < s, then

d(y, C ′) follows from our induction hypothesis. We may further assume y ∈ Gs,s.
To see this, let x ∈ C be the unique vertex in C with x ∈ As. If x ∈ A0

s, then
C = p(x), and d(x,Hs−1) > 3n, so d(y,Hs−1) > 2n since p(x) has length n. If
x ∈ A1

s, then any path of length at most 2n from x ∈ p(z) to an element of Hs−1

must go through y by our discussion after the definition of p(x).
So let y ∈ Gs,s be so that d(y, C ′) ≤ 2n. Let y′ be the closest element in

Gs,s−k ↾ C to C ′. Hence by the the construction of Gs,s, we have d(y, y′) ≤
d(k − 1) + . . . + d(0). Since C ′ is distance at most 2n from y, C ′ is distance at
most 2n + d(k − 1) + . . . + d(0) < d(k) from x′. First suppose x′ is also a vertex
in Gs,s−k−1. Then x′ would be an element of Gs,s−k−1 of distance < d(k) from an
element of Hs,k, and so in the definition of Gs,s−k there should have been a path
added from Gs,s−k−1 to C ′ in Gs,s−k. If x

′ is not a vertex in Gs,s−k−1, then x′ must
be part of a path added in Gs,s−k from an element of Gs,s−k−1 to some connected
component C ′′ of Hs−1,k. Since this path is of distance at most d(k), this would
imply that C ′ and C ′′ are of distance < 2d(k) which contradicts part (3) of the
induction hypothesis. □

We are now ready to prove our path decomposition lemma.

Lemma 3.4. Suppose G is a locally finite acyclic graph on a Polish space and n ≥ 1.
Then there is a comeager Borel set D such that G ↾ D has a path decomposition of
length at least n.

Proof. We prove this lemma by combining Lemma 3.3 and Lemma 3.1 with the
obvious derivative process to obtain sets of paths.

Suppose (Di)i∈N is such that each S ∈ Di is a finite sequence of paths in G that
are end-ordered, and (Di)i∈N is end-ordered. Let <(Di) (suppressing the indexing
for clarity) be the partial order on the paths appearing in the elements of the Di

where p <(Di) p′ if p, p′ share some vertex, and either p, p′ both appear in some
sequence S ∈ Di where p appears before p′, or p is in an element of Di and p′ is in
an element of Dj for i < j.

We begin by applying Lemma 3.3 to obtain a n-spindly decomposition G0, G1, . . .
of G restricted to some comeager G-invariant Borel set. If C is an n-spindly
connected component of some Gi, let P (C) be the lexicographically least de-
composition (p0, . . . , pk) of C satisfying the conclusion of Lemma 3.1. Letting
Di,0 = {P (C) : C is a connected component of Gi}, we obtain a sequence (Di,0)i∈N
of sets of finite sequences of paths in G, and the associated partial order <(Di,0)

defined in the previous paragraph.
Inductively, for j ≥ 0, let Pj be the set of p appearing in some element of Di,j

such that there is no p′ <(Di,j) p. Then let Di,j+1 be the set of all sequence in Di,j

with all elements of Pj removed. These Pj are our desired set of paths. Every path
p′ in each S ∈ Di must eventually appear in some Pj since there are only finitely
many p such that p <(Di,0) p

′. □

A useful observation is that if G is a graph with a path decomposition, the
decomposition may be assumed to consist of paths of bounded length. This follows
the fact that the intersection graph on paths has a countable Borel coloring, and a
derivative operation analogous to that of Lemma 3.4.
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Lemma 3.5. Suppose G is a locally finite Borel graph with a Borel path decompo-
sition P0, P1, . . . of length at least n. Then G admits a Borel path decomposition
P ′
0, P

′
1, . . . of length at least n such that every path p ∈ P ′

i has length at most 2n.

Proof. Every path of length greater than 2n can clearly be written as a finite union
of paths of length between n and 2n. Hence, we may replace any path p ∈ Pi

of length greater than 2n by the lex-least finite set of paths of length between n
and 2n whose union is p. This gives a sequence P0, P1, . . . having every property of
being a Borel path decomposition with the exception that the Pi may not consist of
vertex disjoint paths (but with the property that every path in every Pi has length
at most 2n).

Let H be the graph on the paths
⋃︁

i Pi where distinct p, p′ ∈
⋃︁

i Pi are adjacent
in H if they share some vertex. Then H is a locally finite Borel graph and hence
has a countable Borel coloring c :

⋃︁
i Pi → N by [KST, Proposition 4.10].

Inductively, let Di,0 = Pi. For a fixed j, we can order the paths in
⋃︁

i Di,j by
p <(Di,j) p

′ if p ∈ Di,j and p′ ∈ Di′,j where either i < i′, or i = i′ and c(p) < c(p′).
Now a construction identical to the last paragraph of the proof of Lemma 3.4 gives
our desired Borel path decomposition. □

Lemma 3.6. Suppose that E is an abstract system of congruences on n which is
non-expanding, and R = {(S1, T1), . . . , (Sk, Tk)} is a minimal good generating set
of E. Suppose also a is a free Borel action of the group

Γ = ⟨γ1 . . . γk | {γ2
i = 1: Ti = Si

c}⟩
on a Polish space X. If G(a, {γ1, . . . , γk}) has a Borel path decomposition of length
at least r for sufficiently large r (depending on E), then there is an a-realization of
E with Borel pieces witnessed by

(*) γi ·
⋃︂
j∈Si

Aj =
⋃︂
j∈Ti

Aj .

Furthermore, if the space X is assumed to be perfect, then the sets A1, . . . , Ak can
be chosen so each is nonmeager.

Proof. Let G be the graph G = G(a, {γ1, . . . , γk}). The idea of our proof is as
follows. We first argue that there is a sufficiently large length r so that given any
path p of length at least r in G, if we have already assigned the endpoints of p to be
in elements of A0, . . . , An−1, then there is some way of consistently assigning the
interior points of the path to elements of A0, . . . , An−1 so as to obey the congruences
required in (*). Then we use a path decomposition of length at least r for G to
inductively construct a realization of this system of congruences.

Suppose that g = gl . . . g0 is a reduced word in Γ, where gi ∈ {γ±
1 , . . . , γ±

k }
are generators. If we begin at some x ∈ X, then such a reduced word of length
l + 1 gives a path of length l + 1 in G: the path x, g0 · x, . . . , gl . . . g0 · x. We give
a definition concerning what elements of A0, . . . , An−1 the elements of this path
can belong to. Define functions X and Y on generators as follows: X(γj) = Sj ,

Y (γj) = Tj , X(γ−1
j ) = Tj , and Y (γ−1

j ) = Sj . Say that n0, . . . , nl+1 is a labeling

of g = gl . . . g0 if for all i, we have ni ∈ X(gi) if and only if ni+1 ∈ Y (gi). So
labelings correspond to acceptable assignments of the points x, g0 ·x, . . . , gl · · · g0 ·x
to the sets A0, . . . , An−1.

We are interested in the ways labelings of g may start and end. If k,m ∈ n,
say a reduced word g is (k,m)-bad if there is no labeling n0, . . . , nl+1 of g with
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n0 = m and nl+1 = k. Say that g is bad if there is some k,m ∈ n such that g is
(k,m)-bad. We will use a pigeonhole principle argument to show there is a bound
on the length of bad words.

To begin, note that if g = gl . . . g0 is bad, then gl . . . g1 and gl−1 . . . g0 are also
bad. That is, initial segments and final segments of bad words are bad.

Suppose g = gl . . . g0 is (k,m)-bad. Then exactly one of the following holds.
Either

(1) m ∈ Y (gl) and g is (k,m′)-bad for every m′ ∈ Y (gl), or
(2) m ∈ Y (gl)

c
and g is (k,m′)-bad for every m′ ∈ Y (gl)

c
.

Fix a (k,m)-bad word g. Define a pair of associated sequences Vg,k(i) and
Wg,k(i) where (Vg,k(i),Wg,k(i)) = (X(gi)

c
, Y (gi)

c
) if gi . . . g0 is (k,m

′)-bad for every
m′ ∈ Y (gi)

c
and (Vg,k(i),Wg,k(i)) = (X(gi), Y (gi)) otherwise. It is clear that there

exist labelings n0, . . . , nl+1 of g where ni ∈ Vg,k(i) and ni+1 ∈ Wg,k(i) for every i.
Indeed, we have that Vg,k(i) E Wg,k(i) by definition, and Wg,k(i) ⊆ Vg,k(i+ 1) for
all i ≤ l or else g is not a bad word.

Suppose for a contradiction that there are infinitely many bad words. We break
into two cases

Case 1: suppose that there are arbitrarily long bad words g such that g is
(k,m)-bad for some (k,m), and Wg,k(i) = Vg,k(i+1) for all i < l. Hence Vg,k(0) E
Vg,k(1) E . . . E Vg,k(l). By the pigeonhole principle, and since initial segments and
final segments of bad words are bad, we can find some bad word g such that g is
(k,m)-bad, and

(**) g has length at least 2 and Vg,k(0) = Wg,k(l) or Vg,k(0) = Wg,k(l)
c
.

We claim that this implies that either the word g is not reduced, or the generating
set of E is not a minimal good generating set.

First, we may assume that g has minimal length among bad words with property
(**), and so no proper subword of g has property (**).

If Vg,k(0) = Wg,k(l), then the minimal length of g among words with (**) im-

plies that g0 ̸= g±1
i for any i > 0. This implies that the generating set R is

not a minimal good generating set; the fact that Vg,k(0) E Vg,m(1) follows from
Vg,k(1) E Wg,k(1) = Vg,k(2) E . . . E Vg,k(l) E Wg,k(l) and Wg,k(l) = Vg,k(0). In
particular, removing the pair (Sj , Tj) where g0 = γj would still generate E. Hence
the generating set is not minimal.

In the case that Vg,k(0) = Wg,k(l)
c
, we can also remove the pair (Sj , Tj) where

g0 = γj , since there must be a generator witnessing Vg,k(0) E Vg,k(0)
c
= Wg,k(l)

by our definition of a good generating set (see Definition 2.2). In particular, a good
generating set must contain every relation of the form (S, Sc) where S E Sc.

Case 2: suppose case 1 does not hold. Then by the pigeonhole principle, and
since initial segments and final segments of bad words are bad, we can find some
(k,m)-bad word g such that Vg,k(0) = Wg,k(l+1), andWg,k(i) ⊊ Vg,k(i+1) for some
i ≤ l. Then we can obtain a contradiction to the non-expansion of E by cyclically
permuting the sequences to bring Vg,k(i + 1) to the 0 position and Wg,k(i) to the
lth position.

This finishes the proof that there are only finitely many bad words.
Now let r be sufficiently large so that there are no bad words of length r, and

let P0, P1, . . . be a Borel path decomposition of G of length at least r. We may
assume that this path decomposition satisfies the conclusion of Lemma 3.5. Now
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we inductively construct a Borel a-realization A0, . . . , An−1 of E in countably many
steps. After step i we will have assigned each vertex appearing in the paths in Pj

for j ≤ i to some A0, . . . , An−1.
At step i we will consider the paths p ∈ Pi. For each such path p, we assign the

vertices of p to be the lex-least assignment to A0, . . . , An−1 that is consistent with
the requirement (*) in the statement of the lemma. There is guaranteed to be such
an assignment since we will have assigned at most the start and end node of the
path to A0, . . . , An−1 and since the path has length at least r, the group element
corresponding to it is not bad.

At the end of this construction we will have assigned every element of X to some
A0, . . . , An−1. Since every edge in G appears in some path p, this ensures that the
requirement (*) is satisfied at the end of the construction.

To finish, we prove the “furthermore” statement at the end of the lemma. Sup-
pose that the space X is perfect. We show that the sets A1, . . . , An can be chosen
to be nonmeager. Notice that it suffices to have a path decomposition where the
first set P0 of paths has a set of endpoints D that is nonmeager. If this is then case,
then we may may partition D into k many nonmeager Borel sets since X is perfect.
Then we may assign these k sets to A1, . . . , Ak. This is because in our construction
above, the endpoints of the paths of P0 may be assigned to A1, . . . , Ak arbitrarily.

So we need to show that we can construct a path decomposition where the set
of endpoints of paths in P0 is nonmeager. To see this, observe that in our proof
of Lemma 3.3 given the subsets (Ai)i∈N of X such that the elements of Ai are
pairwise of distance greater than d(i), note that all the elements of the set A0

become endpoints of paths in P0 in the final path decomposition. Hence, it suffices
to show that A0 can be chosen to be nonmeager in [MU16, Lemma 3.1]. To see this,
note first that we can find a Borel nonmeager k-independent set. This is because
G≤k has a countable Borel coloring [KST, Proposition 4.10] and one of the color
sets must therefore be a nonmeager k-independent Borel set A0. Now apply [MU16,
Lemma 3.1] to the graph G \A0 and the function f(n) = d(n+ 1). □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We begin with the forward direction of Theorem 1.2. Sup-
pose A0, . . . , An−1 is a Baire measurable realization of an abstract system of con-
gruence E on n where every Ai is nonmeager. By Theorem 1.1 it suffices to show
that E is non-expanding. For a contradiction, suppose there are sequences of sets
(Vi)i≤k and (Wi)i≤k with Vi,Wi ∈ Ppr(m) such that Vi E Wi for every i ≤ k,
Wi ⊆ Vi+1 for every i < k and V0 ⊋ Wk. Let A =

⋃︁
i∈V0

Ai and B =
⋃︁

i∈Wk
Ai.

Let γ be the product of the group elements witnessing Vi E Wi taken in increasing
order for i ≤ k. It follows that γ · A ⊆ B. Clearly if x ∈ A \B, then for all n > 0,
γn · x /∈ A \B.

Now there are two cases. First, if the rotation given by γ is rational (i.e. pe-
riodic), this implies that A \ B is not in any orbit of γ. This contradicts the fact
that A \B is nonmeager.

Second, suppose the rotation of γ is aperiodic. Then A\B meets each orbit of γ
in at most one point which contradicts A \B being nonmeager as follows. If A \B
was nonmeager, there would be an open set U in which A\B is comeager. But since
γ is an irrational rotation, we can find some n > 0 rendering γn arbitrarily close to
the identity, and hence some n for which γnU∩U ̸= ∅. Since γ is a homeomorphism,
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this implies that both A \ B and γn · (A \ B) are comeager in γnU ∩ U . But then
there is some x so that x ∈ A \B and γn · x ∈ A \B which is a contradiction. This
finishes the proof of the forward implications.

To prove the reverse implication, suppose that E is non-complementing and non-
expanding. Choose some R = {(S1T1), . . . , (SkTk)} which minimally generates E,
and let ⟨γ1 . . . γk⟩ be rotations of the 2-sphere which generate a copy of Fk.

Now let r be sufficiently large (so as to satisfy the hypothesis of Lemma 3.6). By
Lemma 3.4, we can find a comeager G-invariant Borel set D so that there is a Borel
path decomposition of length at least r of G ↾ D. Let a′ be the restriction of the
action of ⟨γ1, . . . , γk⟩ to D. Then by Lemma 3.4 we can find a Borel a′-realization
A′

0, . . . , A
′
n−1 of E. By the “furthermore” clause of Lemma 3.6, we can assume each

of A′
0, . . . , A

′
n−1 to be nonmeager.

By Lemma 2.3, there is some realization A′′
0 , . . . , A

′′
n−1 of E on the 2-sphere

witnessed using (*). To finish our proof, replace A′′
i with A′

i on D to obtain a Baire
measurable realization of E on the 2-sphere. That is, set Ai = (A′′

i ∩Dc) ∪ (A′
i ∩

D). □

4. Borel path decompositions from Borel end selections

Suppose f : X → X. Say that f is aperiodic if for all x ∈ X and n ≥ 1, we
have fn(x) ̸= x. Let Gf be the graph induced by f where distinct x0, x1 ∈ X are
Gf -adjacent if f(x0) = x1 or f(x1) = x0. Suppose A ⊆ X. Say that A is forward
recurrent (with respect to f) if for every x ∈ X there exists some n ≥ 0 such that
fn(x) ∈ A.

We have the following lemma showing that bounded-to-one Borel functions ad-
mit forward recurrent r-independent sets. Recall that a function f : X → Y is
bounded-to-one if there is some k > 0 such that for every y ∈ Y , |f−1(y)| ≤ k.

Lemma 4.1. Suppose X is a standard Borel space and f : X → X is an aperiodic
bounded-to-one Borel function. Then for every r ≥ 1 there exists a Borel set A ⊆ X
that is forward recurrent and r-independent.

Proof. Let G≤r
f be the graph on X where distinct x, y ∈ X are G≤r

f -adjacent if

d(x, y) ≤ r. Since Gf has bounded degree, G≤r
f also has bounded degree. Hence,

by [KST, Theorem 4.6], there is a Borel coloring c of G≤r
f with finitely many

colors. Let A be the set of x ∈ X such that c(x) is equal to the least number
appearing infinitely often in the sequence c(x), c(f(x)), c(f2(x)) . . .. Then for each
x, all the elements of A in the (G-)connected component of x have the same color,

and hence A is r-independent, since c is a coloring of G≤r
f . A is forward recurrent

by construction. □

Now we show that we can obtain Borel path decompositions from Borel end
selections

Lemma 4.2. Suppose G is an acyclic bounded degree Borel graph on X such that
there is a Borel selection of finitely many ends in every connected component of G.
Then for every n > 0, G admits a Borel path decomposition of length at least n.

Proof. We are given a bounded degree acyclic Borel graph G on a standard Borel
space X where every vertex has degree at least 2. First, by [HM, Theorem C] which
builds on methods from [Mi], if there is a Borel function selecting finitely many ends
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from every connected component of G, then there is a Borel function selecting one
or two ends in every connected component of G. Hence, we can partition X into
two G-invariant Borel sets C1, C2 so that G ↾ C1 has a Borel selection of one end
in each connected component, and G ↾ C2 has a Borel selection of two ends in each
connected component.

Let r(x) be the Borel function selecting one end in each connected component of
G ↾ C1. We may assume that r(x) begins with the vertex x (by either appending
the path from x to the start of the ray r(x) if x is not included in the ray, or deleting
the vertices preceding x if x is included in the ray). Let f(x) be vertex after x in
r(x). Then it is easy to see that f : C1 → C1 generates the graph G.

Let B2 ⊆ C2 be the Borel set of vertices vertices lying on the geodesic between
the two ends chosen in C2. Precisely, let r0(x), r1(x) be the functions selecting two
ends in each connected component of G ↾ C2. We may similarly assume that r0(x)
and r1(x) begin with the vertex x, and let f0(x) be the vertex after x in r0(x), and
f1(x) be the vertex after x in r1(x). Then B2 = {x ∈ C2 : f0(x) ̸= f1(x)}. It is easy
to see that every connected component of G ↾ B2 is 2-regular and every connected
component of G ↾ C2 contains exactly one connected component of G ↾ B2.

By Lemma 4.1, we can find a forward recurrent Borel set A ⊆ C1 such that A is
2n-independent in G. Let P 1

0 be the set of lex-least paths of length n which begin
at some vertex of A, and let B1 be the set of vertices contained in some element of
P 1
0 . If x ∈ C1 \B1, let [x] be the set of vertices y for which there is a path p from x

to y for which no interior vertex of p is in B1. The forward recurrence of A implies
that for every x ∈ C1, there is a unique forward-most element of [x] under f . It is
also clear that G ↾ [x] satisfies the hypothesis of Remark 3.2. For each x, the space
of n-spindly decompositions is a compact space in the natural topology on all such
decompositions. Hence, by compact uniformization [Sr, Theorem 5.7.1], see also [K,
Theorem 18.18], there is a Borel way of selecting a unique a path decomposition of
length at least n for G ↾ [x] for each x ∈ C1 \ B1. Hence, we can extend P 1

0 to a
Borel path decomposition of length at least n for G ↾ C1.

On G ↾ C2, we can first partition G ↾ B2 into a Borel set P 2
0 of finite paths of

length at least n. if x ∈ C2 \ B2, let [x] be the set of y ∈ X such that there is a
path p from x to y for which no interior vertex of p is in B2. Once again, G ↾ [x] is
n-spindly. Hence by Remark 3.2 we can extend P 2

0 to a Borel path decomposition
of length at least n for G ↾ C2. □

Using Adams end selection, we can use this lemma to show that µ-hyperfinite
free actions of Fn have µ-measurable realizations of abstract systems of congruences
that are non-complementing and non-expanding.

Theorem 4.3. Suppose that n ≥ 2, and a is a free Borel action of Fn on a
standard probability space (X,µ) that is µ-hyperfinite. Then there is a µ-measurable
a-realization of every abstract system of congruences E that is non-complementing
and non-expanding.

Proof. Let Rminimally generate E. Pass to a free subgroup Fk ≤ Fn where k = |R|.
Let S be the set of generators of S. By a theorem of Adams [JKL, Lemma 3.21],
on a conull set there is a Borel function selecting either one or two ends from each
connected component of G(a, S). Hence, the theorem follows from Lemmas 4.2 and
3.6. □
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When we apply Lemma 4.2, it will be useful to know that end selections pass
between finite index subgroups.

Lemma 4.4. Suppose a is a free Borel action of a finitely generated group Γ on X.
Let ∆ ≤ Γ be a finitely generated finite index subgroup of Γ, and b be the restriction
of the action of a to ∆. Then if S ⊆ Γ and R ⊆ ∆ are finite symmetric generating
sets, then G(a, S) has a Borel selection of finitely many ends if and only if G(b, R)
has a Borel selection of finitely many ends.

Proof. Since ∆ is finite index in Γ, each G(a, S) connected component contains
finitely many components of G(b, R), and each connected component of G(b, R)
is bounded distance from every point in the connected component of G(a, S) it
is contained in. Hence, there is an effectively defined bijection between ends in
a connected component of G(a, S), and ends in each G(b, R)-component that it
contains.

More precisely, suppose r = (xi)i∈N is a ray representing an end in G(a, S), and
C is a connected component of G(b, R). We define a ray fC(r) in G(b, R) ↾ C as
follows. To each xi we associate the nearest point yi in C, and let fC(r) be the lex
least ray passing through all the points (yi)i∈N, erasing loops. The map fC clearly
lifts to a map sending a selection of finitely many ends in G(a, S) to a selection of
finitely many ends in G(b, R). The reverse implication is similar. □

5. Constructive realizations of non-expanding abstract systems of
congruences for PSL2(Z) acting on P1(R)

The group PSL2(Z) acts on the space P1(R) of lines in R2 through the origin.
By identifying such a line with the x-value x ∈ R ∪ {∞} of its intersection point
with the line y = 1, it is easy to see that this action is isomorphic to the action of

PSL2(Z) on R ∪ {∞} by fractional linear transformations, where

[︃
a b
c d

]︃
acts via

x ↦→ ax+b
cx+d .

It is a standard fact (see [Se, VII.1]) that PSL2(Z) is generated by the two
transformations α(x) = x + 1 and β(x) = −1/x, and moreover that it factors as
the free product of ⟨β⟩ of order 2 and ⟨αβ⟩ of order 3.

The group PGL2(Z) is index 2 over PSL2(Z), and similarly is generated by α(x) =
x + 1 and γ(x) = 1/x. Note that β(x) = α−1(γ(α(β(α−1(x))))) = (−1 + 1/(1 +
1/(x− 1))) = −1/x.

Let Irr denote the set of irrational numbers. Each x ∈ Irr has a unique continued
fraction expansion

x = a0 +
1

a1 +
1

a2+
1

a3+···

Where a0 ∈ Z and a1, a2, . . . ∈ Z+ are positive integers. We note the continued
fraction expansion of x as (a0; a1, . . .). The following lemma is standard.

Lemma 5.1. Let f : Irr → Irr be the function given by

f(x) =

⎧⎪⎨⎪⎩
x− 1 if x > 0

1/x if x ∈ (0, 1)

x+ 1 if x < 0
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Then f generates the orbit equivalence relation of PGL2(Z) on Irr, and so x, y ∈ Irr
are in the same orbit if and only if their continued fraction expansions are tail
equivalent.

Proof. The equivalence relation generated by f is clearly contained in the orbit
equivalence relation of PGL2(Z), since f is defined piecewise by fractional linear
transformations.

Recall that two continued fraction expansions (a0; a1, . . .) and (b0; b1, . . .) are tail
equivalent if there exists some n,m > 0 such that an+i = bm+i for all i ≥ 0. Since

f

⎛⎝a0 +
1

a1 +
1

a2+
1

a3+···

⎞⎠ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a0 − 1) + 1

a1+
1

a2+ 1
a3+···

if a0 > 0

a1 +
1

a2+
1

a3+···
if a0 = 0

(a0 + 1) + 1
a1+

1

a2+ 1
a3+···

if a0 < 0

it is clear that if x and y are tail equivalent, then there are in the same equivalence
class of the equivalence relation generated by f .

To finish, since α(x) = x + 1 and γ(x) = 1/x generate PGL2(Z), it suffices to
show that if x ∈ Irr, then x, x + 1, and 1/x are tail equivalent. It is trivial to see
that x and x + 1 are tail equivalent. That x and 1/x are tail equivalent is clear
when x > 0. When x < 0, since one of x and 1/x are less than −1, by swapping
x and 1/x, we may assume the continued fraction expansion of x is x = a + 1

b+C ,
where a ≤ −2, and b ≥ 1. Then apply the following identity:

1

a+ 1
b+C

= −1 +
1

1 + 1
(−a−2)+ 1

1+ 1
(b−1)+C

.

Note that −a− 2 ≥ 0 and b− 1 ≥ 0. If either if these two terms are equal to zero,
this just removes the corresponding term in the continued fraction expansion, since

1
0+ 1

an+C

= an + C. □

Corollary 5.2. Let a be the restriction of the action of PSL2(Z) to the irrationals.
Let S = {α, β} be the set of generators α(x) = x+1 and β(x) = −1/x. Then there
is a Borel selection of one end in each equivalence class of G(a, S).

Proof. By Lemma 5.1, there is a Borel selection of one end in the graphG(a′, {α, γ}),
where a′ is the action of PGL2(Z) on Irr, and γ(x) = 1/x. Hence, this corollary
follows by Lemma 4.4, since PGL2(Z) is index 2 over PSL2(Z). □

The action of PSL2(Z) is free modulo a countable set, since if x = (ax+b)/(cx+d),
then x is the solution to a quadratic equation with integer coefficients. To finish,
we need to analyze the countable set on which the action is nonfree.

Lemma 5.3. For every x ∈ P 1(R), the stabilizer Stab(x) of x in PSL2(Z) is cyclic.

Proof. It suffices to show for all x that Stab(x) is a solvable subgroup of PSL2(Z)
containing no involution. Indeed, as PSL2(Z) ∼= (Z/2Z)∗(Z/3Z), it follows from the
Kurosh subgroup theorem [C, Theorem 7.8] that all solvable subgroups are either
cyclic or the free product of two involutions, and we are done upon precluding the
latter alternative.

Towards that end, first observe that the action of PGL2(R) on P 1(R) is transitive,
and thus all stabilizers are conjugate to the stabilizer of the point at infinity. This
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stabilizer is isomorphic to the group of affine transformations of the real line, and in
particular is solvable. Returning to PSL2(Z), it follows that the stabilizer of every
point is a subgroup of a solvable group, and hence is itself solvable.

It remains to show that every nontrivial involution in PGL2(Z) acts freely on
P 1(R). But this is immediate as all such involutions are conjugate to β : x ↦→ −1/x,
which has no fixed point. □

We can now prove Theorem 1.5 from the introduction.

Proof of Theorem 1.5. Let R be a minimal relation generating E. Let k = |R|.
There is a finite index copy of F2 in PSL2(Z) and hence a finite index copy of Fk.
Let the free generating set of Fk be S. Let a be the restriction of the action of
PSL2(Z) to this copy of Fk. Let F ⊆ X be the subset on which the action of F is
free. By Lemma 5.3, the action of PSL2(Z) on F has cyclic stabilizers, and so by
Lemma 2.3, there is a realization of E witnessed by letting the generators S of Fk

witness the elements of R. Since X \ F is a subset of the quadratic rationals it is
countable, and so the sets realizing E on X \ F are Borel.

Now on F , the graph G(a ↾ F, S) has a Borel selection of finitely many ends
by Corollary 5.2 and Lemma 4.4. Hence, by Lemma 4.2 we have a Borel path
decomposition and hence by Lemma 3.6 there is a realization of E on a ↾ F once
again with the ith generator witnesses the ith congruence in R. The theorem follows
by taking the union of these two realizations. □

6. Applications of path decompositions in Borel combinatorics

If G is a locally finite acyclic Borel graph, then path decompositions for G give
a very strong type of unfriendly coloring:

Lemma 6.1. Suppose G is a locally finite acyclic Borel graph on X where every
vertex has degree at least 2. Then if G has a Borel path decomposition of length at
least 4, then G admits a Borel unfriendly coloring. Indeed, there is a Borel function
c : X → 2 such that for every x, |{y ∈ N(x) : c(x) = c(y)}| ≤ 1.

Proof. Suppose P0, P1, . . . is the Borel path decomposition of G of length at least 4.
We may assume that this path decomposition satisfies the conclusion of Lemma 3.5.

We inductively construct c. At step i we will ensure that every vertex in a path
p ∈ Pi has been colored. For all such paths p ∈ Pi, inductively, the only vertices in
p that can have already been colored must be endpoints of p. Hence, there is some
extension of our partial coloring so that every vertex of p has at most one adjacent
vertex of the same color, and the endpoint of p have neighbors of the opposite
color. For example, alternate between the two colors along p, possibly breaking
parity once in the middle of the path. (The reason here paths of length 3 cannot
work is that if the endpoints of such a path were already assigned opposite colors,
one of the endpoints would then gain another vertex of the same color). Since Pi

is a path decomposition, each vertex is an interior vertex of at most one path, and
every edge is contained in some path. Hence, our final coloring c of X has the
desired property that each vertex has at most one neighbor of the same color. □

By combining this Lemma with Lemma 3.4, we obtain Theorem 1.7 as a Corol-
lary.

Suppose G is an acyclic locally finite Borel graph where every vertex has degree
at least 3. Then an almost identical greedy construction shows that if G has a
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path decomposition of length at least 3, then G has a Borel perfect matching,
and if G has maximum degree d, then G has a Borel d-list-coloring for any Borel
assignment of lists to edges of G. For example, this gives a new way of proving
a Baire measurable version of Vizing’s theorem for acyclic bounded degree Borel
graphs, and the existence of Baire measurable perfect matchings for acyclic locally
finite Borel graphs.
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