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Abstract

Un-trained convolutional neural networks have emerged as highly successful tools for image
recovery and restoration. They are capable of solving standard inverse problems such as denois-
ing and compressive sensing with excellent results by simply fitting a neural network model to
measurements from a single image or signal without the need for any additional training data.
For some applications, this critically requires additional regularization in the form of early
stopping the optimization. For signal recovery from a few measurements, however, un-trained
convolutional networks have an intriguing self-regularizing property: Even though the network
can perfectly fit any image, the network recovers a natural image from few measurements when
trained with gradient descent until convergence. In this paper, we provide numerical evidence for
this property and study it theoretically. We show that—without any further regularization—an
un-trained convolutional neural network can approximately reconstruct signals and images that
are sufficiently structured, from a near minimal number of random measurements.

1 Introduction

Un-trained convolutional neural networks have emerged as highly successful tools for image re-
covery and restoration, for a variety of problems including denoising, compressive sensing, and
inpainting [Uly+18; Jin+19; Vee+18; JH19; Hec19; HH19; Bos+20; Wan+20; HA20; Aro+20]. As
opposed to trained convolutional neural networks, that learn an image prior from training data,
un-trained convolutional networks act as an image prior without any training and solely based on
the architecture of the network and the optimization procedure used to fit them.

The benefit of untrained networks was first observed in the Deep Image Prior (DIP) pa-
per [Uly+18]. The key observation of Ulyanov et al. [Uly+18] is that fitting a standard over-
parameterized convolutional autoencoder (specifically, the U-net [Ron+15] or variations thereoff)
to a single noisy/corrupted image, when combined with early stopping, yields excellent denoising,
inpainting, and super-resolution performance. Subsequent literature has demonstrated that many
elements of the architecture of a convolutional autoencoder—such as the encoder part—are irrele-
vant for this behavior to emerge. In particular the papers [HH19; HS20] highlight the critical role
of convolutions with fixed convolutional kernels.

Un-trained convolutional networks are empirically most effective when the network is over-
parametrized, meaning that is has more parameters than image pixels. This holds even though in
this regime the neural network can in principle fit any image perfectly, including random noise.
Therefore, further regularization is critical to performance in many applications. For instance de-
noising [Uly+18; HS20] critically requires early stopping, as without early stopping the noisy image
is fitted perfectly and no noise is removed. However, perhaps surprisingly, for some inverse prob-
lems including inpainting [Uly+18] and compressive sensing, no further regularization is necessary!
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over-parameterized, un-trained convolutional image prior G : RN → R
n mapping an N � n di-

mensional parameter vector C to an n dimensional signal. We take G to be the deep decoder, a
simple un-trained convolutional network, defined formally in Section 2. We emphasize that G is an
un-trained neural networks that is randomly initialized and has never seen any training data. To
reconstruct the signal from its measurements we fit a compressed version of the generator output
to these measurements via randomly initialized gradient descent on the loss

L(C) =
1

2
‖AG(C)− y‖22. (2)

Let Ĉ denote the solution found by gradient descent. The signal estimate can then be calculated
as x̂ = G(Ĉ).

A number of recent papers have shown that with the deep image prior (a convolutional au-
toencoder) or the deep decoder (a convolutional generator) as a prior G, this approach is rather
effective [Vee+18; JH19; Hec19]. Most recently Arora et al. [Aro+20] have shown that this ap-
proach significantly improves upon classical compressive sensing methods (`1-regularization and
total-variation norm minimization) for accelerating multi-coil magnetic resonance imaging, which
is arguably one of the most prominent real-world application of compressive sensing.

The generator G is over-parameterized and can express any image x∗, including unstructured
noise. Nevertheless, typically no further regularization in the form of early stopping the optimiza-
tion is necessary. We demonstrate this phenomenon in Figure 1. This figure shows that running
gradient descent on the loss L(C) eventually yields an estimate that is very close to the original
image. This is surprising because i) there is no additional training data and ii) even though the
generator G can fit any image, including noise, gradient descent still finds an image close to the
original one.

1.2 Contributions

The main contribution of this paper is to show that un-trained convolutional image priors provably
enable recovery of natural images from a few random linear measurements. This holds by simply
running gradient descent until convergence—without any further regularization. More specifically,
we show that fitting an over-parameterized convolutional network with fixed convolutions (via
gradient descent) to random measurements of a smooth signal essentially recovers that signal.
Furthermore, the required number of measurements is commensurate to how smooth the signal
is with more measurements required when the signal has “high-frequency” components. In more
detail:

• Suppose we have m-linear measurements y = Ax∗,A ∈ R
m×n of an unknown signal x∗ with

A a Gaussian measurement matrix. Furthermore, assume that the signal x∗ is p-smooth,
in the sense that it can be represented as a linear combination of the p lowest frequency
orthonormal trigonometric basis functions w1, . . . ,wn ∈ R

n as

x∗ =
p∑

i=1

wi 〈wi,x
∗〉 .

We plot these trigonometric basis functions in Figure 2 and formally define them later on
in Section 4. Note that the smaller p, the smoother the signal x∗ is, thus p is a measure of
smoothness.
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Figure 2: The 1st, 2nd, 6th, and 21st trigonometric basis functions in dimension n = 300.

Our main result shows that the estimateC∞, obtained by running gradient descent on the loss
(2) until convergence, yields an output G(C∞) which is very close to x∗, i.e., G(C∞) ≈ x∗.
This holds as soon as the number of measurements exceeds the degrees of smoothness present
in the signal (p). Since natural images are approximately smooth, this results provides a
theoretical explanation why compressive sensing on natural images with over-parameterized
convolutional generators works so well (see [Vee+18; JH19; Hec19; Aro+20] for corresponding
empirical results).

• In a nutshell, our main insight is that the behavior of large over-parameterized neural net-
works is dictated by the spectral properties of their Jacobian mapping. For the convolutional
generators considered in this paper, the associated Jacobian matrix has singular vectors that
can be well approximated by the orthonormal trigonometric basis function and singular val-
ues that decay very quickly from the low-frequency to the high-frequency trigonometric basis
functions. Specifically, the associated singular values decay approximately geometrically.

To prove our result, we first characterize the least-squares solution of a randomly sketched
least-squares problem with a design matrix with a decaying spectrum. To prove the result
for convolutional generators we show that this non-linear learning problem behaves like an
associated linear model with the above spectral characteristics. We then conclude the proof
for the corresponding convolutional generator, by showing that the solutions obtained by
running gradient descent on the non-linear problem is close to that obtained by running
gradient descent on the linear problem.

• In order to develop a better understanding of compressive sensing with untrained priors, we
also carry out compressive sensing experiments for accelerating magnetic resonance imag-
ing (MRI). Our experiments corroborate our theoretical finding that simply iterating until
convergence is effective. This also suggests that there is little or no benefit to additional
regularization.

Our paper is organized as follows: We start by stating the convolutional architecture considered
in this paper in Section 2. In Section 3 we study the reconstruction of a signal from few a measure-
ments with a linear over-parameterized generator to form intuition. In Section 4 we state our main
results for signal recovery with convolutional generators. Section 5 contains our numerical result
for MRI imaging. We conclude the paper with related work and a brief proof sketch, all formal
proofs are deferred to the Appendix.
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2 Convolutional generators

A convolutional generator generates an image through convolutional operations and applications
of non-linearities. In this paper, we study a two-layer convolutional generator G : Rnk×n → R

n

theoretically. The generator has the form

G(C) = ReLU(UC)v. (3)

Here, v = [1, . . . , 1,−1, . . . ,−1]/
√
k are the fixed weights of the output layer, of which half are

positive and the other half are negative, and C ∈ R
n×k is the coefficient matrix of the generator,

corresponding to the weights in the first layer of the network. Critical for the performance of the
generator is the convolutional operation with a fixed kernel u, implemented through multiplication
with the circulant matrix U ∈ R

n×n.
This architecture is a two-dimensional version of the deep decoder [HH19]. The deep decoder

in turn is a sub-set of the deep image prior [Uly+18] and the U-net [Ron+15], as commented on
below.

The deep decoder with d layers (typically, d = 4, 5, 6) is defined as

G(C) = ReLU(UBdCd)v, (4)

where

Bi+1 = cn(ReLU(UiBiCi)), i = 0, . . . , d− 1.

Here cn(·) is a channel normalization operation, which normalizes each channel/column of the
volume/matrix ReLU(UiBiCi) ∈ R

ni×k individually and can be viewed as a special case of the
batch normalization operation. Note that if the signal to be generated is an image and thus two-
dimensional (ni ∈ Z

2), then Bi is a three-dimensional tensor consisting of k many channels, and
if the signal is one-dimensional (ni ∈ Z), those tensors are two-dimensional and can be viewed as
matrices consisting of k many columns (or channels). Moreover, B0 is a fixed input tensor, which
we assume to have full row rank. The parameters of the deep decoder are the weight matrices
C1, . . . ,Cd ∈ R

k×k. Multiplication with those weight matrices is performing linear combinations
of the channels, which in turn is equivalent to performing 1x1-convolutions.

For d = 2, the deep decoder reduces to the two-dimensional version in (3). To see this, note
that for d = 2, because B0 has full column rank, optimizing over B0C0 ∈ R

n×k is equivalent to
optimizing over C ∈ R

n×k instead.
Finally, as mentioned before, the deep decoder can be viewed as the relevant part of a convolu-

tional generator to function as an image prior. It can be deduced from a convolutional autoencoder
(such as the deep image prior [Uly+18] and the U-net [Ron+15]) by removing the encoder part, any
skip connections, and most surprisingly, the trainable convolutional filters of spatial extent larger
than one. As demonstrated in [HS20], the critical aspect for an un-trained deep image prior are
the convolutions with fixed convolutional kernels, implemented here by the operator U.

3 Signal recovery with over-parameterized linear generators

Consider an over-parameterized linear generator G̃(c) = Jc defined by a wide, full-rank, generator
matrix J ∈ R

n×N , N ≥ n, and an arbitrary and unknown signal x∗ ∈ R
n. Because J has full rank,
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the signal can be expressed as x∗ = Jc∗. However, the coefficient vector c∗ in this representation
is non-unique, as J is a wide matrix containing more columns than rows. We observe m linear
measurements of the unknown signal of the form

y = Ax∗,

where A ∈ R
m×n is a wide (m < n) Gaussian measurement matrix, with iid N (0, 1/m) entries.

We note that with this variance, norms are approximately preserved (i.e., for a fixed z, with high
probability ‖z‖2 ≈ ‖Az‖2).

Our goal is to estimate the signal x∗ based on the measurement y. We estimate the signal x∗

by first computing a coefficient estimate ĉ by minimizing the loss

L(c) = 1

2
‖AJc− y‖22,

via running gradient descent with sufficiently small step size until convergence. We then esti-
mate the signal via x̂ = Jĉ. Since gradient descent applied on a least-squares problem yields the
minimum-norm solution, the estimate ĉ can equivalently be expressed as

ĉ = argmin
c

‖c‖22 subject to AJc = y. (5)

In closed form, ĉ is given as
ĉ = (AJ)†AJc∗ = PJTAT c∗,

where (AJ)† is the pseudo-inverse of AJ, and PJTAT is a orthogonal projection operator onto the
range of (AJ)T . Thus, the signal estimation error is

x̂− x∗ = J(ĉ− c∗) = J(I−PJTAT )c∗. (6)

The following theorem characterizes this signal estimation error.

Theorem 1. Let A ∈ R
m×n be a random Gaussian matrix with m ≥ 12, and let w1, . . . ,wn be the

left singular vectors of J with associated singular values σ1 ≥ . . . ≥ σn. Then, for any x∗ ∈ R
n, with

probability at least 1 − 3e−1/2m, the signal estimate x̂ = Jĉ based on the measurement y = Ax∗,
with the coefficient estimate ĉ(y) defined in (5), obeys

‖x̂− x∗‖22 ≤ C

(
n∑

i=1

1

σ2
i

〈wi,x
∗〉2
)

∑

i>2m/3

σ2
i . (7)

Here, C is a fixed numerical constant.

The proof, given in the appendix, relies on arguments from [Hal+11, Sec. 8 and Sec. 9] developed
for approximating low-rank matrices through random sampling.

The theorem guarantees that the error in estimating the signal x∗ from compressive measure-
ments y = Ax∗ is small provided that two conditions are satisfied:

(i) The signal x∗ lies (approximately) in the span of the leading O(m) singular vectors of J,
where m is the number of linear measurements.
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(ii) The singular values of the generator matrix J decay sufficiently fast (for example geometri-
cally).

To see this, let us consider a concrete example. Suppose the singular values decay geometrically,
i.e., σ2

i = γi for some γ ∈ (0, 1). Moreover, suppose that the signal x∗ lies in the span of the leading
m/3 singular values of J, i.e., x∗ ∈ span(w1, . . . ,wm/3). Then, Theorem 1 guarantees that the
estimate x̂ based on m random linear measurements obeys

‖x̂− x∗‖22 ≤ C
γm/3

1− γ
‖x∗‖22. (8)

Here, we used that the first term in the right-hand-side of (1) is bounded by 1/σ2
m/3‖x∗‖22, using

that x∗ is in the span of the leading singular vectors, and that
∑

i>2m/3 σ
2
i ≤ γ2m/3

1−γ , by the formula
for a geometric series. The bound (8) is very small provided that γ is slightly below one (since
γm/3 decays exponentially)—thus guaranteeing almost perfect recovery of a signal that is aligned
with the leading singular vectors of J.

4 Main results for compressive sensing with convolutional gener-
ators

We are now ready to state our main results for compressive sensing with convolutional generators.
We consider the non-linear least-squares objective

L(C) =
1

2
‖AG(C)− y‖22,

where A ∈ R
m×n,m ≤ n, is a Gaussian random matrix with iid N (0, 1/m) entries and G(C) is the

two-layer decoder network defined in section 2. We minimize this objective by running gradient
descent with a constant stepsize η, starting from a random initialization C0, with entries drawn
iid from a Gaussian distribution N (0, ω2), and with variance ω2 specified later. The coefficients at
iterations t = 1, 2, . . . are given by

Ct+1 = Ct − η∇L(Ct). (9)

In the previous section we studied a linear generator with generator matrix J with quickly decaying
spectrum. In this section we extend the insights from the previous section to the non-linear case
by replacing the role of the generator matrix J with the Jacobian of the non-linear generator G,
defined as [J (C)]ij = ∂

∂ci
[G(C)]j . In contrast to the linear case, however, the Jacobian changes

across iterations of gradient descent. Nevertheless, we can account for these changes in the Jacobian
in our analysis.

As found in [HS20], for the two-layer deep decoder that we consider, the left singular vectors
of the Jacobian can be well approximated by the trigonometric basis function w1, . . . ,wn ∈ R

n

plotted in Figure 2, and defined as

[wi]j =
1√
n





1 i = 0√
2 cos(2πji/n) i = 1, . . . , n/2− 1

(−1)j i = n/2√
2 sin(2πji/n) i = n/2 + 1, . . . , n− 1

. (10)
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Figure 3: Triangular kernels and the weights associated to low-frequency trigonometric functions
they induce, for a generator network of output dimension n = 300. The wider the kernel is, the more
the weights are concentrated towards the low-frequency components of the signal. Note that the
lower singular values decay geometrically (as evident from the straight line in the log-log plot)—as
the singular values in our example in Section 3.

Moreover, the singular values of the Jacobian throughout the iterates can be well approximated
by associated values that only depend on the convolution kernel u associated with the convolution
operator U. Those values σ ∈ R

n are given by

σ = ‖u‖2

√√√√
∣∣∣∣∣Fg

(
u~ u

‖u‖22

)∣∣∣∣∣ (11)

with

g(z) =
1

2

(
1− cos−1 (z)

π

)
z.

Here, for two vectors u,v ∈ R
n, u~ v denotes their circular convolution, F is the discrete Fourier

transform matrix, and the scalar non-linearity g is applied entrywise. As a concrete relevant exam-
ple, in Figure 3 we depict the triangular kernel that is used in the original deep decoder network.
The most important observation from this plot is that the associated weights σ = [σ1, . . . , σn] decay
very fast, namely geometrically.

With those definition, we are now ready to state our main result.

Theorem 2. Let A ∈ R
m×n be a random Gaussian matrix with m ≥ 12 and suppose we are given

a linear measurement y = Ax∗ of an arbitrary signal x∗ ∈ R
n. Consider a two layer generator

network G(C) = ReLU(UC)v, C ∈ R
n×k, with

k ≥ Cu

m

ξ8
, (12)

channels and with convolutional kernel u of the convolutional operator U and associated weights σ =
[σ1, . . . , σn]. Here, ξ ≤ 1 is arbitrary and Cu is a constant that only depends on the convolutional
kernel u. In order to estimate the signal, we fit the convolutional generator to the signal by running

gradient descent starting from a random initialization C0 with i.i.d. N (0, ω2), entries, ω ∝ ‖y‖
2√
n
,
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and sufficiently small stepsize to the loss 1
2‖AG(C)− y‖22 until convergence. Then, with high

probability, the reconstruction error with parameters C∞ at convergence obeys

‖G(C∞)− x∗‖22 ≤C

(
n∑

i=1

1

σ2
i

〈wi,x
∗〉2
)

∑

i>2m/3

σ2
i + ξ2‖x∗‖22. (13)

Here, C is a fixed numerical constant.

Theorem 2 establishes that a convolutional generator enables the reconstruction of a natural
signal from a few linear measurements. To see this, note that a good model for a natural image
is a smooth signal, i.e., a signal that can be well-approximated by few leading trigonometric basis
functions. More concretely, Figure 4 in [SO01] shows that the power spectrum of a natural image
(i.e., the energy distribution by frequency) decays rapidly from low frequencies to high frequencies.

Thus it is reasonably to assume that the signal x∗ can be represented with few of the trigono-
metric basis function; for concreteness say that x∗ lies in the span of w1, . . . ,wm/3. Next, recall
from Figure 3 that the weights associated with a triangular kernel decay geometrically (i.e., σ2

i = γi

for some γ ∈ (0, 1)). Thus, from the same argument as used for (8), the bound (13) established by
the theorem yields that the reconstruction error is bounded by

‖G(C∞)− x∗‖22 ≤ C
γm/3

1− γ
‖x∗‖22 + ξ2‖x∗‖22.

Thus our theorem guarantees the recovery of a sufficiently smooth signal by optimizing over the
range of the generator. In particular if the signal is p-smooth, i.e., lies in the span of w1, . . . ,wp,
then O(p) measurements are sufficient to provide an accurate estimate.

4.1 Beyond two layer networks

Our main theorem from the previous section relies on two critical ingredients:

(i) The finding from [HS20] that the leading singular vectors of the Jacobian of a two-layer
deep decoder are approximately the trigonometric basis function throughout all iterations of
gradient descent.

(ii) The weights σ1, . . . , σn associated with the trigonometric basis functions decaying sufficiently
fast, specifically approximately geometric. That is required for gradient descent applied to
fitting m compressive measurements until convergence to (approximately) only fit the signal
to the leading O(m) trigonometric basis functions.

Those results extend to deeper networks as follows. First, as shown numerically in [HS20], the lead-
ing singular vectors of the Jacobian of a four-layer deep decoder are also close to the trigonometric
basis functions, and change only little across iterations. Second, as shown in Figure 4, the singular
values of a four-layer deep decoder also decay (at least) geometrically, and the spectrum changes
only little across iterations. Thus, the implications of our theory continue to apply for deeper deep
decoders.
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Figure 4: The singular value distribution of the Jacobian of a four-layer deep decoder at different
iterations of gradient descent; the spectrum changes only slightly, and the singular values decay
slightly faster than geometrically.

5 Numerical experiments for magnetic resonance imaging

In the final part of our paper we consider accelerating magnetic resonance imaging (MRI), one of
the major application of compressive sensing. MRI is a medical imaging technique where measure-
ments of an object can only be taken in the Fourier domain, referred to as k-space. If the full
k-space measurement is collected, an image of the object can be computed almost perfectly (up
the noise inherent in the measurement process). In order to accelerate the imaging process, it is
common to only collect a small part of the k-space, which corresponds to taking few linear Fourier
measurements; or in the notation of our paper, a measurement matrix A with subsampled rows of
the Fourier matrix.

In order to understand whether our main finding—that signal reconstruction from compressive
measurements without further regularization is possible—applies in practice, we consider the prob-
lem of reconstructing an image from few k-space measurements. We consider reconstruction of an
image from 8-fold undersampled k-space measurements from the fastMRI dataset, recently released
by facebook and NYU [Zbo+18]. We reconstruct with a d = 5 layer and highly over-parameterized
deep decoder. Figure 5 shows the corresponding loss curves. It can be seen that early stopping at
the optimal early stopping point gives only marginally better performance than when optimizing
until convergence, and in addition the optimal early stopping point is unknown in practice (because
we do not have access to a reconstruction from a full measurement).

6 Related literature

In this paper we focus on un-trained neural network for solving inverse problems. In contrast
a large body of recent result concentrates on using trained deep convolutional neural networks
for image recovery and reconstruction. Training based deep learning methods for solving inverse
problems are either trained end-to-end for tasks like denoising [Bur+12; Zha+17], or are based
on learning a generative image model (by training an autoencoder or GAN [HS06; Goo+14]) and
then using the resulting image models to regularize problems such as compressed sensing [Bor+17;
HV18; Hua+18], denoising [Hec+20], or phase retrieval [Han+18; SA18]. In contrast to un-trained
network, where optimization is over the weights of the un-trained generator, in the aformentioned
papers it is over the input of the (trained) network.
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where J (θ) is the Jacobian of f at θ. We start gradient descent from a random initialization θ0

with iid N (0, ω) entries. Central to our analysis are the following objects. Let JG(θ) ∈ R
n×N

be the Jacobian of G(θ) and define JG as a reference generator Jacobian that we set to a matrix
that is very close to the generator Jacobian at initialization, i.e., JG ≈ JG(θ0). For the two-layer
network for which we state a precise result, this matrix only depends on the convolutional operator
U.

Relevant for the dynamics of gradient descent, however, are the corresponding sketched original
and reference Jacobians, defined as

J (θ) = AJG(θ) ∈ R
m×N and J = AJG ∈ R

m×N .

Since we chose JG ≈ JG(θ0), we also have J ≈ J (θ0).

7.1 Closeness to an associated linear problem

To characterized the behavior of the gradient descent updates in (24), we relate the non-linear least
squares problem to a linearized one in a ball around the initialization θ0. This general strategy
has been utilized in a number of recent publications [Sol+18; Du+18; Aro+19; OS19b; Oym+19;
HS20]. We define the associated linearized least-squares problem as

Llin(θ) =
1

2
‖f(θ0) + J(θ − θ0)− y‖22. (15)

Starting from the same initial point θ0, the gradient descent updates of the linearized problem are

θ̃t+1 = θ̃t − ηJT
(
f(θ0) + J(θ̃t − θ0)− y

)
. (16)

The iterates and residuals of the non-linear and linear updates are close throughout the entire
run of gradient descent provided the following assumptions are satisfied:

(i) The smallest and largest singular values of the generator reference Jacobian are lower and
upper bounded by constants α and β, respectively.

(ii) The reference Jacobian approximates the Jacobian at initialization, i.e., for ε0 > 0,

‖J− J (θ0)‖ ≤ ε0,

where ‖·‖ is the standard operator (matrix) norm.

(iii) Within a radius R around the initialization, the Jacobian varies by no more than ε in the
sense that

‖J (θ)− J (θ0)‖ ≤ ε

2
, for all θ ∈ BR(θ0). (17)

Here, BR(θ0) := {θ : ‖θ − θ0‖2 ≤ R} is the ball with radius R around θ0.

Under these assumptions, we establish that the residuals of the linear problem,

r̃t := f(θ0) +AJG(θ̃t − θ0)− y
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and that of the non-linear problem,
rt := AG(θt)− y,

are close during the entire run of gradient descent, and most importantly for proving our result,
that the iterates of the linear and non-linear problem are close, again during the entire run of
gradient descent:

∥∥∥θt − θ̃t

∥∥∥
2
≤ O(ε0 + ε)‖r0‖2.

7.2 Inheriting the properties of the linear problem

Recall that our goal is to characterize the signal estimate G(θ∞) at convergence. We characterize
this estimate by

i) characterizing the estimate x̂ = JGθ∞ obtained by running the linear problem until conver-
gence and

ii) showing that this estimate is close to the original estimate, i.e., JGθ∞ ≈ G(θ∞).

In more detail, suppose that the assumption i-iii are satisfied for sufficiently small closeness
parameters ε0 and ε. Then, as discussed above, the iterates of the non-linear problem and the
linear problem are close at any iteration, in particular at convergence. Since the Jacobians are also
close, we can establish that x̂ = JGθ∞ ≈ G(θ∞).

In more detail, we can bound the signal estimation error at convergence as

‖G(θ∞)− x∗‖2 ≤ ‖x̂− x∗‖2 + ‖G(θ∞)− x̂‖2
≤ ‖x̂− x∗‖2 +O(ε0 + ε).

The first term is controlled by analyzing the linear case with Theorem 1 from Section 3. To control
the second term we need a simple definition

JG(θ∞, 0) =

∫ 1

0
JG(tθ∞)dt.

With this definition in place we can proceed to bound the second term as follows

‖G(θ∞)− x̂‖
2

=
∥∥∥JG(θ∞, 0)θ∞ − JGθ̃∞

∥∥∥
2

=
∥∥∥JG(θ∞, 0)θ∞ − JG(θ∞, 0)θ̃∞ + JG(θ∞, 0)θ̃∞ − JGθ̃∞

∥∥∥
2

≤ ‖JG(θ∞, 0)‖
∥∥∥θ∞ − θ̃∞

∥∥∥
2

+ ‖JG(θ∞, 0)− JG‖
∥∥∥θ̃∞

∥∥∥
2

≤ O(ε0 + ε).

For the last bound we used that by our discussion above, the iterates of the non-linear problem

are close at any iteration, in particular at convergence, so that
∥∥∥θ∞ − θ̃∞

∥∥∥
2
≤ O(ε0 + ε).
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7.3 Concluding the proof sketch

The proof for the two-layer case is then concluded by analyzing the associated linear problem.
In particular, we use that the matrix JG has as its left-singular vectors the trigonometric basis
function, and its spectrum are the associated weights σ1, . . . , σn specified in Section 4.

In order to extend this proof to a multi-layer deep decoder G(θ), all we need to do is to
characterize the associated matrix JG, in particular its left-singular vectors and corresponding
singular values.

Code

Code to reproduce the experiments is available at https://github.com/MLI-lab/cs_deep_decoder.
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A Proof of Theorem 1

The statement follows from the following more general result.

Proposition 1. Let A ∈ R
m×n be a Gaussian random matrix with m = k + p, and p ≥ 4, and let

JT = UnΣVT with Un ∈ R
d×n and Σ,V ∈ R

n×n, be the singular value decomposition of JT with
singular values σ1 ≥ . . . ≥ σn. Then, for any c∗ ∈ R

d, with probability at least 1 − 2e−p − e−u2/2,
the estimate ĉ = PATJT c obeys

‖Jĉ− Jc‖22 ≤
∥∥UT

nc
∗∥∥2

2




σk+1e

(√
3k

p+ 1
+

e
√
k + p

p+ 1
u

)
+

√∑

i>k

σ2
i

e
√
k + p

p+ 1
u




2

+
∑

j>k

σ2
j


 .

To see this, note that with p = k/2 and u =
√
p, the proposition guarantees that with probability

at least 1− 3e−p,

‖Jĉ− Jc∗‖22 ≤
∥∥UT

nc
∗∥∥2

2




25σk+1 + 7

√∑

i>k

σ2
i




2

+
∑

i>k

σ2
i




≤
∥∥UT

nc
∗∥∥2

2
322

∑

i>k

σ2
i .

Noting that m = 3/2k, x̂ = Jĉ and x∗ = Jc∗ concludes the proof.

Proof of Proposition 1: By the characterization (6), our goal is to upper bound

‖Jĉ− Jc∗‖22 =
∥∥∥c∗T (I−PJTAT )JT

∥∥∥
2

2
. (18)

Our proof relies on arguments from [Hal+11, Sec. 8 and Sec. 9] developed for approximating low-
rank matrices through random sampling.

We start by partitioning the right-singular vectors of JT into two blocks V1 and V2 containing
k and n− k columns, respectively.

JT = Un

[
Σ1 0
0 Σ2

] [
VT

1

VT
2

]
.

Define the random matrices

Ω1 = VT
1 A

T ∈ R
k×m, Ω2 = VT

2 A
T ∈ R

n−k×m.

Note that both matrices are standard Gaussian, and, because they are non-overlapping sub-matrices
of VA, they are also stochastically independent. Moreover, Ω1 has full row-rank with probability
one.

For convenience, define
J̃T = ΣV.

Next, we record a useful property from [Hal+11, Prop. 8.4]: For a unitary matrix U any matrix
M,

PM = UPUTMUT . (19)
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To see that the identity (19) holds, first note that the matrix P = UTPMU is an orthogonal
projection operator because it is Hermitian an P2 = P. Moreover,

range(P) = UT range(M) = range(UTM).

Since the range determines the orthogonal projector onto its range, we have that P = UTPMU =
PUTM, concluding the proof of (19). Next, let

JT = [UnUd−n]︸ ︷︷ ︸
U



Σ1 0
0 Σ2
0 0


VT

be the full singular value decomposition of JT , including the singular vectors Ud−n multiplying
with zero singular values. Applying the identity (19) and that UTU we proceed as

∥∥cT (I−PJTAT )JT
∥∥2
2
=
∥∥cTU(I−PUTJTAT )UTJT

∥∥2
2

=

∥∥∥∥∥∥∥∥
cT [UnUd−n](I−P

J̃
TAT

0



)

[
Σ

0

]
∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥c
T [UnUd−n]

[
(I−P

J̃TAT )Σ
0

]
)

∥∥∥∥
2

2

=
∥∥cTUn(I−P

J̃TAT )Σ
∥∥2
2
.

Moreover,

∥∥cTUn(I−P
J̃TAT )Σ

∥∥2
2
≤
∥∥cTUn

∥∥2
2

∥∥(I−P
J̃TAT )Σ

∥∥2

=
∥∥cTUn

∥∥2
2

∥∥ΣT (I−P
J̃TAT )Σ

∥∥

≤
∥∥∥Σ2Ω2Ω

†
1

∥∥∥
2
+ ‖Σ2‖2

≤
∥∥cTUn

∥∥2
2



(
‖Σ2‖e

(√
3k

p+ 1
+

e
√
k + p

p+ 1
u

)
+ ‖Σ2‖F

e
√
k + p

p+ 1
ut

)2

+ ‖Σ2‖2

 ,

where the second-to-last inequality follows from [Hal+11, Last ineq in Sec. 9.2]. Finally, the last in-
equality holds with the probability specified in the proposition because by [Hal+11, Last inequality
in Sec. 10.3], for p ≥ 4 and u > 0,

P

[∥∥∥Σ2Ω2Ω
†
1

∥∥∥ ≥ ‖Σ2‖e
(√

3k

p+ 1
+

e
√
k + p

p+ 1
u

)
+ ‖Σ2‖F

e
√
k + p

p+ 1
ut

]
≤ 2e−p + e−u2/2.

This concludes the proof of the proposition.
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B Proof of Theorem 2

The result stated in the main text (Theorem 2) is obtained from a slightly more general result
which applies beyond convolutional networks. Specifically, we consider neural network generators
of the form

G(C) = ReLU(UC)v,

with C ∈ R
n×k, and U ∈ R

n×n an arbitrary fixed matrix, and v ∈ R
k, with half of the entries of v

equal to +1/
√
k and the other half equal to −1/

√
k.

The (transposed) Jacobian ReLU(Uc) is UTdiag(ReLU′(Uc)). Thus the Jacobian of G(C) is
given by

J T
G (C) =



v1U

Tdiag(ReLU′(Uc1))
...

vkU
Tdiag(ReLU′(Uck))


 ∈ R

nk×n, (20)

where ReLU′ is the derivative of the activation function. Next we define a notion of expected
Jacobian. Towards this goal, we first define the matrix

Σ(U) := E
[
JG(C)J T

G (C)
]
,

associated with the function G(C) = ReLU(UC)v. Here, expectation is over C with iid N (0, ω)
entries. Consider the eigenvalue decomposition of Σ(U) given by

Σ(U) =

n∑

i=1

σ2
iwiw

T
i .

Our results depend on the largest and smallest eigenvalue of Σ(U) denoted by σ2
n and ‖U‖2 and

in particular a condition number denoted by κ formally defined as

κu :=
‖U‖2
σ2
n

.

With these definitions in place we are now ready to state our result about neural generators.

Theorem 3. Consider a compressive observation y ∈ R
m given by

y = Ax,

where A ∈ R
m×n with m ≤ n

9 is a Gaussian random matrix with iid N (0, 1/m) entries. Suppose
that the number of channels obeys

k ≥ C
κ26u
ξ8

m (21)

for an error tolerance parameter 0 < ξ ≤ 1√
2 log( 2n

δ )
. We fit the neural generator G(C) to the signal

y ∈ R
n by minimizing a loss of the form

L(C) =
1

2
‖AG(C)− y‖22 (22)

19



via running gradient descent with iterations Ct+1 = Ct−η∇L(Ct), starting from C0 with i.i.d. N (0, ω2)

entries, ω =
ξ‖y‖

2

2
√
n‖U‖ , and step size obeying η ≤ m

4n‖U‖2 . Then, with probability at least 1− ne−k2 −
2e−

m
2 − δ, for all iterations t,

‖x−G(Ct)‖2 ≤ ξ‖x∗‖2 + C

(
n∑

i=1

1

σ2
i

〈wi,x
∗〉2
)

∑

i>2m/3

σ2
i . (23)

Theorem 2 follows directly from Theorem 3 by noting that for U a circulant matrix (imple-
menting a convolution), as found in [HS20], the left singular vectors of Σ(U) are given by the
trigonometric basis functions in (10) and the singular values are given by (11).

C The dynamics of linear and nonlinear least-squares

Theorem 3, proven below, builds on a result on the dynamics of a general non-linear least squares
problem that is stated and discussed in this section. Consider a nonlinear least-squares fitting
problem of the form

L(θ) = 1

2
‖f(θ)− y‖22.

Here, f : RN → R
n is a non-linear model with parameters θ ∈ R

N .
To solve this problem, we run gradient descent with a fixed stepsize η, starting from an initial

point θ0, with updates of the form

θt+1 = θt − η∇L(θt) where ∇L(θ) = J T (θ)(f(θ)− y). (24)

Here, J (θ) ∈ R
n×N is the Jacobian associated with the nonlinear map f with entries given by

[J (θ)]i,j = ∂fi(θ)
∂θj

. In order to study the properties of the gradient descent iterates in (24), we

relate the non-linear least squares problem to a linearized one in a ball around the initialization θ0.
This general strategy has been utilized in a variety of recent publications [Sol+18; Du+18; Aro+19;
OS19b; Oym+19], our specific argument is most similar to [HS20]. Contrary to the result in [HS20],
which holds for a certain number of initial iterations, our statement applied to all iterations.

The associated linearized least-squares problem is defined as

Llin(θ) =
1

2
‖f(θ0) + J(θ − θ0)− y‖22. (25)

Here, J ∈ R
n×N , refered to as the reference Jacobian, is a fixed matrix independent of the parameter

θ that approximates the Jacobian mapping at initialization, J (θ0). Starting from the same initial
point θ0, the gradient descent updates of the linearized problem are

θ̃t+1 = θ̃t − ηJT
(
f(θ0) + J(θ̃t − θ0)− y

)
. (26)

To show that the non-linear updates (24) are close to the linearized iterates (26), we make the
following assumptions:
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Assumption 1 (Bounded spectrum). We assume the singular values of the reference Jacobian
obey for some α, β

√
2α ≤ σn ≤ σ1 ≤ β. (27)

Furthermore, we assume that the Jacobian mapping associated with the nonlinear model f obeys

‖J (θ)‖ ≤ β for all θ ∈ R
N . (28)

Assumption 2 (Closeness of the reference and initialization Jacobians). We assume the reference
Jacobian and the Jacobian of the nonlinearity at initialization J (θ0) are ε0-close in the sense that

‖J (θ0)− J‖ ≤ ε0. (29)

Assumption 3 (Bounded variation of Jacobian around initialization). We assume that within a
radius R around the initialization, the Jacobian varies by no more than ε in the sense that

‖J (θ)− J (θ0)‖ ≤ ε

2
, for all θ ∈ BR(θ0), (30)

where BR(θ0) := {θ : ‖θ − θ0‖ ≤ R} is the ball with radius R around θ0.

Under these assumptions i) the difference of the nonlinear iterative updates (24) and the linear
iterative updates (26) is bounded, and ii) the difference of the linear and non-linear residuals,
defined as

nonlinear residual: rt := f(θt)− y (31)

linear residual: r̃t := f(θ0) + J(θ̃t − θ0)− y (32)

are close throughout the entire run of gradient descent; both in the proximity of the initialization.

Theorem 4 (Closeness of linear and nonlinear least-squares problems). Assume the Jacobian
mapping J (θ) ∈ R

n×N associated with the function f(θ) obeys Assumptions 1, 2, and 3 around an
initial point θ0 ∈ R

N with respect to a reference Jacobian J ∈ R
n×N and with parameters α, β, ε0, ε,

obeying 2β(ε0 + ε) ≤ α2, and R. Furthermore, assume the radius R is given by

R

2
:=
∥∥∥J†r0

∥∥∥
2
+ 2.5

β2

α4
(ε0 + ε)‖r0‖2. (33)

Here, J† is the pseudo-inverse of J. We run gradient descent with stepsize η ≤ 1
β2 on the linear and

non-linear least squares problem, starting from the same initialization θ0. Then, for all iterations
t,

i) the non-linear residual converges geometrically

‖rt‖2 ≤
(
1− ηα2

)t ‖r0‖2, (34)

ii) the residuals of the original and the linearized problems are close

‖rt − r̃t‖2 ≤ 2βη(ε0 + ε)(1− ηα2)t−1t‖r0‖2 (35)

≤ 2β(ε0 + ε)

e(ln 2)α2
‖r0‖2, (36)
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iii) the parameters of the original and the linearized problems are close

∥∥∥θt − θ̃t

∥∥∥
2
≤ 2.5

β2

α4
(ε0 + ε)‖r0‖2, (37)

iv) and finally, the parameters are not far from the initialization

‖θt − θ0‖2 ≤
R

2
. (38)

The above theorem formalizes that in a (small) radius around the initialization, the non-linear
problem behaves similarly as its linearization. Thus to characterize the dynamics of the nonlinear
problem, it suffices to characterize the dynamics of the linearized problem. This is the subject of
our next theorem, which is a standard results on the iterates of least squares, see [HS20, Thm. 5]
for the proof.

Proposition 2 (Theorem 5 in [HS20]). Consider a linear least squares problem (25) and let J =
WΣVT ∈ R

n×p =
∑n

i=1 σiwiv
T
i be the singular value decomposition of the matrix J. Then the

residual r̃t after t iterations of gradient descent with updates (26) is

r̃t =

n∑

i=1

(
1− ησ2

i

)t
wi 〈wi, r0〉 . (39)

Moreover, using a step size satisfying η ≤ 1
σ2

1

, the linearized iterates (26) obey

∥∥∥θ̃t − θ0

∥∥∥
2

2
=

n∑

i=1

(
〈wi, r0〉

1− (1− ησ2
i )

t

σi

)2

. (40)

In the next section we show we can combine these two general theorems to provide guarantees
for compressed sensing using general neural networks.

C.1 Proof of Theorem 4 (closeness of linear and non-linear least-squares)

The proof is by induction. We note that the base case t = 0 is trivially true. We suppose the
statement, in particular the bounds (34), (35), (36), (37), and (38) hold for all iterations τ ≤ t− 1.
We then show that those relations continue to hold for iteration t in five steps: In Step I, we show
that a weaker version of (38) holds, specifically that ‖θt − θ0‖2 ≤ R. This guarantees that we can
work with our assumptions; those require the iterates to be sufficiently close to the initial values.
In Step II we show that the nonlinear residual decreases at a geometric rate proving (34). In Steps
III and IV we show that the residuals and the coefficients of the linear and non-linear problem are
close, respectively. Finally, in Step V we utilize Steps I-IV to complete the proof by showing that
the iterates of the non-linear problem are close to its initialization (i.e., equation (38)).

Linear convergence of linear residual: Before we start, we note that under our assumption,
the residual of the linear problem converges linearly. Specifically, by the updates of the linear
problem (26), we have that

r̃t+1 = (I− ηJJT )r̃t. (41)
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Using that the smallest singular values of JJT is lower bounded by 2α2, this guarantees that

‖r̃t‖2 ≤ (1− 2ηα2)t‖r̃0‖2,
establishing linear convergence of the linear problem.

Step I: Next iterate obeys θt ∈ BR(θ0). We start by using a coarse argument that establishes
θt ∈ BR(θ0). First note that by the triangle inequality and the induction assumption (38) we have

‖θt − θ0‖2 ≤‖θt − θt−1‖2 + ‖θt−1 − θ0‖2,

≤‖θt − θt−1‖2 +
R

2
.

So to prove ‖θt − θ0‖2 ≤ R it suffices to show that ‖θt − θt−1‖2 ≤ R/2. To this aim note that

1

η
‖θt − θt−1‖2 = ‖∇L(θt−1)‖2

=
∥∥J T (θt−1)rt−1

∥∥
2

≤
∥∥J T (θt−1)r̃t−1

∥∥
2
+ ‖J (θt−1)‖‖rt−1 − r̃t−1‖2

≤
∥∥JT r̃t−1

∥∥
2
+ ‖J (θt−1)− J‖‖r̃t−1‖2 + ‖J (θt−1)‖‖rt−1 − r̃t−1‖2

(i)

≤ β2
∥∥∥J†r0

∥∥∥
2
+ (ε+ ε0)‖r0‖2 +

2β2(ε0 + ε)

e(ln 2)α2
‖r0‖2

(ii)

≤ β2
∥∥∥J†r0

∥∥∥
2
+

2β2

α2
(ε0 + ε)‖r0‖2. (42)

Here, (ii) follows from the fact that 1
2 ≤ β2

α2 and inequality (i) follows from Assumptions 1-3, the
induction hypothesis (36), ‖r̃τ−1‖ ≤ ‖r0‖, and the bound

∥∥JT r̃t−1

∥∥
2
=
∥∥JT (I− ηJJT )t−1r0

∥∥
2

=
∥∥Σ(I− ηΣ2)t−1WT r0

∥∥
2

≤

√√√√
n∑

j=1

σ2
j 〈wj , r0〉2

≤ β2

√√√√
n∑

j=1

1

σ2
j

〈wj , r0〉2

= β2
∥∥∥J†r0

∥∥∥
2
.

To continue we use the fact that η ≤ 1
β2 in (42) to conclude that

‖θt − θt−1‖2 ≤ ηβ2
∥∥∥J†r0

∥∥∥
2
+ η

2β2(ε0 + ε)

α2
‖r0‖2.

≤
∥∥∥J†r0

∥∥∥
2
+

2(ε0 + ε)

α2
‖r0‖2.

≤ R

2
.

The last inequality follows by definition of R in (33), and concludes the proof of Step I.
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Step II: Geometric decay of non-linear iterate. Since the linear residuals converge linearly
and the Jacobian of the non-linear problem is close the Jacobian of the linear problem, J, the
non-linear problem also converges linearly. To see this, with J (a,b) =

∫ 1
0 J (sb− (1− s)a)ds, we

have that, by the mean value theorem

f(θt) = f(θt−1 − η∇L(θt−1))

= f(θt−1)− ηJ (θt,θt−1)∇L(θt−1)

= f(θt−1)− ηJ (θt,θt−1)J T (θt−1)(f(θt−1)− y)

= f(θt−1)− ηB1B2(f(θt−1)− y).

where in the last equality we defined the matricesB1 andB2 accordingly for notational convenience.
This implies that

rt = f(θt)− y

= (I− ηB1B2)(f(θt−1)− y)

= (I− ηB1B2)rt−1. (43)

Thus,

‖rt‖2 ≤ ‖I− ηB1B2‖‖rt−1‖2
≤
(∥∥I− ηJJT

∥∥ + η
∥∥JJT −B1B2

∥∥) ‖rt−1‖2
(i)

≤
(
1− 2ηα2 + 2ηβ(ε0 + ε)

)
‖rt−1‖2

(ii)

≤
(
1− ηα2

)
‖rt−1‖2

For inequality (ii) we used the assumption 2β(ε0+ε) ≤ α2, and for inequality (i) we used the bound

∥∥JJT −B1B2

∥∥ =
∥∥JJT − JB2 + JB2 −B1B2

∥∥

≤ ‖J‖
∥∥JT −B2

∥∥ + ‖J−B1‖‖B2‖ ≤ 2β(ε0 + ε), (44)

where the last inequality follows from our assumptions, and using that, by the triangle inequality
and assumptions 2 and 3, we have

∥∥B2 − JT
∥∥ = ‖J (θt−1)− J‖ ≤ ‖J (θt−1)− J (θ0)‖ + ‖J (θ0)− J‖ ≤ ε0 + ε. (45)

This establishes that

‖rt‖2 ≤ (1− ηα2)‖rt−1‖2 ≤ (1− ηα2)t‖r0‖2, (46)

where in the last inequality we used the induction hypothesis (34). This completes the proof of the
bound (34) for iteration t concluding Step II.

Step III: Original and linearized residuals are close. In this step, we bound the deviation
of the residuals of the original and linearized problem defined as

et := r̃t − rt.
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Specifically, we use the induction hypothesis together with the fact that based on Step I we have
θt−1,θt ∈ BR(θ0), to show that

‖et‖ ≤ 2βη(ε0 + ε)(1− ηα2)t−1t‖r0‖2. (47)

Before we prove this however note that for x ≤ 1/2 we have (1−x)t−1t ≤ 1
e(ln 2)x for all t ≥ 0. Now

using this identity with x = ηα2 ≤ α2

β2 ≤ 1
2 in (47) we conclude that

‖et‖ ≤ 2β(ε0 + ε)

e(ln 2)α2
‖r0‖2,

completing the proof of (36) for iteration t. Thus, all that remains in this step is to establish (47).
To this aim note that from the formulas for the linear and non-linear residuals in (41) and (43), we
have that

r̃t = (I− ηJJT )r̃t−1.

Thus for et = r̃t − rt we have, with the same notation as in step II,

‖et‖ =
∥∥(I− ηJJT )r̃t−1 − (I− ηB1B2)rt−1

∥∥
2

=
∥∥(I− ηJJT )(r̃t−1 − rt−1) + η(B1B2 − JJT )rt−1

∥∥
2

≤
∥∥I− ηJJT

∥∥‖r̃t−1 − rt−1‖2 + η
∥∥B1B2 − JJT

∥∥‖rt−1‖2
≤ (1− ηα2)‖et−1‖2 + 2ηβ(ε0 + ε)(1− ηα2)t−1‖r0‖2,

where the last inequality follows from
∥∥B1B2 − JJT

∥∥ ≤ 2β(ε0+ε), by (44), and from using the fact
that ‖rt−1‖2 ≤ (1− ηα2)t−1‖r0‖2 which holds based on Step II. Finally, plugging in the induction
hypothesis ‖et−1‖2 ≤ cξt−2(t − 1)‖r0‖2 with ξ := 1 − ηα2 and c := 2ηβ(ε0 + ε) in the above we
conclude that

‖et‖ ≤ξ‖et−1‖ + cξt−1‖r0‖2
≤cξt−1(t− 1)‖r0‖2 + cξt−1‖r0‖2
=cξt−1t‖r0‖2
=2ηβ(ε0 + ε)

(
1− ηα2

)t−1
t‖r0‖2.

This concludes the proof of the bound (47) for iteration t, finishing Step III.
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Step IV: Original and linearized parameters are close: The difference between the param-
eter of the original iterate θ and the linearized iterate θ̃ obey

1

η

∥∥∥θt − θ̃t

∥∥∥
2
≤
∥∥∥∥∥

t−1∑

τ=0

∇L(θτ )−∇Llin(θ̃τ )

∥∥∥∥∥
2

=

∥∥∥∥∥

t−1∑

τ=0

J T (θτ )rτ − JT r̃τ

∥∥∥∥∥
2

≤
t−1∑

τ=0

∥∥(J T (θτ )− JT )r̃τ
∥∥
2
+
∥∥J T (θτ )(rτ − r̃τ )

∥∥
2

(i)

≤
t−1∑

τ=0

(ε0 + ε)‖r̃τ‖2 + β‖eτ‖2

(ii)

≤
t−1∑

τ=0

(ε0 + ε)(1− ηα2)τ‖r0‖2 + 2ηβ2(ε0 + ε)(1− ηα2)τ−1τ‖r0‖2.

Here, (i) follows from (45) combined with Assumption 1 and (ii) follows from (47) established in
step III. We now proceed by using the formulas for low-order polylogarithms to conclude that

1

η

∥∥∥θt − θ̃t

∥∥∥
2
≤ (ε0 + ε)‖r0‖2

(
1− (1− ηα2)τ

ηα2
+ 2ηβ2 1− t(1− ηα2)t−1 + (t− 1)(1− ηα2)t

η2α4

)

≤ (ε0 + ε)‖r0‖2
(

1

ηα2
+ 2ηβ2 1

η2α4

)

≤ (ε0 + ε)
2.5

ηα2

β2

α2
‖r0‖2.

This concludes the proof of (37) for iteration t, completing Step IV.

Step V: Proof of (38): By the triangle inequality

‖θt − θ0‖2 ≤
∥∥∥θ̃t − θ0

∥∥∥
2
+
∥∥∥θt − θ̃t

∥∥∥
2

(i)

≤
∥∥∥J†r0

∥∥∥
2
+ (ε0 + ε)

2.5

α2

β2

α2
‖r0‖2

(ii)
= R/2.

Here, inequality (ii) follows from the definition ofR in equation (33). Moreover, inequality (i) follows
from the bound (37), which we just proved, and the fact that, from equation (40) in Theorem 2,

∥∥∥θ̃t − θ0

∥∥∥
2

2
=

n∑

i=1

〈wi, r0〉2
(1− (1− ησ2

i )
t)2

σ2
i

≤
n∑

i=1

〈wi, r0〉2 /σ2
i

=
∥∥∥J†r0

∥∥∥
2
.
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This concludes the proof of (38) for iteration t, completing the proof of Step V and the entire
theorem.

D Proofs for neural network generators (proof of Theorem 3)

The proof of Theorem 3 relies on the fact that, in the overparameterized regime, the non-linear least
squares problem is well approximated by an associated linearized least-squares problem. Studying
the associated linear problem enables us to prove the result.

We apply Theorem 4, which ensures that the associated linear problem is a good approximation
of the non-linear least squarest problem, with the non-linear function

f(C) = AReLU(UC)v

and with the parameter given by θ = C. Recall that v is a fixed vector with half of the entries
1/
√
k, and the other half −1/

√
k. Let J (C) ∈ R

m×nk be the Jacobian of f . We have that
J (C) = AJG(C), where JG(C) is the Jacobian of the generator G defined in (20). Both f and
its Jacobian are random variables because A is a random matrix. As the reference Jacobian in the
associated linear problem, we choose a matrix J = AJG ∈ R

m×nk (specified later) that obeys

JJT = E
[
J (C)J T (C)

]
= AE

[
JG(C)J T

G (C)
]

︸ ︷︷ ︸
Σ(U)

AT .

Here, expectation is with respect to C with iid N (0, ω2) parameters, and not with respect to A.
We apply Theorem 4 with

α =
1

3
√
2

√
n√
m
σn (Σ(U)) , β = 2

√
n√
m
‖U‖, ε0 = 2β

(
log(2nδ )

k

)1/4

, ε =
ξ

16

α4

β3
, ω =

ξ‖y‖2
β
√
m

.

We next verify that the conditions of Theorem 4 are satisfied (specifically, Assumptions 1, 2, 3) by
applying a series of Lemmas.

Throughout these proofs we use the fact that for a matrix A ∈ R
m×n with i.i.d. N (0, 1

m) entries,
the bounds

σmin(A) ≥
√
n− (1 + η)

√
m√

m
and ‖A‖ ≤

√
n+ (1 + η)

√
m√

m

hold with probability at least 1− 2e−
η2

2
m which with η = 1 in turn implies that for m ≤ n

9 we have

σmin(A) ≥ 1

3

√
n√
m

and ‖A‖ ≤ 2

√
n√
m

(48)

holds with probability at least 1 − 2e−
m
2 . See [Ver12, Corollary 5.35] for a proof of this standard

result.
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Bound on initial residual: We start with bounding the initial residual by applying the following
lemma.

Lemma 1 (Initial residual [HS20, Lemma 6]). Consider G(C) = ReLU(UC)v, and let C ∈ R
n×k

be generated at random with i.i.d. N (0, ω2) entries. Suppose half of the entries of v are 1/
√
k and

the other half are −1/
√
k. Then, with probability at least 1− δ,

‖G(C)‖2 ≤ ω
√

8 log(2n/δ)‖U‖F .

With this lemma in place, the initial residual can be upper bounded as follows

‖r0‖2 ≤ ‖y‖2 + ‖AG(C0)‖2
(i)

≤ ‖y‖2 + 2‖G(C0)‖2
(ii)

≤ 3‖y‖2. (49)

Here (i) holds with probability at least 1 − e−
m
2 using the fact that A has i.i.d. Gaussian entries

that are independent of G(C0), and for (ii) we used that, by Lemma 1,

‖G(C0)‖2 ≤ ω
√

8 log(2n/δ)‖U‖F
≤ ω

√
8 log(2n/δ)

√
n‖U‖

(i)
= ξ
√

2 log(2n/δ)‖y‖2
(ii)

≤ ‖y‖2, (50)

where (i) follows from ω =
ξ‖y‖

2

β
√
m

=
ξ‖y‖

2

2
√
n‖U‖ and for (ii) we used the fact that ξ ≤ 1√

2 log(2n/δ)
.

Verifying Assumption 1: Note that

σmin (J) = σmin (AJG) ≥ σmin(A)σmin(JG) ≥
1

3

√
n√
m
σn (Σ(U)) ≥ α

√
2.

We next show that the norm of the reference Jacobian and the Jacobian are bounded, with the
lemma below.

Lemma 2 (Spectral norm of Jacobian [HS20, Lemma 5]). Consider G(C) = ReLU(UC)v with
v ∈ R

k and U ∈ R
n×k and associated Jacobian JG(C) (20), and let JG be any matrix obeying

JGJ
T
G = E

[
JG(C)J T

G (C)
]
, where the expectation is over a matrix C with iid N (0, ω2) entries.

Then
‖JG(C)‖ ≤ ‖v‖2‖U‖ and ‖JG‖ ≤ ‖v‖2‖U‖.

By Lemma 2, with ‖v‖2 = 1,

‖J‖ = ‖AJG‖ ≤ ‖A‖‖JG‖ ≤ 2
√
n/m‖U‖ = β,

where the last inequality follows from Lemma 2, with ‖v‖2 = 1, and by using that, with high
probability, ‖A‖ ≤ 2

√
n/m per (48). Analogously, we obtain ‖J (C)‖ ≤ β, for all C, with high

probability. This completes the verification of Assumption 1.
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Verifying Assumption 2: To verify the assumption, we first state a concentration lemma
from [HS20].

Lemma 3 (Concentration lemma [HS20, Lemma 3]). Consider G(C) = ReLU(UC)v with v ∈ R
k

and U ∈ R
n×k and associated Jacobian JG(C) (20). Let C ∈ R

n×k be generated at random with
i.i.d. N (0, ω2) entries. Then, with probability at least 1− δ,

∥∥JG(C)J T
G (C)−Σ(U)

∥∥ ≤ ‖U‖2
√√√√log

(
2n

δ

) k∑

`=1

v4` .

Using the fact that
∑k

` v
4
` = 1

k by Lemma 3 we have

∥∥JG(C0)J T
G (C0)−Σ(U)

∥∥ ≤ ‖U‖2
√

log (2n/δ)

k
. (51)

To show that (51) implies the condition in (29), we use the following lemma.

Lemma 4 ([Oym+19, Lem. 6.4]). Let X ∈ R
n×N , N ≥ n and let Σ be n × n psd matrix obeying∥∥XXT −B

∥∥ ≤ ε̃2, for a scalar ε̃ ≥ 0. Then there exists a matrix JG ∈ R
n×N obeying Σ = JGJ

T
G

such that
‖JG −X‖ ≤ 2̃ε.

From Lemma 4 combined with equation (51), we have that there exists a matrix JG ∈ R
n×N

that obeys

‖JG − JG(C0)‖ ≤ 2‖U‖
(
log(2n/δ)

k

)1/4

.

Using this inequality, as well as that ‖A‖ ≤ 2
√
n√
m
, per (48), we get

‖J− J (C0)‖ = ‖A(JG − JG(C0))‖
≤ ‖A‖‖JG − JG(C0)‖

≤ 2

√
n√
m
2‖U‖

(
log(2n/δ)

k

)1/4

≤ 2β

(
log(2n/δ)

k

)1/4

= ε0,

as desired. This concludes the proof of Assumption 2.
This part of the proof also specifies our choice of the reference Jacobian J = AJG as a matrix

that is ε0 close to the Jacobian at initialization, J (C0), and that exists by Lemma 4 above.

29



Verifying Assumption 3: Verification of the assumption requires us to control the perturbation
of the Jacobian matrix around a random initialization. We begin with the following lemma from
[HS20].

Lemma 5 (Jacobian perturbation around initialization [HS20, Lemma 7]). Let C0 be a matrix
with i.i.d. N(0, ω2) entries. Then, for all C obeying

‖C−C0‖ ≤ ωR̃ with R̃ ≤ 1

2

√
k,

the Jacobian mapping (20)associated with the generator G(C) = ReLU(UC)v obeys

‖JG(C)− JG(C0)‖ ≤ ‖v‖∞2(kR̃)1/3‖U‖,

with probability at least 1− ne−
1

2
R̃4/3k7/3.

In order to verify Assumption 3, first note that the radius in the theorem, defined in equa-
tion (33), obeys

R = 2
∥∥∥J†r0

∥∥∥
2
+ 5

β2

α4
(ε0 + ε)‖r0‖2

(i)

≤
(√

2

α
+

5

8β

)
‖r0‖2

(ii)

≤ 9
1

α
‖y‖2

(iii)
= 9ω

√
m

ξ

β

α
(iv)

≤ ω
1

(4 · 16)3 ξ
3α

12

β12

√
k

:= ωR̃.

Here, (i) follows from the fact that
∥∥J†r0

∥∥
2
≤ 1

α
√
2
‖r0‖2, and using that ε0+ ε ≤ 2ε = 1

8ξ
α4

β3 ≤ 1
8ξ

α4

β3

(ii) from β ≥ α and from the bound on the initial residual (49), (iii) from ω =
ξ‖y‖
β
√
m

and finally (iv)

follows from the assumption (21) which is equivalent to

k ≥ mξ−892646
(
β

α

)26

= mξ−892646

(
6
√
2
‖U‖2
σ2
n

)26

= C2κ
26
u

ξ8
m.
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For this choice of radius by Lemma 5 and by using ‖A‖ ≤ 2
√
n√
m

(per (48)) we have

‖AJG(C)−AJG(C0)‖ ≤‖A‖‖JG(C)− JG(C0)‖

≤2

√
n√
m
2‖v‖∞(kR̃)1/3‖U‖

=2β
1√
k
(kR̃)1/3

=
1

32
ξ
α4

β3

=
ε

2

holds with probability at least

1− ne−
1

2
R̃4/3k7/3

(i)

≥ 1− ne−k2

where in (i) we used (21). Therefore, Assumption 3 holds with high probability by our choice of

ε = ξ
30

α4

β3 .

Concluding the proof of Theorem 3: To begin, let c∗ be a solution to the optimization
problem

c∗ ∈ argmin
c

1

2
‖JGc− x∗‖22.

To complete the proof of Theorem 3 let us consider the linearized optimization problem which takes
the form

min
c

Llin(c) =
1

2
‖AG(c0) +AJG(c− c0)− y‖22,

with corresponding iterates given by

c̃t+1 = c̃t − η∇Llin(c̃t).

Here, c is the vectorized version of C, with a slight abuse of notation. With this notation, we
conclude the proof as

‖G(C∞)− x∗‖2 ≤ ‖G(C∞)− JGc̃∞‖2 + ‖JGc̃∞ − x∗‖2

≤ ξ‖x∗‖2 + C

(
n∑

i=1

1

σ2
i

〈wi,x
∗〉2
)

∑

i>2m/3

σ2
i ,

where we used the bounds

‖G(C∞)− JGc̃∞‖2 ≤ ξ‖x∗‖2 (52)
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and

‖JGc̃∞ − x∗‖2 ≤ C

(
n∑

i=1

1

σ2
i

〈wi,x
∗〉2
)

∑

i>2m/3

σ2
i . (53)

The bound (53) follows from Theorem 1 by noting that w1, . . . ,wn are the left singular vectors of
JG with associated singular values σ1 ≥ . . . ≥ σn (because JGJ

T
G = Σ(U)).

It remains to prove the bound (52). With JG(a,b) =
∫ 1
0 JG(sb− (1− s)a)ds, at t = +∞,

‖G(C∞)− JGc̃∞‖2 = ‖JG(C∞,0)vect(C∞)− JGc̃∞‖2
≤ ‖JG(C∞,0)(vect(C∞)− c̃∞)‖2 + ‖JG(C∞,0)c̃∞ − JGc̃∞‖2
≤ ‖JG(C∞,0)‖‖vect(C∞)− c̃∞‖2 + ‖JG(C∞,0)− JG‖2‖c̃∞‖2
(i)

≤
√
m√
n

β

2
‖vect(C∞)− c̃∞‖2 +

√
m

2
√
n
(ε+ ε0)‖c̃∞‖2

(ii)

≤ β

2
‖vect(C∞)− c̃∞‖2 +

1

2
(ε+ ε0)

1

α
‖x∗‖2.

In the above (i) follows from ‖JG(C)‖ ≤ ‖U‖ =
√
m

2
√
n
β (recall that β = 2

√
n√
m
‖U‖) and from the

bound

‖JG(C∞,0)− JG‖2 ≤ ‖JG(C∞,0)− JG(C0)‖2 + ‖JG(C0)− JG‖2 ≤
√
m

2
√
m
(ε0 + ε).

Moreover, (ii) follows from m ≤ n and ‖c∞‖2 ≤ ‖c∗‖2 ≤ ‖x∗‖
2

σmin(JG) . We can now apply Theorem 4

equation (37) to bound the first term on the right-hand-side above to obtain

‖G(C∞)− JGc̃∞‖2 ≤ 1.25
β3

α4
(ε0 + ε)‖r0‖2 +

1

2α
(ε+ ε0)‖x∗‖2

(i)

≤ 7.5
β3

α4
(ε0 + ε)‖x∗‖2 +

1

2α
(ε+ ε0)‖x∗‖2

(ii)

≤ 16
β3

α4
ε‖x∗‖2

(iii)
= ξ‖x∗‖2.

Here, (i) follows from ‖r0‖2 ≤ 3‖y‖2 = 3‖Ax∗‖2 ≤ 6‖x∗‖, where we used (49) combined with the

fact that ‖Ax∗‖2 ≤ 2‖x∗‖2. Moreover, (ii) follows from β
α ≥ 1 and ε0 ≤ ε and finally (iii) from the

choice ε = ξ
16

α4

β3 . This concludes the proof of the bound (52) and the proof of the theorem.
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