High-Dimensional Robust Mean Estimation via Gradient Descent

Yu Cheng* Ilias Diakonikolas’
University of Illinois at Chicago University of Wisconsin-Madison
yucheng2@uic.edu ilias@cs.wisc.edu
Rong Get Mahdi Soltanolkotabi®

Duke University University of Southern California
rongge@cs.duke.edu soltanol@usc.edu
May 29, 2020
Abstract

We study the problem of high-dimensional robust mean estimation in the presence of a
constant fraction of adversarial outliers. A recent line of work has provided sophisticated
polynomial-time algorithms for this problem with dimension-independent error guarantees for a
range of natural distribution families.

In this work, we show that a natural non-convex formulation of the problem can be solved
directly by gradient descent. Our approach leverages a novel structural lemma, roughly showing
that any approximate stationary point of our non-convex objective gives a near-optimal solution
to the underlying robust estimation task. Our work establishes an intriguing connection between
algorithmic high-dimensional robust statistics and non-convex optimization, which may have
broader applications to other robust estimation tasks.
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1 Introduction

Learning in the presence of outliers is an important goal in machine learning that has become
a pressing challenge in a number of high-dimensional data analysis applications, including data
poisoning attacks [BNJT10, BNL12, SKL17] and exploratory analysis of real datasets with natural
outliers, e.g., in biology [RPW102, PLJD10, LAT*08]. In both these application domains, the
outliers are not “random” but can be arbitrarily correlated, and could exhibit rather complex
structures that is essentially impossible to accurately model. Hence, the goal in these settings is to
design computationally efficient estimators that can tolerate a small constant fraction of arbitrary
outliers.

Throughout this paper, we focus on the following data contamination model that generalizes
several existing models, including Huber’s contamination model [Hub64].

Definition 1.1 (Strong Contamination Model). Given a parameter 0 < € < 1/2 and a distribution
family D on R?, the adversary operates as follows: The algorithm specifies the number of samples
N, and N samples are drawn from some unknown D € D. The adversary is allowed to inspect the
samples, remove up to eN of them and replace them with arbitrary points. This modified set of N
points is then given as input to the algorithm. We say that a set of samples is e-corrupted if it s
generated by the above process.

The parameter € in the above definition is the fraction of corrupted samples and quantifies the
power of the adversary. Intuitively, among our samples, an unknown (1 — €) fraction are generated
from a distribution of interest and are called inliers, and the rest are called outliers.

The statistical foundations of outlier-robust estimation were laid out in early work by the robust
statistics community, starting with the pioneering works of [Tuk60] and [Hub64]. In contrast, until
fairly recently, even the most basic algorithmic questions were poorly understood. Specifically, even
for the basic task of high-dimensional mean estimation, all known robust estimators had runtime
exponential in the dimension, rendering them ineffective in high-dimensional settings.

Recently, [DKK'16, LRV16] gave the first efficiently computable robust estimators for high-
dimensional unsupervised learning tasks, including mean and covariance estimation. Specifically,
[DKK*16] obtained the first polynomial-time robust estimators with dimension-independent error
guarantees, i.e., with error scaling only with the fraction of corrupted samples € and not with
the dimensionality of the data. Since the dissemination of these works, there has been a flurry of
research activity on algorithmic aspects of high-dimensional robust statistics; see, e.g., [DK19] for a
recent survey on the topic.

Despite this exciting progress, the design of efficient robust estimators in high dimensions remains
challenging. The difficulty, of course, lies in the non-convexity of the underlying optimization
problem. Prior work developed fairly sophisticated algorithmic tools, even for the task of robust
mean estimation. These include convex relaxations [DKK™16] and quite subtle iterative spectral
methods [DKK'16, LRV16].

A natural and important goal is to understand to what extent such sophisticated methods are
indeed necessary or whether much simpler robust learning algorithms exist. In this work, we take a
direct optimization view of these problems and ask the following general question:

Is it possible to solve robust estimation tasks by standard first-order methods?

We believe that this question merits investigation in its own right. Moreover, its positive reso-
lution may have significant implications in the practical adoption of robust estimation methods.



Particularly so since prior algorithms are either (1) computationally prohibitive (relying on large
convex relaxations), (2) involve carefully crafted parameters that require precise tuning for practical
deployment, or (3) are challenging to extend to more sophisticated robust estimation tasks. A
tantalizing possibility is the following: For a range of high-dimensional robust estimation tasks,
there exists a (natural) non-convex formulation such that gradient descent efficiently converges to a
near-optimal solution.

In this paper, we show that this premise is true for the task of high-dimensional robust mean
estimation. In robust mean estimation, we are given a set of N e-corrupted samples from an
unknown distribution D in a known family D, and we want to output a hypothesis vector i such
that ||z — p*||2 is as small as possible, where p* is the mean of D. For simplicity, we will assume in
this discussion that D is an unknown mean and identity covariance Gaussian on R%. We note that
our results hold under more general distributional assumptions, as in [DKK*16, DKK*17].

The goal in robust mean estimation is to develop efficient algorithms whose fs-error guarantee
scales only with € and not with the dimension d. In particular, for the identity covariance Gaussian
case, [DKK*16] gave polynomial-time algorithms for the problem that use N = Q(d/e?) samples
and guarantee error O(ey/log(1/€)). This error guarantee matches known Statistical Query (SQ)
lower bounds [DKS17].

1.1 Overview of Results and Contributions

In this paper, we consider a natural non-convex optimization formulation of high-dimensional robust
mean estimation, and show that gradient descent! efficiently converges to a near-optimal solution.
Specifically, we show that gradient descent converges in a polynomial number of iterations and
matches the error guarantee of the best known polynomial-time algorithms for the problem. Our
technical contribution lies in showing that any approximate stationary point of our non-convex
objective suffices — in the sense that it gives a near-optimal solution for the underlying estimation
problem.

To describe our non-convex formulation, we require some background. We use the following
framework for robust mean estimation, introduced in [DKK*16]. The idea is to assign a non-
negative weight to each data point and then find an appropriate combination of weights such that
the weighted empirical mean is close to the true mean. The constraint on the chosen weights is
that they represent at least a (1 — €)-density fractional subset of the dataset. More formally, given
datapoints X1, ..., Xy € R? with corresponding data matrix X € R¥¥ | the objective is to find a
weight vector w € RN such that p,, = Xw is close to p*. The constraint on w is that it belongs in
the set

1 )
AN7€:{wERN:Hwh:landOSwiS(1_6)Navz} )

which is the convex hull of all uniform distributions over subsets S C [N] of size |S| = (1 —€)N.
[DKK™16] established a key structural lemma (Lemma 2.1), which formed the basis of their
algorithms. Roughly speaking, the lemma states that any weight vector w is a good solution if the

spectral norm of the weighted empirical covariance, ¥, = Zfi L Wi( Xy — ) (X — ) |, is small.
This lemma directly motivates the following non-convex optimization formulation:
Min ||X]]2 subject to w € A o (1)

!'Throughout, we informally use the term “gradient descent” to refer to variations of gradient descent methods,
which involve updates based on a generalized notion of a gradient, e.g., sub-gradient for non-differentiable functions.



It follows from the aforementioned structural lemma that a near-optimal solution w to (1) gives an
1y that is close to p*. The challenge is that the objective function is not convex, hence it is unclear
how to efficiently optimize. Faced with this difficulty, prior works on the topic [DKK*16, DKK*17]
developed various sophisticated algorithms.

In this paper, we work directly with the natural formulation (1). Despite its non-convexity, we
are able to leverage the structure of the problem to show that gradient descent efficiently converges
to a good vector w. In more detail, we prove a novel result about the structure of approximate
stationary points of this objective.

Theorem 1.2 (informal statement). Any approzimate stationary point w of (1) defines an pu,, that
is close to u*.

See Theorem 3.1 for a detailed formal statement. Technically speaking, our statement is more
subtle for various reasons, including the fact that the objective function is not differentiable and the
domain is constrained. As a result, we require a careful definition of stationarity in our setting.

Given Theorem 1.2, we proceed to show that projected sub-gradient descent converges to an
approximate stationary point in a polynomial number of iterations. This step is also somewhat
intricate as the function is non-convex, non-smooth and the optimization problem (1) involves
constraints. In summary, we establish the following theorem:

Theorem 1.3. After O(N2d*) iterations, projected sub-gradient descent on (1) outputs a point w
such that with high probability ||, — p*]|2 = O(ey/log(1/€)).

The bound we establish on the convergence rate on the spectral norm objective (1) is polynomially
bounded, but relatively slow. Our second main contribution involves considering the “softmax”
version of the spectral norm, which has better smoothness properties. An analogous lemma about
the structure of stationary points allows us to show a faster rate of convergence for this modified
objective.

Theorem 1.4. After 6(Nd3/e) iterations, projected gradient descent on the softmax objective
outputs a point w such that with high probability ||, — 1|2 = O(ey/log(1/€)).

As evident from the above result, the additional smoothness of the “softmax” objective allows
us to establish a significantly improved bound on the number of iterations.

1.2 Related Work

The algorithmic question of designing efficient robust mean estimators in high-dimensions has
been extensively studied in recent years. After the initial papers [DKK*16, LRV16], a number
of works [DKK'17, SCV18, CDG18, DHL19, DL19, CDGW19] have obtained algorithms with
improved asymptotic worst-case runtimes that work under weaker distributional assumptions on
the good data. Moreover, efficient high-dimensional robust mean estimators have been used as
primitives for robustly solving a range of machine learning tasks that can be expressed as stochastic
optimization problems [PSBR18, DKK™'19a].

We compare our approach with the works of [CDG18| and [DHL19] that give the asymptotically
fastest known algorithms for robust mean estimation. At a high-level, [CDG18], building on
the convex programming relaxation of [DKK™16], proposed a primal-dual approach for robust
mean estimation that reduces the problem to a poly-logarithmic number of packing and covering



SDPs. Each such SDP is known to be solvable in time O(Nd), using mirror descent [ALO16,
PTZ16]. [DHL19] build on the iterative spectral approach of [DKK™16]. That work uses the matrix
multiplicative weights update method with a specific regularization and dimension-reduction to
improve the worst-case runtime.

In contrast to all of the above, we use a natural non-convex formulation of the robust mean
estimation task, and show that a standard first-order method provably and efficiently converges
to a near-optimal solution. Even though the convergence rates that we establish in this work do
not yield the fastest known asymptotic runtimes for the problem, we believe that our approach is
conceptually interesting for a number of reasons. First, our theorem regarding stationary points
provides novel structural understanding about robust mean estimation and can be viewed as an
explanation as to why this problem is polynomially solvable. Second, it is plausible that gradient
descent applied in this context is more stable than previously known algorithms and may facilitate
the adoption of robust estimation methods in practice. We hope that this work will serve as the
starting point for solving other robust estimation tasks via first-order methods.

Finally, we note that there is an increasing literature on developing rigorous guarantees for non-
convex optimization problems via gradient descent, e.g., see the recent survey [JK17] for a review of
this literature. With a few exceptions [LW11, HSK17], this literature mostly focuses on showing that
gradient descent converges to a global optimum starting from a spectral [KMO10, CLS15, TBS*15]
or random initialization [GHJY15] in settings where there are no bad local optima. In contrast to
most of this literature, in this paper we show that any stationary point has good approximation
properties so that no specialized or random initialization is necessary. We believe that such a
perspective may enable rigorous analysis of many other non-convex optimization problems.

1.3 Roadmap

In Section 2, we set up the necessary notation and provide some background on robust mean
estimation. In the next two sections, we focus on the spectral norm objective. In Section 3, we prove
our main structural result showing that any stationary point of the spectral norm objective yields a
good solution. We also extend this result in Appendix B, showing that in fact, any approximate
stationary point yields a sufficiently good solution. In Section 4, we show that gradient descent
converges to an approximate stationary point and hence yields a good solution in a polynomial
number of iterations. In Appendix C, we prove structural and algorithmic results for the softmax
objective, showing that any approximate stationary point of the softmax objective yields a good
solution, and we can find an approximate stationary point using projected gradient descent in a
polynomial number of iterations. We conclude with future directions in Section 5.

2 Preliminaries and Background

Notation. For N € Z, we denote [N] := {1,..., N}. For a vector z, we use ||z||;, ||z||,, and ||z| o,
to denote the (1, {2, and ¢ norm of x respectively. For a matrix A, we use ||A||, to denote the
spectral norm of A.

For two vectors z,y € R™, we use 2 'y = >, 2y to denote the inner product of z and y, and
we use £ © y € R™ to denote entrywise product of z and y. For a vector x € R", let diag(z) € R™*"
denote a diagonal matrix with « on the diagonal. For a matrix A € R™*" let diag(A) € R™ denote
a column vector with the diagonal entries of A.



Let I denote the identity matrix. For a matrix A € R™*", let tr(A) denote the trace of A. For
two matrices A and B of the same dimensions, let A e B = (A, B) = tr(A" B) be the entry-wise
inner product of A and B. We use exp(A) to denote the matrix exponential of A.

A symmetric matrix A € R™ ™ is said to be positive semidefinite (PSD) if 2T Az > 0 for all
x € R™. For two symmetric matrices A and B, we write A < B iff the matrix B — A is positive
semidefinite. Let A, x, be the set of all PSD matrices of trace 1.

Framework. We use N for the number of input samples, d for the dimension of the ground-truth
distribution, and e for the fraction of corrupted samples. Given N datapoints X1,..., Xy € R%, we
use X € RN to denote the sample matrix, where the i-th column of X is Xj.

Given w € RV, let ty = Xw = Zfi L w; X; denote the weighted empirical mean and let
Yo = ZZ]\L L Wi( X — ) (X — )| denote the weighted empirical covariance. Let A N,e denote the

convex hull of all uniform distributions over subsets S C [N] of size |S| = (1 —€)N:
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Every weight vector w € Ay corresponds to a fractional set of (1 — €)/N samples.

Background on Robust Mean Estimation. As mentioned in the introduction, our non-convex
formulation is directly motivated by the following structural lemma:

Lemma 2.1 ([DKK*16]). Let S be an e-corrupted set of N = Q(d/e?) samples from an unknown
N, I) and w € AN ae. If Amax (Zw) < 1+ 6, for some § > 0, then with high probability, we have

that [|17* — prwlly = O(Ved + ey/log(1/e)).

As in prior work, we will establish correctness for our algorithms under deterministic conditions
on the inliers (good samples) that hold with high probability. Let G* denote the original set of N
good samples. Let S = G'U B denote the input samples after the adversary replaced e-fraction of
the samples, where G C G* is the set of remaining good samples and B is the set of bad samples
(outliers) added by the adversary. Note that |G| = (1 — ¢)N and |B| = eN. Given w € RV let
wa = ) ;cq Wi be the total weight on good samples, and wp be the total weight on bad samples.

We require the following concentration bounds to hold for the original N good samples G* (which
happens with high probability when N = ﬁ(d/ €2)). For all @ € Ay 3¢, we require the following
condition to hold for § = O(elog(1/¢)):

@i X — )X — ) =T
icG*

<5, (2)

Condition (2) on original samples G* implies the following conditions on the remaining good
samples GG. For any weight vector w € Ay ¢ on the e-corrupted set of samples S = G U B:

S wi(Xi - )X — ) 1| <5 3)

1€G

2

This is because we can define @ as follows: w; = ;fé for all s € G and w; = 0 for all 7 € B. Since

~ [wlloe _ lIwlla ]l 1
w € Ay, we have [|@| , < T = 122 < A TS S TN

Condition (3) follows directly from Condition (2).

In other words, w € Ay 3c and



Remark 2.2 (Distributional Assumptions). For simplicity, in this paper we focus on the fundamental
setting that the good data are drawn from an unknown mean and identity covariance Gaussian
distribution. It should be noted that our structural and algorithmic results hold under more general
distributional assumptions. Specifically, Theorem 4.1 immediately applies to identity covariance
subgaussian distributions, with the same error guarantees, since it only relies on the concentration
bounds (2) and (3) that only require subgaussian tails (see, e.g., [DKK*17].) Moreover, one can
modify the proof of our structural results (Theorems 3.1 and 3.2), mutatis-mutandis, to apply (1)
for distributions with bounded covariance (i.e., ¥ < I') and match the optimal O(y/€) approximation
to the mean [DKK'17]; and, (2) more generally, under the (¢, §)-stability condition of [DK19] to
yield an O(6) f-approximation to the mean.

Background and Definitions of Stationarity. Note that the spectral norm is not a differ-
entiable function and therefore we need an alternative definition of stationarity. To address this
issue, by the definition of spectral norm, we can define a function F(w,u) = u' X,u that takes two
parameters as input: the weights w € RY and a unit vector v € R?. Our non-convex objective
miny, f(w) := |||, is then equivalent to solving the minimax problem min,, max,, F'(w,u). The
function max,, F'(w,u) is weakly-convex, and we use the following stationary point definition that is
common in the weakly-convex optimization literature [Roc70, Roc81, Drul7, DD18, JNJ19].

Definition 2.3 (First-order stationary point). Let F'(w,u) be a function that is differentiable with
respect to w for all u. Let f(w) = max, F(w,u). Consider the constrained optimization problem
mingex f(w), where K is a closed convex set. We say that w € K is a first-order stationary point
if there exists some u € argmax, F'(w,v) such that

(VoF(w,u)) (@ —w) >0 foral ©ekK.

We also need a notion of an approzimate stationary point in the sense that the updates from one
iteration to the next do not change much. In the unconstrained and differentiable case, such a point
can be characterized by the gradient being small. However, the objective function we consider is
both non-differentiable and has constraints, so that a proper definition of approximate stationarity
is much more subtle. To overcome this, we appeal to tools from conic geometry and notions of
stationarity for weakly convex functions [Roc70, Roc81, Drul7, DD18§] to define an appropriate
notion of approximate stationarity.

To discuss the notion of approximate stationarity that we use, we need to work with a smoothed
variant of the objective known as the Moreau envelope.

Definition 2.4 (Moreau envelope). For any function f and closed convex set K, its associated
Moreau envelope fg(w) is defined to be the function

fo(w) := min f(@) + 8w — ] .

The Moreau envelope can be thought of as a form of convolution between the original function
f and a quadratic, so as to smoothen the landscape. In particular, when f(w) takes the form
of a maximization problem (f(w) = max, F(w,u)) with F' a mapping that is S-smooth in the u
parameter (|V,F(w,u) — Vi, F(w,u)| < B||u — ul|2), the Moreau envelope is also S-smooth [Drul7].
Therefore, the approximate stationarity of the Moreau envelope can be easily defined through its
gradient allowing us to define the following notion of approximate stationarity.



Definition 2.5 (Approximate first-order stationary point). For any function f and closed convex
set IC consider its associated Moreau envelope fg(w) per Definition 2.4. we say that a point w is a
p-approzimately stationary point if ||V fz(w)]l2 < p.

As mentioned earlier, the spectral norm admits a minimax formulation of the form f(w) =
max, F'(w,u). Furthermore, as detailed in Appendix B, the corresponding function F(w,u) is
B-smooth with 3 = 2||X||3, so that this notion of approximate stationarity can be applied to the
objective of interest in this paper.

3 Structural Result: Any Approximate Stationary Point Suffices

In this section, we establish our main structural result, which says that every approzrimate stationary
point of (1) must give a p,, that is close to p*. For simplicity of the exposition, in the main body of
this paper, we state and prove a simpler theorem showing that every (exact) stationary point is a
good solution.

Theorem 3.1 (Any stationary point is a good solution). Let S denote an e-corrupted set of N
samples drawn from a d-dimensional Gaussian N (u*,I) with unknown mean p*. Suppose that S
satisfies Lemma 2.1 and Condition (3).

Let f(w) be the objective function defined in Equation (1). For any first-order stationary point

w € Age of F(w), we have [y — p*lly = O(ey/log(1/e)).

We note that while Theorem 3.1 shows that any (exact) stationary point has small objective
value, a stronger statement is required for our algorithmic results in the next section. Specifically,
we require that any approzimate stationary point — in the sense of Definition 2.5 — which gradient
descent efficiently converges to, also has low objective value. This is accomplished in the next
theorem which we prove in Appendix B. Specifically, by appealing to the gradient of the Moreau
envelope from Definition 2.4, we extend the proof of Theorem 3.1 to show the following:

Theorem 3.2 (Any approximate stationary point suffices). Consider the same setting as in Theo-
rem 3.1. Consider the spectral norm objective f(w) = ||Xw|2 with fz(w) denoting the corresponding
Moreau envelope function per Definition 2.4 with B = 2||X||3. Then, for any w € Ay 2e satisfying

IV f(w)lly = O(log(1/€)) ,

we have |1, — 1|, = O(ey/Iog(1/6)-

In the remainder of this section, we focus on proving Theorem 3.1 and briefly discuss how this
proof can be generalized to prove Theorem 3.2. Our proof is carried out in two steps: (1) We
establish a structural lemma which states that every stationary point w must satisfy a bimodal
subgradient property; (2) We show any point satisfying such property must have a small objective
value. Given these two steps, we can conclude any stationary points p,, is close to p*, by Lemma 2.1.

For the first step, the bimodal subgradient property states that there exists a vector v € df(w)
(in the sub-gradient of the function at that stationary point) whose entries divided in two groups
of indices such that for any ¢ € S~ and any j € ST we have v; < v;. Intuitively, S~ contains all
indices with positive w;, so they can potentially be decreased; while ST contains all indices with

1
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there must be indices i € S~, j € ST, where v; > v;. In this case, decreasing w; and increasing w;
would decrease the objective and thus violate stationarity.
For the second step, recall that

Sy = (X diag(w)X | — waTXT)

and F(w,u) = u' Syu. Let us first compute the sub-gradient V,, F(w, u) with respect to a vector u:
VeF(w,u)=X"ue XTu—2u Xw)X Tu. (4)

Our key observation is that the sub-gradient at direction w is equivalent to the gradient of w for the
one-dimensional problem with input (X, ) ;. This allows us to effectively reduce our problem to
a one-dimensional robust mean estimation problem. This reduction allows us to show that when the
objective function is large, then there must be some non-zero weights associated with the corrupted
points that are far away from the mean (these points will be in S™); while on the other hand, S™
must contain at least e-fraction of the good points. One can then select indices from these two sets
to violate the bimodal sub-gradient property.

Fix a first-order stationary point w € Ay 2. Definition 2.3 implies that there is a corresponding
unit vector v € R? such that w is a stationary point of F(w,u). We first state the bimodal
sub-gradient property.

Lemma 3.3 (Bimodal sub-gradient property at stationarity). Fiz w € Ay and a unit vector u
with u' Syu = || Sylly. Let S— = {i:w; >0} and S; = {i : w; < m} denote the coordinates of
w that can decrease and increase respectively. If w is a first-order stationary point of F(w,u), then

VwF(w,u); < VyF(w,u)j,
forallie S_ and j € S,.

Proof. Suppose there is some i € S_ and j € S, such that V,F(w,u); > V,F(w,u);, then
intuitively we can make f(w) smaller by decreasing w; and increasing w;. Formally, let w =
w + min(w;, m — wj)(e; — €;) where e; is the i-th basis vector. We have w € Ay and
(Vi F(w,u))T (0—w) < 0, which violates the assumption that w is a stationary point (Definition 2.3).

]

Given Lemma 3.3, we prove Theorem 3.1 by contradiction. We show that if p,, is far from
w*, then w violates the property stated in Lemma 3.3 and therefore cannot be a stationary point.
More specifically, we show that, if u,, is far from p*, then there exists a bad sample with index
j € S_ whose gradient is large (Lemma 3.4). Meanwhile, the concentration bounds in Condition (3)
guarantee that there exists a good sample with index i € S} whose gradient is small (Lemma 3.5).

Lemma 3.4 (Bad sample with large gradient). Assume that Condition (3) and Lemma 2.1 hold.
Fiz w € Anae and a unit vector u with u' Yyu = ||Sylly. Let 1 = ||pw — p*|, and suppose
r > coe\/In(1/€). Then there exists some i € (BN S_) such that

2
-
VoF (w,u); —u' (1 — 2p0) 'u > 2¢3 - =

Here, co and c3 are universal positive constants.



Lemma 3.5 (Good sample with small gradient). Consider the same setting as in Lemma 3.4.
There is some j € (GN Sy) such that

2
VF(w,u); —u’ p* (1 — 2p0) Tu < c3- % )
€
We defer the proofs of Lemmas 3.4 and 3.5 to Sections 3.1 and 3.2, and we first use these two
lemmas to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that w € Ay is a first-order stationary point of f(w), and
moreover, w is a bad solution where ||p, — p*]|5 > c2e4/In(1/€). By Definition 2.3, there exists a
unit vector u € R? such that w is a stationary point of F(w,u).

Fix such a vector u. Since Condition (3) and Lemma 2.1 both hold, we can invoke Lem-
mas 3.4 and 3.5 on (w,u) to find two coordinates i € S_ and j € S; that violate the bimodal
subgradient condition in Lemma 3.3. Consequently, w cannot be a stationary point of F(w,u).
This leads to a contradiction, and therefore, all first-order stationary points of f(w) are good
solutions. O

We now briefly comment on the modifications required to prove Theorem 3.2 (see Appendix B).
Theorem 3.2 is proven by first showing (using conic geometry) that for such an approximate
stationary point an approximate bimodal sub-gradient property holds. Specifically, we show that the
bimodal sub-gradient property (Lemma 3.3) is stable in the sense that for an approximate stationary
point an approzimate bimodal sub-gradient property holds, i.e., v; < v; + d. Further, for any point
obeying such an approximate bimodal property, the objective is small and has good approximation
guarantees. The last two steps when combined show that any approximate stationary point has
good approximation guarantees (similar to the proof of Theorem 3.1 for exact stationary points).

3.1 Finding a Bad Sample With Large Gradient

In this subsection, we prove Lemma 3.4.

Lemma 3.4 states that when p,, is far from p*, there exists an index i € (B N S_) such that the
gradient V,, F'(w,u); is relatively large.

Recall that V,, F'(w,u) in Equation (4) is the same as the gradient of the variance (weighted by
w) of the one-dimensional samples (XZT u)f\il Roughly speaking, for this one-dimensional problem,
a sample far from the (projected) true mean should have large gradient. Our objective is to find
such a sample with positive weight.

More specifically, since w is a bad solution and u is in the top eigenspace of ¥,,, the weighted
empirical variance of the projected samples is very large. Because the good samples cannot have
this much variance, most of the variance comes from the bad samples. We show that among the bad
samples that contribute a lot to the variance, one of them must be very far from the (projected)
true mean.

In this section and Section 3.2, we use c1, ..., ¢4 to denote universal constants that are independent
of N, d, and e. We give a detailed description of how to set these constants in Appendix A.
Proof of Lemma 8.4. We first show that the variance of one-dimensional samples (XZT u) _, is
relatively large.

N
i=1



By Lemma 2.1, we know that if ||, — p*||; > 7 and r > c2e4/In(1/€), then

742

)\max(zw) >1+cy- ?
for some universal constant cy.
Because u is a unit vector that maximizes u' 2,u, we have

C4’l“2

UTEwU == )\max(zw) Z 1 + ? .

Recall that ¥, = Zf\il wi(X; — pw) (X — ). If we replace pi,, with p*, we have

N
Yo wilXi =) (X =)' = T
=1

and therefore,
2

N
Ccyqr
u' (Zwi(Xl- — )X — M*)T> u>1+ =,
i=1

€

Next we show that most of this variance is due to bad samples. By Condition (3),

u' (Z wi(X; — ) (X — ,u*)T> u<1l4cieln(l/e).

i€G
Consequently,

2 2
wl (ZwZ(XZ — 1) (X — M*)T> u> % —creln(1/€) > 0.98 - ¢4 - % '
i€EB

The last step is because r > ¢z - €4/In(1/€) and we can choose ¢4 to be sufficiently large.

Now that we know most of the variance is due to the bad samples, observe that the total weight
wp on the bad samples is at most €N - m < 2e¢. Therefore, there must be some i € B with
w; > 0 such that

-1 2

> 0.49 ¢4 = .
wp €

N . 0.98-cy-12-¢
uT (X = ) (X = )T u > !

In other words,
u' (X — p)

> 0.7 ez - .
€
By definition, i € BN S_. It remains to show that V,,F(w,u); is large.
Vo F(w,u); —u' p* (1" = 2p) "u

= (X = ) (X = )T ) =20 (K = ) gt = ) )

T * 2 T * *
> (T (X = 1) = 2|uT (X = )| -t = 4
ceq -T2 . . 2
Z0.49 Cq-T _2'0.7 Ves T-r>263-r—
€2 € €2

The first inequality is by Cauchy-Schwarz. The last step uses the fact that € is sufficiently small. [
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3.2 Finding a Good Sample With Small Gradient

In this subsection, we prove Lemma 3.5.

Lemma 3.5 states that there exists an index j € (G N Sy) such that the gradient V., F'(w,u); is
relatively small. Similar to the previous section, a sample close to the (projected) true mean should
have small gradient. Our goal is to find such a sample for which we can increase its weight.

Recall that ST contains all samples whose weight can be increased. We first prove that there are
at least eN good samples in ST. Among these e N good samples, the concentration bounds imply
that some X; must be very close to the (projected) true mean.

Proof of Lemma 3.5. Recall that ST contains every coordinate i where w; < m Since at most
(1 — 2¢)N samples can have the maximum weight m, we know that |ST| > 2eN. Combining
this with |G| = (1 — €)N, we know that |G NST| > eN.

Fix a subset GT C (G N ST) of size |GT| = eN. We first show that on average, samples in G*
do not contribute much to the variance.

Let w’ be the uniform weight vector on G, i.e., w, = 1 L v for all i € G and w; = 0 otherwise.

1—e¢)
Since w’ € Ap 2, by Condition (3),

<ci-eln(l/e) .

1 * *
Z@(Xi—u )X — )T =1
ic€G

2

Let w” be the uniform weight vector on S\ Gt = (G\ G") U B, ie., w! = m for all

7

i € ((G\ GT)UB) and w} = 0 otherwise. Since w” € Ap 2, again by Condition (3), we have

1
> g (X=X = )T = 1| < eln(1/e)
1€G\Gt+ 9

Combining the previous two concentration bounds,

> =) =)

1€GT 9

1 * *
<IN S (X =) (X =) T
iec 161

< 2¢;-€eln(1/e) .

1 * *
+Y @(Xi—u)(Xi—u)T—f
2 1€G\GT 9

Consequently, because u is a unit vector,

1
u YD @(Xi — ) (X — )T | u < 2cieln(1/e)
ieGt

At this point, we know samples in G* do not contribute much to the variance. We now proceed to
show that one of these samples satisfies the lemma.

11



Let j = argmin;c g+ ‘uT(XZ- — ,u*)‘, We have

u' ((Xj — ) (X — ,u*)T> u < ’Gﬂ 2c1 - eln(1/e) < 2¢;1n(1/e) .

Finally, because ‘uT(Xj — 1*)| < v/2¢11n(1/€), we can show that V., F(w,u); is small:

VHw)y =i Y (" = )
—u’ <(Xj — 1)(X; - /‘*)T> ut2u! ((Xj =) M*)T> :
< 2¢iIn(1/€) +2v/2¢1 In(1/e) - 7
2

c3 T c3 T
2 €

< < 7"2
< — 4+ = r<c3—=.
e 2 €2

The last step uses that cs is sufficiently large, as well as the fact that In(1/e) < Z—i because

r > coer/In(1/e). O

4 Algorithmic Result: Finding a Stationary Point via Gradient
Descent

In this section, we show that a simple Projected Gradient Descent (PGD) algorithm (Algorithm 1)
can efficiently find an approximate stationary point w of our spectral norm objective, and that w is
a good solution to our robust mean estimation task.

Algorithm 1 Robust Mean Estimation via PGD
Input: e-corrupted set of N samples {X;}, on R? satisfying Condition (3), and € < ¢o.
Output: w € RY with ||py — p*]|, < O(ey/log(1/e)).
Let F(w,u) = u' Sy,u.
Let wo be an arbitrary weight vector in Ay g.
Let T = O(N2d%).
forr=0toT —1do
Find a unit vector u, € R? such that F(w,,u;) > (1 — €) max, F(w,,u).
Wr 1 = Pay,. (wr — NV F(wr, ur)), where Pi(+) is the 2 projection operator onto K.
end for

return w;» where 7 = arg ming<r<r HEwT ”2

We note that finding the unit vector w, required in the for loop of Algorithm 1 can be done in
time O(Ndlog(d)/e). Given the PSD matrix A = ¥(w,), we want to find a unit vector u € R? such
that u' Au > (1 — ¢) max, (v’ Av). This is the (approximate) largest eigenvector problem which
can be solved via power method in O(log(d)/e) iterations. Since the matrix-vector multiplication
Av = 3y, v = (X diag(w;)X " — Xw,w] XT) v can be computed in time O(Nd), the running time
for finding such a vector u, is O(Ndlog(d)/e).

The main result of this section is the following theorem:

12



Theorem 4.1 (Gradient descent finds a good solution). Let S be an e-corrupted set of N = Q(d/e?)
samples from a d-dimensional Gaussian /\[(u*,]) with unknown mean p*. Suppose S satisfies
Condition (3) and Lemma 2.1. Then, after O(N?d*) iterations, Algorithm 1 outputs a weight vector

w € RY such that ||py, — p*||y, = O(ey/log(1/e)).

We first give a high-level overview of the proof. Our proof of Theorem 4.1 can be divided into
two steps:

1. The first step is an immediate consequence of Theorem 3.2, which allows us to conclude that
any approximate stationary point (in the sense of Definition 2.5) has good approximation
guarantees.

2. To finalize the proof, in the second step we show that simple iterative procedures such as
(sub)gradient descent can converge in a polynomial number of iterations to such an approximate
stationary point. We prove such a result by utilizing a simple and well-known observation:
a minimax optimization problem which is smooth in the minimization parameter is weakly
convex (after maximization) in the minimization parameter. This connection allows us to
leverage recent literature [Drul7, DD18] that provides convergence guarantees for weakly
convex optimization problems to prove our algorithm finds an approximate stationary point
in a polynomial number of iterations.

To elaborate further, in the second step of our proof, we utilize and slightly generalize? the
analysis of [DD18] and prove that projected sub-gradient descent can find an approximate stationary
point.

Lemma 4.2. Let K be a closed convex set. Let F(w,u) be a function which is L-Lipschitz and
B-smooth with respect to w. Consider the following optimization problem min,,cx max|y|,=1 F(w,u).
Starting from any initial point wy € K, we run iterative updates of the form:

find ur with F(wy,u;) > (1 —€)max F(w,, u,)

u

Wr41 = P}C(wT - vaF(wr, uT)

for T iterations with step size n = % Then, we have

2 — ming,
OngiETHVfg(wT)HS < 7 (fﬂ(wo) /rynm F(w)

where fg(w) is the Moreau envelope as in Definition 2.4.

+ fyﬁL?) + 43¢

As shown in Appendix B, F(w,u) associated with f(w) obeys the required Lipschitz and
smoothness property, with L = O(v/Nd) and 8 = O(Nd). In addition, we have 0 < f(w) < O(d)
for all w € Ay 2.. Thus, we can apply the result above with the constraint K = Ay o.. Theorem 4.1
follows by combining Theorem 3.2 and Lemma 4.2. We defer the proofs to Appendix B.

2The generalization is to deal with constraints and handle the fact that the inner maximization is not solved
precisely.
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5 Discussion

The main conceptual contribution of this work is to establish an intriguing connection between
algorithmic high-dimensional robust statistics and non-convex optimization. Specifically, we showed
that high-dimensional robust mean estimation can be efficiently solved by directly applying a
first-order method to a natural non-convex formulation of the problem.

The main technical contribution of this paper is in showing that any approximate stationary point
of our non-convex objective suffices to solve the underlying learning problem. Our novel structural
result may be viewed as an explanation as to why robust mean estimation can be solved efficiently in
high dimensions, despite its non-convexity. Specifically, we establish that the optimization landscape
of our non-convex objective is well-behaved, in a precise sense.

There are a number of directions along which our results could be improved. At the technical
level, it would be interesting to obtain faster convergence rates for gradient descent (or other
first-order methods), with linear convergence as the ultimate goal. We note that our upper bound is
fairly loose and we did not make an explicit effort to optimize the polynomial dependence.

A natural direction is to extend our approach to more general robust estimation tasks, includ-
ing covariance estimation [DKK*16, CDGW19], sparse PCA [BDLS17, DKK*19b], and robust
regression [KKM18, DKS19]. Such generalizations will appear in a followup work.
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A Setting Constants in Section 3

In this section, we describe how to appropriately set the universal constants c¢1,...,¢4 > 1 in
Section 3. These constants are set in the following order: c1,c3, ¢4, c2. In this order, each ¢; only
depends on the constants set before it, and there is only a lower bound requirement on the value of
each ¢; so we can set ¢; to a sufficiently large constant.

The constant ¢; appears in Condition (3). and is related to the constants involved in the
concentration inequalities required to establish this condition. With the right sample complexity,
Condition (3) holds with high probability for 6 = cieln(1/e).

For the remaining three constants, recall that by assumption r = ||j, — p*[|5 > c2ey/In(1/€) >
ey/In(1/e).

Next we choose c3 such that c3 > 5c¢y. This is to guarantee that, in the proof of Lemma 3.5, we
have 2¢; In(1/€) +24/2c1In(1/€) -r < c3 - Z—;

The constant ¢4 appears in the proof of Lemma 3.4. There are two inequalities related to cy.
We need ¢4 > 50¢; so that &2 — creln(1/e) > 0.98 - ¢4 - %, and we require ¢4 > max(100, 6¢3) so

€
ca-r2 1.4-\/cqi-r? 2
that 249:647 _ ZSVET 5 9eg . L

Finally, we set the value of ¢y, which appears in our final guarantee: we show that any
stationary point w of f(w) satisfies ||p, — p*]|5 < c2e4/In(1/€). The constant ¢z only depends on
cs. At the beginning of the proof of Lemma 3.4, we need that if || p, — p*]|y > c2e4/In(1/€), then

1wy >14ca- % By Lemma 2.1 from [DKK'16], we know that this is possible if we set ¢y to be
sufficiently large.

B Missing Proofs from Section 4

In this section, we prove Theorem 3.2 and Lemma 4.2 from Section 4. These two statements play
an important role in showing that projected sub-gradient descent efficiently finds an approximate
stationary point w, and that w is a good solution to our robust mean estimation task.
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We briefly recall our notation. We use X € R to denote the sample matrix, 3, =

(X diag(w)X " — Xww'X "), F(w,u) = u'Syu, f(w) = max, F(w,u) = ||Sylly, and Ay, =
we RN :|w||; =1and 0 < w; < ﬁ%}

Note that we can assume without loss of generality that no input samples have very large
fo-norm. This is because we can perform a standard preprocessing step that centers the input
samples at the coordinate-wise median, which does not affect our mean estimation task. We can
then throw away all samples that are (y/dlogd) far from the coordinate-wise median. With high
probability, the coordinate-wise median of all good samples are O(y/dlogd) far from the true mean.
Assuming this happens, then no good samples are thrown away and the remaining samples satisfy

max; || X;||, = O(v/dlog d). Consequently, we have |||, = O(v/dlogd) for any w € Ay.
In Lemma B.1, we show that the function F(w,u) = u'X,u is Lipschitz and smooth with
respect to w.

Lemma B.1. The function F(w,u) is L-Lipschitz and B-smooth for L = O(v/Nd) and 8 = O(Nd).
That is,

|F(w,u) — F(W,u)| < L||W—wl|y, foral w,@,€ Anac and all unit vectors u € RY
|VwF(w,u) — Vi F(@,u)|y, < B0 —wly, forall w,@,€ Axae and all unit vectors u € R? .

Proof. We use the fo-norm of the gradient to bound L from above. We have

IV F(w,w)||, = HXTu ©XTu- 2(uTXw)XTuH2
< VN max(X]w)? +2 [uT ]| flly 1], lull,

< VN max | X[} + 2 masx | X;l | X
To bound from above the smoothness parameter, we have
IV (w,u) = VuF (@)l = 2 |uT X (w = @) | XTu| <21 X3 ko - @, -

We conclude the proof by observing that, after the preprocessing step, we have max; || X;|, =

O(y/dlogd) and consequently | X|l, = O(y/Ndlogd). Therefore, L = O(v/Ndlogd) and 3 =
O(Ndlogd). O

Recall that the Moreau envelope fz(w) is defined as

fo(w) = minTc(@) + P (@) + B @ — wll; = min f(@) + 8 @ - w]3 ,

where Zx () is the support function of K.
We restate Theorem 3.2 before proving it.
Theorem 3.2. Consider the spectral norm loss f(w) = ||Ey|l2 with fz(w) denoting the corre-
sponding Moreau envelope function per Definition 2.4 with 3 = 2||X||3. Then, for any w € Ay 2
obeying
9 fa(w)ll, = Oflog(1/e)),

we have [|p, — p*[ly = O(ey/log(1/e€)).
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2
Proof. Let § = %\%1/6), where cg and c3 are the positive universal constants from Lemma 3.4. We

show that any w € Ay obeying ||V fg(w)||, < 6 must satisfy that ||, — p*||y < O(ey/log(1/€)).
The condition ||V fg(w)||, < ¢ implies that there exists a vector @ such that (see, e.g., [Rocl5]):

)
|@ —wll,= o7 and

min <4.
23 9Edf (@) 10T (©) lgll> <

We first show that @ is a good solution.
It is well known that the subdifferential of the support function is the normal cone, which is in
turn the polar of the tangent cone. That is,

0T (w) = Nic(@) = (C(w))° -

Thus, there exists a vector g = v + v with [|g||, < J such that v € 0f(w) and v € (Cx(w))°. Now
consider any unit vector u € C(0):

S<u'g=u'v+uv<u'y,

where the last step follows from the definition of the polar set. In other words, there exists a vector
v € Jf(w) such that
—v'u<d for all unit vectors u € Ci(@) . (5)

Suppose ||pug — p*|ly > cae/In(1/€). Then for the v € Jf(w) in question, we can use Lem-
mas 3.4 and 3.5 to find two coordinates ¢ and j such that

w; >0, w; < , and v; —v; > %M > c3caIn(1/e) = V26 .
€

(1—-2¢)N
However, this contradicts Condition (5), because for the unit vector u = %(ej —e;), where ¢; is the
i-th basis vector, we have u € Cay , (@) but

T Vi —Vj

-V u=
V2

Therefore, @ must satisfy ||pg — 1]l < c2e/In(1/e).
We conclude the proof by noticing that w is very close to w, so if @ is a good solution, then w

must also be a good solution:

>0

tw — 1 Nly < Nlpw — pally + lpe — 1,
<[ X|ly lw — @[5 + c2e/In(1/e€)

= O(87Y25 + ey/1og(1/€)) = O(er/log(1/¢)) .

In the last two steps, we used the fact that |0 — w||, = % and 8 = 2||X||5 (see Lemma B.1). This
completes the proof of Theorem 3.2. O

We restate Lemma 4.2 before proving it. We note that the proof of Lemma 4.2 is directly
inspired by the proof of Theorem 2.1 in [DD18].
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Lemma 4.2. Let K be a closed convex set. Let F(w,u) be a function which is L-Lipschitz and
B-smooth with respect to w. Consider the following optimization problem min,,cx MAaX||y |, =1 F(w,u).
Starting from any initial point wy € K, we run iterative updates of the form:

Find u, with F(w,,u;) > (1 — €)max F(w,, u,);
u
Wr+1 = PIC(wT - nvwF(wﬂ UT) )

for T iterations with step size n = % Then, we have

min_ ||V f5(wr)|3

o<r<T
< 2 (fg(wo) — min,, f(w)
VT

where fg(w) is the Moreau envelope, as in Definition 2.4.

+ vﬂﬁ) +4B¢

Proof. Note that since f is S-smooth with respect to w and u, is an approximate maximizer for w;,
for any w € KC, we have that

F(@) > P,u7) 2 F(wy,ur) + (T (wr,u7)) (8~ we) — 2 15— w,
/ T/~ 6 ~ 2
> f(wr) — € + (Vo F(wr,ur)) (0 —wr) — 9 [ —w-l - (6)
To continue, define the proximal function
prox s, (w) = argmin (f(w) + B [lw —wll,) ,

and let W, = prox;, (w-).
Now we have

fo(wri1) < f(W7) + Bllwr — wrpally
= f(w:) + Bllw; — Hx(wr — NV F(wr, ur))ll
< f(@7) + B w7 — wr + NV F(wr, ur)lly (convexity of K)
= f(@r) + Bl@: —wr |3+ 208(VuF (wr,ur)) T (@ = wr) + 078 |V F (wr, )3
= fp(wr) + 2nﬁ(VwF(wT,uT))T(fU\T —wr) + 7’8 vaF(wTauT)”g (wr = proxfﬁ(wT))
< fo(wy) + 20B(Vu F(wr, ur)) " (@, — wy) + 7> BL (F(w,u) is L-Lipschitz in w)

< fotun) + 208 (£(@0) = Fw) +¢ 4 510~ w13) + P87 (by Tnequality (0)

Summing the above over 7, we obtain

T-1

fatwr) < fo(wo) +208 S (f(@) — flwr) + 2 i, - wfné) PRI + BT |
7=0
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Dividing by 2n8T, we get

T-1

wo) — fg(wr)  nL?
BT + 5 + €
- J8(wo) — miny f(w) nl*

BT + 5 +e€ .

7=0

Observe that the function w — f(w) + 8 |[w — w,||3 is B-strongly convex, therefore

Fluwe) = 1) — 5 e — e
= () + Bllwr — wrl) — (£G@0) + Blhwr — 1) + 2 o —
> g ||w, — wT||2 5 ||{ET — wTHg (strong convexity)
= 8187 —wrll; = 15 I Sl

In the above, we used the fact that for a f-strongly convex function h(w) = Zx(w) + f(w) +
Blw = w3, we have g(w) — g(@y) = § [[wy — @[3
Combining the two inequalities above, we arrive at

1 " min, |
T;)vaﬂ(wf)\@ézfﬁ(w[)) n?m I | onpr2 +ape .

Finally, setting the step size n = %, we conclude that

min HVfg(wT)”Q < 2 (fﬁ(wo) — min,, f(w)

0<r<T 2 = \/T

This completes the proof of Lemma 4.2. O

+ ’yﬂL2> + 43¢ .

C Minimizing Softmax of Spectral Norm

In this section, we analyze our alternate non-convex formulation that replaces the spectral norm
with a softmax. Note that when the largest eigenvalue of >, is not unique, the spectral norm
of ¥, may not be differentiable with respect to w. Instead of considering sub-gradients, we can
minimize the softmax of the eigenvalues of ¥,,, which is a smoothed version of spectral norm that is
differentiable everywhere.

Formally, we minimize the following non-convex objective function:

f(w) = smax, (X,) = ;lntr(exp(pzw)) for p= g , (7)

where X € RV is the sample matrix, and ¥, = X diag(w)X " — Xww' X is the weighted
empirical covariance matrix.
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The structure of this section is as follows: In Section C.1, we start by recording some useful
properties of the softmax objective. In Section C.2, we prove our key structural result for this section
(Theorem C.5), establishing that any approximate stationary point w of f(w) provides a good
estimate p,, of the true mean p* . In Section C.3, we present our algorithmic result (Theorem 1.4),
which states that we can efficiently find an approximate stationary point of f(w) via projected
gradient descent.

C.1 Basic Properties of Softmax

Lemma C.1 (Duality of softmax). For any Z € R™" and p > 0, let smax,(Z) := L Intr(exp(pZ2)).

T
We have the following identity

1
smax,(Z) = max <Yo Z—--Y ologY) :
YeAnxn P
Proof. Fix Z e R™*". Let f(Y)=YeZ— %Yolog Y. Using the KKT conditions, we know that when

f(Y) is maximized, we have g—{i = A, for some A € R. Combining this with ng/ =7 - %(logY +1),
it follows that f(Y) is maximized at

exp(pZ)
Y*=exp(pZ — (pA+ 1)) = —————~— |
(07 = A+ DD = Gexp(o2))
where the second equality holds because Y* € A, x». One can substitute Y* into the definition of
f(Y) and verify that f(Y*) = smax,(2). O

Corollary C.2 (Softmax and max). For any PSD matriz Z € R™™™ and p > 0, we have that

Inn _ xp(pZ)
Amax(Z) < smax,(Z) < Amax(Z) + = Moreover, for Y = %, we have that' Y e Z >

_Inn

smax,(2) -

Proof. Observe that

1 1
smax,(Z) = —Intr(exp(pZ)) > — In Amax(exp(pZ)) = Amax(Z) ,
p p

and
1 1 1
smax,(Z) = —Intr(exp(pZ2)) < —In(n - Amax(exp(pZ2))) = Amax(Z) + an
p p p
For the second claim, by Lemma C.1, we know that smax,(Z) =Y e Z — %Y elogY. The claim
then follows from the fact that Y elogY > —Inn for all Y € A, «n. ]

When working with the matrix exponentials in our softmax objective function f, the following
chain rule formula will be useful to compute the Hessian of f (see, e.g., [Wil67]).

Lemma C.3 (Derivative of matrix exponential). For a symmetric matriz function X (t) that depends
on a scalar t, we have that

1
%exp(X(t)) = /0 exp(ozX(t))d);t(t) exp((1 — )X (t))da .
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C.2 Structural Result: Any Approximate Stationary Point Suffices

The gradient of our softmax objective function is

: exp(pXw)
Vfi(w)=diag(X'YX)-2X"YXw, where V= —-""% 8
f(w) = diag(X Y X) Sy ®)
Notice that Y € Anxn is a convex combination of directions. That is, we can write ¥ =
S Auguy , where ug € R% and 37, Ay = 1. The gradient V f(w) is the same as the gradient of
w for the one-dimensional problem, where the input samples are (XlT Yyl 2)?’:1. Equivalently, V f(w)
tries to move w towards minimizing the average variance

2
Z AL Z wi(XiTuk)Q — <Z wZ(XlTuk)>
k i i

of the projections of X along the directions {uy}.

The intuition is as follows: The goal is to show that Apax(2y) is small at any stationary point w
of smax,(X,). Now fix some w € Ay 2, where Apax(Xy) is large. Then smax,(X,,) must be large.
By the duality of softmax, there is a combination of directions Y such that: (1) the one-dimensional
samples (X, Y/2)N | weighted by w have large variance, and (2) the derivative of smax,(%,,) is
the same as the derivative for minimizing variance on this one-dimensional instance. We proceed by
examining this one-dimensional instance, which is easier to analyze. We show that w cannot be a
stationary point, because we can always reduce the variance by increasing the weight on one of the
good samples and reducing the weight on one of the bad samples.

Formally, we use the following notion of approximate stationarity for our constrained non-convex
minimization problem.

Definition C.4. Fix a convex set K. For § > 0, we say x € K is a d-stationary point of [ if
the following condition holds: For any unit vector u where x + au € K for some a > 0, we have

u'Vf(z) > —0.
Our main structural result in this section is the following theorem.

Theorem C.5 (Any stationary point of f(w) is a good solution). Let S be an e-corrupted set
of N = Q(d/e?) samples drawn from a d-dimensional Gaussian N (u*,I) with unknown mean p*.
Suppose S satisfies Condition (3) and Lemma 2.1.

Let f(w) be the softmax objective as defined in Equation (7). Let 6 = cln(1/€) for some
universal constant c. For any w € Ay that is a d-stationary point of f(w), we have ||py — (|5 =

O(eq/log(1/e)).

Theorem C.5 follows directly from Lemmas C.6, C.7, and C.8.

For the rest of this subsection, we assume the input samples satisfy Condition (3) and Lemma 2.1,
and we fix an approximate stationary point w € Ay 2. of the softmax objective. We establish the
following bimodal sub-gradient property which holds at all (approximate) stationary points.

Lemma C.6 (Bimodal sub-gradient property at stationary points). Fiz w € Ay .. Let S— = {i:
w; >0} and Sy = {i 1 w; < m} denote the set of coordinates of w that can decrease and

increase respectively. If w is a d-stationary point of f(w), then V f(w); < V f(w); + V26 for all
1e€S_andjeSt.
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Proof. Suppose there is some ¢ € S_ and j € Sy such that Vf(w); > Vf(w); + V26.
Consider the unit vector u = %(ej —e;), where ¢; is the i-th basis vector. We have w+au € Ay o

for e = min(wy, m —w;) > 0, but

Viw); —Vf(w)i
V2

which violates the assumption that w is a d-approximate stationary point (Definition C.4). ]

u'Vf(z) = <=6,

At a high level, we prove Theorem C.5 by showing that if u,, is far from p*, then w violates
Lemma C.6. More specifically, if p,, is far from p*, then there exists a bad sample with index
j € S_ whose gradient is large (Lemma C.7). Meanwhile, the concentration bound in Condition (3)
guarantees that there exists a good sample with index ¢ € Sy whose gradient is small (Lemma C.8).

We frequently use the partial derivative of f(w) with respect to w; in our analysis:

Viw)i=XYX; = 2XY juy
= (Xi =) Y (X = ) = 2(X = ) 'Y (o — 1)
+ Y (i = 2p) -

Notice that the last term in V f(w); is the same for all 7. Since our goal is to identify ¢ € S_ and
J € S4 such that V f(w); > V f(w);, we can focus on the first two terms.
We have the following lemmas:

Lemma C.7. Fiz w € Ang. and assume that Condition (3) and Lemma 2.1 hold. Let ¢ and
c3 be universal constants. Let r = ||, — p*||y and suppose v > cpe\/In(1/€). Then, there exists

i€ (BNS_) such that
2

-
Viw) — p* Y (0" = 2u) > 23 - =

Lemma C.8. Consider the same setting as in Lemma C.7. There exists j € (GNSt) such that

2
* * r
V(W) =Y (" = 2p) S s -

We defer the proofs of Lemmas C.7 and C.8 to Section C.2.1, and we first use them to prove
Theorem C.5.

Proof of Theorem C.5. Suppose that w is a bad solution where ||, — p*||y > c2e4/In(1/€). Since we
assume Condition (3) and Lemma 2.1 both hold on the input samples, we can use Lemmas C.7 and C.8
to find two coordinates ¢ € S_ and j € Sy, such that the bimodal sub-gradient property in
Lemma C.6 does not hold at w. Therefore, w is not a d-approximate stationary point for some

* (12
0= \/503”“”6_72“H2 > V2c3¢3In(1/€), that is, we can set ¢ = v/2c3c3. d
C.2.1 Proofs of Lemmas C.7 and C.8

In this section, we prove Lemmas C.7 and C.8.
The proofs of these lemmas are conceptually similar to the proofs of related lemmas (Lem-
mas 3.4 and 3.5) in Section 3. We include their proofs here to make this section self-contained.
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The main difference is that we switch to the softmax objective, and consequently, we need to work
with multiple directions simultaneously. That is, we consider the projections using Y instead of the
projections along the maximum eigenvector of X,,.

Lemma C.7 states that when p,, is far from p*, there exists an index i € (BN .S_) such that the
gradient V f(w); is relatively large.

Recall that the gradient V f(w) in Equation (8) is the same as the gradient of the variance
(weighted by w) of the one-dimensional samples (X, Y1/ 2)?;1. For this one-dimensional problem,
a sample far from the (projected) true mean must have large gradient. Our objective is to find
such a sample for which we can decrease its weight. More specifically, since w is assumed to be a
bad solution, and the softmax objective is close to the spectral norm of ¥,,, the weighted empirical
variance of the projected samples is very large. Because the good samples cannot have this much
variance, most of the variance comes from the bad samples. We prove that among these bad samples
that contribute a lot to the variance, one of them must be very far from the (projected) true mean
and hence has a large gradient, which satisfies Lemma C.7.

We use cq,...,cq to denote universal positive constants that are independent of N, d, and e.
These constants can be set in a way that is similar to that in Section 3 (see Appendix A). The
universal constant ¢ in Theorem C.5 can be set as ¢ = \@0303 after we set ¢co and c3.

Proof of Lemma C.7. We first show that ¥, ¢ Y is relatively large. By Lemma 2.1, we know that if
|ftw — *]lo > 7 and r > cgey/In(1/€), then

T2

)\max(zw) > 1+ Cq— .
€
By Corollary C.2, for Y = % and p = y, we have

047"2

YweY >smax,(Xy) — € > Apax(Bw) —€>1—€e+ — .
€

Recall that 3, = Zf\il wi(X; — pw) (X — ). If we replace i, with p*, we have
N
> wi(Xi — )X =) = B,

and therefore,

C4T‘2

N
(waxi—u*xxi—u*f) Vs Seysioet O
=1

€
Next we show that most of the variance is due to bad samples. By Condition (3),
<Z wi(X; — ) (X, — M*ﬁ) oY <1+4ci-eln(l/e).
ieG

Consequently,

T car? r?
> wi(Xs — )X —p*)T | oY > —— —e—cieln(1/e) > 0.98 ¢y — .
€

‘ €
i€B
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The last step is because r > ¢y - €4/In(1/€) and we can choose ¢y and ¢4 to be sufficiently large.
At this point, we know that when r = ||p,, — p*]| is large, most of the variance is due to the bad
samples. However, the total weight wp on the bad samples is at most eN - m < 2¢. Therefore,
there must be some 7 € B with w; > 0 and
098 ¢y 121 r2

X-—*X-—*T> V> > 049 ¢q- — .
(6 =) (X =) T) oY > S0 2 049 01

By definition, ¢ € BN S_. It remains to show that V f(w); is large.
Vf )i = w0 Y (= 2pn) = (X = ) (X = 1)T) @ =2 (X = 1) (o — 1)) 0V
2
> [V 20— || -2y = |- [V - e = e
> 049-cy-r?  0.7-ea-r

€2 €

o7

2
r
> 2c3 - — .
313
The first inequality is because Y € Agxg. The last step uses the fact that ¢4 can be sufficiently
large. This completes the proof of Lemma C.7. O

Lemma C.8 states that there exists an index j € (G N S;) such that the gradient V f(w); is
relatively small. Similar to the proof of Lemma C.7, for the projected one-dimensional instance, a
sample close to the (projected) true mean should have small gradient. Our goal is to find such a
sample for which we can increase its weight. Recall that ST contains the samples whose weight
can be increased. We first prove that there are at least e N good samples in S*. Among these e N
good samples, the concentration bounds imply that there must exist some X; that is close to the
(projected) true mean. The derivative V f(w); satisfies Lemma C.8.

Proof of Lemma C.8. Recall that ST contains every coordinate i where w; < m Since at most

(1 — 2¢)N samples can have the maximum weight m, we know that |ST| > 2eN. Combining
this with |G| = (1 — €)N, we know that |[GN ST| > eN.

Fix a subset G C (GNS™) of size |G*| = eN. We first show that, on average, samples in GT
do not contribute much to the variance.

Let w' be the uniform weight vector on G, i.e., w, = 1 1 + for all i € G and w; = 0 otherwise.

1—e¢)
Since w’ € A 2, by Condition (3), we have that

1 * *
Z@(Xi—u )X =) =T
1€G

<c;-€eln(l/e) .

2

Let w” be the uniform weight vector on S\ Gt = (G \ G") U B, ie., w/ = ﬁ for all

i € ((G\ G*)UB) and w/ = 0 otherwise. Since w” € Ay 2, again by Condition (3), we have that

1 N .
> @(Xi—u)(Xi—u)T—I <y -eln(1/e) .
1€G\GT 9
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Combining the previous two concentration bounds, we obtain that

1 * *
Z@(Xi—ﬂ)(Xi—M)T <
1€GT 9

1 * *
Z@(Xi_ﬂ )X =) =1
i€G

2

+ 2 |c1:|<Xi—u*)(Xi—u*)T—f < Zer-eln(l/e).

i€G\G+ )

As a result, because Y € Agyq, it follows that

L * *\ T
Z @(Xi_ﬂ)(Xi—M) oY < 2¢;-€eln(1/e) .
1€GT

Now we know that, on average, samples in G do not contribute much to the variance. We continue
to show that one of these samples satisfies the lemma.
Let j = argminieq+ (Y o (X; — p*)(X; — p*)"). We have that

((Xj — W)X — u*)T) oV < "Gﬁ" -2¢1 - eln(1/€) < 2¢1In(1/e) .

Finally, because (X; — %)Y (X; — pu*) < 2¢1 In(1/€), we can bound V f(w); from above as follows:
V() =it Y (= 2p00) = (X = 1) = 1)T) 0¥ =2 (X = 1)t = 1) T) 0¥

2
< Y200 — )|+ 2 |y — - [V - e =

<2c1In(1/€) +2+/2c1In(1/e) -1 -7
2
¢

< re
—er<c3— .
2

<
<

3

<8, “
~ 2 2

+

G

€

M

The last step uses that c3 is sufficiently large, as well as the fact that In(1/e) < Z—;, because
r > coey/In(1/€). This completes the proof of Lemma C.8. O

C.3 Convergence Rate of Minimizing Softmax

In this section, we prove our algorithmic result for the softmax objective (Theorem 1.4). We
show that the projected gradient descent algorithm (Algorithm 2) on f can efficiently find an
approximate stationary point w, and that w is a good solution to our robust mean estimation task.

We first restate Theorem 1.4 (correctness and iteration count of Algorithm 2).

Theorem 1.4. Let S be an e-corrupted set of N = ﬁ(d/eQ) samples drawn from a d-dimensional
Gaussian N (u*, I) with unknown mean pi*. Suppose S satisfies Condition (3) and Lemma 2.1.
Let f(w) be the softmaz objective as defined in Equation (7). After O(Nd®/¢) iterations, projected

gradient descent on f(w) outputs a point w such that ||, — p*||2 = O(ey/log(1/e€)).
Theorem 1.4 follows immediately from Lemmas C.9, C.10, and C.11.
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Algorithm 2 Robust Mean Estimation via Projected Gradient Descent on the Softmax Objective

Input: e-corrupted set of N samples {X;}, on R? satisfying Condition (3), and € < ¢o.
Output: w € RY with ||py — p*]l, < O(ey/log(1/e)).
Let p=1Ind/e.
Let 8 = O(Nd?/e) be the smoothness parameter of the softmax objective f(w) = smax,(Xq).
Let wo be an arbitrary weight vector in Ap g.
Let T = O(Nd?/e) and n = 1/8.
for r=0to7T —1do
Wr+1 = Pay,. (wr —nV f(w)), where Pr(-) is the fa-projection operator onto K.
end for
return w,~ where 7% = argmin o<, <7 [|[wr1 — wr||5.

Lemma C.9 analyzes the convergence rate of (nonconvex) projected gradient descent. The
number of iterations in Lemma C.9 depends on the range and smoothness of the objective function.
Lemmas C.10 and C.11 upper bounds these two parameters for our softmax objective.

We note that Lemma C.9 appears to be folklore in the optimization literature, see, e.g., [Becl7].
For the sake of completeness, we provide a self-contained proof in the following subsection.

Lemma C.9. Fiz a (possibly non-convex) function f and a convex set K. Suppose f is -smooth
on K and 0 < f(z) < B for all x € K. If we run projected gradient descent with step size n = %
starting from an arbitrary o € K:

zry1 = g (xr =V f(z7)) ,

where Il is the projection onto IC, we can compute a d-stationary point of f in O(’%—QB) iterations.

Recall that the softmax objective is f(w) = smax, (X,) = %ln tr(exp(pXy)) with p = %. A
differentiable function f is S-smooth on K if |V f(z) — Vf(y)|ly < B ||z — y||, for all z,y € K.

Lemma C.10 (Smoothness of f). The softmax objective f is -smooth on Ay o for f = 5(Nd2/e).

Lemma C.11 (Range of f). The softmax objective f satisfies that 0 < f(w) < 6((1) for all
w € ANygﬁ.

We defer the proofs of Lemmas C.9, C.10, and C.11 to the next subsections and first use them
to prove Theorem 1.4.

Proof of Theorem 1.4. We first prove the correctness of Algorithm 2. Let ¢ be the universal constant
in Theorem C.5 and let § = cIn(1/e). We run Algorithm 2 to obtain a d-stationary point w. Since
we assume the input samples satisfy Condition (3) and Lemma 2.1, Theorem C.5 states that w is a

good solution with ||, — p*|ly = O(e/In(1/¢)).

We now analyze the number of iterations T'. By Lemma C.9, it is sufficient to set T = O( %—QB),
as in Algorithm 2. Substituting the upper bounds on § and B from Lemmas C.10 and C.11, and
our choice of §, we get

T=0(8-B-62%) =0(Nd*/e)-O(d) - O(log %(1/€)) = O(Nd*/e) ,

as claimed. O
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C.4 Proof of Lemma C.9

In this section, we prove Lemma C.9.

Lemma C.9 analyzes the convergence rate of projected gradient descent, when we use it to
minimize a smooth non-convex function with constraints. Lemma C.9 follows directly from Lem-
mas C.12 and C.13.

Lemma C.12 defines a “truncated gradient” mapping g and relates the progress in the 7-th
iteration with ||g(x,)||5. Because we cannot keep decreasing f(z), we know that after many iterations,
there exists some 7 such that ||g(x,)|, is very small. Lemma C.13 shows that if ||g(z,)]|, is very
small, that is, if projected gradient descent moves very little between =, and x4, then .41 is an
approximate stationary point.

Lemma C.12. Fiz a convex set K. Suppose f is -smooth on K and 0 < f(z) < B for all z € K.
Suppose we run projected gradient descent with step size n = % startmg from an arbitrary xo € KC,
i.e.,

Trp1 = i (xr =V f(z)) ,

where I is the o-projection onto K. Then we have that

28B
Jin, T (a7~ 1V o) el < /27

Proof. Define the mapping

x — g (z —nVf(r))
; .

Let yr+1 = —nV f(x;). Notice that x,41 = x(yry1) = s — ng(x;).
By the convexity of I, we have

g(z) =

(Tr41 — 27)  (Trg1 — Yri1) <O,

which is equivalent to
vf(x’r)—r(mr—l—l - 377') < g(mr)T@:T-i-l - x’r) .

Using the quadratic upper bound combined with the above inequality, we have

F@rin) < F(oe) + V1) @en = a0) 4 5 e — 2ol

< Flar) + glan) T (wrss — m TR PR

Therefore, after T' iterations, we have

28B
OLHISTHQ Tr HQ = 7 Z Hg «737 H2 < 7( ( ) f(wT» < 57 . 0
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Lemma C.13. Consider the same setting as in Lemma C.12. Define the tangent cone of K at a
point © € K as Cx(x) = cone(KC — {z}). If for some T we have

N &1

Mk (27 =0V f(2r)) — 27y <

)

then for all unit vector u € C(x),
Vi(tr) u<s.

Proof. By the convexity of I, we know that for any z € K,

(Yr41 — Tr41) | (2 = 2r41) <0

Consequently, for any u € Cic(x;4+1), we have

(Yri1 — Tr41) w <0,

which is equivalent to
*vf($7)—ru < —g(:L‘T)Tu :

Using the fact that u is a unit vector together with the above inequality, we get

_vf(xT-f—l)Tu < —Vf(a;T_H)Tu + Vf(xT)Tu - g(xT>Tu
<N f(@ri1) = VF(@o)llo + llg(ze)llo

< Bllrr — arlly + [lg(ar)ll;
= 2|lg(ar)lly <6 - =

Proof of Lemma C.9. As in Algorithm 2, we run projected gradient descent, track the value of
llg(z;)|l5 in each iteration, and return the x, that has the minimum ||g(z;)||,. Combining Lem-
mas C.12 and C.13, if we want a d-stationary point, we should set T" such that \/26B/T < §/2, i.e.,
T >83B5 2= 0(BB52). O

C.5 Proofs of Lemmas C.10 and C.11

In this subsection, we bound from above the smoothness and maximum value of the softmax
objective.

For these two lemmas, we can assume without loss of generality that no input samples have
very large fo-norm. This is because we can perform a standard preprocessing step that centers the
input samples at the coordinate-wise median, which does not affect our mean estimation task. We
then throw away all samples that are (y/dlogd) far from the coordinate-wise median. With high
probability, the coordinate-wise median and all good samples are O(y/dlogd) far from the true
mean. Assuming this happens, then no good samples are thrown away and all remaining samples
satisfies max; || X;||, = O(v/dlogd). Consequently, we have ||p, ||y = O(v/dlogd) for any w € An.

Proof of Lemma C.10. We proceed to bound from above the spectral norm of the Hessian of f.
Recall that X € RN and the partial derivative of f with respect to w; is

Viw) =XV X; — 2X, Yy = (X,-XiT ~ Xl - ,uinT) .Y,
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where Y = u«eg(ﬂ is a PSD matrix. Observe that Y > 0, tr(Y) = 1, and Y depends on w.
p(pXw)

We can compute the (7, j)-th entry in the Hessian matrix of f, as follows

dY
dwj

V2 f(w)iy = df (w); (Xin‘T — Xty — ,Usz'T> °

T T
T — (XX + XX ) ey

By the chain rule, we have
day 1 dexp(pXy) dtr(exp(pXy))

= ¢ $y)) — LEPPZw))

dw;  tr(exp(pXy))? [ dwj r(exp(pEu)) dwj

(2
1 dexp(pXy) B dtr(exp(pXy)) )
(PSw)) [ dw; duw; Y] '

eXP(pEw)}

tr(exp
Using Lemma C.3 to compute the derivative of matrix exponential, we have

day 1 dexp(pXy)  dtr(exp(pXw)) v
dwj  tr(exp(pXy)) dwj dwj
1

_ ' d(pSu) d(pS.)
= () { - exp(apXy )Wj exp((1 — o) pXy)do — ( du, o exp(pLy, )) Y}

p d¥y, d¥y,
= Yw)— 1— Yw)do — — oY |Y .
A / exp(a) ot expl(1 ~ a)pa)da—p (o 0¥ )

Since dz” =X XT X],uw uwXJ , putting it all together, we have,

V2 f(w)iy = — (XTY (X = 210) ) (XY (X = 200) ) = 2X] VX,
* e ()
/al:o b ((XiXiT = Xifu, = “inT) exp(apXy) (XijT = Xty — HwX ) exp((1 — @) pSy )) da

Let R = max(||pw]|,, max; || Xi||y). From the preprocessing step, we know that R = O(d/?).
Using this fact, we obtain

V2 f(w); ;| < 9R* + 2R + 9pR* = O(pd?) .
This is because the first term can be bounded from above by
— (XY (X = 200) ) (XY (X = 200) ) < Il 1Y T 16 = 2200l 16515 1Y 11 16 = 241l
<9R*.

Similarly, the second term is at most 2R2. The third term can be split into 9 terms of the form

m /al_o tr ((XZXZT) exp(apZy) (XijT> exp((1 — a)pEw)> do

1
p T T
-7 X. Yu) X5 ) (X 1—a)pXy)X;
frexp(pSy) /ao( i exp(aply) g)( j exp((1 — a)pXy) )da

1
p
< m /azo HXiH2 HeXp(@PEw)HQ HXjH2 HXj”Q llexp((1 — Oz)pEw)Hg ”Xz‘Hz da
14 4 4
= . . Yw < )
prp—) R* - |lexp(pXuw)l, < pR
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To conclude the proof, we bound from above the smoothness parameter by the spectral norm of
the Hessian matrix. For any w € Ay o,

IV (w)]], < N - max |[V2f(w);j] < O(Npd®) = O(Nd*/e)
1]

where the last step uses that p = Ind/e. O

Proof of Lemma C.11. Fix any w € Ay .. By Corollary C.2 and our choice of p = Ind " e have

€

f(w) = smax,(Xy) < Amax(Bw) + €

Therefore, it is sufficient to bound from above Apax(X,) by O(dlogd). N
The preprocessing step guarantees that all samples have fo-norm at most O(dl/ 2), consequently,
the weighted empirical mean ji,, has fo-norm is at most O(d'/?) as well. Consequently,

1Bwlly =

N
Z wi(Xi - Nw)(Xi - Mw)T
=1

N
< sz‘
i=1

The proof is now complete. ]

2

(Xi = 1) (X = ) |

< X; — uyll2 < O(d) .
2fg[a}vzﬁll fwlly < O(d)
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