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ABSTRACT. An abstract system of congruences describes a way of partition-
ing a space into finitely many pieces satisfying certain congruence relations.
Examples of abstract systems of congruences include paradoxical decomposi-
tions and n-divisibility of actions. We consider the general question of when
there are realizations of abstract systems of congruences satisfying various
measurability constraints. We completely characterize which abstract systems
of congruences can be realized by nonmeager Baire measurable pieces of the
sphere under the action of rotations on the 2-sphere. This answers a question
of Wagon. We also construct Borel realizations of abstract systems of congru-
ences for the action of PSL2(Z) on P'(R). The combinatorial underpinnings
of our proof are certain types of decomposition of Borel graphs into paths.
We also use these decompositions to obtain some results about measurable
unfriendly colorings.

1. INTRODUCTION

Recently, several results have been proved about the extent to which realizations
of geometrical paradoxes can be found with sets having measurability properties
such as being Borel, Lebesgue measurable, or Baire measurable (see for instance
[CS][DF][GMP16] [GMP17)[Ma] [MUIL6] [MUI7]). This is a growing area of study
at the interface of descriptive set theory, combinatorics, and ergodic theory. This
paper is a contribution to this study. One of the earliest results in this vein is the
theorem of Dougherty and Foreman [DF] that the Banach-Tarski paradox can be
realized using Baire measurable pieces. In contrast to the classical Banach-Tarski
paradox which uses five pieces, Dougherty and Foreman’s Baire measurable solution
uses six pieces. A result of Wehrung [Weh|] implies that this is optimal; there is no
Baire measurable realization of the Banach-Tarski paradox with five pieces. This
suggests a subtle difference between the classical and Baire measurable contexts.

In this paper, we consider a refined framework called “abstract systems of con-
gruence” for describing when an action can be partitioned into finitely many pieces
satisfying certain congruence relations. As one application, we give an exact charac-
terization of which abstract systems of congruences can be realized in the 2-sphere
with arbitrary pieces versus nonmeager Baire measurable pieces. This refines the
dual results of Wehrung [Weh|, and Dougherty and Foreman [DF].

We formally define abstract systems of congruences as follows. Given a set S, its
proper powerset Py, (S) is Py (S) ={RC S: R# O AR # S}. Following Wagon
[W] Definition 4.10], an abstract system of congruences on n = {0,...,n — 1}
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is an equivalence relation E on Pp,(n), so that if U E'V, then U® E V°. Here U°®
denotes the complement of U. Suppose a: I' ~ X is an action of a group on a set
X. Then we say that A, B C X are a-congruent if there is a group element v € I'
such that v- A = B. An a-realization of an abstract system of congruences F
is a partition {Ag,...,A,—1} of X such that for all U,V € P, (n) with U E V,
we have that | J;.; Ai and (J,;cy Ai are a-congruent. The definition of an abstract
system of congruences reflects that fact that congruence is an equivalence relation,
and that if A, B C X are congruent, then A and B€ are also congruent.

An important example of an abstract system of congruences is the smallest
abstract system of congruences E on P, (4) containing the relations {0} E {0, 1,2}
and {1} E {0,1,3}. A realization of this system gives a paradoxical decomposition,
since {0, 3} and {1, 2} partition {0, 1,2,3}. The translation action of the free group
on two generators o on itself is an example of an action realizing this system of
congruences [W), Theorem 4.2]. Another important example of an abstract system
of congruences is the smallest abstract system of congruences E on P, (n) where
{i} E {j} for every i,j € n. An action is said to be n-divisible if it satisfies this
system of congruences (that it, is can be partitioned into n congruent pieces). For
example, it is easy to see that the action of the rotation group SO3z on the 2-sphere
is not 2-divisible by considering the “poles” of the rotation. However, this action
is n-divisible for n > 3 (see [Wl Corollary 4.14]).

Wagon has characterized which abstract systems of congruences can be realized
in the action of the group SO3 of rotations on the 2-sphere. We say that an abstract
system of congruences E on n is non-complementing if there is no set X € Pp,(n)
such that X F X°.

Theorem 1.1 ([W], Corollary 4.12]). Suppose E is an abstract system of congru-
ences. E can be realized in the action of SOz on the 2-sphere if and only if E is
non-complementing.

We show that in order to realize an abstract system of congruences with Baire
measurable pieces in the sphere, we need one additional property. Say that an
abstract system of congruences E on Pp(n) is non-expanding if there do not
exist sequences of sets (V;);<y and (W;);<k where V; E W; for every i < k and
W; C V41 for every i < k, such that W, C V4. Hence,

WEWy CVIEW,C...Vx, EW, C V.

Theorem 1.2. Suppose E is an abstract system of congruences. Then E can be
realized in action of SOz on the 2-sphere with Baire measurable pieces each of which
is nonmeager if and only if E is non-complementing and non-expanding.

This theorem positively answers Wagon’s question [W), Page 47] of whether the
2-sphere is n-divisible with Baire measurable pieces for n > 3. Indeed, the smallest
abstract system of congruences F containing the relations {1} E {2} F ... E {n}
is clearly noncomplementing and nonexpanding for n > 3, and hence has a Baire
measurable realization in the action of SO3 on the 2-sphere. Wagon has also asked
whether the 2-sphere is n-divisible into Lebesgue measurable pieces. This remains
an open problem.

Let F,, be the free group on n generators. Our proof of Theorem shows
more generally that if n > 2, then any free Borel action of F,, on a Polish space
X can realize an abstract system of congruences that is non-expanding and non-
complementing using Baire measurable pieces. (See Lemma .
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Our main tool for proving Theorem is a decomposition lemma for acyclic
Borel graphs into sets of paths with a property concerning how the paths from
different sets may overlap.

Definition 1.3. Suppose G is a graph and Gy, G, ... is a sequence of subgraphs
of G. Then we say Ggy,(G1, ... is end-ordered if for all vertices x in G, if x is a
vertex in G; and G; where i < j, then z is a leaf in G;. Similarly, if So, S1,. ..
are sets of subgraphs of G, then we say that Sy, Si,... is end-ordered if for all
vertices z in G, if x is vertex in H € S; and a vertex in H' € S; where 7 < j, then
x is a leaf in H'.

Definition 1.4. Suppose G is an acyclic Borel graph. Then a path decomposi-
tion of GG is a sequence Py, Py, ... of sets of paths in G such that Py, Py, ... is end
ordered, every P; consists of vertex disjoint paths, and for every edge e in G, there
exists exactly one P; so that e appears in a path in P;. We say that a path decom-
position is Borel if each set P; is Borel, and the path decomposition has length at
least n if every path has length at least n.

Roughly, a path decomposition is a way of covering the graph with sets of paths
Py, Py, ... so that all the paths in P; have interiors that are disjoint from the paths
in P;, for i < j.

One of our main lemmas (Lemma says that if G is a locally finite acyclic
Borel graph, then for all n, there is a comeager set on which G has a Borel path
decomposition of length at least n.

A different case in which we have Borel path decompositions is when we have
Borel end selections. Recall that if G is a graph on X, a ray is an infinite simple
path in G, and that two rays (x;);eny and (y;);eny are end-equivalent if for ev-
ery finite set S C X, the rays (x;) and (y;) eventually lie in the same connected
component of G | (X \ S). An end of G is an end-equivalence class of G. If G
is a Borel graph on X, we say that G admits a Borel selection of finitely k&
ends in each connected component if there are Borel functions rg,...,7x_1
sending each z € X to k end-inequivalent rays ro(x),...,rx(x) in the connected
component of x such that if y are in the same connected component of G as x, then
{ro(z),...,rk—1(z)} and {ro(y),...,rkr—1(y)} are representatives of the same set of
ends. We say that G admits a Borel selection of finitely many ends in each
connected component if G can be partitioned into countably many invariant
Borel sets Ag, Ay, ... so that for each i, there is some k so that G | A; has a Borel
selection of k£ ends in each connected component.

We show that if G is an acyclic bounded degree Borel graph on X such that there
is a Borel selection of finitely many ends in every connected component of GG, then
for every n we can find a Borel path decompositions of G of length at least n (see
Lemma . We construct explicit realizations of abstract systems of congruences
for the action of PSLy(Z) on P'(R), by combining this lemma with an explicit end
selection defined using continued fraction expansions.

Theorem 1.5. Suppose E is an abstract system of congruences which is non-
complementing and non-expanding. Then E can be realized in the action of PSLy(Z)
on PY(R) by Borel pieces.

For example, this action is n-divisible using Borel pieces for n > 3.

Open Problem 1.6. Characterize the abstract systems of congruences which can
be realized in the action of PSLa(Z) on PY(R) by Borel pieces.
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It is a theorem of Adams [JKT, Lemma 3.21] that if G is a locally finite graph
on a standard probability space (X, ) and G is p-hyperfinite, then G admits a
p-measurable selection of finitely many ends. Using Adams’s theorem, we also
show that any p-hyperfinite action of Fy on a standard probability space (X, i)
has a p-measurable realization of any abstract system of congruences F, if E is
non-complementing and non-expanding. (See Theorem [4.3)).

Our decomposition lemmas have some other applications in Borel combinatorics.
Simon Thomas has asked whether every locally finite Borel graph has an unfriendly
Borel coloring, where an unfriendly coloring of a graph G on X is a function
f+ X — 2 such that for every x,

{y € N(x): c(x) # c()} = {y € N(2): c(x) = c(y)}].
Thomas’s question is partially motivated by the open problem in classical combi-
natorics of whether every countable graph admits an unfriendly coloring. If G is a
graph on X, say that a function f: X — 2 is strongly unfriendly if for every z,
{y € N(@): () = c(y)} < 1.
We use our decomposition lemma to prove the following result:

Theorem 1.7. Suppose G is a locally finite acyclic Borel graph on a Polish space
X that admits a Borel path decomposition of length at least 5. Then G has a
Borel strongly unfriendly coloring. Hence, if G is a locally finite acyclic Borel
graphs of degree at least 2, then G admits a Baire measurable strongly unfriendly
colorings, and G admits a p-measurable strongly unfriendly colorings for every Borel
probability measure on X rendering G u-hyperfinite.

In Section[5]we also discuss some further applications of our decompositions, such
as new proofs of Baire measurable and p-measurable edge-coloring and matchings.

Acknowledgments. The authors would like to thank Anton Bernshteyn, Benson
Farb, and Alekos Kechris for helpful discussions about the material of the paper.
The authors would also like to thank the anonymous referee for their excellent
suggestions and thorough reading of the paper.

2. PRELIMINARIES

Our notation for graph theory is standard, see [D]. We recall a few notions. By
a graph on X we mean a simple undirected graph with vertex set X. The degree
of a vertex is its number of neighbors. Two vertices are adjacent if there is an edge
between them. A vertex is a leaf if it has degree 1, and is a splitting vertex if it
has degree at least 3. By a path we mean a simple path of finite length g, ..., z,.
The endpoints of the path are xy and x,, and the remaining vertices are interior
vertices of the path. By a ray, we mean a simple infinite path (2;);en.

If G is a graph, we say a set of vertices is independent if it does not contain
two adjacent vertices. We say that a set A is k-independent if for all distinct
x,y € A, we have d(z,y) > k.

Suppose G is a graph on X. A subgraph H of G is a graph on a subset of X
so that every edge in H is an edge in G. If Y C X, the restriction of G to Y or
induced subgraph on Y, denoted G | Y, is the graph on Y where the edges of
G 'Y are all edges in G with vertices in Y.

A Borel graph is a graph on a Polish space X whose edge relation is Borel. For
background on Borel graphs see [KM]. An important example of a Borel graph
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arises from Borel group actions. If a is a Borel action of a countable group I" on a
Polish space X and S C T is a symmetric set of group elements, then we let G(a, S)
be the graph on X where z,y are adjacent if there exists some v € S such that
vex=y.

If G is a Borel graph on X, the set of all paths of G is a Borel subset of | J,, X",
and hence a standard Borel space. Hence we may speak about a set of paths in G
being Borel.

We note that in contrast to Lemmas and there exist Borel graphs which
do not admit Borel path decompositions of length at least 3.

Theorem 2.1. Suppose that G is Borel graph of degree at least 3 on a Polish
space X that admits an invariant measure . Then G does not admit a Borel path
decomposition on any p-conull Borel set.

Proof. Let Py, P1,... be a Borel path decomposition. Note that every vertex z
must be the endpoint vertex of some unique path p(x) € P; since G has degree at
least 3. Define a Borel function f: X — X where f(z) is the vertex adjacent to x in

p(z). Then f is a compression function contradicting p being measure preserving.
N O

We will use the following lemma giving a criterion for the existence of abstract
systems of congruences without any measurability properties.

Definition 2.2. Suppose F is an abstract system of congruences. Say that a
relation R on a set X generates the equivalence relation E on X if the smallest
abstract system of congruences containing R is equal to E. Say that a generating
set R for E is good if R contains all pairs (U, V) € E such that U = V°. Finally,
a minimal good generating set of E is a good generating set R so that there is no
proper subset of R that is a good generating set for F.

Lemma 2.3 (See also [W Section 4]). Suppose that E is an abstract system of
congruences on n, and R = {(S1,T1),...,(Sk,Tk)} is a minimal good generating
set of E. Suppose a: I' ~ X s an action of

P=(y...wm| {7 =1:T=5°%).

Suppose finally that for every x € X, Stab({z}) is cyclic. Then there is an a-
realization {Ao, ..., An—1} of E, witnessed by
*) v Ja=U 4
JES; JET:
Proof. This Lemma is proved in [W] Section 4] when E is non-complementing.
Using the axiom of choice, it suffices to prove the lemma when the action has the

single orbit. Since the stabilizer of every point is cyclic, the graph G(a, {; : i < k})
has at most one cycle.

Suppose there is a cycle zg,x1,...,2; = xg. Let g be the group element g =
gi—1---91go so that x;41 = ¢;...9190 - o, and g; € {’yli, . ,’yki}. We claim we
can assign elements of this cycle to Ag,...,A,_1 in a way that is consistent with

(*). First, define functions X and Y on the generators by letting X(v;) = S,
Y(v;)=T;, X(v') =T}, and Y(y7') = S;, so obeying (*) corresponds to having

x; € U Aj iff Tiy1 € U Aj.
Jj€X(gi) JEY (94)
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Let it denote i + 1 mod k.

Case 1: Suppose there is some i < [ such that X (g;+) # Y (g;) and X (g;+) #
Y(g:)°. Then we claim we can assign wo,...,7; to Ag,...,A,_1 in a way that
satisfies (*). For example, suppose there is 7, s € X(g;+) such that r € Y(g;)
and s € Y(g;)°. Start by assigning z;++ to an arbitrary element of Y (g;+). Then
proceed around the cycle, assigning elements in a way consistent with (*). Finish
by assigning x;+ to A, if z; € X(g;), or assigning z;+ to A, if z; ¢ X(g;). The
other cases are essentially identical.

Case 2: Suppose for all i < I, X(g;+) = Y (g:) or X(gs+) =Y (g:)°. In this case,
we claim that if there is no way to assign xg,...,z; to Ag,..., A,_1 in a way that
satisfies (*), then R is not a minimal good generating set, which is a contradiction.

Let V(0) = X(go), and then inductively define V(i + 1) = Y (g;) if V(i) =
X (gi), and otherwise V(i + 1) = V(g;)° if V(i) = X(g;). Hence V(0) E V(1) E
V(2)... E V(I). Since there is no way to assign zg,...,x; to 4g,...,A,—1 in a
way that satisfies (*), we must have that V' (0) = V(1)°. Now take a minimal length
subsequence V (i),...,V(j) of V(0),...,V(l) such that

(**) j—i>2and V(i) =V (j) or V(i) = V(5)°.

It is clear that if g; = =, then we can remove the pair (S,,,T,,) from R and
we would still generate E. This is because if V(i) = V(j), then V(i) E V(i + 1)
follows from V(i+ 1) E V(i +2)... E V(j) = V(i). If V(i) = V(j)°, then the
fact that V(i) E V(i + 1) follows from V(i+ 1) E V(i +2)... E V(j) = V(i)",
and since by the definition of a good generating set, the pair V(j) E V()¢ must
appear in R. (Note that here we are using the minimal length of this subsequence
among those with (**) and the fact that g is a reduced word to ensure that the
equivalences V(i) E V(i+1) and V(i) E V(i + 1)° do not appear in the equivalences
V(i+1)E... EV(j)). This finishes Case 2.

Now that we assigned the elements of the cycle to Ao, ..., A,_1, if a cycle exists,
for the remaining acyclic portion of the graph, we clearly iteratively assign the
vertices to Ag, ..., A,—1 in a way that satisfies (*). |

Throughout we will be working with actions of such groups I' that are free
products of copies of Z and Z/27Z, and where the generators of T' of order 2 will
witnesses congruences of the form U E U°.

3. BAIRE MEASURABLE REALIZATIONS

In this section we prove Theorem We begin with a decomposition lemma for
acyclic locally finite Borel graphs (Lemma . As an intermediate step towards
this lemma, we consider decompositions into certain types of trees that themselves
have suitable decompositions into paths. Recall that a tree is a connected acyclic
graph, a leaf of a tree is a vertex of degree 1, and a splitting vertex is a vertex of
degree at least 3. Say that a tree T is n-spindly if there is at most one leaf [ of T'
so that for all distinct leaves x,y, if | ¢ {x,y}, then d(x,y) > 2n, and if [ € {z,y},
then d(z,y) > n. The utility of spindly trees is the following lemma:

Lemma 3.1. Every finite n-spindly tree T' can be written as a union of edge-disjoint
paths po,p1, - .. each having length at least n, and which are end-ordered.

Proof. We construct pg,p1,...,pr by induction. Let py be a path from one leaf
to another leaf, having minimal length among such paths between leaves. Let the
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endpoints of pg be x and y. We may assume x # [ for the distinguished leaf [ if it
exists.

For each vertex z not in pg, let V, be the set of w such that there is a path p from
z to w such that no interior vertex of p is in py. Since T is a tree, there is exactly
one vertex in T [ V, which is contained in pg. Let this vertex be [, which is a leaf
in T | V,. For any leaf w in T [ V,, the distance d(z,l,) < d(w,l,). Otherwise if
d(w,l,) < d(x,l,), the path from w to y would have smaller length than pg, but
po has minimal length. Hence, d(w,l,) > n since otherwise d(z,l,) < d(w,l,) <n
which implies that d(z,w) < 2n contradicting T' being n-spindly, since neither x
nor w are equal to [. It follows that T' [ V, is n-spindly witnessed by [,.

The lemma follows by inductively applying the lemma to all these m-spindly
subgraphs of the form T' [ V,. (I

Remark 3.2. FEvery locally finite n-spindly tree T can be written as a union of
edge-disjoint paths pg, p1, . . . that are of length at least n and which are end-ordered.
That is, Lemmal3.1 remains true for infinite n-spindly trees. This is by an infinite
iteration of the same process in the proof of Lemma (or by a compactness
argument).

As an intermediate step towards our path decomposition, we prove a lemma
decomposing into n-spindly trees.

Lemma 3.3. Suppose G is a locally finite acyclic graph on a Polish space X of
degree at least 2, and n > 1. Then there are a G-invariant comeager Borel set
D and edge-disjoint Borel subgraphs Go,G1, ... such that |J,G; = G | D, every
connected component of G; is a finite n-spindly tree, and the sequence Gy, G, ...
is end-ordered.

Proof. We give a construction in countably many steps. Let d(i) = 3n6'. By
[MU16l Lemma 3.1], let (A;);en be subsets of X such that the elements of A;
are pairwise of distance greater than 3d(i), and D = |J; A; is comeager and G-
invariant. Before step s we will have constructed edge-disjoint Borel subgraphs
Go,G1,...,Gs_1. Let H; = Uj<iGj' Let H;j for & < i be all the connected
components C' in H; where k is least such that C' is also a connected component of
Hy. So H; is the disjoint union H; = ngiHi,k‘
Our induction hypotheses are as follows:
(1) For every i < s and « € A;, there is an edge incident to x in H;.
(2) For every k < s — 1, the diameter of any connected component of H,_; j is
at most d(k).
(3) For every k < s — 1, the distance between any two connected components
of Hy_1 1 is at least 2d(k).
(4) The distance between any two connected components of Hg_; is greater
than 2n.

Note that these hypotheses imply that every edge in G | D will appear in some
G;. To see this suppose z,z’ are adjacent where x € A, and 2’ € A,,. Then z and
2’ must both be in connected components of Hy,ax(s,sy by (1), and hence the same
connected component by (4). Thus the edge (x,2’) must be in Hyax(s,s) since G
is acyclic.

Below we inductively define G, then prove each connected component of G
is n-spindly. Note that to satisfy part (1) of the induction hypothesis, we need
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to add an edge incident to each x € A, to Gy if there is not one already one in
Hy_1. However, simply adding such edges by themselves may violate induction
hypothesis (4). So we will need to inductively define G to include paths to all
nearby connected components of H,_1 ) so they all become the same connected
component in Hy. Hypotheses (2) and (3) give us control over this process so we
can satisfy (4).

To begin, let G4 be the graph consisting of all vertices in A, (and no edges).
Inductively, for 0 < i < s, let G5; 2 Gs,;-1 be the union of G5 ,;_; with all
paths of length at most d(s —4) in the graph G \ Hs_; from vertices in G5 ;_; to
connected components of H,_1 s_;. Since elements of A; have pairwise distance at
least 3d(s) it is clear by induction that components of G, ; have diameter at most
2d(s — 1) + ...+ 2d(s — i), and hence components of G, ; have diameter at most
2d(s — 1) + ...+ 2d(0). Similarly, the components of G, s are pairwise of distance
at least 3d(s) — 2d(s — 1) — ... —2d(0).

Let A2 be the set of x € A, that are not incident to any edge of Hs_1 or G .
(Hence, every x € A% has d(z, Hs_1) > d(0) > 3n). For each z € A%, let p(z) be
the lex-least path of length n in G starting at z. Let Al be the set of z € A, that
are leaves in Gy . For x € Al let p(z) be the lex-least path of length n starting at
xin G\ (Gs,sUH,_1). Such a path exists since every vertex in G has degree at least
2, and since if y is a neighbor of 2 that is not in G ;, then there is no simple path
of length at most d(0) > 3n beginning z,y, ... that ends in an element of Hs;_1 by
the definition of G, 5. Let Js = {p(z): z € AV V€ Al} and let G5 = G55 U Js.
Clearly Hy satisfies (1) by definition.

Suppose C' is a connected component of Gs. We want to prove C is n-spindly.
Now C contains a unique x € A;. We consider three cases. Case 1: if z € A%, then
clearly C' is just a path of length n, hence C is n-spindly. Case 2: if z € Al, then
let p(z) = x,...,z have endpoint z. In this case, z is the distinguished leaf C'; if
is any other leaf of C, then d(z,1) > n since p(x) has length n. By the definition of
G, any leaf in C' not equal to z is the endpoint of a path from G ;1 to Hs_1 s—;
for some i. Since any two connected components of H,_1 have distance at least 2n
by (4), all these leaves have distance pairwise greater than 2n. So C' is n-spindly.
Case 3: if v ¢ AY and x ¢ AL, then all leaves of C are endpoints of paths from
Gsi—1 to Hs_1 and have distance greater than 2n, so C' is n-spindly.

Now we verify parts (2) and (3) of the induction hypothesis. By construction
of G, every connected component of G5 has diameter at most 2d(s — 1) 4+ ... +
2d(0)+n < d(s)—2d(s—1). Since connected components of H;_; have diameter at
most d(s— 1) by our induction hypothesis, connected components of Hy s therefore
have diameter at most d(s). Similarly, the distance between any two connected
components of G, is at least 3d(s) —2d(s—1)—...—2d(0) —2n > 2d(s)+2d(s —1).
Hence, connected components of Hy s have pairwise of distance at least 2d(s), since
connected components of Hy;_; have diameter at most d(s — 1). Note that if C' is
a connected component of Hj j, then it is also a connected component of H, j, for
all s < s. Hence, part (2) and (3) of the induction hypothesis are also true for all
k < s. This verifies parts (2) and (3) of the induction hypothesis.

Now we show that part (4) of the induction hypothesis holds. Suppose C' is a
connected component of Hs ;. We want to show that distance from y € C' to any
other connected component C’ of Hy j is greater than 2n for k < s. When k = s,
this follows from (3), so assume k < s. For a contradiction, let y be a vertex in C
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with d(y,C") < 2n. We may assume that y € Gy, since if y € Gy for s’ < s, then
d(y, C") follows from our induction hypothesis. We may further assume y € G ;.
To see this, let € C be the unique vertex in C with € A,. If # € AY, then
C = p(z), and d(z,Hs_1) > 3n, so d(y, Hs_1) > 2n since p(z) has length n. If
x € AL, then any path of length at most 2n from x € p(z) to an element of Hy_;
must go through y by our discussion after the definition of p(z).

So let y € Gy be so that d(y,C’) < 2n. Let 3y’ be the closest element in
Gss—k | C to C'. Hence by the the construction of Gg g, we have d(y,y’) <
d(k — 1) + ...+ d(0). Since C’ is distance at most 2n from y, C’ is distance at
most 2n + d(k — 1) 4+ ...+ d(0) < d(k) from z’. First suppose 2’ is also a vertex
in Gy 5—kg—1. Then 2’ would be an element of G s_,_1 of distance < d(k) from an
element of H, j, and so in the definition of G ,_j there should have been a path
added from G s_j_1 to C" in G4 s_j. If 2’ is not a vertex in G5 s_j_1, then 2’ must
be part of a path added in G, s_j from an element of G, ;_;_1 to some connected
component C” of Hs_q . Since this path is of distance at most d(k), this would
imply that C" and C” are of distance < 2d(k) which contradicts part (3) of the
induction hypothesis. O

We are now ready to prove our path decomposition lemma.

Lemma 3.4. Suppose G is a locally finite acyclic graph on a Polish space andn > 1.
Then there is a comeager Borel set D such that G | D has a path decomposition of
length at least n.

Proof. We prove this lemma by combining Lemma [3.3] and Lemma [3.1] with the
obvious derivative process to obtain sets of paths.

Suppose (D;);en is such that each S € D; is a finite sequence of paths in G that
are end-ordered, and (D;);cn is end-ordered. Let <(p,) (suppressing the indexing
for clarity) be the partial order on the paths appearing in the elements of the D;
where p <(p,) p’ if p,p’ share some vertex, and either p,p’ both appear in some
sequence S € D; where p appears before p’, or p is in an element of D; and p’ is in
an element of D; for ¢ < j.

We begin by applying Lemma[3.3]to obtain a n-spindly decomposition Gy, G1, . ..
of G restricted to some comeager G-invariant Borel set. If C' is an m-spindly
connected component of some G;, let P(C) be the lexicographically least de-
composition (po,...,px) of C satisfying the conclusion of Lemma Letting
D;o={P(C): C is a connected component of G;}, we obtain a sequence (D; 0)ien
of sets of finite sequences of paths in G, and the associated partial order <(p, )
defined in the previous paragraph.

Inductively, for j > 0, let P; be the set of p appearing in some element of D; ;
such that there is no p’ <(p,,;) p- Then let D; ;i1 be the set of all sequence in D; ;
with all elements of P; removed. These P; are our desired set of paths. Every path
p’ in each S € D; must eventually appear in some P; since there are only finitely
many p such that p <(p, .y p'- O

A useful observation is that if G is a graph with a path decomposition, the
decomposition may be assumed to consist of paths of bounded length. This follows
the fact that the intersection graph on paths has a countable Borel coloring, and a
derivative operation analogous to that of Lemma
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Lemma 3.5. Suppose G is a locally finite Borel graph with a Borel path decompo-
sition Py, Py, ... of length at least n. Then G admits a Borel path decomposition
Py, P{,... of length at least n such that every path p € P! has length at most 2n.

Proof. Every path of length greater than 2n can clearly be written as a finite union
of paths of length between n and 2n. Hence, we may replace any path p € P,
of length greater than 2n by the lex-least finite set of paths of length between n
and 2n whose union is p. This gives a sequence Py, Py, ... having every property of
being a Borel path decomposition with the exception that the P; may not consist of
vertex disjoint paths (but with the property that every path in every P; has length
at most 2n).

Let H be the graph on the paths | J; P; where distinct p,p’ € |J; P; are adjacent
in H if they share some vertex. Then H is a locally finite Borel graph and hence
has a countable Borel coloring c: |J; P; = N by [KST) Proposition 4.10].

Inductively, let D; o = P;. For a fixed j, we can order the paths in | J; D; ; by
p <(p,,) P if p€ D;j and p' € Dy ; where either i < ', or i =i’ and c(p) < c(p’).
Now a construction identical to the last paragraph of the proof of Lemma |3.4] gives
our desired Borel path decomposition. (I

Lemma 3.6. Suppose that E is an abstract system of congruences on n which is
non-expanding, and R = {(S1,T1),...,(Sk,Tk)} is a minimal good generating set
of E. Suppose also a is a free Borel action of the group

F=(n..%w|{W=1:T=5°%

on a Polish space X. If G(a,{y1,.-.,7vk}) has a Borel path decomposition of length
at least r for sufficiently large v (depending on E), then there is an a-realization of
E with Borel pieces witnessed by

(*) w-UJA4=U A4

JES: JET;
Furthermore, if the space X is assumed to be perfect, then the sets Ay, ..., Ay can
be chosen so each is nonmeager.

Proof. Let G be the graph G = G(a,{v1,...,7%}). The idea of our proof is as
follows. We first argue that there is a sufficiently large length r so that given any
path p of length at least r in G, if we have already assigned the endpoints of p to be
in elements of Ag,..., A,—1, then there is some way of consistently assigning the
interior points of the path to elements of Ay, ..., A, _1 so as to obey the congruences
required in (*). Then we use a path decomposition of length at least r for G to
inductively construct a realization of this system of congruences.

Suppose that g = g¢;...go is a reduced word in I', where g; € {Vli,...,yff
are generators. If we begin at some z € X, then such a reduced word of length
l 4 1 gives a path of length [ + 1 in G: the path z,g9-2,...,9;...90 - x. We give
a definition concerning what elements of Ag,...,A,_1 the elements of this path
can belong to. Define functions X and Y on generators as follows: X(v;) = 5,
Y(v;) =1y, X(fyj_l) = Tj, and Y(*yj_l) = 5;. Say that ng,...,n4+1 is a labeling
of g = g;...go if for all i, we have n; € X(g;) if and only if n;y; € Y(g;). So
labelings correspond to acceptable assignments of the points x,go-x,...,g; - go-x
to the sets Ag,..., An_1.

We are interested in the ways labelings of g may start and end. If k,m € n,
say a reduced word ¢ is (k,m)-bad if there is no labeling ng,...,n;41 of g with
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no = m and n;41 = k. Say that g is bad if there is some k,m € n such that g is
(k, m)-bad. We will use a pigeonhole principle argument to show there is a bound
on the length of bad words.

To begin, note that if g = g;...gg is bad, then ¢;...¢g1 and ¢;_1 ...go are also
bad. That is, initial segments and final segments of bad words are bad.

Suppose g = ¢g;...go is (k,m)-bad. Then exactly one of the following holds.
Either

(1) m €Y (g) and g is (k,m’)-bad for every m’ € Y(g;), or
(2) m e Y(g)" and g is (k,m’)-bad for every m’ € Y (g;)°.
Fix a (k,m)-bad word g. Define a pair of associated sequences V(i) and
Wg % (4) where (Vo (8), Wy (i) = (X (9:), Y (9:)) if gi - . - go is (k, m)-bad for every
m’ € Y(g;) and (Vg x (i), Wy x (7)) = (X (9:), Y (9:)) 0therw1se It is clear that there
exist labelings ng, ..., 41 of g where n; € Vg 1(4) and n;1 € Wy (i) for every i.
Indeed, we have that V, (i) E Wy (i) by definition, and W, 1(¢) C Vj (i + 1) for
all ¢ <[ or else g is not a bad word.

Suppose for a contradiction that there are infinitely many bad words. We break
into two cases

Case 1: suppose that there are arbitrarily long bad words g such that g is
(k,m)-bad for some (k,m), and Wy 1(i) = V(i + 1) for all i < I. Hence V, (0) E
V(1) E ... E Vg (). By the pigeonhole principle, and since initial segments and
final segments of bad words are bad, we can find some bad word ¢ such that g is
(k, m)-bad, and

(**) g has length at least 2 and V, (0) = W, (1) or V, ,(0) = W, ,(1)".

We claim that this implies that either the word ¢ is not reduced, or the generating
set of E is not a minimal good generating set.

First, we may assume that g has minimal length among bad words with property
(**), and so no proper subword of g has property (**).

If V 1(0) = Wy (1), then the minimal length of g among words with (
plies that gy # gijEl for any ¢ > 0. This implies that the generating set R is
not a minimal good generating set; the fact that V; x(0) E V, (1) follows from
Vg,k(]-) FE Wg’k(l) = Vg,k(Q) E...FE ngk(l) FE Wgyk(l) and Wgyk(l) = ng(O) In
particular, removing the pair (S;,T;) where gy = ; would still generate E. Hence
the generating set is not minimal.

In the case that V, £(0) = W, (1), we can also remove the pair (S;,T}) where
go = 74, since there must be a generator witnessing V, (0) E V; x(0)° = W, (1)
by our definition of a good generating set (see Deﬁnition. In particular, a good
generating set must contain every relation of the form (S, .5¢) where S E S°.

Case 2: suppose case 1 does not hold. Then by the pigeonhole principle, and
since initial segments and final segments of bad words are bad, we can find some
(k, m)-bad word g such that Vj 5 (0) = Wy 1 (I41), and W, 1 (i) C V, x(i+1) for some
i < [. Then we can obtain a contradiction to the non-expansion of E by cyclically
permuting the sequences to bring V (¢ + 1) to the 0 position and Wy ,(7) to the
lth position.

This finishes the proof that there are only finitely many bad words.

Now let r be sufficiently large so that there are no bad words of length r, and
let Py, P1,... be a Borel path decomposition of G of length at least . We may
assume that this path decomposition satisfies the conclusion of Lemma Now

) im-
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we inductively construct a Borel a-realization Ay, ..., A,_1 of F in countably many
steps. After step ¢ we will have assigned each vertex appearing in the paths in P;
for j < to some Ag,...,A,_1.

At step i we will consider the paths p € P;. For each such path p, we assign the
vertices of p to be the lex-least assignment to Ay,..., A,_1 that is consistent with
the requirement (*) in the statement of the lemma. There is guaranteed to be such
an assignment since we will have assigned at most the start and end node of the
path to Ag,...,A,_1 and since the path has length at least r, the group element
corresponding to it is not bad.

At the end of this construction we will have assigned every element of X to some
Ap, ..., A,_1. Since every edge in G appears in some path p, this ensures that the
requirement (*) is satisfied at the end of the construction.

To finish, we prove the “furthermore” statement at the end of the lemma. Sup-
pose that the space X is perfect. We show that the sets Aq,..., A, can be chosen
to be nonmeager. Notice that it suffices to have a path decomposition where the
first set Py of paths has a set of endpoints D that is nonmeager. If this is then case,
then we may may partition D into k many nonmeager Borel sets since X is perfect.
Then we may assign these k sets to Ay, ..., Ax. This is because in our construction
above, the endpoints of the paths of Py may be assigned to Ay, ..., A arbitrarily.

So we need to show that we can construct a path decomposition where the set
of endpoints of paths in P, is nonmeager. To see this, observe that in our proof
of Lemma given the subsets (A;);eny of X such that the elements of A; are
pairwise of distance greater than d(i), note that all the elements of the set Ag
become endpoints of paths in P, in the final path decomposition. Hence, it suffices
to show that Ay can be chosen to be nonmeager in [MUI6, Lemma 3.1]. To see this,
note first that we can find a Borel nonmeager k-independent set. This is because
G=* has a countable Borel coloring [KST| Proposition 4.10] and one of the color
sets must therefore be a nonmeager k-independent Borel set Ag. Now apply [MUIL6,
Lemma 3.1] to the graph G \ Ay and the function f(n) =d(n + 1). O

We are now ready to prove Theorem

Proof of Theorem[1.4 We begin with the forward direction of Theorem Sup-
pose Ag, ..., A,_1 is a Baire measurable realization of an abstract system of con-
gruence F on n where every A; is nonmeager. By Theorem it suffices to show
that E is non-expanding. For a contradiction, suppose there are sequences of sets
(Vi)i<k and (W;);<x with V;, W, € P (m) such that V; E W, for every i < k,
W; C Viyq for every i < k and Vo 2 Wy. Let A = UieVU A; and B = UieWk A;.
Let « be the product of the group elements witnessing V; £ W; taken in increasing
order for ¢ < k. It follows that v- A C B. Clearly if x € A\ B, then for all n > 0,
v -x ¢ A\ B.

Now there are two cases. First, if the rotation given by ~ is rational (i.e. pe-
riodic), this implies that A\ B is not in any orbit of 7. This contradicts the fact
that A\ B is nonmeager.

Second, suppose the rotation of v is aperiodic. Then A\ B meets each orbit of v
in at most one point which contradicts A \ B being nonmeager as follows. If A\ B
was nonmeager, there would be an open set U in which A\ B is comeager. But since
v is an irrational rotation, we can find some n > 0 rendering v™ arbitrarily close to
the identity, and hence some n for which y*UNU # (. Since y is a homeomorphism,
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this implies that both A\ B and 4™ - (A \ B) are comeager in v*U NU. But then
there is some z so that x € A\ B and 4" -z € A\ B which is a contradiction. This
finishes the proof of the forward implications.

To prove the reverse implication, suppose that E' is non-complementing and non-
expanding. Choose some R = {(S171), ..., (SkTk)} which minimally generates E,
and let {71 ...7%) be rotations of the 2-sphere which generate a copy of Fy.

Now let 7 be sufficiently large (so as to satisfy the hypothesis of Lemma. By
Lemma [3.4] we can find a comeager G-invariant Borel set D so that there is a Borel
path decomposition of length at least r of G | D. Let @’ be the restriction of the
action of {v1,...,7%) to D. Then by Lemma we can find a Borel a/-realization
A, ..., Al,_; of E. By the “furthermore” clause of Lemma we can assume each
of Aj,..., Al,_; to be nonmeager.

By Lemma there is some realization A{,...,Al’_; of E on the 2-sphere
witnessed using (*). To finish our proof, replace A with A on D to obtain a Baire
measurable realization of E on the 2-sphere. That is, set A; = (A7 N D) U (4] N
D). O

4. BOREL PATH DECOMPOSITIONS FROM BOREL END SELECTIONS

Suppose f: X — X. Say that f is aperiodic if for all z € X and n > 1, we
have f"(x) # x. Let Gy be the graph induced by f where distinct zo,z; € X are
G-adjacent if f(xg) = 21 or f(x1) = xo. Suppose A C X. Say that A is forward
recurrent (with respect to f) if for every 2 € X there exists some n > 0 such that
f(x) € A.

We have the following lemma showing that bounded-to-one Borel functions ad-
mit forward recurrent r-independent sets. Recall that a function f: X — Y is
bounded-to-one if there is some k > 0 such that for every y € Y, [f~(y)| < k.

Lemma 4.1. Suppose X is a standard Borel space and f: X — X is an aperiodic
bounded-to-one Borel function. Then for everyr > 1 there exists a Borel set A C X
that is forward recurrent and r-independent.

Proof. Let G%T be the graph on X where distinct x,y € X are G?T—adjacent if
d(z,y) < r. Since Gy has bounded degree, G?T also has bounded degree. Hence,

by [KST, Theorem 4.6], there is a Borel coloring ¢ of G?r with finitely many
colors. Let A be the set of z € X such that c(x) is equal to the least number
appearing infinitely often in the sequence c(z), c(f(x)),c(f?(x)).... Then for each
x, all the elements of A in the (G-)connected component of x have the same color,
and hence A is r-independent, since ¢ is a coloring of G?. A is forward recurrent
by construction. O

Now we show that we can obtain Borel path decompositions from Borel end
selections

Lemma 4.2. Suppose G is an acyclic bounded degree Borel graph on X such that
there is a Borel selection of finitely many ends in every connected component of G.
Then for every n > 0, G admits a Borel path decomposition of length at least n.

Proof. We are given a bounded degree acyclic Borel graph G on a standard Borel
space X where every vertex has degree at least 2. First, by [HM] Theorem C] which
builds on methods from [Mi], if there is a Borel function selecting finitely many ends
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from every connected component of GG, then there is a Borel function selecting one
or two ends in every connected component of G. Hence, we can partition X into
two G-invariant Borel sets C7, Cy so that G | Cy has a Borel selection of one end
in each connected component, and G [ Cs has a Borel selection of two ends in each
connected component.

Let r(x) be the Borel function selecting one end in each connected component of
G | C;. We may assume that r(z) begins with the vertex x (by either appending
the path from « to the start of the ray r(z) if « is not included in the ray, or deleting
the vertices preceding z if z is included in the ray). Let f(x) be vertex after x in
r(x). Then it is easy to see that f: C; — C; generates the graph G.

Let By C C5 be the Borel set of vertices vertices lying on the geodesic between
the two ends chosen in Cy. Precisely, let ro(z), r1(x) be the functions selecting two
ends in each connected component of G [ Co. We may similarly assume that rq(z)
and r1(z) begin with the vertex x, and let fy(x) be the vertex after x in ro(z), and
fi(x) be the vertex after x in r1(x). Then By = {z € Cy: fo(x) # f1(x)}. Tt is easy
to see that every connected component of G | By is 2-regular and every connected
component of G | C5 contains exactly one connected component of G | Bs.

By Lemma we can find a forward recurrent Borel set A C C; such that A is
2n-independent in G. Let Pg be the set of lex-least paths of length n which begin
at some vertex of A, and let By be the set of vertices contained in some element of
Pi. If x € C;\ By, let [z] be the set of vertices y for which there is a path p from x
to y for which no interior vertex of p is in By. The forward recurrence of A implies
that for every x € C1, there is a unique forward-most element of [z] under f. It is
also clear that G | [z] satisfies the hypothesis of Remark For each z, the space
of n-spindly decompositions is a compact space in the natural topology on all such
decompositions. Hence, by compact uniformization [Srl Theorem 5.7.1], see also [K|
Theorem 18.18], there is a Borel way of selecting a unique a path decomposition of
length at least n for G | [z] for each z € Cy \ By. Hence, we can extend Pj to a
Borel path decomposition of length at least n for G | C}.

On G | Cy, we can first partition G | Bs into a Borel set PZ of finite paths of
length at least n. if x € Cy \ Ba, let [z] be the set of y € X such that there is a
path p from z to y for which no interior vertex of p is in By. Once again, G | [z] is
n-spindly. Hence by Remark we can extend PZ to a Borel path decomposition
of length at least n for G [ Cs. (]

Using Adams end selection, we can use this lemma to show that u-hyperfinite
free actions of F,, have p-measurable realizations of abstract systems of congruences
that are non-complementing and non-expanding.

Theorem 4.3. Suppose that n > 2, and a is a free Borel action of F,, on a
standard probability space (X, ) that is p-hyperfinite. Then there is a p-measurable
a-realization of every abstract system of congruences E that is non-complementing
and non-expanding.

Proof. Let R minimally generate E. Pass to a free subgroup F < F,, where k = |R).
Let S be the set of generators of S. By a theorem of Adams [JKL| Lemma 3.21],
on a conull set there is a Borel function selecting either one or two ends from each
connected component of G(a, S). Hence, the theorem follows from Lemmas and
3.0l ([l
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When we apply Lemma [£.2] it will be useful to know that end selections pass
between finite index subgroups.

Lemma 4.4. Suppose a is a free Borel action of a finitely generated group ' on X.
Let A < T be a finitely generated finite index subgroup of T, and b be the restriction
of the action of a to A. Then if S CT and R C A are finite symmetric generating
sets, then G(a, S) has a Borel selection of finitely many ends if and only if G(b, R)
has a Borel selection of finitely many ends.

Proof. Since A is finite index in T, each G(a,S) connected component contains
finitely many components of G(b, R), and each connected component of G(b, R)
is bounded distance from every point in the connected component of G(a,S) it
is contained in. Hence, there is an effectively defined bijection between ends in
a connected component of G(a,S), and ends in each G(b, R)-component that it
contains.

More precisely, suppose r = (z;);en is a ray representing an end in G(a, S), and
C' is a connected component of G(b, R). We define a ray fo(r) in G(b,R) | C as
follows. To each x; we associate the nearest point y; in C, and let fo(r) be the lex
least ray passing through all the points (y;);cn, erasing loops. The map fo clearly
lifts to a map sending a selection of finitely many ends in G(a, S) to a selection of
finitely many ends in G(b, R). The reverse implication is similar. (I

5. CONSTRUCTIVE REALIZATIONS OF NON-EXPANDING ABSTRACT SYSTEMS OF
CONGRUENCES FOR PSLy(Z) ACTING ON P1(R)

The group PSLy(Z) acts on the space P}(R) of lines in R? through the origin.
By identifying such a line with the z-value 2 € R U {oco} of its intersection point
with the line y = 1, it is easy to see that this action is isomorphic to the action of

PSL2(Z) on R U {oo} by fractional linear transformations, where [Z b] acts via

d
T — %.

It is a standard fact (see [Sel VII.1]) that PSLy(Z) is generated by the two
transformations a(z) = x + 1 and S(z) = —1/x, and moreover that it factors as
the free product of (8) of order 2 and (af) of order 3.

The group PGL3(Z) is index 2 over PSLy(Z), and similarly is generated by o(z) =
x4+ 1 and v(z) = 1/z. Note that B(z) = a ! (y(a(B(a™1(2))))) = (-1 +1/(1 +
1w — 1)) = ~1/z.

Let Irr denote the set of irrational numbers. Each x € Irr has a unique continued
fraction expansion

1
rT=ay+ —"7—
B
Where ag € Z and a1, as,... € Z1 are positive integers. We note the continued

fraction expansion of = as (ag;ai,...). The following lemma is standard.
Lemma 5.1. Let f: Irr — Irr be the function given by

r—1 ifx>0
flz)=¢1/z if x €(0,1)
z+1 ifx<0
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Then f generates the orbit equivalence relation of PGLy(Z) on Irr, and so x,y € Irr
are in the same orbit if and only if their continued fraction expansions are tail
equivalent.

Proof. The equivalence relation generated by f is clearly contained in the orbit
equivalence relation of PGLy(Z), since f is defined piecewise by fractional linear
transformations.

Recall that two continued fraction expansions (ag; ai, . ..) and (bg; b1, . ..) are tail
equivalent if there exists some n,m > 0 such that a,; = b4, for all ¢ > 0. Since

(ao—l)“rﬁ lfa0>0
1 ! 02+7a3}r.,.
f a0+71 = a1+7a2+1i ifag=0
ay T a3t .
a2t oo (CLO 4 1) + ﬁ if ag <0
a2tz

it is clear that if x and y are tail equivalent, then there are in the same equivalence
class of the equivalence relation generated by f.

To finish, since a(xz) = x + 1 and y(z) = 1/z generate PGLy(Z), it suffices to
show that if x € Trr, then z, x + 1, and 1/z are tail equivalent. It is trivial to see
that  and x + 1 are tail equivalent. That x and 1/x are tail equivalent is clear
when > 0. When z < 0, since one of z and 1/x are less than —1, by swapping
x and 1/x, we may assume the continued fraction expansion of z is x = a + H%,

where a < —2, and b > 1. Then apply the following identity:
1 1
P S T
at+ 53¢ T oy ——
ER (el

Note that —a — 2 > 0 and b — 1 > 0. If either if these two terms are equal to zero,

this just removes the corresponding term in the continued fraction expansion, since
1 _

m = Adp, + C I:l

Corollary 5.2. Let a be the restriction of the action of PSL2(Z) to the irrationals.

Let S = {a, B} be the set of generators a(x) = v+ 1 and B(x) = —1/x. Then there

is a Borel selection of one end in each equivalence class of G(a, S).

Proof. By Lemma there is a Borel selection of one end in the graph G(a’, {a, v}),
where a’ is the action of PGLy(Z) on Irr, and y(z) = 1/z. Hence, this corollary
follows by Lemma [1.4] since PGLy(Z) is index 2 over PSLy(Z). O

The action of PSLy(Z) is free modulo a countable set, since if z = (az+b)/(cz+d),
then x is the solution to a quadratic equation with integer coefficients. To finish,
we need to analyze the countable set on which the action is nonfree.

Lemma 5.3. For every x € PL(R), the stabilizer Stab(x) of x in PSLy(Z) is cyclic.

Proof. Tt suffices to show for all z that Stab(z) is a solvable subgroup of PSLy(Z)
containing no involution. Indeed, as PSL2(Z) = (Z/27)*(Z/3Z), it follows from the
Kurosh subgroup theorem [C|, Theorem 7.8] that all solvable subgroups are either
cyclic or the free product of two involutions, and we are done upon precluding the
latter alternative.

Towards that end, first observe that the action of PGL5(R) on P!(R) is transitive,
and thus all stabilizers are conjugate to the stabilizer of the point at infinity. This
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stabilizer is isomorphic to the group of affine transformations of the real line, and in
particular is solvable. Returning to PSLy(Z), it follows that the stabilizer of every
point is a subgroup of a solvable group, and hence is itself solvable.

It remains to show that every nontrivial involution in PGLy(Z) acts freely on
PL(R). But this is immediate as all such involutions are conjugate to 8: z +— —1/x,
which has no fixed point. O

We can now prove Theorem [I.5| from the introduction.

Proof of Theorem[1.5. Let R be a minimal relation generating E. Let k = |R|.
There is a finite index copy of Fs in PSL2(Z) and hence a finite index copy of Fy.
Let the free generating set of Fy be S. Let a be the restriction of the action of
PSL2(Z) to this copy of Fy. Let FF C X be the subset on which the action of F is
free. By Lemma the action of PSLy(Z) on F has cyclic stabilizers, and so by
Lemma [2:3] there is a realization of E witnessed by letting the generators S of Fy
witness the elements of R. Since X \ F' is a subset of the quadratic rationals it is
countable, and so the sets realizing E on X \ F are Borel.

Now on F, the graph G(a | F,S) has a Borel selection of finitely many ends
by Corollary and Lemma [£.4] Hence, by Lemma [{.2] we have a Borel path
decomposition and hence by Lemma [3.6] there is a realization of F on a | F once
again with the ¢th generator witnesses the ith congruence in R. The theorem follows
by taking the union of these two realizations. O

6. APPLICATIONS OF PATH DECOMPOSITIONS IN BOREL COMBINATORICS

If G is a locally finite acyclic Borel graph, then path decompositions for G give
a very strong type of unfriendly coloring:

Lemma 6.1. Suppose G is a locally finite acyclic Borel graph on X where every
vertex has degree at least 2. Then if G has a Borel path decomposition of length at
least 4, then G admits a Borel unfriendly coloring. Indeed, there is a Borel function
c: X — 2 such that for every x, [{y € N(z): c¢(x) = c(y)}| < 1.

Proof. Suppose Py, Py, ... is the Borel path decomposition of G of length at least 4.
We may assume that this path decomposition satisfies the conclusion of Lemma [3.5)

We inductively construct ¢. At step i we will ensure that every vertex in a path
p € P; has been colored. For all such paths p € P;, inductively, the only vertices in
p that can have already been colored must be endpoints of p. Hence, there is some
extension of our partial coloring so that every vertex of p has at most one adjacent
vertex of the same color, and the endpoint of p have neighbors of the opposite
color. For example, alternate between the two colors along p, possibly breaking
parity once in the middle of the path. (The reason here paths of length 3 cannot
work is that if the endpoints of such a path were already assigned opposite colors,
one of the endpoints would then gain another vertex of the same color). Since P;
is a path decomposition, each vertex is an interior vertex of at most one path, and
every edge is contained in some path. Hence, our final coloring ¢ of X has the
desired property that each vertex has at most one neighbor of the same color. [

By combining this Lemma with Lemma we obtain Theorem [[.7] as a Corol-
lary.

Suppose G is an acyclic locally finite Borel graph where every vertex has degree
at least 3. Then an almost identical greedy construction shows that if G has a
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path decomposition of length at least 3, then G has a Borel perfect matching,
and if G has maximum degree d, then G has a Borel d-list-coloring for any Borel
assignment of lists to edges of G. For example, this gives a new way of proving
a Baire measurable version of Vizing’s theorem for acyclic bounded degree Borel
graphs, and the existence of Baire measurable perfect matchings for acyclic locally
finite Borel graphs.
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