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Abstract

Un-trained convolutional neural networks have emerged as highly successful tools for image
recovery and restoration. They are capable of solving standard inverse problems such as denois-
ing and compressive sensing with excellent results by simply fitting a neural network model to
measurements from a single image or signal without the need for any additional training data.
For some applications, this critically requires additional regularization in the form of early
stopping the optimization. For signal recovery from a few measurements, however, un-trained
convolutional networks have an intriguing self-regularizing property: Even though the network
can perfectly fit any image, the network recovers a natural image from few measurements when
trained with gradient descent until convergence. In this paper, we provide numerical evidence for
this property and study it theoretically. We show that—without any further regularization—an
un-trained convolutional neural network can approximately reconstruct signals and images that
are sufficiently structured, from a near minimal number of random measurements.

1 Introduction

Un-trained convolutional neural networks have emerged as highly successful tools for image re-
covery and restoration, for a variety of problems including denoising, compressive sensing, and
inpainting [ ; ; ; ; ; ; ; ; ; ]. As
opposed to trained convolutional neural networks, that learn an image prior from training data,
un-trained convolutional networks act as an image prior without any training and solely based on
the architecture of the network and the optimization procedure used to fit them.

The benefit of untrained networks was first observed in the Deep Image Prior (DIP) pa-
per | ]. The key observation of Ulyanov et al. [ | is that fitting a standard over-
parameterized convolutional autoencoder (specifically, the U-net [ | or variations thereoff)
to a single noisy/corrupted image, when combined with early stopping, yields excellent denoising,
inpainting, and super-resolution performance. Subsequent literature has demonstrated that many
elements of the architecture of a convolutional autoencoder—such as the encoder part—are irrele-
vant for this behavior to emerge. In particular the papers | ; | highlight the critical role
of convolutions with fixed convolutional kernels.

Un-trained convolutional networks are empirically most effective when the network is over-
parametrized, meaning that is has more parameters than image pixels. This holds even though in
this regime the neural network can in principle fit any image perfectly, including random noise.
Therefore, further regularization is critical to performance in many applications. For instance de-
noising | ; | critically requires early stopping, as without early stopping the noisy image
is fitted perfectly and no noise is removed. However, perhaps surprisingly, for some inverse prob-
lems including inpainting [ ] and compressive sensing, no further regularization is necessary!
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Figure 1: Compressive sensing of two different images x* displayed on the right with a random
matrix A € R™" m = n/4, from the measurement y = Ax*. Panel (a) shows the loss at
iteration ¢, i.e., %HAG(Ct) — y||g, and panel (b) is the loss with respect to the original image,
i.e., |G(Cy) — x*||3. Here, G is a 5-layer deep decoder [[11119]; a convolutional network with fixed
convolutional filters. The figure looks qualitatively the same if we take G as the deep image
prior [Uly+18], a U-net like convolutional autoencoder. It can be seen that early stopping is not
required: gradient descent converges to a good solution, and early stopping does not improve
performance for this example. Moreover, the simple and smooth image (blue) achieves a smaller
loss with the same number of measurements than the non-smooth grass texture (red). Both features
are captured by our theory.

That is, a convolutional neural network, when fitted to compressive measurements from a single
image (no other training data) can estimate the original image well, as illustrated in Figure 1. This
phenomenon demonstrates an intriguing self-regularization capability in the context of compressive
sensing.

The overarching goal of this paper is to study compressive sensing with un-trained convolutional
generators theoretically in order to explain the above phenomenon. In particular, our goal is to
understand (i) why for compressive sensing problems gradient descent can reconstruct a good signal
estimate without any further regularization or additional training data and to (ii) prove that this is
possible with a minimal number of measurements that is proportional to an appropriately defined
notion of signal dimensionality.

1.1 Compressive sensing with un-trained neural networks

We consider the problem of recovering an unknown signal x* € R" from m < n linear measurements
of the form

y = Ax* ¢ R™, (1)

with A € R™*™ representing the measurement matrix. This problem formulation includes the
compressive sensing problem relevant for computational imaging as well as inpainting. To un-
derstand how un-trained networks can be utilized to recover the unknown signal, consider an



over-parameterized, un-trained convolutional image prior G: RY — R™ mapping an N > n di-
mensional parameter vector C to an n dimensional signal. We take G to be the deep decoder, a
simple un-trained convolutional network, defined formally in Section 2. We emphasize that G is an
un-trained neural networks that is randomly initialized and has never seen any training data. To
reconstruct the signal from its measurements we fit a compressed version of the generator output
to these measurements via randomly initialized gradient descent on the loss

£(0) = | AG(C) ~ ¥ 2)

Let C denote the solution found by gradient descent. The signal estimate can then be calculated
as x = G(C).

A number of recent papers have shown that with the deep image prior (a convolutional au-
toencoder) or the deep decoder (a convolutional generator) as a prior GG, this approach is rather
effective [ ; ; ]. Most recently Arora et al. | ] have shown that this ap-
proach significantly improves upon classical compressive sensing methods (¢;-regularization and
total-variation norm minimization) for accelerating multi-coil magnetic resonance imaging, which
is arguably one of the most prominent real-world application of compressive sensing.

The generator G is over-parameterized and can express any image x*, including unstructured
noise. Nevertheless, typically no further regularization in the form of early stopping the optimiza-
tion is necessary. We demonstrate this phenomenon in Figure 1. This figure shows that running
gradient descent on the loss £(C) eventually yields an estimate that is very close to the original
image. This is surprising because i) there is no additional training data and ii) even though the
generator G can fit any image, including noise, gradient descent still finds an image close to the
original one.

1.2 Contributions

The main contribution of this paper is to show that un-trained convolutional image priors provably
enable recovery of natural images from a few random linear measurements. This holds by simply
running gradient descent until convergence—without any further regularization. More specifically,
we show that fitting an over-parameterized convolutional network with fixed convolutions (via
gradient descent) to random measurements of a smooth signal essentially recovers that signal.
Furthermore, the required number of measurements is commensurate to how smooth the signal
is with more measurements required when the signal has “high-frequency” components. In more
detail:

e Suppose we have m-linear measurements y = Ax*, A € R"™*" of an unknown signal x* with
A a Gaussian measurement matrix. Furthermore, assume that the signal x* is p-smooth,
in the sense that it can be represented as a linear combination of the p lowest frequency
orthonormal trigonometric basis functions wy,...,w, € R" as

P
x" = ZW,- (w;, x*).
i=1
We plot these trigonometric basis functions in Figure 2 and formally define them later on

in Section 4. Note that the smaller p, the smoother the signal x* is, thus p is a measure of
smoothness.
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Figure 2: The 1st, 2nd, 6th, and 21st trigonometric basis functions in dimension n = 300.

Our main result shows that the estimate C, obtained by running gradient descent on the loss
(2) until convergence, yields an output G(Cs) which is very close to x*, i.e., G(Cx) ~ x*.
This holds as soon as the number of measurements exceeds the degrees of smoothness present
in the signal (p). Since natural images are approximately smooth, this results provides a
theoretical explanation why compressive sensing on natural images with over-parameterized
convolutional generators works so well (see | ; ; ; | for corresponding
empirical results).

e In a nutshell, our main insight is that the behavior of large over-parameterized neural net-
works is dictated by the spectral properties of their Jacobian mapping. For the convolutional
generators considered in this paper, the associated Jacobian matrix has singular vectors that
can be well approximated by the orthonormal trigonometric basis function and singular val-
ues that decay very quickly from the low-frequency to the high-frequency trigonometric basis
functions. Specifically, the associated singular values decay approximately geometrically.

To prove our result, we first characterize the least-squares solution of a randomly sketched
least-squares problem with a design matrix with a decaying spectrum. To prove the result
for convolutional generators we show that this non-linear learning problem behaves like an
associated linear model with the above spectral characteristics. We then conclude the proof
for the corresponding convolutional generator, by showing that the solutions obtained by
running gradient descent on the non-linear problem is close to that obtained by running
gradient descent on the linear problem.

e In order to develop a better understanding of compressive sensing with untrained priors, we
also carry out compressive sensing experiments for accelerating magnetic resonance imag-
ing (MRI). Our experiments corroborate our theoretical finding that simply iterating until
convergence is effective. This also suggests that there is little or no benefit to additional
regularization.

Our paper is organized as follows: We start by stating the convolutional architecture considered
in this paper in Section 2. In Section 3 we study the reconstruction of a signal from few a measure-
ments with a linear over-parameterized generator to form intuition. In Section 4 we state our main
results for signal recovery with convolutional generators. Section 5 contains our numerical result
for MRI imaging. We conclude the paper with related work and a brief proof sketch, all formal
proofs are deferred to the Appendix.



2 Convolutional generators

A convolutional generator generates an image through convolutional operations and applications
of non-linearities. In this paper, we study a two-layer convolutional generator G: R™*" — R?
theoretically. The generator has the form

G(C) = ReLU(UC)v. (3)

Here, v = [1,...,1,—1,...,—1]/Vk are the fixed weights of the output layer, of which half are
positive and the other half are negative, and C € R™** is the coefficient matrix of the generator,
corresponding to the weights in the first layer of the network. Critical for the performance of the
generator is the convolutional operation with a fixed kernel u, implemented through multiplication
with the circulant matrix U € R™*"™,

This architecture is a two-dimensional version of the deep decoder | ]. The deep decoder
in turn is a sub-set of the deep image prior | | and the U-net | ], as commented on
below.

The deep decoder with d layers (typically, d = 4,5,6) is defined as
G(C) = ReLU(UB,Cy)v, (4)
where
Bi+1 = cn(ReLU(U;B;C;)),i =0,...,d — 1.

Here cn(+) is a channel normalization operation, which normalizes each channel/column of the
volume/matrix ReLU(U;B;C;) € R™** individually and can be viewed as a special case of the
batch normalization operation. Note that if the signal to be generated is an image and thus two-
dimensional (n; € Z?), then B; is a three-dimensional tensor consisting of & many channels, and
if the signal is one-dimensional (n; € Z), those tensors are two-dimensional and can be viewed as
matrices consisting of £ many columns (or channels). Moreover, By is a fixed input tensor, which
we assume to have full row rank. The parameters of the deep decoder are the weight matrices
Ci,...,Cy4 € RF** Multiplication with those weight matrices is performing linear combinations
of the channels, which in turn is equivalent to performing 1x1-convolutions.

For d = 2, the deep decoder reduces to the two-dimensional version in (3). To see this, note
that for d = 2, because By has full column rank, optimizing over BoCy € R™** is equivalent to
optimizing over C € R™* instead.

Finally, as mentioned before, the deep decoder can be viewed as the relevant part of a convolu-
tional generator to function as an image prior. It can be deduced from a convolutional autoencoder

(such as the deep image prior | | and the U-net | ]) by removing the encoder part, any
skip connections, and most surprisingly, the trainable convolutional filters of spatial extent larger
than one. As demonstrated in [ ], the critical aspect for an un-trained deep image prior are

the convolutions with fixed convolutional kernels, implemented here by the operator U.

3 Signal recovery with over-parameterized linear generators

Consider an over-parameterized linear generator G(C) = Jc defined by a wide, full-rank, generator
matrix J € R™N N > n, and an arbitrary and unknown signal x* € R”. Because J has full rank,



the signal can be expressed as x* = Jc*. However, the coefficient vector ¢* in this representation
is non-unique, as J is a wide matrix containing more columns than rows. We observe m linear
measurements of the unknown signal of the form

y:AX,

where A € R™*" is a wide (m < n) Gaussian measurement matrix, with iid N (0,1/m) entries.
We note that with this variance, norms are approximately preserved (i.e., for a fixed z, with high
probability |z, ~ [|Az]l).

Our goal is to estimate the signal x* based on the measurement y. We estimate the signal x*
by first computing a coefficient estimate ¢ by minimizing the loss

1
£(c) = 5| ATe — v},

via running gradient descent with sufficiently small step size until convergence. We then esti-
mate the signal via x = J¢. Since gradient descent applied on a least-squares problem yields the
minimum-norm solution, the estimate ¢ can equivalently be expressed as

¢ = argmin [|c|3 subject to AJc =y. (5)
(&
In closed form, ¢ is given as
¢ = (AJ)TAJc* = Pyrprc’,

where (AJ )T is the pseudo-inverse of AJ, and Pjra7 is a orthogonal projection operator onto the
range of (AJ)”. Thus, the signal estimation error is

x—x"=J(C€—c")=JI—-Pyrar)c”. (6)
The following theorem characterizes this signal estimation error.

Theorem 1. Let A € R™*"™ be a random Gaussian matriz with m > 12, and let wq, ..., wy, be the
left singular vectors of J with associated singular values o1 > ... > op. Then, for any x* € R™, with
probability at least 1 — 3e~Y/2™  the signal estimate X = J& based on the measurement y = Ax*,
with the coefficient estimate ¢(y) defined in (5), obeys

Ix-x*2<C (Z % <Wi,X*>2> Z 0. (7)

i=1 1 i>2m/3

Here, C' is a fized numerical constant.

The proof, given in the appendix, relies on arguments from | , Sec. 8 and Sec. 9] developed
for approximating low-rank matrices through random sampling.

The theorem guarantees that the error in estimating the signal x* from compressive measure-
ments y = Ax* is small provided that two conditions are satisfied:

(i) The signal x* lies (approximately) in the span of the leading O(m) singular vectors of J,
where m is the number of linear measurements.



(ii) The singular values of the generator matrix J decay sufficiently fast (for example geometri-
cally).
To see this, let us consider a concrete example. Suppose the singular values decay geometrically,
i.e., 01-2 = ~¢ for some v € (0, 1). Moreover, suppose that the signal x* lies in the span of the leading
m/3 singular values of J, i.e., x* € span(wy,...,w,,/3). Then, Theorem 1 guarantees that the
estimate x based on m random linear measurements obeys

% —x"[5 < C H 13- (8)

Here, we used that the first term in the right-hand—side of (1) is bounded by 1 / o 3||x*||§, using

that x* is in the span of the leading singular vectors, and that >, , /3 02 < L— — by the formula
for a geometric series. The bound (8) is very small provided that ~ is shghtly below one (since
~™/3 decays exponentially)—thus guaranteeing almost perfect recovery of a signal that is aligned
with the leading singular vectors of J.

4 Main results for compressive sensing with convolutional gener-
ators

We are now ready to state our main results for compressive sensing with convolutional generators.
We consider the non-linear least-squares objective

£(0) = LIAG(C) ~y2,

where A € R™*" m < n, is a Gaussian random matrix with iid A'(0,1/m) entries and G(C) is the
two-layer decoder network defined in section 2. We minimize this objective by running gradient
descent with a constant stepsize 7, starting from a random initialization Cgy, with entries drawn
iid from a Gaussian distribution NV(0,w?), and with variance w? specified later. The coefficients at
iterations t = 1,2, ... are given by

Ct+1 = Ct — T]VE(Ct) (9)

In the previous section we studied a linear generator with generator matrix J with quickly decaying
spectrum. In this section we extend the insights from the previous section to the non-linear case
by replacing the role of the generator matrix J with the Jacobian of the non-linear generator G,
defined as [J(C)li; = (.%[G(C)] j- In contrast to the linear case, however, the Jacobian changes
across iterations of gradient descent. Nevertheless, we can account for these changes in the Jacobian
in our analysis.

As found in | |, for the two-layer deep decoder that we consider, the left singular vectors
of the Jacobian can be well approximated by the trigonometric basis function wy,...,w, € R”

plotted in Figure 2, and defined as
1 i=0
fwil 1 | +v2cos(2rji/n) i=1,...,n/2 -1 (10)
Wi|l; = ——= . .
T ) (1) i=n/2
V2sin(2mji/n) i=n/24+1,...,n—1
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Figure 3: Triangular kernels and the weights associated to low-frequency trigonometric functions
they induce, for a generator network of output dimension n = 300. The wider the kernel is, the more
the weights are concentrated towards the low-frequency components of the signal. Note that the
lower singular values decay geometrically (as evident from the straight line in the log-log plot)—as
the singular values in our example in Section 3.

Moreover, the singular values of the Jacobian throughout the iterates can be well approximated
by associated values that only depend on the convolution kernel u associated with the convolution

operator U. Those values o € R" are given by
u®u
o (100) )
[[ull3

g@)=1(1—“ﬁlcﬂ>z

2 s

o = ul

with

Here, for two vectors u, v € R™, u® v denotes their circular convolution, F is the discrete Fourier
transform matrix, and the scalar non-linearity ¢ is applied entrywise. As a concrete relevant exam-
ple, in Figure 3 we depict the triangular kernel that is used in the original deep decoder network.
The most important observation from this plot is that the associated weights o = [o71, ..., 0,] decay
very fast, namely geometrically.

With those definition, we are now ready to state our main result.

Theorem 2. Let A € R™*" be a random Gaussian matriz with m > 12 and suppose we are given
a linear measurement y = Ax* of an arbitrary signal x* € R™. Consider a two layer generator
network G(C) = ReLU(UC)v, C € R™*k with
m

kza€§ (12)
channels and with convolutional kernel u of the convolutional operator U and associated weights o =
[01,...,00]. Here, § <1 is arbitrary and Cy is a constant that only depends on the convolutional
kernel u. In order to estimate the signal, we fit the convolutional generator to the signal by running

gradient descent starting from a random initialization Co with i.i.d. N'(0,w?), entries, w ”%2,




and sufficiently small stepsize to the loss 3||AG(C) —ylI3 until convergence. Then, with high
probability, the reconstruction error with parameters Co, at convergence obeys

"1
|G(Co) —x*|3 <C (Z(ﬂ<wz’,X*>2> Z o? + &|x*|3. (13)

=1 "1 i>2m/3
Here, C' is a fixed numerical constant.

Theorem 2 establishes that a convolutional generator enables the reconstruction of a natural
signal from a few linear measurements. To see this, note that a good model for a natural image
is a smooth signal, i.e., a signal that can be well-approximated by few leading trigonometric basis
functions. More concretely, Figure 4 in [ | shows that the power spectrum of a natural image
(i.e., the energy distribution by frequency) decays rapidly from low frequencies to high frequencies.

Thus it is reasonably to assume that the signal x* can be represented with few of the trigono-
metric basis function; for concreteness say that x* lies in the span of wi,..., w,, 3. Next, recall
from Figure 3 that the weights associated with a triangular kernel decay geometrically (i.e., Uf =4
for some v € (0,1)). Thus, from the same argument as used for (8), the bound (13) established by
the theorem yields that the reconstruction error is bounded by

m/3

/
*112 2 *112
’YHX 15 + &7 1% 5

IG(Cx) —x*3 < ©

g
1—
Thus our theorem guarantees the recovery of a sufficiently smooth signal by optimizing over the
range of the generator. In particular if the signal is p-smooth, i.e., lies in the span of wy,...,w,,
then O(p) measurements are sufficient to provide an accurate estimate.

4.1 Beyond two layer networks

Our main theorem from the previous section relies on two critical ingredients:

(i) The finding from | | that the leading singular vectors of the Jacobian of a two-layer
deep decoder are approximately the trigonometric basis function throughout all iterations of
gradient descent.

(ii) The weights o1, ..., 0y, associated with the trigonometric basis functions decaying sufficiently
fast, specifically approximately geometric. That is required for gradient descent applied to
fitting m compressive measurements until convergence to (approximately) only fit the signal
to the leading O(m) trigonometric basis functions.

Those results extend to deeper networks as follows. First, as shown numerically in | |, the lead-
ing singular vectors of the Jacobian of a four-layer deep decoder are also close to the trigonometric
basis functions, and change only little across iterations. Second, as shown in Figure 4, the singular
values of a four-layer deep decoder also decay (at least) geometrically, and the spectrum changes
only little across iterations. Thus, the implications of our theory continue to apply for deeper deep
decoders.
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Figure 4: The singular value distribution of the Jacobian of a four-layer deep decoder at different
iterations of gradient descent; the spectrum changes only slightly, and the singular values decay
slightly faster than geometrically.

5 Numerical experiments for magnetic resonance imaging

In the final part of our paper we consider accelerating magnetic resonance imaging (MRI), one of
the major application of compressive sensing. MRI is a medical imaging technique where measure-
ments of an object can only be taken in the Fourier domain, referred to as k-space. If the full
k-space measurement is collected, an image of the object can be computed almost perfectly (up
the noise inherent in the measurement process). In order to accelerate the imaging process, it is
common to only collect a small part of the k-space, which corresponds to taking few linear Fourier
measurements; or in the notation of our paper, a measurement matrix A with subsampled rows of
the Fourier matrix.

In order to understand whether our main finding—that signal reconstruction from compressive
measurements without further regularization is possible—applies in practice, we consider the prob-
lem of reconstructing an image from few k-space measurements. We consider reconstruction of an
image from 8-fold undersampled k-space measurements from the fastMRI dataset, recently released
by facebook and NYU | |. We reconstruct with a d = 5 layer and highly over-parameterized
deep decoder. Figure 5 shows the corresponding loss curves. It can be seen that early stopping at
the optimal early stopping point gives only marginally better performance than when optimizing
until convergence, and in addition the optimal early stopping point is unknown in practice (because
we do not have access to a reconstruction from a full measurement).

6 Related literature

In this paper we focus on un-trained neural network for solving inverse problems. In contrast
a large body of recent result concentrates on using trained deep convolutional neural networks
for image recovery and reconstruction. Training based deep learning methods for solving inverse
problems are either trained end-to-end for tasks like denoising | ; |, or are based
on learning a generative image model (by training an autoencoder or GAN | : ]) and
then using the resulting image models to regularize problems such as compressed sensing | ;

; |, denoising | |, or phase retrieval [ ; ]. In contrast to un-trained
network, where optimization is over the weights of the un-trained generator, in the aformentioned
papers it is over the input of the (trained) network.

10
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Figure 5: Compressive sensing MRI: MSE of reconstructing an image from 8-fold undersampled
k-space MRI measurements. While early stopping is not absolutely necessary, stopping at about
2000 iterations slightly improves performance relative to optimizing until convergence.

Our proof relies on relating the dynamics of gradient descent on an over-parameterized network
to that of gradient descent on an associated linear network. This proof technique has been used
in a variety of recent publication [Sol-+18; Ven-+19; Du+18; OS19a; OS19b; Aro+19; Oym+19;
Bas+19; Li+19]. Most related to our work is the recent paper [[1520] that shows that the deep
decoder enables denoising. Neither of the publications, however, addresses compressive sensing or
reconstruction from randomly sketched data, and most of our technical results are specific to this
setup.

Finally note that regularizing linear models with gradient descent via early stopping has a rich
history in the signal processing community. In the 50s, Landweber proposed to recover a signal
from linear measurements via gradient descent [L.an51] which became known as the Landweber
algorithm in the inverse problems community. Subsequent work in this literature proposed to
early-stop the Landweber iterations (i.e., gradient descent) in order to regularize ill-posed inverse
problems [TC85].

7 Proof sketch

In this section we provide a sketch of our argument. Our statement and formal proof pertains to
the two-layer case, in this section we provide the sketch for the general case where G(0) is a generic
network with a N-dimensional parameter vector 6, and then comment on how this general proof
strategy is particularized to the two layer case.

Given a measurement y, we characterize the solution of running gradient descent with fixed
step size n on the nonlinear least-squares objective

1
L£(0) = 511£(6) — I3, f(6) = AG(®),
starting from an initial point 8y. The updates take the form

6111 =0, —nVLO,), VLEO) =T (0)(f(0)—y), (14)

11



where J(0) is the Jacobian of f at 6. We start gradient descent from a random initialization 6y
with iid A/(0,w) entries. Central to our analysis are the following objects. Let Jg(0) € RV
be the Jacobian of G(0) and define J; as a reference generator Jacobian that we set to a matrix
that is very close to the generator Jacobian at initialization, i.e., Jg ~ Jz(60p). For the two-layer
network for which we state a precise result, this matrix only depends on the convolutional operator
U.

Relevant for the dynamics of gradient descent, however, are the corresponding sketched original
and reference Jacobians, defined as

J(0) = AJs(0) e R™N and J=AJg e R™N.

Since we chose Jg ~ J;(0y), we also have J ~ J(6p).

7.1 Closeness to an associated linear problem

To characterized the behavior of the gradient descent updates in (24), we relate the non-linear least
squares problem to a linearized one in a ball around the initialization 6y. This general strategy
has been utilized in a number of recent publications | ; ; ; ;

]. We define the associated linearized least-squares problem as

I I ) 9

1
Lin(8) = 51 £(80) + I (6 — 60) — yl5- (15)
Starting from the same initial point 8y, the gradient descent updates of the linearized problem are
0141 = 0, — 37 (f(oo) +3(0; — 6) — y) . (16)

The iterates and residuals of the non-linear and linear updates are close throughout the entire
run of gradient descent provided the following assumptions are satisfied:

(i) The smallest and largest singular values of the generator reference Jacobian are lower and
upper bounded by constants a and 3, respectively.

(ii) The reference Jacobian approximates the Jacobian at initialization, i.e., for ¢y > 0,
[J — T (60)]| < eo,
where ||-|| is the standard operator (matrix) norm.

(iii) Within a radius R around the initialization, the Jacobian varies by no more than e in the
sense that

|T(0) —T(B)| <=, forall 8 ¢c Bgr(6). (17)

|

Here, Br(6p) = {0: ||6 — 0|, < R} is the ball with radius R around 6.

Under these assumptions, we establish that the residuals of the linear problem,

T = f(6p) + AJq(6; — 6y) —y

12



and that of the non-linear problem,
r, =AG(6;) -y,

are close during the entire run of gradient descent, and most importantly for proving our result,
that the iterates of the linear and non-linear problem are close, again during the entire run of
gradient descent:

Het —~ étHQ < O(eo + €)lIroll,-

7.2 Inheriting the properties of the linear problem

Recall that our goal is to characterize the signal estimate G(0 ) at convergence. We characterize
this estimate by

i) characterizing the estimate X = J60o obtained by running the linear problem until conver-
gence and

ii) showing that this estimate is close to the original estimate, i.e., Jg0s ~ G(0).

In more detail, suppose that the assumption i-iii are satisfied for sufficiently small closeness
parameters €y and €. Then, as discussed above, the iterates of the non-linear problem and the
linear problem are close at any iteration, in particular at convergence. Since the Jacobians are also
close, we can establish that x = Jg0 ~ G(0).

In more detail, we can bound the signal estimation error at convergence as

1G(0:0) = X7y < % = X[y + G (0s0) — %
< &~ X"l + Ofeo + ©).

The first term is controlled by analyzing the linear case with Theorem 1 from Section 3. To control
the second term we need a simple definition

1
Te(00,0) = / Tor(10.0)dt.
0

With this definition in place we can proceed to bound the second term as follows
1G(8) — %[,
- HJG(eooy 0)000 - JGéooH2
= HJG(Oooa 0)000 - jG(eooa O)éoo + jG(gocno)éoo - JGéooH2
< 196(000,0)] [0 — 0| + 176, 0) — I |6 |
< O(eo + €).

For the last bound we used that by our discussion above, the iterates of the non-linear problem

are close at any iteration, in particular at convergence, so that ‘ 0 — 900H2 < O(ey +€).
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7.3 Concluding the proof sketch

The proof for the two-layer case is then concluded by analyzing the associated linear problem.
In particular, we use that the matrix Jo has as its left-singular vectors the trigonometric basis
function, and its spectrum are the associated weights o1, ..., 0, specified in Section 4.

In order to extend this proof to a multi-layer deep decoder G(0), all we need to do is to
characterize the associated matrix J¢g, in particular its left-singular vectors and corresponding
singular values.

Code

Code to reproduce the experiments is available at https://github.com/MLI-1ab/cs_deep_decoder.
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A  Proof of Theorem 1

The statement follows from the following more general result.

Proposition 1. Let A € R™*" be a Gaussian random matriz with m =k + p, and p > 4, and let
JT =U,,2VT with U, € R and X,V € R™ ", be the singular value decomposition of JT with
singular values oy > ... > o,. Then, for any c* € R%, with probability at least 1 — 2e™P — e_“2/2,
the estimate ¢ = P sryrc obeys

2
. 3k evk+p evk+p
Je — Je|? < |[uTer|? Yo Y o2
| J¢ c||2_H " C H2 Oki1€ p+1+ | u| + Dkal o ul +) oj

>k

To see this, note that with p = k/2 and u = ,/p, the proposition guarantees that with probability
at least 1 — 3e™P,

2
|J& — I3 < HUZC*HE 250441+ 7 /Z o? | + Za?
i>k

>k
< [[Ufe |32y o
i>k

Noting that m = 3/2k, x = J¢ and x* = Jc* concludes the proof.
Proof of Proposition 1: By the characterization (6), our goal is to upper bound

2
13 — Jc*|)? = ‘c*T(I—PJTAT)JTHQ. (18)

Our proof relies on arguments from | , Sec. 8 and Sec. 9] developed for approximating low-
rank matrices through random sampling.

We start by partitioning the right-singular vectors of J7 into two blocks V; and V5 containing
k and n — k columns, respectively.

> 0] [Vl
T 1 1
w3 s Vi
Define the random matrices

O =VIAT eRF™ Q) = VIAT e RPF,

Note that both matrices are standard Gaussian, and, because they are non-overlapping sub-matrices
of VA, they are also stochastically independent. Moreover, €21 has full row-rank with probability
one.

For convenience, define

JT=3v.
Next, we record a useful property from [ , Prop. 8.4]: For a unitary matrix U any matrix
M,
Py = UPyryUT. (19)
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To see that the identity (19) holds, first note that the matrix P = UTPpU is an orthogonal
projection operator because it is Hermitian an P2 = P. Moreover,

range(P) = Ul range(M) = range(UTM).

Since the range determines the orthogonal projector onto its range, we have that P = UTPy;U =
Pyry, concluding the proof of (19). Next, let

¥ 0
J'=[U, U] |0 32| VT
Lo o

be the full singular value decomposition of J7, including the singular vectors Uy_,, multiplying
with zero singular values. Applying the identity (19) and that UTU we proceed as

e (X = Pyrar)I7|2 = || " U = Pyryrar)UT I
2

= ||c" U Uy, ) (I - P [jT AT} ) [ﬂ

0 2

2
0
— ("0 (1~ Py

= CT[UnUd—n] [(I - PjTAT)E])

2

Moreover,
e U (T~ Pyr ) BI < e U)X~ Py pr) S
JTA 2 2 JTA
= (|70 ]| BT (X - Pyrpr)3|

2
< |[zamnd]” + =202
2

2 3k evk+p evk+p
< "0, (,,22”6( . u>+!22HFvut i)

p+1 p+1 p+1
where the second-to-last inequality follows from [ , Last ineq in Sec. 9.2]. Finally, the last in-
equality holds with the probability specified in the proposition because by [ , Last inequality

in Sec. 10.3], for p > 4 and u > 0,

P ut| <2e P+ e~u/2,

3k evk + evk +
|20 2 1Zalle ( pu) Il

p+1 p+1 +1

This concludes the proof of the proposition.
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B Proof of Theorem 2

The result stated in the main text (Theorem 2) is obtained from a slightly more general result
which applies beyond convolutional networks. Specifically, we consider neural network generators
of the form

G(C) = ReLU(UC)v,

with C € R"** and U € R"*" an arbitrary fixed matrix, and v € R¥, with half of the entries of v
equal to +1/vk and the other half equal to —1/Vk.

The (transposed) Jacobian ReLU(Uc) is UZdiag(ReLU’(Uc)). Thus the Jacobian of G(C) is
given by
v UTdiag(ReLU’(Ucy))
Jé(C) = : € R, (20)
v, U diag(ReLLU’(Ucy,))
where ReLU’ is the derivative of the activation function. Next we define a notion of expected
Jacobian. Towards this goal, we first define the matrix

2(U) =E [Je(C)IE(C)],

associated with the function G(C) = ReLU(UC)v. Here, expectation is over C with iid N (0,w)
entries. Consider the eigenvalue decomposition of 3(U) given by

3(U) = Z orwwl .
i=1

Our results depend on the largest and smallest eigenvalue of 3(U) denoted by o2 and ||U||* and
in particular a condition number denoted by x formally defined as

2
vl
.= 12

With these definitions in place we are now ready to state our result about neural generators.
Theorem 3. Consider a compressive observation' y € R™ given by
y = Ax,

where A € R™™ with m < § is a Gaussian random matriz with iid N'(0,1/m) entries. Suppose
that the number of channels obeys

426
k> Cg—‘;m (21)
for an error tolerance parameter 0 < £ < #(271) We fit the neural generator G(C) to the signal
og S
y € R" by minimizing a loss of the form
1
L(C) = 5IAG(C) ~ yll3 (22)
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via running gradient descent with iterations Cyy1 = C;—nVL(Cy), starting from Co with i.i.d. N'(0,w?)

Ellyll ; 7 —k2
Qﬁlléll , Then, with probability at least 1 —ne™" —

2”7 — 6, for all iterations t,

m
an|U|*

entries, w = and step size obeying n <

|u—Gwm53mfm+c<2¢memﬂ > ot (23)

=1 "1 i>2m/3

Theorem 2 follows directly from Theorem 3 by noting that for U a circulant matrix (imple-
menting a convolution), as found in [ |, the left singular vectors of ¥(U) are given by the
trigonometric basis functions in (10) and the singular values are given by (11).

C The dynamics of linear and nonlinear least-squares

Theorem 3, proven below, builds on a result on the dynamics of a general non-linear least squares
problem that is stated and discussed in this section. Consider a nonlinear least-squares fitting
problem of the form

£(6) = 5 17(6) - I

Here, f: RN — R is a non-linear model with parameters 8 € RV,
To solve this problem, we run gradient descent with a fixed stepsize 1, starting from an initial
point 8y, with updates of the form

0;11 = 0; —nVL(O;) where VL(O) =TT (0)(f(6)—y). (24)

Here, J(0) € R™ is the Jacobian associated with the nonlinear map f with entries given by

(T(0)];; = 8%9). In order to study the properties of the gradient descent iterates in (24), we
relate the non—li]near least squares problem to a linearized one in a ball around the initialization 6.
This general strategy has been utilized in a variety of recent publications | ; ; ;
; |, our specific argument is most similar to [ |. Contrary to the result in [ ],
which holds for a certain number of initial iterations, our statement applied to all iterations.

The associated linearized least-squares problem is defined as
1 2
Liin(0) = §Hf(90) +J(0 — 6o) — yll3- (25)
Here, J € R™*N  refered to as the reference Jacobian, is a fixed matrix independent of the parameter
0 that approximates the Jacobian mapping at initialization, J(6p). Starting from the same initial
point @y, the gradient descent updates of the linearized problem are

611 = 6, 03" (£(60) +3(6, — 60) ~y). (26)

To show that the non-linear updates (24) are close to the linearized iterates (26), we make the
following assumptions:
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Assumption 1 (Bounded spectrum). We assume the singular values of the reference Jacobian
obey for some a, 8

\/iago-ngo-lgﬁ- (27)
Furthermore, we assume that the Jacobian mapping associated with the nonlinear model f obeys
|7(8)|| < B forall 6cRY. (28)

Assumption 2 (Closeness of the reference and initialization Jacobians). We assume the reference
Jacobian and the Jacobian of the nonlinearity at initialization J(6y) are €y-close in the sense that

17 (60) — J| < €o. (29)

Assumption 3 (Bounded variation of Jacobian around initialization). We assume that within a
radius R around the initialization, the Jacobian varies by no more than € in the sense that

|T(0) —T(O0)| <=, forall 6c Bgr(0), (30)

|

where Br(6y) == {0: |0 — 0y|| < R} is the ball with radius R around 6.

Under these assumptions i) the difference of the nonlinear iterative updates (24) and the linear
iterative updates (26) is bounded, and ii) the difference of the linear and non-linear residuals,

defined as

nonlinear residual: r; := f(6;) —y (31)
linear residual: T= f(60) +J (6, — 0y) —y (32)

are close throughout the entire run of gradient descent; both in the proximity of the initialization.

Theorem 4 (Closeness of linear and nonlinear least-squares problems). Assume the Jacobian
mapping J(0) € RN associated with the function f(0) obeys Assumptions 1, 2, and 3 around an
initial point @y € RY with respect to a reference Jacobian J € R™N and with parameters a, 3, €o, €,
obeying 28(eo + €) < a2, and R. Furthermore, assume the radius R is given by

R 2

- HJTroH2 PPL

5 = o teote)rolly. (33)

Here, It is the pseudo-inverse of J. We run gradient descent with stepsize n < % on the linear and
non-linear least squares problem, starting from the same initialization 6y. Then, for all iterations
t,

i) the non-linear residual converges geometrically
t
Ivelly < (1 —=na®)" [lroll,, (34)

i1) the residuals of the original and the linearized problems are close

s — Telly < 28n(e0 + €)(1 — ne)* x|, (35)
2B(ep + €)
< - - 7

~ e(ln2)a? ol (36)
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ii1) the parameters of the original and the linearized problems are close
~ 2
|60 = 8. <257 (o + lroll (37)

i) and finally, the parameters are not far from the initialization

R
16: — 80ll, < 5 (39)

The above theorem formalizes that in a (small) radius around the initialization, the non-linear
problem behaves similarly as its linearization. Thus to characterize the dynamics of the nonlinear
problem, it suffices to characterize the dynamics of the linearized problem. This is the subject of
our next theorem, which is a standard results on the iterates of least squares, see | , Thm. 5]
for the proof.

Proposition 2 (Theorem 5 in | ). Consider a linear least squares problem (25) and let J =
WXVT ¢ RP = Dy JiwiviT be the singular value decomposition of the matriz J. Then the
residual Ty after t iterations of gradient descent with updates (26) is

n

T = Z (1 — nag)twi (Wi, o) . (39)

i=1
Moreover, using a step size satisfying n < %, the linearized iterates (26) obey
1
6ol % - (L=no)"\"
b o =3 (w100 10
e S A (40

In the next section we show we can combine these two general theorems to provide guarantees
for compressed sensing using general neural networks.

C.1 Proof of Theorem 4 (closeness of linear and non-linear least-squares)

The proof is by induction. We note that the base case ¢t = 0 is trivially true. We suppose the
statement, in particular the bounds (34), (35), (36), (37), and (38) hold for all iterations 7 <t — 1.
We then show that those relations continue to hold for iteration t in five steps: In Step I, we show
that a weaker version of (38) holds, specifically that ||§; — 0|, < R. This guarantees that we can
work with our assumptions; those require the iterates to be sufficiently close to the initial values.
In Step II we show that the nonlinear residual decreases at a geometric rate proving (34). In Steps
IIT and IV we show that the residuals and the coefficients of the linear and non-linear problem are
close, respectively. Finally, in Step V we utilize Steps I-IV to complete the proof by showing that
the iterates of the non-linear problem are close to its initialization (i.e., equation (38)).

Linear convergence of linear residual: Before we start, we note that under our assumption,
the residual of the linear problem converges linearly. Specifically, by the updates of the linear
problem (26), we have that

T = (I —n330)F,. (41)
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Using that the smallest singular values of JJ7 is lower bounded by 20?2, this guarantees that
T2l < (1 — 2na®)"|[Foll,,

establishing linear convergence of the linear problem.

Step I: Next iterate obeys 0; € Br(0y). We start by using a coarse argument that establishes
0, € Br(60y). First note that by the triangle inequality and the induction assumption (38) we have

16 — Bolly <[|6 — B¢ 1|5 + [[6:-1 — ol

R

<10 = Or-all, + 5

So to prove [|@; — 6yl|, < R it suffices to show that [|@; — 6;_1||, < R/2. To this aim note that

1
;H@e = 0i1lly = [[VLO-1)l,

= HJT(Ot—1)I"t—1H2
< HJT(Ot—lﬁt—le + | T (Or—1) ] ||lre—1 — Te—1]]5
< I F ], + 1T (B—1) — TN Fe—1lly + 11T (Be—1)[l]re—1 — Tl

(i) 26(co + €)

< 32|yt <P \*0 T ¢

< 82| tro [, + (e clivolly + = 550 ol

(ii) 232

< 2] 7teo], + 25 (co + ol (42)

Here, (ii) follows from the fact that % < g—z and inequality (i) follows from Assumptions 1-3, the
induction hypothesis (36), ||[r-—1]] < ||ro|/, and the bound

975, = 37— 920y
— = = W

n
> o {w;,r0)?
j=1

IA

n

<B > %(Wj, ro)?

j=1"1J
= 5|atro]
2
To continue we use the fact that n < é in (42) to conclude that

2% (e + €
16— 6l < 08 [3tro |+ 02T Dy,

2(ep +¢€)
t 2078
HJ I'0H2 + o? ol

R
< —.
-2
The last inequality follows by definition of R in (33), and concludes the proof of Step I.

IN

23



Step II: Geometric decay of non-linear iterate. Since the linear residuals converge linearly
and the Jacobian of the non-linear problem is close the Jacobian of the linear problem, J, the
non-linear problem also converges linearly. To see this, with J(a,b) = fol J(sb — (1 — s)a)ds, we
have that, by the mean value theorem

0;-1) —nJT(6:,0;1)VL(O 1)
0,_1) —nJ (6, 9t—1)JT(9t—1)(f(9t—1) -y)
0;-1) —nB1Ba(f(0:-1) —y).

where in the last equality we defined the matrices B; and Bs accordingly for notational convenience.
This implies that

ry=f(6;) —y
= I —=nB1B2)(f(6:-1) —y)
= (I — 77B1B2)I‘t_1. (43)

Thus,

relly < T —nBiBa| ||re1ll,
< (|1 = 5337 +4||3IT - B1Ba||) [[re—1ll,

(i)
< (1—2na’® +2nB(eo + €)) [Iri-1ll,

(i) )
< (1 —no ) ||1't—1||2
For inequality (ii) we used the assumption 28(eg+¢€) < a2, and for inequality (i) we used the bound

1337 — BBy = |33 — IB, + IB, — BB, |
< [T = Baf| + |3 = Ba[[1B2]| < 25(e0 + ), (44)

where the last inequality follows from our assumptions, and using that, by the triangle inequality
and assumptions 2 and 3, we have

B2 — 37| = 17 (6e-1) = I < [T (8e—1) — T (B0)|| + |17 (B0) — J|| < 0 + . (45)
This establishes that
relly < (1 =na®)[lre—1lly < (1= na?)rolly, (46)

where in the last inequality we used the induction hypothesis (34). This completes the proof of the
bound (34) for iteration ¢ concluding Step II.

Step III: Original and linearized residuals are close. In this step, we bound the deviation
of the residuals of the original and linearized problem defined as

e; :=T; — Ty.
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Specifically, we use the induction hypothesis together with the fact that based on Step I we have
0,_1,0, € Br(60y), to show that

lleell < 28m(eo + €)(1 — na®)*~t|roll,. (47)

Before we prove this however note that for x < 1/2 we have (1 — )=t < m for all t > 0. Now

using this identity with z = na? < O‘—j < % in (47) we conclude that
2B(ep + €)
< 2V T
Jedl < g Ieol

completing the proof of (36) for iteration ¢. Thus, all that remains in this step is to establish (47).
To this aim note that from the formulas for the linear and non-linear residuals in (41) and (43), we
have that

T = (1—nJI0)F .

Thus for e; = T, — r; we have, with the same notation as in step II,

Jedll = || (T = 7337)F s — (1 — 7B Ba)r, 1
= |@=nIIT)(F1 — rim1) + (B1B2 — JI)re_4 ||,
< [T = nITT|IFe-1 = recilly + n[BiBa — JI[[|re-1]l,
< (1—na®)|let-1ll, +2n8(eo + €)(1 = na’)'~Hroll,,
where the last inequality follows from ||B;By — JJ TH < 2B(eo+e€), by (44), and from using the fact
that ||lr¢—1]l, < (1 —na?)!=1||rol|, which holds based on Step II. Finally, plugging in the induction
hypothesis |le;—1[l, < c&72(t — 1)||ro|l, with € := 1 —na? and ¢ := 218(ep + €) in the above we
conclude that
leell <€ller—1| + c&lroll,
<c€7H(t = 1)lIrolly + € rolly
=c&' " t|roll,

t—1
=2nB(eo +¢) (1 =na?)" tlro]l,.

This concludes the proof of the bound (47) for iteration ¢, finishing Step III.
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Step IV: Original and linearized parameters are close: The difference between the param-
eter of the original iterate @ and the linearized iterate 8 obey

117H0t — 0~tH2 < § VL(O;) — VLin(6,)
=0

2

t—1
> T O )r, - I%,
=0

2

t—1
< 2177 (0) = I |, + (|7 () (e = E1)
=0

(i) = _

< S (e + OlIE-ll, + Bller
7=0

(i) 2 2 2\7—1

< > (eo+ )1 = na®)[lroll + 2052 (eo + €) (1 — na®)™ 7o |-
=0

Here, (i) follows from (45) combined with Assumption 1 and (ii) follows from (47) established in
step III. We now proceed by using the formulas for low-order polylogarithms to conclude that

~ 1—(1—na?)” 1—t(1—na®)=t+ (t - 1)(1 — na?)?
HQt - 9tH2 < (eo + €)[Iroll, <(nag) + 2np8* ( ) 7720/1( i )

1
77

1 , 1
< (o + ol (o3 + 208 s

2
< (eo+ G)WEHI'OHT

This concludes the proof of (37) for iteration ¢, completing Step IV.
Step V: Proof of (38): By the triangle inequality

T )

@) 2.5 32
< ‘JTI'()HQ + (e0 + G)EQHTOHQ
W R/,

Here, inequality (ii) follows from the definition of R in equation (33). Moreover, inequality (i) follows
from the bound (37), which we just proved, and the fact that, from equation (40) in Theorem 2,

Hét - 90”2 = i wi, ro)? L= = no;)h)?
=1

2
0;

n
<3 (wiro)? /o7
=1

R
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This concludes the proof of (38) for iteration ¢, completing the proof of Step V and the entire
theorem.

D Proofs for neural network generators (proof of Theorem 3)

The proof of Theorem 3 relies on the fact that, in the overparameterized regime, the non-linear least
squares problem is well approximated by an associated linearized least-squares problem. Studying
the associated linear problem enables us to prove the result.

We apply Theorem 4, which ensures that the associated linear problem is a good approximation
of the non-linear least squarest problem, with the non-linear function

£(C) = AReLU(UC)v

and with the parameter given by & = C. Recall that v is a fixed vector with half of the entries
1/vk, and the other half —1/vk. Let J(C) € R™™ be the Jacobian of f. We have that
J(C) = AJg(C), where J;(C) is the Jacobian of the generator G defined in (20). Both f and
its Jacobian are random variables because A is a random matrix. As the reference Jacobian in the
associated linear problem, we choose a matrix J = AJg € R™*7F (specified later) that obeys

137 = E[7(0)77 ()] = AE[76(C)TE(C)| A”.

»(U)

Here, expectation is with respect to C with iid N'(0,w?) parameters, and not with respect to A.
We apply Theorem 4 with

_ 1 vn
‘T3 Ym

We next verify that the conditions of Theorem 4 are satisfied (specifically, Assumptions 1, 2, 3) by
applying a series of Lemmas.

Throughout these proofs we use the fact that for a matrix A € R™*™ with i.i.d. N'(0, %) entries,
the bounds

o (S(U)), vn ¢ = 28 <log(2§)>1/4’ Ccat oyl

n
B:2ﬁHUH7 L 6_E@7 w = ﬁ\/m

un(8) 2 VULV ) < V2OV

2
hold with probability at least 1 — 2¢~ =™ which with n = 1 in turn implies that for m < § we have

1
(&) > SV nd A < 2 (48)
3yv/m vm
holds with probability at least 1 — 2”2 . See [ , Corollary 5.35] for a proof of this standard

result.
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Bound on initial residual: We start with bounding the initial residual by applying the following
lemma.

Lemma 1 (Initial residual [ , Lemma 6]). Consider G(C) = ReLU(UC)v, and let C € R**¥
be generated at random with i.i.d. N'(0,w?) entries. Suppose half of the entries of v are 1/vk and
the other half are —1/\/%. Then, with probability at least 1 — 6,

IG(C)lly < wy/8log(2n/8)|[U] -

With this lemma in place, the initial residual can be upper bounded as follows
[rolly < [lylly + |AG(Co)lly

(i)
< [lylly + 2[G(Co)ll,

(i)
< 3llylly- (49)

m
2

Here (i) holds with probability at least 1 — e~ 2 using the fact that A has i.i.d. Gaussian entries
that are independent of G(Cy), and for (ii) we used that, by Lemma 1,

IG(Co)ll, < wy/8log(2n/8)||U||
< w\/m\/ﬁHU”
D ¢ \/210g(2n /)|y,

(i)

< lylla, (50)
- _ Syl €yl T B S
where (i) follows from w = ENGERENGIL and for (ii) we used the fact that £ < NI

Verifying Assumption 1: Note that

1/n
in (3) = i (ATG) 2 Ouin(A)in(36) 2 3 V1, (S(0)) = V2.
We next show that the norm of the reference Jacobian and the Jacobian are bounded, with the

lemma below.

Lemma 2 (Spectral norm of Jacobian | , Lemma 5]). Consider G(C) = ReLU(UC)v with
v € R* and U € R™* and associated Jacobian Jq(C) (20), and let Jg be any matriz obeying
JeIE = E[Ja(C)TL(C)], where the expectation is over a matriz C with iid N'(0,w?) entries.
Then

1Tc(C)|| < IVIL[[UI - and  [|Tall < [lvll,[T]-

By Lemma 2, with ||v]|, =1,
19 = [[Adall < [|A[[[Jell < 2v/n/m|U] = 8,

where the last inequality follows from Lemma 2, with |[v|, = 1, and by using that, with high
probability, [|A| < 24/n/m per (48). Analogously, we obtain |7 (C)| < 3, for all C, with high
probability. This completes the verification of Assumption 1.
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Verifying Assumption 2: To verify the assumption, we first state a concentration lemma
from | .

Lemma 3 (Concentration lemma | , Lemma 3]). Consider G(C) = ReLU(UC)v with v € R¥
and U € R™* and associated Jacobian Jg(C) (20). Let C € R™ F be generated at random with
i.i.d. N'(0,w?) entries. Then, with probability at least 1 — §,

k
2n
|96(C1E(©) ~ 2(0)]| < [P, 1og (5) 3ot
(=1
Using the fact that Z? v} = L by Lemma 3 we have

log (2n/0

[e(Co) T (Co) ~ (V)| < U]/ B2, 51)
To show that (51) implies the condition in (29), we use the following lemma.

Lemma 4 ([ , Lem. 6.4]). Let X € RN N >n and let ¥ be n x n psd matriz obeying

HXXT — BH < &, for a scalar € > 0. Then there exists a matriz Jg € RN obeying ¥ = J(;Jg
such that

IJe — X]|| < 2e.

From Lemma 4 combined with equation (51), we have that there exists a matrix Jg € RN
that obeys

log(2n/5) ) 1/4 |

196 - Je(Col < 210 (228

Using this inequality, as well as that ||A|| < 2%, per (48), we get

13 =T (Co)ll = [[A(Ja — Ta(Co))l
< [[A[[lJe = Ta(Co)

Vi log(2n/5)\ '/*
< QWQHUH <k>

<283 (bg(zkn/é)>1/4

= €0,

as desired. This concludes the proof of Assumption 2.
This part of the proof also specifies our choice of the reference Jacobian J = AJg as a matrix
that is €y close to the Jacobian at initialization, 7 (Cy), and that exists by Lemma 4 above.
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Verifying Assumption 3: Verification of the assumption requires us to control the perturbation
of the Jacobian matrix around a random initialization. We begin with the following lemma from

[H520].

Lemma 5 (Jacobian perturbation around initialization | , Lemma 7]). Let Cy be a matriz
with i.i.d. N(0,w?) entries. Then, for all C obeying

- -1
|C—Col| <wR with R< 5\/%,
the Jacobian mapping (20)associated with the generator G(C) = ReLU(UC)v obeys

176(C) = T&(Co)ll < IVl 2(kB) U],

with probability at least 1 — ne— s RYVIKT

In order to verify Assumption 3, first note that the radius in the theorem, defined in equa-

tion (33), obeys

2
R= 2HJTr0H2 + 5%(60 +¢)|Iroll,

W (V2 5
< (a + 8ﬁ> llrolly

Zoly
=97 Yo

(i) o, Y8
¢ «

(iv) 1 12

a
< p
S Yep’ vk
.= wR.
Here, (i) follows from the fact that HJTI'OHQ < %ﬂHrOHQ, and using that ep+€ < 2e = %5%—; < éf%—i
(ii) from 8 > « and from the bound on the initial residual (49), (iii) from w = % and finally (iv)
follows from the assumption (21) which is equivalent to
26 2 26 26
U
k> me302645 (2 = meso2648 (6v2l O  — 2t
a o &8
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For this choice of radius by Lemma 5 and by using ||A|| < 2\/—‘/% (per (48)) we have
1ATG(C) = AJc(Co)ll <[|Al[|Tc(C) = Ta(Co)ll
Vi .
<2Y=2||v| (kR)'/*|U]|
vm
1 .~
=28—(kR)'/?
ﬁ\/E( )

1 ot

:ﬁgﬁ

holds with probability at least

e_%§4/3k7/3 @ 2

1—n >1—ne"

where in (i) we used (21). Therefore, Assumption 3 holds with high probability by our choice of

Concluding the proof of Theorem 3: To begin, let c* be a solution to the optimization
problem

1
¢’ € argmin iHJGC —x*||5.
c

To complete the proof of Theorem 3 let us consider the linearized optimization problem which takes
the form

. 1
min Lin(c) = 5[|AG(co) + Adg(c - co) = ¥3,
with corresponding iterates given by
Ci+1 = ¢ — NVLin(Ct).

Here, c is the vectorized version of C, with a slight abuse of notation. With this notation, we
conclude the proof as

1G(Coo) = x|y < [[G(Coo) = JaCoolly + Moo — X7l

n

* 1 2

< ¢llx ||2+0<Zag<wi,x*>> >, o
i=1 1 i>2m/3

where we used the bounds

1G(Coo) = JaCoolly < ElIX7l5 (52)
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and

~ . "1
[JgCoo — x|, < C (Z p (Wi, x ) Z o? (53)

i=1 i>2m/3

The bound (53) follows from Theorem 1 by noting that wy, ..., w, are the left singular vectors of
J¢ with associated singular values o > ... > o, (because JgJ% = Z(U)).
It remains to prove the bound (52). Wlth Ja(a,b) fo Ja(sb — (1 —s)a)ds, at t = +o0,

|G(Coo) = JaCoslly = 1T (Coo, 0)vect(Coo) — JaCoolly
< [|76(Coo, 0)(vect(Coo) — Coo)lly + ([T (Coo, 0)€o0 — €0l
< [|76(Coo, 0)|[[vect(Coo) = Coolly + [[T6(Coo, 0) = I 2/l

W /m _ Jm -

< Y g Ivect(Cac) — el + 5 (e + o)lfEll
i) 3 _ 1 1, .

< Slvect(Coo) = ol + e + o) —[X" Il

In the above (i) follows from [|[J¢(C)|| < ||U|| = %5 (recall that 8 = Q‘fHUH) and from the
bound

vm
176(Coc, 0) = Il < 176(Coo, 0) = T (Co)lz + 1T76(Co) = Ialla < 5=(co +¢).
vm
Moreover, (ii) follows from m < n and |cso|ly < ¥y < UIE:‘(!L?G) We can now apply Theorem 4

equation (37) to bound the first term on the right-hand-side above to obtain

3

~ B 1 .
IG(Co0) = JaCoolly =125 7 (eo + €)Irolly + 5 (e + eo) 17l

20

< 7.5*(60 +e)|[x*|ly + Q(G‘FGO)HX o
23
% 165 el
(111
&l1x*[5-

Here, (i) follows from ||rol|, < 3||ly|ly = 3||Ax*||, < 6]|x*||, where we used (49) combined with the
fact that ||Ax* H2 < 2||x*||,. Moreover, (ii) follows from g > 1 and €y < € and finally (iii) from the

choice € = 156 gg, This concludes the proof of the bound (52) and the proof of the theorem.
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