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Abstract

Despite breakthrough performance, modern learning models are known to be highly vulnerable
to small adversarial perturbations in their inputs. While a wide variety of recent adversarial

training methods have been effective at improving robustness to perturbed inputs (robust
accuracy), often this benefit is accompanied by a decrease in accuracy on benign inputs (standard
accuracy), leading to a tradeoff between often competing objectives. Complicating matters
further, recent empirical evidence suggest that a variety of other factors (size and quality of
training data, model size, etc.) affect this tradeoff in somewhat surprising ways. In this paper
we provide a precise and comprehensive understanding of the role of adversarial training in the
context of linear regression with Gaussian features. In particular, we characterize the fundamental
tradeoff between the accuracies achievable by any algorithm regardless of computational power
or size of the training data. Furthermore, we precisely characterize the standard/robust accuracy
and the corresponding tradeoff achieved by a contemporary mini-max adversarial training
approach in a high-dimensional regime where the number of data points and the parameters of
the model grow in proportion to each other. Our theory for adversarial training algorithms also
facilitates the rigorous study of how a variety of factors (size and quality of training data, model
overparametrization etc.) affect the tradeoff between these two competing accuracies.

keywords. Tradeoffs in Adversarial Training, High-dimensional Statistics, Gaussian processes,
Linear Regression

1 Introduction

Recent advances in machine learning and deep learning in particular, have led to trained models
with breakthrough performance in a variety of applications spanning visual object classification to
speech recognition and natural language processing. Despite wide empirical success, these modern
learning models are known to be highly vulnerable to small adversarial perturbations to their inputs
[BCM+13, SZS+14]. For instance, in the context of image classification even small perturbations of
the image, which are imperceptible to a human, can lead to incorrect classification by these models.
As these modern inferential techniques begin to be deployed in applications such as autonomous or
recognition systems in which safety, reliability, and security are crucial, it is increasingly important
to ensure trained models are robust against abrupt or adversarial perturbations to the input.
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To mitigate the effect of adversarial perturbations, a wide variety of adversarial training methods
have been developed [GSS15, KGB16, MMS+18, RSL18, WK18] which often involve augmenting
the training loss so as to become more robust to input perturbations. While adversarial training
methods have been rather successful at improving the accuracy of the trained model on adversarially
perturbed inputs (robust accuracy), often this benefit comes at the cost of decreasing accuracy on
natural unperturbed inputs (standard accuracy) [MMS+18]. Therefore, it is crucial to understand
the tradeoff between robust and standard accuracy with adversarial training. Complicating matters
further, recent empirical evidence suggest that a variety of other factors affect this tradeoff in
somewhat surprising ways. For instance, experiments in [TSE+18] demonstrate that while adversarial
training typically has a negative effect on standard accuracy, it outperforms non-adverserial training
methods when there are only a few training samples. Perhaps surprisingly, the recent paper by
[RXY+19] suggests that in some cases the tradeoff between standard and robust accuracy can be
mitigated with additional unlabeled data. Towards demystifying these empirical phenomena, in this
paper we aim to precisely characterize the role of adversarial training by focusing on the following
key questions:

What is the fundamental tradeoff between robust and standard accuracies in both finite
and infinite data limits? How can we algorithmically achieve this tradeoff and what is
the role of adversarial training? What is the effect of the size/quality of the data on this
tradeoff? How does the model size (e.g. overparametrization) change this tradeoff?

A few recent papers have begun to answer some of these questions in specific settings [TSE+18,
ZYJ+19, RXY+19]. See Section 4 for a detailed discussion. Despite this interesting recent progress,
a comprehensive understanding of the role of adversarial training and how it precisely affects the
aforementioned tradeoffs remains largely mysterious. In this paper we aim to provide a precise
characterization of the role of adversarial training by focusing on the simple yet foundational problem
of linear regression.

Contributions. We formally introduce the linear regression problem with adversarially perturbed
inputs in Section 2 and address the questions above in this setting.

• We characterize the fundamental tradeoff between standard risk1 (SR) and adversarial risk (AR)
achievable by any algorithm regardless of the computational power and the size of the available
training data (see Section 3.1). This is carried out by deriving the asymptotic expressions of
standard and adversarial risks, and analysing the Pareto optimal points of a two dimensional
region consisting of all the achievable (SR,AR) pairs. This analysis clearly demonstrates the
existence of a non-trivial tradeoff between the two risks in linear regression as depicted in Figure 1.

• In Section 3.2, we turn our attention to modern adversarial training algorithms and provide a
precise characterizition of the standard and adversarial risks achieved by them. This is carried
out in a high-dimensional regime where the size of the training data n and the number of
parameters p grow proportional to each other with their ratio n/p→ δ for fixed δ ∈ (0,+∞). A key
ingredient of our analysis is a powerful extension of a classical Gaussian process inequality [Gor88]
known as the Convex Gaussian Minimax Theorem developed in [TOH15] and further extended in
[TAH18, DKT19].

1Since we focus on a regression problem henceforth we focus on risk in lieu of accuracy.
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• Our precise characterization of the standard and robust risks for adversarial training algorithms
allows us to rigorously study a variety of phenomena. First, we study the tradeoffs between
standard and adversarial risks for a contemporary adversarial training algorithm and show that as
the limiting ratio n/p → δ between the number of training data n and number of parameters p
grows, the algorithmic tradeoff curve approaches the fundamental (Pareto-optimal) tradeoff curve.
These findings are manifested empirically in Figure 1. We also characterize the effect of the size of
the training data and model overparametrization (see Section 3.3). We argue analytically and
empirically that in the overparametrized regime (i.e. when δ < 1) adversarial training helps improve
standard risk (compared to normal training). However, as the size of training data grows (i.e. δ
becomes large) adversarial training effectively hurts standard risk. In short, adversarial training
improves generalization in the overparametrized regime, but effectively hurts generalization in
the sufficiently underparametrized regime. Finally, in Section 3.4 we demonstrate and prove the
emergence of a phenomenon in adversarial training which is similar to the so-called double-descent
phenomenon. When traditional training is used, the double-descent phenomena demonstrates
that increasing the model complexity beyond a certain interpolation threshold always improves
generalization. We show that the double-descent behavior continues to hold with adversarial
training. However, for linear regression model considered in this paper, the global minimum of the
risk is achieved under the interpolation threshold whose value changes with ε. Our theory also
allows us to study how the adversarial training affects the interpolation threshold.

2 Problem formulation

In a typical supervised learning problem, we wish to fit a function fθ, parameterized by θ ∈ R
p to a

training data set of n input-output pairs {(xi, yi)}ni=1 drawn i.i.d. from some common law P. The
fitting problem often consists of finding a parameter θ̂ that minimizes the empirical risk

θ̂ ∈ argmin
θ∈Rp

1

n

n

∑
i=1

` (xi, yi;θ) ∶= 1

n

n

∑
i=1

̃̀(fθ(xi), yi) , (2.1)

over the space of all parameters θ. The loss ̃̀(fθ(x), y) measures discrepancy between the output
(or label) y and the prediction fθ(x). The goal is of course to learn models that perform well on the
yet unseen test data that is also generated from the same distribution P . In particular, the empirical
risk above serves as a surrogate for the population risk (loss) E(x,y)∼P[`(x, y;θ)].

In practice, many models trained by following this paradigm are often highly vulnerable to
adversarial perturbations with many well documented examples in deep learning. This observation
has given rise to a surge of interest in both, finding such perturbations (a.k.a adversarial attacks) and
also learning models that are robust against such perturbations (a.k.a. adversarial training). A line of
recent work [TSE+18, MMS+17] propose training approaches that demonstrate promising empirical
performance against adversarial perturbations. Motivated by applications in image processing, these
papers consider an adversarial attack model where for a predefined perturbation set S, the adversary
has the power of perturbing each data point x by adding an element of S. Then an estimator θ̂S is
constructed by solving a saddle point problem that takes into account such manipulative power for
the adversary:

θ̂S ∈ argmin
θ∈Rp

max
δi∈S

1

n

n

∑
i=1

` (xi + δi, yi;θ) . (2.2)
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To evaluate the performance of such an estimator, in this paper we consider two metrics of particular
interest, standard risk and adversarial risk.

Standard risk. This is the expected prediction loss of an estimator θ̂ on an uncorrupted test data
point that is generated from the same distribution as the training data. Namely,

SR(θ̂) ∶= 1

p
E [` (x, y; θ̂)] where (x, y) ∼ P . (2.3)

Adversarial risk. This is the expected prediction loss of an estimator θ̂ on an adversarially
corrupted test data point according to the attack model (2.2). Namely,

AR(θ̂) ∶= 1

p
E [max

δ∈S
` (x + δ, y; θ̂) ] where (x, y) ∼ P . (2.4)

Stated differently, the adversarial risk measures how well the estimator θ̂ performs in predicting the
true label when it is fed with an adversarially corrupted test data point. We note that the factor
1/p is the proper scaling so the risk has a finite limit under our asymptotic regime.

Focusing on linear regression, in this paper we aim to derive asymptotically exact characterizations
of these two metrics and study the tradeoff achieved by the class of estimators θ̂S of the form (2.2).
These characterizations will also enable us to study the effect of various quantities (e.g. size and
quality of the training data, model size, etc.) on the trade-off between statistical and adversarial
risk. Specifically, we consider the linear regression model below.

Definition 2.1 (Linear Regression Setting). We consider standard Gaussian linear regression model
with the training data consisting of n i.i.d pairs (xi, yi), with xi ∼ N(0,Ip) representing the features
and yi ∈ R the corresponding label given by 2

yi = ⟨xi,θ0⟩ +wi where wi ∼ N(0, σ20) . (2.5)

We also focus on training linear models of the form fθ(x) = ⟨x,θ⟩ via a quadratic loss `(x, y;θ) =
1

2
(y−⟨x,θ⟩)2 and consider perturbation sets of the form S ∶= {δ ∈ R

p
∶ ∥δ∥`2 ≤ ε} where ε is a measure

of the adversary’s power. To make the dependence on ε explicit in our notation, we replace θ̂S for
this choice of S by θ̂ε. In this case (2.2) takes the form

θ̂ε
∈ argmin

θ∈Rp
max∥δi∥`2≤ε

1

2n

n

∑
i=1

(yi − ⟨xi + δi,θ⟩)2 . (2.6)

Next we formally introduce the asymptotic regime of interest in this paper.

Asymptotic regime. For a given sample size n, we define an instance of the standard Gaussian
model by a tuple (θ0, p, σ0), with θ0 ∈ R

p, p ∈ N and σ0 ∈ R≥0. We consider sequence of instances of
the Gaussian model indexed by the sample size n.

Definition 2.2. The sequence of instances {θ0(n), p(n), σ0(n)}n∈N indexed by n is called a converging
sequence if:

2We note that our analysis in Section 6 can be extended to general Gaussian linear regression where xi ∼ N(0,Σ).
This however requires more involved derivations that are not included in this version.
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• We have n
p
→ δ ∈ (0,∞) and

σ2

0
(n)
p
→ σ2 as n→∞.

• Empirical second moment of the signal converges, i.e., 1

p ∑p
i=1 θ0,i(n)2 → V 2

<∞, as n→∞.

In summary, we have introduced the following notations and terms which will be used throughout
the paper: the dimension p, number of training data points n, overparametrization parameter δ = n/p,
normalized noise power σ2, normalized norm of the true model V 2, and the adversary’s power ε.

3 Main Results

In this paper we wish to understand fundamental tradeoffs between standard and adversarial risks
as well as what can be achieved by modern adversarial training approaches. In Section 3.1 we
characterize the fundamental tradeoff between standard and adversarial risk achievable by any
algorithm regardless of the computational power and the size of the available training data. Then in
Section 3.2 we turn our attention to precisely characterizing the standard and adversarial accuracy
tradeoffs achieved by modern adversarial training algorithms of the form (2.2). This is carried out
in a high-dimensional regime where the size of the training data n and the number of parameters
p grow proportional to each other with their ratio n/p → δ for fixed δ ∈ (0,+∞). Next, in Section
3.3 we focus on studying the role of that the size of the training data plays and how it affects the
standard accuracy. Finally, in Section 3.4 we prove the emergence of a phenomena in adversarial
training similar to the so-called double-descent phenomena without adversarial training.

3.1 Fundamental tradeoffs between standard and adversarial risk

Motivated by the conflict observed between standard and adversarial risk in modern adversarial
training [MMS+18], we first wish to understand the fundamental tradeoffs that can be achieved
between the two objectives. That is, the optimal tradeoff that can be achieved between standard
and adversarial risk objectives for any estimator θ̂ even with access to infinite computational power
and infinite training data. We discuss the tradeoffs achievable by specific algorithms with finite
training data in the next section.

(SR,AR) Region and its Pareto Optimal Curve: As discussed previously in Section 2 for an
estimator θ̂ we use SR(θ̂) and AR(θ̂) to denote the standard and adversarial risks achieved by θ̂.
Thus, for any estimator θ̂ we obtain a point (SR(θ̂),AR(θ̂)) in the 2-d plane. We refer to the set
of all such points, for all θ̂ ∈ R

p, as the (SR,AR) region. To obtain the optimal tradeoff between
standard and adversarial risks we need to characterize the Pareto-optimal points of this region.3

In the linear regression setting of this paper the expressions of standard accuracy (2.3) and
adversarial accuracy (2.4) are convex functions of θ. Therefore, using standard results in multi-
objective optimization we can derive all the Pareto optimal points of the (SR,AR) region, by
minimizing a weighted combination of these two accuracies for different weights λ.

θλ
= argmin

θ
λ

standard risk³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
E{(y − ⟨x,θ⟩)2} +

adversarial risk³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
E{ max∥δ∥`2≤εtest

(y − ⟨x + δ,θ⟩)2} . (3.1)

3Given a region C ∈ R
2, a point (x, y) ∈ C is Pareto optimal if there exists no other point (x′, y′) ∈ C s.t. x′ ≤ x and

y′ ≤ y.
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The Pareto-optimal curve is then given by {(SR(θλ),AR(θλ) ∶ λ ≥ 0}.
Analytical Expression of the Optimal Tradeoffs: Before we proceed to calculate θλ, we derive
the standard and adversarial risks (SR(θ̂) and AR(θ̂)) as a functions of θ0 and σ2

0
in the Gaussian

linear regression model. We defer the proof of this Lemma to Section 6.7.1.
Lemma 3.1. Consider the linear regression setting of Definition 2.1. For a given estimator θ̂ the
standard risk (2.3) is equal to

SR(θ̂) ∶= 1

p
E [(y − ⟨x, θ̂⟩)2] = σ20

p
+
1

p
∥θ̂ − θ0∥2`2 ,

Furthermore, the adversarial risk (2.4) with a corruption level of εtest is equal to

AR(θ̂) ∶=1
p

E [ max∥δ∥`2≤εtest
(y − ⟨x + δ, θ̂⟩)2]

=
1

p
(σ20 + ∥θ̂ − θ0∥2`2 + ε2test ∥θ̂∥2`2) + 2

√
2

π

εtest√
p
∥θ̂∥

`2
(σ20
p
+
1

p
∥θ̂ − θ0∥2`2)

1/2
.

With a precise expression of the standard and adversarial risk in hand our next theorem
characterizes the solution θλ of the optimization problem (3.1) which in conjunction with Lemma
3.1 determines the Pareto-optimal tradeoff curve. We defer the proof of this result to Section 6.7.2.

Proposition 3.2. Under the linear regression setting of Definition 2.1, the solution θλ of the
optimization problem (3.1) is given by θλ

= (1 + γλ0 )−1θ0 ,
with γλ

0
the fixed point of the following two equations:

γλ0 =
ε2test +

√
2

π
εtestA

λ

1 + λ +
√

2

π
εtest
Aλ

and Aλ
=

1∥θ0∥`2 ((1 + γ
λ
0 )2σ20 + (γλ0 )2 ∥θ0∥2`2)1/2 .

In Figure 1 we plot the Pareto optimal curve in the (SR,AR) plane in black for an instance
where εtest = 0.5 and the normalized norm of the true model and the noise power are both equal to
one (σ = V = 1). This curve serves as a fundamental limit on the performance of any algorithm even
with access to infinite data and computational power. This figure also contains algorithmic tradeoffs
which we discuss in further detail in the next section. In particular, in the next section we precisely
characterize the SR-AR tradeoff achieved by a specific adversarial training algorithm.

3.2 Algorithmic tradeoffs between standard and adversarial risks

Given the fundamental tradeoff of the previous section, the natural question that arises is whether it
is possible to achieve this tradeoff algorithmically with only finite data and computational power?
Specifically, what is the tradeoff achieved by common adversarial training algorithms? In this section
we consider the class of estimators θ̂ε constructed through the saddle point problem (2.6) for various
values ε at training i.e. {θ̂ε

∶ ε ≥ 0}. We wish to precisely derive the tradeoff curve between the
standard and the adversarial risks achieved by this class of estimators. We refer to such curve as
algorithmic tradeoff curve since it corresponds to the specific class of saddle point estimators as
opposed to the Pareto optimal trade off curves studied in Section 3.1 which serve as lowerbound for
any estimator. To avoid any confusion about the tradeoffs discussed we would like to emphasize
that:
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Figure 1: Pareto optimal curve along with algorithmic curves for several values of δ.
As δ grows the algorithmic tradeoff curves approach the fundamental Pareto optimal
curve. The dots correspond to the empirical data obtained by solving for the optimal
solution θ̂ε of (2.6) using gradient descent and then computing (SR(θ̂ε),AR(θ̂ε)) from
Lemma 3.1 with different values of ε. Here, σ = 1, V = 1, p = 1000, and εtest = 0.5.

(i) In the training phase, we are varying the adversarial power ε, and accordingly, obtain a range
of estimators θ̂ε by solving (2.6).

(ii) At test time, the adversarial power is fixed to a given value εtest and we will measure the
(expected) standard and adversarial risks of the trained estimators θ̂ε with respect to the true
adversarial power εtest. By varying ε at training time, we expect to sweep a tradeoff between
standard and adversarial risks, i.e. estimators θ̂ε with large ε should have a smaller adversarial
risk but higher standard risk, and estimators with smaller ε should behave the opposite.

Analytical Expression of the Algorithmic Tradeoffs. Our goal for the rest of this section
is to analytically derive the algorithmic tradeoffs in terms of the overparametrization parameter
n/p→ δ ∈ (0,∞) which represents the number of training data points per dimension. We focus on
converging sequences of Gaussian model instances as described in Definition 2.2. Recall that By
virtue of Lemma 3.1, in order to derive the asymptotic standard and adversarial risk of θ̂ε, it suffices
to obtain an exact characterization of the asymptotic error limn→∞

1

p
∥θ̂ε
− θ0∥2`2 and the asymptotic

estimator norm limn→∞
1

p
∥θ̂ε∥2

`2
. This is the subject of the next theorem formally proven in Section

6.8.1.

Theorem 3.3. Let {(θ0(n), p(n), σ0(n))}n∈N be a converging sequence of instances of the standard
Gaussian design model. Consider the linear regression model (2.5) and let θ̂ε be a solution of (2.6).
If ε, δ > 0 or ε = 0, δ > 1, then
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(a) The following convex-concave minimax scalar optimization has a unique solution (α∗, β∗, γ∗, τh∗, τg∗):
max

0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

D(α,β, γ, τh, τg) , where (3.2)

D(α,β, γ, τh, τg) ∶= δβ

2(τg + β) (α2
+ σ2)

+ δ1{ γ(τg+β)
δεβ
√

α2
+σ2
>

√
2

π
}β

2(α2
+ σ2)

2τg(τg + β) (erf (
τ∗√
2
) − γ(τg + β)

δεβ
√
α2 + σ2

τ∗)
−
α

2τh
(γ2 + β2) + γ

¿ÁÁÀα2β2

τ2
h

+ V 2 −
ατh

2
+
βτg

2
, (3.3)

and τ∗ is the unique solution to

γ(τg + β)
δεβ
√
α2 + σ2

−
β

τg
τ − τ ⋅ erf ( τ√

2
) −
√

2

π
e−

τ2

2 = 0

(b) It holds in probability that limn→∞
1

p
∥θ̂ε
− θ0∥2`2 = α2

∗
.

(c) It holds in probability that

lim
n→∞

1√
p
∥θ̂ε∥

`2
=
β∗τ∗
√
α2
∗
+ σ2

ετg∗
. (3.4)

We note that the loss (2.6) and its optimal solution are a rather complicated and high-dimensional
function of the features/label pairs {(xi, yi)}ni=1. Nevertheless the Theorem above provides a precise
characterization of its properties using a 5 dimensional convex-concave mini-max optimization
problem! Such a precise characterization allows us to provide a precise understanding of the standard
and adversarial accuracies. In particular, combining Theorem 3.3 (parts (b)-(c)) with Lemma 3.1 we
can obtain the asymptotic values of SR(θ̂ε) and AR(θ̂ε), and derive the algorithmic tradeoff curve
achieved by the class {θ̂ε

∶ ε ≥ 0} as ε varies (discussed in the next corollary proven in Section 6.8.2).

Corollary 3.4. Let {(θ0(n), p(n), σ0(n))}n∈N be a converging sequence of instances of the standard
Gaussian design model. Consider the linear regression model (2.5) and let θ̂ε be a solution of (2.6).
Further assume that ε, δ > 0 or ε = 0, δ > 1. Also denote (α∗, β∗, γ∗, τh∗, τg∗) as the optimal solutions
of the minimax optimization (6.22). Then, the following identities hold in probability:

lim
n→∞

SR(θ̂ε) = σ2 + α2

∗
, (3.5)

lim
n→∞

AR(θ̂ε) = ⎛⎝σ2 + α2

∗
+ ε2test(α2

∗
+ σ2)(β∗τ∗

ετg∗
)2⎞⎠ + 2

√
2

π

εtestβ∗τ∗

ετg∗
(σ2 + α2

∗
) . (3.6)

The corollary above provides a precise characterization of the standard and adversarial accuracy
achieved by the adversarial training algorithm consisting of running gradient descent on the saddle
point problem (2.6). In Figure 1, we plot the algorithmic tradeoff curve for several values of δ as
well as the empirical values obtained by running gradient descent. As we observe, our theoretical
prediction and the empirical values are rather close match even for moderately large parameter values
(p = 1000). Such a precise characterization allows us to rigorously study a variety of phenomena. We
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Figure 2: Standard risk (SR(θ̂ε)) versus ε for several values of δ < 1. Left panel
corresponds to the theoretical curve obtained by Theorem 3.3 (with σ = 1 and V = 1),
and the right panel corresponds to the empirical results (with σ = 1 and θ0,i ∼ N(0,1)).
The empirical results are averaged over 100 different realizations of noise and features.
As δ grows to one, we observe a faster decay in the standard risk with respect to the
adversarial power ε.

mention one such phenomena below and discuss others in the coming sections. The plots in Figure 1
clearly show that when δ grows the algorithmic tradeoff curve approaches the Pareto-optimal tradeoff
curve. In other words, one can achieve optimal tradeoff of standard and adversarial risks by the
specific class of estimators θ̂ε constructed by the saddle point problem (2.6). This observation is
formally stated in the next theorem with the proof deferred to Section 6.8.3.

Theorem 3.5. Let {(θ0(n), p(n), σ0(n))}n∈N be a converging sequence of instances of the standard
Gaussian design model. Consider the linear regression model (2.5), and let θ̂ε be a solution of (2.6)
and θλ the solution of (3.1). Then for any λ ≥ 0 there exists ε = ε(σ,V, εtest, λ), such that

lim
δ→∞

lim
n→∞

SR(θ̂ε) = lim
p→∞

SR(θλ) , lim
δ→∞

lim
n→∞

AR(θ̂ε) = lim
p→∞

AR(θλ) . (3.7)

The theorem above formally proves that in the infinite data limit (δ → +∞) one of the commonly
used adversarial training algorithms achieves the optimal tradeoff between standard and robust
accuracies.

3.3 The role of the size of the training data and overparameterization

As discussed, our precise understanding of the optimal solution of adversarial training allows us
to precisely characterize the effect of various phenomena. In particular in this section we focus on
the role of the size of the training data. We begin by considering the common scenario in modern
learning where trained models often consist of more parameters than the training data set. In
Figure 2-(a) we plot the standard risk, using Theorem 3.3 Part (b), versus ε for different values of
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Figure 3: Standard risk (SR(θ̂ε)) versus ε for several values of δ > 1. Left panel
corresponds to the theoretical curve obtained by Theorem 3.3 (with σ = 1 and V = 1),
and the right panel corresponds to the empirical results (with σ = 1 and θ0,i ∼ N(0,1)).
The empirical results are averaged over 100 different realizations of noise and features.
As δ grows, we observe a slower decay in the standard risk at small ε due to adversarial
training. For δ = 10, the standard risk has a small initial slope with respect to ε and
then starts to increase rapidly. Put differently, with larger δ, the negative effect of
adversarial training on the standard risk starts at smaller ε.

δ < 1. As we observe for small to moderate values of ε, this curve is decreasing in ε, which implies
that adversarial training helps with improving standard accuracy. The standard risk falls steeper
as δ becomes closer to one. In Figure 3-(a) we observe a similar trend for δ > 1. However, as δ
grows larger than one, the positive effect of the adversarial training on the standard risk falters and
we see a lower decline. When δ = 10, the curve almost levels at ε = 0 and then starts to becomes
increasing with ε. In other words, for larger δ we start to see that adversarial training has a negative
effect on standard risk starting from smaller values of ε. Our theoretical prediction are in line with
recent empirical observations of a similar flavor [TSE+18] observed in neural networks. Therefore,
our theoretical results formally proves the emergence of such a behavior. We provide further insight
into the emergence of this phenomena a long with some more rigorous theoretical guarantees in
Appendix A.

3.4 Double-descent in adversarial training

When ε = 0, the estimator θ̂ε given by (2.6) reduces to the least-squares estimator. It is known that
the plot of standard risk as a function of number of model complexity (1/δ = p/n) exhibits a so-
called ‘double-descent’ behavior [BMM18, BHMM18, HMRT19]. Namely, (1) up to the interpolation
threshold δ = 1 (beyond which the estimator achieves zero training error and the model interpolates
the training data) the risk curve follows a U-shape; the risk first decreases as p increases because
the model becomes less biased but then starts to increase because of the inflated variance of the
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Figure 4: Standard risk versus model complexity 1/δ = p/n. Left panel corresponds to
the theoretical curve obtained by Theorem 3.3 (with σ = 1 and V = 1), and the right
panel corresponds to the empirical results (with σ = 1 and θ0,i ∼ N(0,1)). Here, we
recover the double-descent behavior where the interpolation threshold shifts with ε.

estimator. (2) After the peak at the interpolation threshold, the risk decreases and essentially attains
its global minimum at ‘infinite’ model complexity (extremely overparametrized regime).

The double-descent phenomenon is not limited to neural networks and have been empirically
observed in a variety of models including random features and random forest models. Recently,
analytical derivation of this phenomenon has been developed for least square regression and random
features model [TSE+18, MM19]. For least square regression with Gaussian covariates, it is shown
that the global minimum of the risk is achieved in the underparametrized setting δ > 1 (unless miss-
specified structures are assumed). Nonetheless, these work are focused on training with unperturbed
features.

In Figure 4 (a), we plot the standard risk (theoretical predictions from Theorem 3.3) versus
1/δ = p/n, for several values of adversarial power ε. We also depict the empirical version of these
curves in Figure Figure 4 (b). These plots demonstrate that the double-descent phenomena continues
to hold even with adversarial training. Interestingly however the interpolation threshold changes
with ε. For small ε, we observe double-descent behavior with the interpolation threshold δ ≈ 1.
However, as ε increases the location of the peak shifts to higher values of 1/δ.
4 Further Related Work

The trade-off between standard and adversarial accuracy has been studied recently in [MMS+18,
SST+18, TSE+18, RXY+19, ZYJ+19, PJ19]. An central question is whether standard and robust
objectives are fundamentally at conflict? In other words, is there a predictor that can achieve
both optimal standard accuracy and robust accuracy when the number of training data samples is
sufficiently large? In this regard, [TSE+18, ZYJ+19] construct learning problems where the optimal
robust accuracy is fundamentally at conflict with the standard accuracy, i.e. no predictor can achieve
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both optimal standard accuracy and robust accuracy even in the infinite data limit. However, there
are clearly many natural learning problems in which a predictor with optimal standard and high
robust accuracy exists (hence the two objectives are not at conflict). An instance of such cases
has been studied in [RXY+19] suggesting that the inconsistency between adversarial accuracy and
standard accuracy may be due to insufficient number of training samples. In contrast, in this paper
we have shown that a fundamental tradeoff exists between the two accuracies in linear regression
even with limited samples.

Another line of work considers the tradeoff between standard and robust accuracy when the
capacity of the learning model varies [Nak19, GCL+19]. In particular, [Nak19] provides classification
problems where simple classifiers with high standard accuracy exist; but having high robust accuracy
is possible through more complex classifiers. The notions of capacity and complexity in the presence
of adversarially perturbed inputs (a.k.a. adversarially robust learnability) have also been studied
in a series of interesting papers [BLPR19, CBM18, KL18, YRB19, MHS19]. In particular [MHS19]
show that any hypothesis class with finite VC dimension is adversarially-robust PAC learnable
in the `∞ metric using modified (improper) learning rules. Finally, let us point out that under
specific high-dimensional data distributions (e.g. isotropic Gaussian), any classifier becomes highly
vulnerable to adversarial `2 perturbations [GMF+18, MDM19, SHS+19]. Thus the adversarial error
approaches 1 as the dimension grows. This phenomenon does not occur in our regression setting as
the regression loss is smoothly varying as opposed to the classification error.

5 Sketch and roadmap of the proof

To be able to provide a precise characterization of the various tradeoffs we need to develop a precise
understanding of the adversarial training objective

min
θ∈Rp

L(θ) ∶= min
θ∈Rp

max∥δi∥`2≤ε
1

2n

n

∑
i=1

(yi − ⟨xi + δi,θ⟩)2 ,
and its optimal solution θ̂ε

∈ argminθ∈Rp L(θ). To achieve this we carry out the following steps.

Step I: Simplification of the loss (Section 6.2). The maximization objective is equal to
the optimal value of a maximization problem and hence characterizing its properties directly is
challenging. In the first step of our proof we show that one can in-fact solve this maximization
problem and derive an expression for the loss in closed form. Specifically, we show

L(θ) = 1

2n

n

∑
i=1

(∣yi − ⟨xi,θ⟩∣ + ε ∥θ∥`2)2 = 1

2n
∥∣y −Xθ∣ + ε ∥θ∥`2∥2`2 . (5.1)

The main intuition behind this derivation is that one can think of the min-max optimization problem
above as a game between a learner and an adversary where the learner first chooses a parameter θ

and then the adversary changes each feature xi given the label yi and the learner’s choice of θ. We
show that the best choice for the adversary to maximize the error is to pick δi in the direction of θ
with a magnitude of ε (maximum power of the adversary) and with the sign of the misfit on the
i the training data point (sgn(⟨xi,θ⟩ − yi)). We formally prove this result by connecting it to the
well-known trust region subproblem in optimization.

Step II: Reduction to an Auxiliary Optimization (AO) problem (Section 6.3).
The loss (5.1), while significantly simplified, is still rather complicated and it is completely unclear
how to precisely characterize its behavior and the quality of its optimal solution. In particular,
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the dependence on the random data matrix X is still rather complex hindering statistical analysis
even in an asymptotic setting. To bring the optimization problem into a form more amenable to
precise asymptotic analysis we carry out a series of reformulations of the optimization problem.
First, we rescale the loss. Next we consider a change of variable of the form z = 1√

p
(θ − θ0) and add

new variables by adding equality constraints. Finally, we use duality to cast the problem into a
mini-max form. Combining these steps we arrive at the following equivalent Primal Optimization
(PO) problem

min
z∈Rp,v∈Rn

max
u∈Rn

1√
p
uTXz −

1√
p
uTω +

1√
p
uTv + `(v;z), (5.2)

where ω = w√
p
∈ R

n is a Gaussian vector with i.i.d. N (0, σ2) entires and

`(v;z) ∶= 1

2p
(∥v∥2`2 + 2 ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + ε2p ∥θ0 +√pz∥2`2) .

This equivalent form may be counter-intuitive as we started by simplifying a different mini-max
optimization problem and we have now again introduced a new maximization! The main advantage
of this new form is that it is in fact affine in the data matrix X. This particular form allows us to
use a powerful extension of a classical Gaussian process inequality due to [Gor88] known as Convex
Gaussian Minimax Theorem (CGMT) [TOH15] which focuses on characterizing the asymptotic
behavior of mini-max optimization problems that are affine in a Gaussian matrix X. This result
enables us to characterize the properties of (5.2) by studying the asymptotic behavior of the following,
arguable simpler, Auxiliary Optimization (AO) problem instead

min
z∈Rp,v

max
u∈Rn

1√
p
(∥z∥`2 gTu + ∥u∥`2 hTz −uTω +uTv) + `(v;z). (5.3)

We emphasize that the relationship between the above AO problem (5.3) and how it is exactly
related to the PO problem (5.2) is much more intricate and technical. See Section 6.3 for details.

The CGMT framework has been recently used to derive precise characterization of the gen-
eralization error of the max-margin linear classifiers in overparametrized regime with separable
data [DKT19, MRSY19]. Also [LS20] uses the CGMT framework to analyze max-`1-margin classifiers.

Step III: Scalarization of the Auxiliary Optimization (AO) problem (Section 6.4).
In this step we further simplify the AO problem in (5.3). In particular we show the asymptotic
behavior of the AO can be characterized rather precisely via the following scalar optimization
problem involving five variables:

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

D(α,β, γ, τh, τg) where (5.4)

D(α,β, γ, τh, τg) ∶= δβ

2(τg + β) (α2
+ σ2)

+ δ1{γ(τg+β)>√ 2

π
δεβ
√
α2
+σ2}β

2(α2
+ σ2)

2τg(τg + β) (erf (
τ∗√
2
) − γ(τg + β)

δεβ
√
α2 + σ2

τ∗)
−
α

2τh
(γ2 + β2) + γ

¿ÁÁÀα2β2

τ2
h

+ V 2 −
ατh

2
+
βτg

2
(5.5)
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In particular a variety of conclusions can be derived based on the optimal solutions of the above
optimization problem as we discuss in the next step. We note that while the expressions may look
complicated we prove that this optimization problem is in fact convex in the minimization parameters(α, τg) and concave in the maximization parameters (β, γ, τh) so that its optimal solutions can be
easily derived via a simple low-dimensional gradient descent rather quickly and accurately. We also
note that this proof is quite intricate and involved, so it is not possible to give an intuitive sketch of
the arguments here. We refer to Section 6.4 for details.

Step IV: Completing the proof of the theorems (Sections 6.7 and 6.8).
Finally, we utilize the above scalar form to derive all of the different theorems and results stated in
Section 3. This is done by relating the quantities of interest in each theorem to the optimal solutions
of (5.4). For instance, we show that limn→∞

1

p
∥θ̂ε
− θ0∥2`2 = α2

∗
with α∗ the optimal solution over α.

These calculations/proofs are carried out in detail in Sections 6.7 and 6.8. Since each argument is
different we do not provide a summary here and refer to the corresponding sections.

6 Proofs

6.1 Notations

We define the data matrix X ∈ R
n×p with the rows consisting of the training data features

x1,x2, . . . ,xn. For a convex function f ∶ Rm
→ R, we denote its its Fenchel conjugate by f∗(y) =

supx y
Tx − f(x). We also define the Moreau envelope function of f at x with parameter τ as

ef(x; τ) ≡min
v

1

2τ
∥x − v∥2`2 + f(v) .

6.2 Simplification of the loss

As discussed earlier in this section we wish to derive a closed form for the loss

L(θ) ∶= max∥δi∥`2≤ε
1

2n

n

∑
i=1

(yi − ⟨xi + δi,θ⟩)2 (6.1)

and in particular show that

L(θ) = 1

2n

n

∑
i=1

(∣yi − ⟨xi,θ⟩∣ + ε ∥θ∥`2)2 = 1

2n
∥∣y −Xθ∣ + ε ∥θ∥`2∥2`2 (6.2)

To this aim first note that the maximization in (6.1) decouples over i so that we can write

L(θ) ∶= 1

2n

n

∑
i=1

max∥δi∥`2≤ε
(yi − ⟨xi + δi,θ⟩)2

To continue further define ỹi ∶= yi − ⟨xi,θ⟩. By expanding the square the optimization over δi can be
rewritten in the form

min∥δi∥`2≤ε
−
1

2
ỹ2i + ỹi⟨θ,δi⟩ − 1

2
⟨θ,δi⟩2 .

Note that this is trust-region subproblem and δi is a solution if and only if ∥δi∥`2 ≤ ε and there exists
λi ≥ 0 such that
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1. (−θθT
+ λiI)δi = −ỹiθ .

2. −θθT
+ λiI ⪰ 0 (or equivalently λi ≥ ∥θ∥2`2)

3. λi(ε − ∥δi∥`2) = 0.
Since by (2), λi > 0, condition (3) reduces to ∥δi∥`2 = ε. Also from (1), we have

δi = −ỹi(−θθT
+ λiI)−1θ

= −λ−1i ỹi
⎛⎝I + θθT

λi − ∥θ∥2`2
⎞⎠θ

= −λ−1i ỹiθ
λi

λi − ∥θ∥2`2
= −ỹiθ

1

λi − ∥θ∥2`2 . (6.3)

Using the fact that ∥δi∥`2 = ε in the latter identity we thus conclude that λi = (1/ε) ∥θ∥`2 ∣ỹi∣ + ∥θ∥2`2 .
Substituting for λi in (6.3) we obtain

δi = −
ỹi∣ỹi∣

θε∥θ∥`2 = −εsgn(yi − ⟨xi,θ⟩) θ∥θ∥`2 .
Substituting the latter into (6.1) we arrive at (6.2) to complete our simplification of the loss.

6.3 Reduction to an auxiliary optimization problem via CGMT

We are interested in characterizing the properties of the optimal paramter θ̂ε and thus it shall be
convenient to work with a scaled version of the loss (6.2). This scaling of course does not affect the
optimal solution θ̂ε. Thus hence forth we focus on the following objective

θ̂ε
= argmin

θ∈Rp

1

2p2

n

∑
i=1

(∣yi − ⟨xi,θ⟩∣ + ε ∥θ∥`2)2 . (6.4)

To continue further it is convenient to consider a change of variable of the form z = 1√
p
(θ − θ0) and

note that

yi − ⟨xi,θ⟩ = wi + ⟨xi,θ0 − θ⟩ = wi −
√
p⟨xi,z⟩.

Define `(v;θ) ∶= 1

2
(∣v∣ + ε ∥θ∥`2)2 and note that with this change of variable we have that ẑε

=

1√
p
(θ̂ε
− θ0) is given by

ẑε
= argmin

z

1

p2

n

∑
i=1

` (wi −
√
p⟨xi,z⟩;θ0 +√pz) .

Equivalently we can rewrite this optimization problem in the form

min
z∈Rp,v∈Rn

1

p2

n

∑
i=1

` (√pvi;θ0 +√pz) subject to
√
pv =w −

√
pXz. (6.5)
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We note that the scaling of v is arbitrary but serves the purpose of simplifying the exposition later
on. The loss above is still rather complicated and it is unclear how to study and characterize the
properties of its optimal solution in an asymptotic regime where the size of the training data and
the number of parameters grow in proportion with each other. To study this loss in an asymptotic
fashion we first cast it as a different mini-max optimization using duality. In particular by associating
a dual variable u

p
with the equality constraint, we obtain

min
z∈Rp,v∈Rn

max
u∈Rn

1

p
{uT (√pX)z −uTw +

√
puTv} + 1

p2

n

∑
i=1

` (√pvi;θ0 +√pz)
= min

z∈Rp,v∈Rn
max
u∈Rn

1

p
{uT (√pX)z −uTw +

√
puTv} + `(v;z)

(6.6)

where

`(v;z) ∶= 1

p2

n

∑
i=1

` (√pvi;θ0 +√pz) = 1

2p
(∥v∥2`2 + 2 ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + ε2p ∥θ0 +√pz∥2`2)

At first this may be counter-intuitive as we started by simplifying a different mini-max optimization
problem and now we are again introducing a new maximization! The main advantage of this new
form is that (6.6) is in fact affine in the matrix. This particular form allows us to use a powerful
extension of a classical Gaussian process inequality due to Gordon [Gor88] known as Convex Gaussian
Minimax Theorem (CGMT) [TOH15] which focuses on characterizing the asymptotic behavior of
mini-max optimization problems that are affine in a Gaussian matrix X. Formally, the CGMT
framework shows that a problem of the form

min
z∈Sz

max
u∈Su

uTXz + ψ(z,u) (6.7)

with X a matrix with N (0,1) entries can be replaced asymptotically with

min
z∈Sz

max
u∈Su

∥z∥`2 gTu + ∥u∥`2 hTz + ψ(z,u) (6.8)

where g and h are independent Gaussian vectors with i.i.d. N (0, 1) entries and ψ(z,u) is convex in
z and concave in u. In the above Sz and Su are compact sets. We refer to [TOH15, Theorem 3] for
precise statements. Following [TOH15] we shall refer to problems of the form (6.7) and (6.8) as the
Primal Problem (PO) and the Auxiliary Problem (AO).

As evident from the above to be able to apply CGMT, requires the minimization/maximization
to be over compact sets. To avoid this technical issue one can introduce “artificial" boundedness
constraint so that they do not change the optimal solution. More specifically, we can add constraints
of the form Sz = {z∣ ∥z∥`2 ≤Kα} and Su = {u ∶ ∥u∥`2 ≤Kβ} for sufficiently large constants Kα and
Kβ without changing the optimal solution of (6.6) in a precise asymptotic sense. See Appendix B
for precise statements and proofs. This allows us to replace (6.6) with

min
z∈Sz ,v∈Rn

max
u∈Su

1√
p
uTXz −

1√
p
uTω +

1√
p
uTv + `(v;z), (6.9)

where ω = w√
p
∈ R

n is a Gaussian vector with i.i.d. N (0, σ2) entires.
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With these compact constraints in place we can now apply the CGMT result. To this aim note
that this optimization is in the desired form of a Primary Optimization (PO): it has a bilinear term
uTXz plus a function

ψ(z,u) = min
v∈Rn

1√
p
(−uTω +uTv) + `(v;z)

which is convex in z4 and concave in u. The corresponding Auxiliary Optimization (AO) thus takes
the form

min
z∈Sz

max
u∈Su

1√
p
(∥z∥`2 gTu + ∥u∥`2 hTz) +min

v∈Rn

1√
p
(−uTω +uTv) + `(v;z)

= min
z∈Sz ,v

max
u∈Su

1√
p
(∥z∥`2 gTu + ∥u∥`2 hTz −uTω +uTv) + `(v;z).

(6.10)

This completes the derivation of the AO.

6.4 Scalarization of the auxilary optimization problem

In this section we continue our proof by significantly simplifying the AO problem. In particular
we show that the behavior of the AO and hence the PO can be completely characterized by (6.23).
This is arguably the most intricate part of our proofs.

We begin simplifying the AO by maximizing over u. To this aim we decompose the optimization
problem over Su in terms of its direction and radius. Specifically, u = βũ with ũ ∈ S

n−1 and
0 ≤ β ≤Kβ . Using this decomposition we have

max
u∈Su

1√
p
(∥z∥`2 gTu + ∥u∥`2 hTz −uTω +uTv)

= max
0≤β≤Kβ

max
u∈Sn−1

1√
p
(∥z∥`2 gTu + ∥u∥`2 hTz −uTω +uTv)

= max
0≤β≤Kβ

max
u∈Sn−1

1√
p
uT (∥z∥`2 g −ω + v) + β√

p
hTz

= max
0≤β≤Kβ

1√
p
∥∥z∥`2 g −ω + v∥`2 + β√

p
hTz.

Plugging the latter into (6.10) the AO reduces to

min
z∈Sz ,v

max
0≤β≤Kβ

1√
p
∥∥z∥`2 g −ω + v∥`2 + β√

p
hTz + `(v;z).

We hope to eventually simplify the minimization over v and z also. For this minimization to become
easier in our later calculation we proceed by writing `(v;z) in terms of its conjugate with respect to
z. That is,

`(v;z) = sup
q

qTz − ̃̀(v;q)
4Note that the prior to the minimization over v the problem is trivially jointly convex in (z,v) and partial minimization

preserves convexity.

17



where ̃̀(v;q) is the conjugate of ` with respect to z. The logic behind this is that AO with then
simplify to

min
z∈Sz ,v

max
0≤β≤Kβ ,q

β√
p
∥∥z∥`2 g −ω + v∥`2 + β√

p
hTz + qTz − ̃̀(v;q). (6.11)

To proceed it would be convenient to flip the order of minimum and maximum in the above. However,
for this to be allowed the mini-max problem typically has to be convex/concave in the min/max
parameters (e.g. via the celebrated Sion’s min-max Theorem [S+58]). It is not clear that the above
objective has this form so that the flipping of the order of the min and max is justified. However,
since the original PO problem is convex/concave in the min/max parameters one can justify such a
flipping of the min and max in the AO based on the PO. We note that this is justified for asymptotic
calculations and refer to [TAH15, Appendix A.2.4] for precise details on this derivation. Thus, we
will instead consider the following problem as the (AO) which is asymptotically equivalent to (6.11)

max
0≤β≤Kβ ,q

min
z∈Sz ,v

β√
p
∥∥z∥`2 g −ω + v∥`2 + β√

p
hTz + qTz − ̃̀(v;q).

To simplify further we now optimize over the direction and norm of z (∥z∥`2 = α) to arrive at

max
0≤β≤Kβ ,q

min
0≤α≤Kα,v

β√
p
∥αg −ω + v∥`2 − α∥ β√ph + q∥

`2

− ̃̀(v;q). (6.12)

Next note that −̃̀(v;q) is convex in v. To see this first note that

̃̀(v;q) = sup
z

qTz − `(v;z).
Also since ` is jointly convex in (v,z), then −`(v;z) is jointly concave in (v,z). Also qTz is jointly
concave in (v,z). Therefore, qTz − `(v;z) is jointly concave in (v,z) and based on the partial
maximization rule we can conclude that ̃̀(v;q) should be concave in v which in turn implies −̃̀(v;q)
is convex in v. The other terms are also trivially jointly convex in α,v so that overall the objective
is jointly convex in α,v. The objective above is also trivially jointly concave in β,q. Thus based
on Sion’s min-max Theorem [S+58]) we could change the order of the mins and maxs as we please.
This allows us to reorder maxq and minα,v to arrive at

max
0≤β≤Kβ

min
0≤α≤Kα,v

max
q

β√
p
∥αg −ω + v∥`2 − α∥ β√ph + q∥

`2

− ̃̀(v;q) (6.13)

To proceed, we first compute ̃̀(v;q) in the Lemma below with the proof deferred to Appendix C.1.

Lemma 6.1. The conjugate of

`(v;z) ∶= 1

2p
(∥v∥2`2 + 2 ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + ε2p ∥θ0 +√pz∥2`2)

with respect to the variable z is given by

̃̀(v;q) ∶= sup
z

qTz − `(v;z) = − 1√
p
qTθ0 +

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1

2p
∥v∥2`2 .
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Using this characterization of ̃̀(v;q) we arrive at the following representation of AO problem

min
0≤α≤Kα,v

max
0≤β≤Kβ

max
q

β√
p
∥αg −ω + v∥`2 − α∥ β√ph + q∥

`2

+
1√
p
qTθ0

−
1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

+
1

2p
∥v∥2`2 (6.14)

To simplify further we next focus on the maximization over q or equivalently the following minimiza-
tion problem

min
q

α∥ β√
p
h + q∥

`2

+
1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1√
p
qTθ0

min
q

inf
τh≥0

α

2τh
∥ β√

p
h + q∥2

`2

+
ατh

2
+

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1√
p
qTθ0

min
q

inf
τh≥0

α

2τh
∥q∥2`2 + αβ22pτh

∥h∥2`2 + αβ

τh
√
p
hTq +

ατh

2
+

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1√
p
qTθ0

The above is a linear function of q plus a term depending on ∥q∥`2 . So fixing ∥q∥`2 = γ ≥ 0 the

optimal q is given by q = −γ
αβ

τh
h−θ0

∥αβ

τh
h−θ0∥

`2

, which simplifies the above to

inf
τh,γ≥0

α

2τh
γ2 +

αβ2

2pτh
∥h∥2`2 − γ√

p
∥αβ
τh

h − θ0∥
`2

+
ατh

2
+

1

2δp2
(p
ε
γ − ∥v∥`1)2

+

Plugging the latter into (6.14) the AO reduces to

min
0≤α≤Kα,v

max
0≤β≤Kβ

sup
γ,τh≥0

β√
p
∥αg −ω + v∥`2 + 1

2p
∥v∥2`2

−
α

2τh
γ2 −

αβ2

2pτh
∥h∥2`2 + γ√

p
∥αβ
τh

h − θ0∥
`2

−
ατh

2
−

1

2δp2
(p
ε
γ − ∥v∥`1)2

+

(6.15)

To continue we state a lemma with the proof deferred to Appendix C.2

Lemma 6.2. The function

f(γ, β, τh) ∶= γ2 + β2
p
∥h∥2`2 − 2 γ√

p
∥βh − θ0

α
∥
`2

is jointly convex in the parameters (γ, β, τh).
Using this lemma we can trivially conclude that the objective (6.15) is jointly concave in (γ, β, τh).

Also note that ̃̀ is concave in v and hence −̃̀ is convex in v. This implies that the objective in
(6.14) is jointly convex in (α,v). Since maximization (with respect to the direction of q) preserves
convexity therefore (6.15) is trivially jointly convex in (α,v). Therefore, we can flip the order of
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min and max in (6.15) (again using Sion’s min-max Theorem) to arrive at

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
v

β√
p
∥αg −ω + v∥`2 + 1

2p
∥v∥2`2

−
α

2τh
γ2 −

αβ2

2pτh
∥h∥2`2 + γ√

p
∥αβ
τh

h − θ0∥
`2

−
ατh

2
−

1

2δp2
(p
ε
γ − ∥v∥`1)2

+

(6.16)

We now focus on minimization over v. To this aim note that

min
v

β√
p
∥αg −ω + v∥`2 + 1

2p
∥v∥2`2 − 1

2δp2
(p
ε
γ − ∥v∥`1)2

+

min
τg≥0,v

β

2τgp
∥αg −ω + v∥2`2 + βτg2 + 1

2p
∥v∥2`2 − 1

2δp2
(p
ε
γ − ∥v∥`1)2

+

min
τg≥0,v

β

2τgp
∥αg −ω + v∥2`2 + βτg2 + 1

2p
∥v∥2`2 − 1

2δp2
(p
ε
γ − ∥v∥`1)2

+

(6.17)

Recall the definition of the Moreau envelope function of a function f at a point x with parameter µ,

ef(x;µ) ≡min
v

1

2µ
∥x − v∥2`2 + f(v) .

and define

f(v;γ) ≡ 1

2
∥v∥2`2 − 1

2δp
(p
ε
γ − ∥v∥`1)2+ , (6.18)

Note that f(v;γ) is convex in v (since −̃̀(v;q) was convex in v). Thus, (6.17) can be rewritten in
the more compact form

min
τg≥0

1

p
ef (ω − αg; τg

β
) + βτg

2
(6.19)

In our next lemma we compute ef . We defer the proof to Appendix C.3.

Lemma 6.3. Consider the function f given by (6.18). Then,

ef(x;µ) = 1

2(µ + 1) ∥x∥2`2 +min
τ≥0

G(x;µ, τ)
where

G(x;µ, τ) = 1

2µ(µ + 1) ∥x − ST(x; τ)∥2`2 − 1

2n
(p
ε
γ −

1

1 + µ
∥ST(x; τ)∥`1)2

+

.

Furthermore, ef(x; τ) is strictly convex in x.

Plugging Lemma 6.3 into (A.13) we have

1

p
ef (αg −ω;

τg

β
) + βτg

2
=

β

2(τg + β)
1

p
∥αg −ω∥2`2 +min

τ≥0

1

p
G(αg −ω;

τg

β
, τ) + βτg

2
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Plugging this in (6.16) the AO problem reduces to

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

min
τ≥0

β

2(τg + β)
1

p
∥αg −ω∥2`2 + 1

p
G(αg −ω;

τg

β
, τ) + βτg

2

−
α

2τh
γ2 −

αβ2

2pτh
∥h∥2`2 + γ√

p
∥αβ
τh

h − θ0∥
`2

−
ατh

2
(6.20)

We note that since the problem (6.17) was jointly convex in (v, α, τg) and (6.16) jointly concave in(β, γ, τh) and partial minimization preserves convexity we thus conclude that the objective is jointly
convex in (α, τg) and jointly concave in (β, γ, τh) (after the minimization over τ ≥ 0 has been carried
out). Note that trivially in an asymptotic regime

∥h∥2`2
p
→ 1 and

∥αg −ω∥2`2
n

→ (α2
+ σ2)

Also using concentration of Lipschitz functions of Gaussian we have

1√
p
∥αβ
τh

h − θ0∥
`2

→

1√
p

¿ÁÁÀ
E [∥αβ

τh
h − θ0∥2

`2

]→
¿ÁÁÀα2β2

τ2
h

+ V 2.

Plugging all of the above in (6.20) we arrive at

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

min
τ≥0

δβ

2(τg + β) (α2
+ σ2) + 1

p
G(αg −ω;

τg

β
, τ) + βτg

2

−
α

2τh
γ2 −

αβ2

2τh
+ γ

¿ÁÁÀα2β2

τ2
h

+ V 2 −
ατh

2
(6.21)

To simplify further we also need an asymptotic characterization of 1

p
G (αg −ω;

τg
β
, τ). To this aim

we prove the following lemma with the proof deferred to Appendix C.4.

Lemma 6.4. Let w ∈ R
n be a Gaussian random vector distributed as N (0, ω2In). Also assume

G(w;µ, τ) ∶= 1

2µ(µ + 1) ∥w − ST(w; τ)∥2`2 − 1

2n
(p
ε
γ −

1

1 + µ
∥ST(w; τ)∥`1)2

+

.

Then

lim
n→∞

1

n
G(w;µ, τ) = ω2

2µ(µ + 1) ⎛⎝⎛⎝1 −
√

2

π

τ

ω
e
−

τ2

2ω2

⎞⎠ + ( τ
2

ω2
− 1) erfc( 1√

2

τ

ω
)⎞⎠

−
ω2

2(µ + 1)2 ⎛⎝γ(µ + 1)δεω
+
τ

ω
⋅ erfc( 1√

2

τ

ω
) −
√

2

π
e
−

τ2

2ω2

⎞⎠
2

+

.

Furthermore,

min
τ≥0

lim
n→∞

1

n
G(w;µ, τ)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if γ(µ + 1) ≤√ 2

π
δεω

ω2

2µ(µ+1) (erf ( τ∗( γ(µ+1)δεω
,µ)√

2
) − γ(µ+1)

δεω
τ∗ (γ(µ+1)

δεω
, µ)) if γ(µ + 1) >√ 2

π
δεω
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where τ∗(a,µ) is the unique solution to

a −
1

µ
τ − τ ⋅ erf ( τ√

2
) −
√

2

π
e−

τ2

2 = 0

Plugging the above lemma in (6.21) we arrive at

max
0≤β≤Kβ

sup
γ,τh≥0

min
0≤α≤Kα

min
τg≥0

D(α,β, γ, τh, τg) , (6.22)

where

D(α,β, γ, τh, τg) = δβ

2(τg + β) (α2
+ σ2)

+ δ1{γ(τg+β)>√ 2

π
δεβ
√
α2
+σ2}β

2(α2
+ σ2)

2τg(τg + β) (erf (
τ∗√
2
) − γ(τg + β)

δεβ
√
α2 + σ2

τ∗)
−
α

2τh
(γ2 + β2) + γ

¿ÁÁÀα2β2

τ2
h

+ V 2 −
ατh

2
+
βτg

2
(6.23)

and τ∗ is the unique solution to

γ(τg + β)
δεβ
√
α2 + σ2

−
β

τg
τ − τ ⋅ erf ( τ√

2
) −
√

2

π
e−

τ2

2 = 0 (6.24)

This completes the scalarization of the AO.

Remarks 6.5. (Convergence analysis). In above we showed the point wise convergence of the
objective function in (6.20) to function D given by (6.23). However, what is required in this framework,
is (local) uniform convergence so we get that the minimax solution of the objective function in (6.20)
also converges to the minimax solution of the AO problem (6.23). This can be shown by following
similar arguments as in [TAH18, Lemma A.5] that is essentially based on a result known as “convexity
lemma” in the literature (see e.g. [LM08, Lemma 7.75]) by which point wise convergence of convex
functions implies uniform convergence in compact subsets.

6.6 Uniqueness of the solution of the AO problem

As we discussed after Equation (6.18), the function f(v;γ) is convex in v. Furthermore, we wrote
(6.17) (part of the objective that depends on v) in terms of the Moreau envelope 1

p
ef(ω−αg; τgβ ) and

as n→∞, its limit goes to the expected Moreau envelope. Now by using the result of [TAH18, Lemma
4.4] the expected Moreau envelope of a convex function is strictly convex ( without requiring any strong
or strict convexity assumption on the function itself). Therefore, the convexity-concavity property
discussed after (6.20) is preserved after taking the limit and the AO objective D(α,β, γ, τh, τg) is
jointly strictly convex in (α, τg) and jointly concave in (β, γ, τh).

We next note that supβ,γ,τh D(α,β, γ, τh, τg) is strictly convex in (α, τg). This follows from
the fact that if f(x,y) is strictly convex in x, then supy f(x,y) is also strictly convex in x. We
next use [TAH18, Lemma C.5] to conclude that infτg supβ,γ,τh D(α,β, γ, τh, τg) is strictly convex in
α > 0.Therefore, its minimizer over α ≥ 0 is unique, which completes the proof.
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6.7 Proofs for fundamental tradeoffs

6.7.1 Proof of Lemma 3.1

We have

SR(θ̂) ∶= 1

p
E [(y − ⟨x, θ̂⟩)2] = 1

p
E [(w − ⟨x, θ̂ − θ0⟩)2] = σ20

p
+
1

p
∥θ̂ − θ0∥2`2 . (6.25)

To characterize AR(θ̂), note that by following a similar argument as in Section 6.2, the solution of
the problem

max∥δ∥`2≤εtest
(y − ⟨x + δ, θ̂⟩)2

is given by

δi = −εtestsgn(y − ⟨x, θ̂⟩) θ̂∥θ̂∥
`2

.

Therefore the adversarial risk can be written as

AR(θ̂) = 1

p
E [(∣y − ⟨x, θ̂⟩∣ + εtest ∥θ̂∥`2)2] (6.26)

By substituting for y = ⟨x,θ0⟩ +w and expanding the terms, we get

E [(∣y − ⟨x, θ̂⟩∣ + εtest ∥θ̂∥`2)2]
= E[⟨x,θ0 − θ̂⟩2] + E[w2] + ε2test ∥θ̂∥2`2 + 2εtest ∥θ̂∥`2 E [∣⟨x, θ̂ − θ0⟩ +w∣]
= ∥θ̂ − θ0∥2`2 + σ20 + ε2test ∥θ̂∥2`2 + 2

√
2

π
εtest ∥θ̂∥`2 (σ20 + ∥θ0 − θ̂∥2`2 )1/2 , (6.27)

where in the first line we used the fact that θ̂ is independent of x and w (the test data and the
corresponding response) and in the second line we used that ⟨x, θ̂ − θ0⟩ +w ∼ N(0, σ2 + ∥θ̂ − θ0∥2`2)
since x ∼ N(0,Ip). This completes the proof.

6.7.2 Proof of Proposition 3.2

By definition,
θλ
= argmin

θ
λSR(θ) +AR(θ)

Substituting for SR(θ) and AR(θ) from Lemma 6.7.1 and scaling the objective by a factor p, we get

θλ
= argmin

θ
(1 + λ) (σ20 + ∥θ − θ0∥2`2) + ε2test ∥θ∥2`2 + 2

√
2

π
εtest ∥θ∥`2 (σ20 + ∥θ0 − θ∥2`2)1/2

Now by setting the derivative to zero we arrive at the following identity for θλ:

(1 + λ)(θλ
− θ0) + ε2testθλ

+

√
2

π
εtest
⎛⎜⎝

θλ

∥θλ∥ (σ20 + ∥θ0 − θ∥2`2)1/2 + ∥θλ∥
(σ2

0
+ ∥θ0 − θ∥2`2)1/2 (θ

λ
− θ0)⎞⎟⎠ = 0 .

(6.28)
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Adopting the shorthand

Aλ
∶=

1∥θλ∥ (σ20 + ∥θ0 − θλ∥2
`2
)1/2

and rearranging the terms term we get

⎡⎢⎢⎢⎢⎣
⎛⎝1 + λ +

√
2

π

εtest

Aλ

⎞⎠ + ⎛⎝ε2test +
√

2

π
εtestA

λ⎞⎠I
⎤⎥⎥⎥⎥⎦θ

λ
=
⎛⎝1 + λ +

√
2

π

εtest

A

⎞⎠θ0 .
The above equation can be written as

θλ
= (1 + γλ0 )−1θ0 ,

with

γ0 ∶=
ε2test +

√
2

π
εtestA

λ

1 + λ +
√

2

π
εtest
A

,

which is the desired claim. The proof is complete by noting that

Aλ
∶=

1∥θλ∥`2 (σ
2

0 + ∥θ0 − θ∥2`2)1/2 = 1∥θ0∥`2 ((1 + γ
λ
0 )2σ20 + (γλ0 )2 ∥θ0∥2`2)1/2 .

6.8 Proofs for algorithmic tradeoffs

6.8.1 Proof of Theorem 3.3

We have already prove part (a) in the previous sections. Part (b) is also trivial from (6.23) as

lim
n→∞

1

p
∥θ̂ε
− θ0∥2`2 = lim

n→∞
∥ẑε∥2`2 = α2

∗
.

We thus turn our attention to part (c) and discuss how to calculate
∥θ̂ε∥

`2√
p

asymptotically. As
discussed earlier using a change of variable of the form θ = θ0 +

√
pz the optimization problem can

be written in the form

min
z∈Sz ,v

max
u∈Su

1√
p
(uTXz −uTω +uTv) + `(v;z)

where

`(v;z) ∶= 1

2p
(∥v∥2`2 + 2 ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + ε2p ∥θ0 +√pz∥2`2)

As in the previous argument on calculating ∥θ̂ε
− θ0∥`2 asymptotically via the AO we proceed by

writing `(v;z) in terms of its conjugate with respect to z. That is,

`(v;z) = sup
q

qTz − ̃̀(v;q)
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As discussed in Section 6.3 the conjugate function takes the form

̃̀(v;q) = − 1√
p
qTθ0 +

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1

2p
∥v∥2`2

and the AO problem can therefore be written as (same as (6.12))

min
0≤α≤Kα,v

max
0≤β≤Kβ

max
q

β√
p
∥αg −ω + v∥`2 − α∥ β√ph + q∥

`2

− ̃̀(v;q)
Our key observation is that the same AO can be used to calculate

∥θ̂ε∥
`2√
p

. To make this precise we

show how to write ∥θ̂ε∥
`2

in terms of functions of the q and v that maximizes the AO. To this aim

note that ẑ = 1√
p
(θ̂ε
− θ0) obeys

ẑ = argmax
z

qTz − `(v;z)
= argmax

z
qTz −

1

2p

n

∑
i=1

(∣vi∣ + ε√
p
∥θ0 +√pz∥`2)

2

= argmax
z

qTz −
1

2p
(∥v∥2`2 + 2ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + δε2 ∥θ0 +√pz∥2`2)

Setting derivative w.r.t z to zero we arrive at

q −
ε

p3/2 ∥v∥`1 θ0 +
√
pẑ∥θ0 +√pẑ∥`2

√
p −

δε2

p
(θ0 +√pẑ)√p = 0 (6.29)

Therefore

θ0 +
√
pẑ =

⎛⎝
ε ∥v∥`1

p ∥θ0 +√pẑ∥`2 +
δε2√
p

⎞⎠
−1

q.

Thus taking Euclidean norm of both sides of the identity we have

∥θ0 +√pẑ∥`2 ⎛⎝
ε ∥v∥`1

p ∥θ0 +√pẑ∥`2 +
δε2√
p

⎞⎠ = ∥q∥`2 ⇒

∥θ0 +√pẑ∥`2 = ∥q∥`2 −
ε∥v∥`1

p

δε2√
p

=

√
p

δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1 .

The latter holds as long as
√
p

δε2
∥q∥`2 ≥ 1

δε
√
p
∥v∥`1 . When

√
p

δε2
∥q∥`2 < 1

δε
√
p
∥v∥`1 it is easy to verify

that that the objective value is smaller than or equal to −qT θ0√
p
−

1

2p
∥v∥2`2 and therefore ẑ = −θ0/√p

which in turn implies that ∥θ̂ε∥
`2
= ∥θ0 +√pẑ∥`2 = 0. We thus have

1√
p
∥θ̂ε∥

`2
=

1√
p
∥√pẑ + θ0∥`2 = 1√

p
(√p
δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1)

+

=
1

δεp
(p
ε
∥q∥`2 − ∥v∥`1)

+

. (6.30)
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So to get the asymptotic value of 1√
p
∥θ̂ε∥

`2
we can simply look at 1

δεp
(p
ε
γ − ∥v∥`1)+ with v and

γ = ∥q∥`2 the optimal solutions of the AO. Note that based on the argument in Lemma 6.4 for this
optimal solution of v we have

lim
n→+∞

1

n2
(p
ε
γ − ∥v∥`1)2 = ω2

(µ + 1)2 ⎛⎝γ(µ + 1)δεω
+ τ∗ ⋅ erfc( 1√

2
τ∗) −

√
2

π
e−
(τ∗)2

2

⎞⎠
2

+

(6.31)

with ω =
√
α2 + σ2, µ = τg

β
, τ∗ ∶= τ∗ (γ(µ+1)

δεω
, µ) and τ∗(a,µ) is the unique solution to

a −
µ + 1

µ
τ + τ ⋅ erfc( τ√

2
) −
√

2

π
e−

τ2

2 = 0 (6.32)

Therefore, squaring (6.30) and plugging in (6.31) we conclude that

lim
p→∞

1

p
∥θ̂ε∥2

`2
= lim

p→∞

1

δ2ε2p2
(p
ε
γ − ∥v∥`1)2

+

=
1

ε2
⋅ lim
n→∞

1

n2
(p
ε
γ − ∥v∥`1)2

+

=
ω2

ε2(µ + 1)2 ⎛⎝γ(µ + 1)δεω
+ τ∗ ⋅ erfc( 1√

2
τ∗) −

√
2

π
e−
(τ∗)2

2

⎞⎠
2

+

=
ω2

ε2(µ + 1)2 (γ(µ + 1)δεω
+
µ + 1

µ
τ∗ −

γ(µ + 1)
δεω

)2
+

=
ω2

ε2(µ + 1)2 (µ + 1µ τ∗)2
+

=
ω2τ2

∗

ε2µ2

=
(α2
∗
+ σ2)τ2

∗

ε2µ2
.

6.8.2 Proof of Corollary 3.4

The result follows readily from Lemma 3.1 along with Theorem 3.3 (Parts (b) and (c)).

6.8.3 Proof of Theorem 3.5

We start by analyzing limp→∞ SR(θλ) and limp→∞AR(θλ). Using Lemma 3.1, we have

lim
p→∞

SR(θλ) = σ2 + lim
p→∞

1

p
∥θλ
− θ0∥2`2

= σ2 + lim
p→∞

1

p
∥θ0∥2`2 ( γλ

0

1 + γλ
0

)2

= σ2 + ( γλ0V
1 + γλ

0

)2 . (6.33)
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Likewise,

lim
p→∞

AR(θλ) = σ2 + V 2 ( γλ
0

1 + γλ
0

)2 + ε2test V 2

(1 + γλ
0
)2 + 2

√
2

π

εtestV

1 + γλ
0

⎛⎝σ2 + ( γ
λ
0
V

1 + γλ
0

)2⎞⎠
1/2
, (6.34)

with γλ
0

the fixed point of the following two equations:

γλ0 =
ε2test +

√
2

π
εtestA

λ

1 + λ +
√

2

π
εtest
Aλ

, Aλ
=

1

V
((1 + γλ0 )2σ2 + (γλ0 )2V 2)1/2 . (6.35)

We next analyze limδ→∞ limn→∞ SR(θ̂ε) and limδ→∞ limn→∞AR(θ̂ε). By using Corollary 3.4, we
have

lim
δ→∞

lim
n→∞

SR(θ̂ε) = lim
δ→∞
(σ2 + α2

∗
) , (6.36)

lim
δ→∞

lim
n→∞

AR(θ̂ε) = lim
δ→∞

⎧⎪⎪⎨⎪⎪⎩σ
2
+ α2

∗
+ ε2test(α2

∗
+ σ2)(β∗τ∗

ετg∗
)2 + 2

√
2

π

εtestβ∗τ∗

ετg∗
(σ2 + α2

∗
)⎫⎪⎪⎬⎪⎪⎭ . (6.37)

Therefore, we need to study the solution of the convex-concave minimax optimization (6.23) at the
limits δ →∞. It is straightforward to see that as δ →∞, the indicator in (6.23) is active and hence
it reduces to

D(α,β, γ, τh, τg) = δβ

2(τg + β) (α2
+ σ2) + δβ2(α2

+ σ2)
2τg(τg + β) erf ( τ∗√

2
)

−
α

2τh
γ2 + γ

⎛⎝
¿ÁÁÀα2β2

τ2
h

+ V 2 −
βτ∗
√
α2 + σ2

ετg

⎞⎠
−
α

2τh
β2 −

ατh

2
+
βτg

2
. (6.38)

Solving for γ, we obtain

γ∗ =
τh

α

⎛⎝
¿ÁÁÀα2β2

τ2
h

+ V 2 −
βτ∗
√
α2 + σ2

ετg

⎞⎠ .
Since γ(τg + β) >√ 2

π
δεβ
√
α2 + σ2, we have γ →∞ as δ →∞, and by the above equation for γ∗, we

obtain that τh →∞. Therefore,

γ∗ →
τh

α
(V − βτ∗

√
α2 + σ2

ετg
) . (6.39)

In addition, τ∗ → 0 as δ →∞. Writing the Taylor expansion of the characteristic equation of τ∗ as
per (6.24), we get

γ(τg + β)
βδε
√
α2 + σ2

=

√
2

π
+
βτ∗

τg
+O(τ2

∗
) . (6.40)
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We adopt the shorthands ω ∶=
√
α2 + σ2 and µ ∶= τg

β
. Combining (6.40) with (6.39) yields

τh(µ + 1)
αδεω

(V − τ∗ω
εµ
) =
√

2

π
+
τ∗

µ
+O(τ2

∗
) .

Writing the objective D given by (6.38) in terms of ω, µ, η and after substituting for γ∗ we arrive at

D =
δω2

2(µ + 1) + δω2

2µ(µ + 1)erf ( τ∗√2)
+
τh

2α
(V − τ∗ω

εµ
)2 − α

2τh
β2 −

ατh

2
+
β2µ

2
. (6.41)

Since δ, τh →∞, keeping only the dominant terms results in

D =
δω2

2(µ + 1) + δω2

2µ(µ + 1)erf ( τ∗√2) + τh2α (V − τ∗ωεµ )
2

−
ατh

2
, (6.42)

and by keeping only terms of O(τ2
∗
) we have

D =
δω2

2(µ + 1) ⎛⎝1 +
√

2

π

τ∗

µ

⎞⎠ + τh2α (V − τ∗ωεµ )
2

−
ατh

2
. (6.43)

Setting the derivative of D, with respect to τh, to zero, we get

α = V −
τ∗ω

εµ
. (6.44)

We next set the derivative of D, with respect to α, to zero, which implies

δα

µ + 1

⎛⎝1 +
√

2

π

τ∗

µ

⎞⎠ − τh

2α2
(V − τ∗ω

εµ
)2 − τh

α
(V − τ∗ω

εµ
) τ∗
εµ

α

ω
−
τh

2
= 0 .

Plugging in for α from (6.44) we obtain

α = εω

√
2

π
+

τ∗
µ

1 +
√

2

π
τ∗
µ

(1 + τ∗α
εµω
) . (6.45)

Defining Aε
∶=

εµ
τ∗

and γε
0
∶=

εµV
τ∗ω
− 1, the above two equations (6.44), (6.45) imply that

α = V −
ω

Aε
=
γε
0
V

1 + γε
0

, (6.46)

αε

ω
= ε2

1 +
√

2

π
µ
τ∗

µ
τ∗
+

√
2

π

(1 + τ∗α
εµω
) = ε2 +

√
2

π
εAε

Aε

ε
+

√
2

π

(1 + τ∗α
εµω
) . (6.47)

From (6.46) we obtain

1

V
((1 + γε0)2σ2 + (γε0)2V 2)1/2 = 1 + γε

0

V
ω = Aε. (6.48)
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In addition, from (6.46) and (6.47) we have

γε0 =
V Aε

ω
− 1 =

Aεα

ω
=

ε2 +
√

2

π
εAε

1 +
√

2

π
ε
Aε

(1 + γε
0(Aε)2) . (6.49)

Combining equations (6.48) and (6.49), we have that γε
0

is the fixed point of the following two
equations:

γε0 =
ε2 +
√

2

π
εAε

1 − ( ε
Aε )2 , Aε

=
1

V
((1 + γε0)2σ2 + (γε0)2V 2)1/2 . (6.50)

Now consider a fixed λ ≥ 0 and let γλ
0
,Aλ be defined by (6.35). Comparing equations (6.33)

and (6.34) with (6.36) and (6.37), we see that in order to prove the statement, it suffices to find
corresponding ε ≥ 0 such that γε

0
= γλ

0
(Note that the statement γε

0
= γλ

0
implies that Aε

= Aλ as well).
Such value of ε is hence found from the following equation (which equates γε

0
= γλ

0
and Aλ

= Aε):

ε2test +
√

2

π
εtestA

λ

1 + λ +
√

2

π
εtest
Aλ

=

ε2 +
√

2

π
εAλ

1 − ( ε
Aλ )2 .

Rearranging terms, we reach to:

ε2
⎛⎝1 + λ +

√
2

π

εtest

Aλ
+ (εtest

Aλ
)2 +
√

2

π

εtest

Aλ

⎞⎠+ε
√

2

π

⎛⎝Aλ(1 + λ) +
√

2

π
εtest
⎞⎠−⎛⎝ε2test +

√
2

π
εtestA

λ⎞⎠ = 0 .
The thesis now follows by noting that the above equation is a quadratic form in ε and has always a
positive solution, which gives the value of ε in terms of λ.
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maximization in the saddle point problem (2.6) has a closed form solution and the estimator θ̂ε can
be equivalently defined by

θ̂ε
∈ argmin

θ∈Rp

1

2p

n

∑
i=1

(∣yi − ⟨xi,θ⟩∣ + ε ∥θ∥`2)2 . (A.1)

Therefore for linear regression, adversarial training by the saddle point optimization (2.2) amounts to
a regularized estimator. When δ < 1, we are in the overparametrized regime and regularization helps
with standard accuracy. In particular, when δ → 1, the condition number of the covariate matrix
diverges (a.k.a interpolation threshold [BMM18, BHMM18, HMRT19]) and the role of regularization
becomes crucial, without which the standard risk would diverge. This is reflected in Figure 2 in that
the standard risk diverges at ε = 0 as δ → 1, and also the statistical risk plummets quickly with ε ;
See also Proposition A.1 below.

Nonetheless, in the δ > 1 regime the effect of regularization starts to weaken. To see why, note
that as δ grows, the ratio of sample size n to the dimension p increases, and the reduction in the
variance of the estimator due to regularization becomes comparative to the increase in the bias
caused by this term. As a result the overall positive effect of regularization on standard risk lessens
and we see in Figure 3, the negative slope at ε = 0 decreases as δ increases. In addition, at large δ,
the standard risk will start to quickly becomes increasing with ε. In other words, for larger δ, the
negative effect of adversarial training on standard risk starts to emerge at smaller values of ε. (For
example at δ = 10, this effect kicks in at ε = 0.15.)

Our next proposition describes the standard risk at small values of ε.

Proposition A.1. Under the assumptions of Theorem 3.3 and for δ ≥ 1 and ε ≤ 1, we have

lim
n→∞

SR(θ̂ε) = δσ2

δ − 1
− 2

√
2

π

σ3δ3/2(δ − 1)2 ⋅ 1√
σ2 + V 2(δ − 1) ε +O(ε2) . (A.2)

As a result of Proposition A.1, for ε small and δ ≥ 1: (i) standard risk α∗ falls with ε at vicinity
of ε = 0 (ii) the risk falls slower at larger δ (iii) as δ → 1, the slope diverges and the risk plummets
rapidly. These observations corroborates our justification and insights provided above.

We finish this appendix by the proof of Proposition A.1.

Proof of Proposition A.1. Define x = (α,β, τh, τg, γ). We can write the objective of the convex-
concave minimax problem (6.22) as

D(α,β, τh, τg, γ) = D̄(α,β, τh, τg, γ) + 1{ γ(τg+β)
δεβ
√

α2
+σ2
>

√
2

π
}D̃(α,β, τh, τg, γ) ,

where D̄ does not depend on ε. It is easy to see that when ε = 0, then γ = 0. Otherwise τ∗ =∞ and
D̃ = −∞ which implies that the maximum of D over γ is achieved at γ = 0. Therefore at ε = 0, we get

D = D̄ =
δβ

2(τg + β)(α2
+ σ2) − α

2τh
β2 −

ατh

2
+
βτg

2
.

The stationary point is given by (τg + β)2 = δ(α2
+ σ2), τh = β and δα = τg + β, τg = α (derivative

with respect to β). Putting things together we have

α2
=

σ2

δ − 1
, τg = α =

σ√
δ − 1

, τh = β = σ
√
δ − 1 , γ = 0 . (A.3)
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We next study the behavior of the convex-concave minimax problem 6.22 at infinitesimal ε.
Rewriting the expressions for D̄ and D̃, we have

D̄ =
δβ

2(τg + β) (α2
+ σ2) − α

2τh
(γ2 + β2) + γ

¿ÁÁÀα2β2

τ2
h

+ V 2 −
ατh

2
+
βτg

2
,

D̃ =
δβ2(α2

+ σ2)
2τg(τg + β) (erf(

τ∗√
2
) − γ(τg + β)

δεβ
√
α2 + σ2

τ∗) . (A.4)

Let γ0 ∶=
√

2

π
δεβ
√
α2
+σ2

τg+β
. If γ ≥ γ0, then D is a quadratic function of γ with the peak location at

γ1 ∶=

√
β2 +

τ2
h

α2
V 2 −

τhβ
√
α2 + σ2

2αετg
τ∗ .

If γ < γ0, then D = D̄ is quadratic in γ with the peak location at

γ2 ∶=

√
β2 +

τ2
h

α2
V 2 .

Therefore, to find the optimal γ we need to consider three different cases, giving us

γ∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ1 if γ0 ≤ γ1 ≤ γ2 ,

γ0 if γ1 ≤ γ0 ≤ γ2 ,

γ2 if γ1 ≤ γ2 ≤ γ0 .

(A.5)

As ε → 0, we have γ0 → 0. However, using (A.3) we get γ2 →
√
σ2(δ − 1) + (δ − 1)2V 2 > 0. By

continuity, at infinitesimal ε we get γ0 < γ2. Hence, in (A.5) only the first two cases may happen.
Suppose that the first case occurs. Then, 0 ≤ γ0 ≤ γ1 and by definition of γ1 we obtain that τ∗ = O(ε).
Invoking the characterization equation of τ∗ as per (6.24), we get

γ∗(τg + β)
δεβ
√
α2 + σ2

=

√
2

π
+O(ε) , τ∗ = O(ε) . (A.6)

If the second case in (A.5) happens, we have γ∗ = γ0 =
√

2

π
δεβ
√
α2
+σ2

τg+β
and τ∗ = 0. So this case is

subsumed in (A.6) and henceforth we can proceed with (A.6).
By Taylor expansion of the erf function we have

erf( τ∗√
2
) =
√

2

π
τ∗ +O(τ3∗) ,

which implies that D̃ = O(τ3
∗
) = O(ε3). Separating O(ε2) terms from the lower order terms we get

D(α,β, τg, τh) =D0(α,β, τg, τh) + εD1(α,β, τg, τh) +O(ε2) , (A.7)

D0(α,β, τg, τh) = δβ

2(τg + β) (α2
+ σ2) − α

2τh
β2 −

ατh

2
+
βτg

2
,

D1(α,β, τg, τh) =
√

2

π

δβ
√
α2 + σ2

τg + β

¿ÁÁÀα2β2

τ2
h

+ V 2 . (A.8)
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Letting x = (α,β, τg, τh), we then have

∇D(x) = ∇D0(x) + ε∇D1(x) +O(ε2) . (A.9)

To get the stationary points, we need to solve for ∇D(x) = 0. However, to find the solution up to
O(ε) term we can instead solve for ∇D0(x) + ε∇D1(x) = 0. To see why, suppose that ∇D(x∗) = 0
and write x∗ = x0 + εx1 +O(ε2). Hence,

0 = ∇D(x∗) = ∇D0(x∗) + ε∇D1(x∗) +O(ε2)
= ∇D0(x0) + ε(∇2D0(x0)x1 +∇D1(x0)) +O(ε2) . (A.10)

This implies that x0 and x1 should satisfy

∇D0(x0) = 0 and ∇
2D0(x0)x1 +∇D1(x0) = 0 . (A.11)

Likewise, let x̃∗ be the solution of ∇D0(x) + ε∇D1(x) = 0 and write x̃∗ = x̃0 + εx̃1 +O(ε2). Then
following similar arguments, we get

∇D0(x̃0) = 0 and ∇
2D0(x̃0)x̃1 +∇D1(x̃0) = 0 . (A.12)

Comparing equations (A.11) and (A.12), we see that x0 = x̃0 and x1 = x̃1. Therefore, to find the
stationary point x∗ up to O(ε) terms, we can neglect O(ε2) term in (A.9).

We proceed by computing the stationary points of D0(x) + εD1(x). Writing KKT conditions
with respect to α, β, τg, τh we have√

2

π
αβδε

√
α2β2

τ2
h

+ V 2√
α2 + σ2(β + τg) +

√
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αβδ
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β2

2τh
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τh

2
= 0 ,
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2α2β2δε
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α2 + σ2√

πτ2
h
(β + τg)√α2β2

τ2
h

+ V 2

−

√
2

π
βδε
√
α2 + σ2

√
α2β2

τ2
h

+ V 2

(β + τg)2

+
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α2 + σ2

√
α2β2

τ2
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+ V 2
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βδ (α2

+ σ2)
2(β + τg)2 +

δ (α2
+ σ2)

2(β + τg) −
αβ

τh
+
τg

2
= 0 ,

−

√
2

π
βδε
√
α2 + σ2

√
α2β2

τ2
h

+ V 2

(β + τg)2 −
βδ (α2

+ σ2)
2(β + τg)2 +

β

2
= 0 ,

−

√
2

π
α2β3δε

√
α2 + σ2

τ3
h
(β + τg)√α2β2

τ2
h

+ V 2

+
αβ2

2τ2
h

−
α

2
= 0 .

Second equation can be simplified using other equations as

αβ

2τh
−
ατh

2β
−
β

2
−
δ(α2

+ σ2)
2(β + τg) +

β + τg

2
+
δ (α2

+ σ2)
2(β + τg) −

αβ

τh
+
τg

2
= 0 .

→ −
αβ

2τh
+ τg −

ατh

2β
= 0 .
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The first equation also simplifies to

−
αβδ

2(β + τg) +
α(β + τg)β
2(α2 + σ2) + β2

2τh
−
τh

2
+
αβδ

β + τg
−
β2

2τh
−
τh

2
= 0 ,

→

αβδ

2(β + τg) +
α(β + τg)β
2(α2 + σ2) − τh = 0 .

Define η = β/τh > 1 (since ε > 0). The second equation gives τg = α/2(η + 1/η). While this becomes
useful in finding optimal τg it does not matter with our goal of finding α as everywhere τg appears
in form β + τg. The first equation though gives

δ

β + τg
+

β + τg(α2 + σ2) = 2

αη
. (A.13)

The third equation gives

2
√

2

π
δε
√
α2 + σ2

√
α2η2 + V 2 + δ(α2

+ σ2) = (β + τg)2 . (A.14)

The fourth equation gives

2
√

2

π
αη3δε

√
α2 + σ2

(η2 − 1)√α2η2 + V 2
= β + τg . (A.15)

Continuing from (A.13) we get√
2

π
ε
√
α2η2 + V 2 +

√
α2 + σ2 = (α2

+ σ2) 2
√

2

π
η2ε

(η2 − 1)√α2η2 + V 2
. (A.16)

Simplifying this equation,√
2

π
ε
√
α2η2 + V 2 (η2 − 1) +√α2 + σ2(η2 − 1) = (α2

+ σ2) 2
√

2

π
η2ε√

α2η2 + V 2
. (A.17)

We now proceed by taking derivatives of both equations implicitly with respect to ε and evaluate
them at

τ∗g = α
∗
=

σ√
δ − 1

, τ∗h = β
∗
= σ
√
δ − 1 , γ∗ = 0, and ε = 0 .

Note that the derivative of the first equation yields

d

dε

⎛⎜⎝
√
α2 + σ2(η2 − 1) + ε⎛⎜⎝

√
2

π

√
α2η2 + V 2(η2 − 1) − (α2

+ σ2) 2

√
2

π
η2√

α2η2+V 2

⎞⎟⎠
⎞⎟⎠ = 0 .

Thus

d

dε
(√α2 + σ2(η2 − 1)) + ⎛⎜⎝

√
2

π

√
α2η2 + V 2(η2 − 1) − (α2

+ σ2) 2

√
2

π
η2√

α2η2+V 2

⎞⎟⎠+

ε
d

dε

⎛⎜⎝
√

2

π

√
α2η2 + V 2(η2 − 1) − (α2

+ σ2) 2

√
2

π
η2√

α2η2+V 2

⎞⎟⎠ = 0 .

36



Setting ε = 0 in the above yields

d

dε
(√α2 + σ2(η2 − 1)) + ⎛⎜⎝

√
2

π

√
α2η2 + V 2(η2 − 1) − (α2

+ σ2) 2

√
2

π
η2√

α2η2+V 2

⎞⎟⎠ = 0 .
Thus

α∗√(α∗)2 + σ2
dα

dε
(η2
∗
− 1) + 2η∗√α2

∗
+ σ2

dη

dε
= (α2

∗
+ σ2) 2

√
2

π
η2
∗√

α2
∗
η2
∗
+V 2
−

√
2

π

√
α2
∗
η2
∗
+ V 2(η2

∗
− 1) .

Setting η∗ = 1 this simplifies to

dη

dε
=

√(α∗)2 + σ2
√

2

π√(α∗)2+V 2
= σ

√
2δ

π

1√
σ2 + V 2(δ − 1) .

In addition, from (A.13)

(− δ(β∗ + τg∗)2 +
1

α2
∗
+ σ2
) d

dε
(β + τg) − β∗ + τg∗(α2

∗
+ σ2)2 2α∗dαdε = − 2

α∗η
2
∗

dη

dε
−

2

α2
∗
η∗

dα

dε
.

Plugging in for β∗, τg∗, α∗ the coefficient of d

dε
(β + τg) vanishes and we arrive at

σδ√
δ−1

(σ2δ
δ−1
)2

σ√
δ − 1

dα

dε
=

√
δ − 1

σ

dη

dε
+
δ − 1

σ2
dα

dε
.

Rearranging the terms, we obtain

dα

dε
= −

σδ(δ − 1)3/2 dηdε = −
√

2

π
σ2 ( δ

δ − 1
)3/2 1√

σ2 + V 2(δ − 1) .
Now, invoking the definition of statistical risk we have

SR(θ̂ε) = SR(θ̂0) + d

dε
SR(θ̂ε)∣

ε=0
ε +O(ε2)

= σ2 + α2

∗
+ 2α∗

dα

dε
∣
ε=0
+O(ε2)

=
σ2δ

δ − 1
−

√
2

π

σ3δ3/2(δ − 1)2 ⋅ 1√
σ2 + V 2(δ − 1) +O(ε2) . (A.18)

The proof is complete.

B Proofs that the minimization and maximization primal problems
can be restricted to a compact set

In this section we demonstrate how the minimization and maximization problems can be restricted to
compacts sets. We start with the restriction on z. To this aim recall that that one of the main goals
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of Theorem 3.3 is to characterize the distance of the optimal solution θ̂ε to θ0 i.e.
∥θ̂ε
−θ0∥`2√
p
= ∥ẑε∥`2

asymptotically and in particular to show ∥z∥`2 → α∗ as n →∞, in probability, for some α∗ to be
determined. Now define the set Sz = {z∣ ∥z∥`2 ≤ Kα} with Kα = α∗ + ζ for a constant ζ > 0 and
consider the optimization problem

min
z∈Sz ,v∈Rn

max
u∈Rn

1√
p
(uTXz −uTω +uTv) + `(v;z) (B.1)

with ω =w/√p. Based on the CGMT framework this optimization problem is equivalent to (6.6) in
an asymptotic fashion in the sense that if the Euclidean norm of the optimum solution to the above
converges asymptotically to a value α∗ in probability as n→ +∞ then ∥ẑ∥`2 also converges to the
same value (∥ẑ∥→ α∗) in probability. See [TAH18, Theorem A.1] for a formal argument.

The optimization problem above is still not in a form where CGMT can be applied as there are
no compact restriction on u. This is the subject of the next lemma.

Lemma B.1. The optimal solution u∗ of (B.1) satisfies ∥u∗∥`2 ≤Kβ for a sufficiently large constant
Kβ > 0 with probability at least 1 − 2e−cn.

Proof. Writing the KKT conditions for (B.1) we have

Xz −
1√
p
w + v = 0

ui = −
√
p[∇v`(v;z)]i = − 1√

p
(vi + ε

p
⋅ sgn(vi) ∥θ0 +√pz∥`2)

From the first equation we have that v = w√
p
−Xz. Thus,

∥v∥`2 ≤ 1√
p
∥w∥`2 + ∥Xz∥`2

≤
1√
p
∥w∥`2 + ∥X∥ ∥z∥`2

(a)
≤ C
√
nσ +C (√p +√n) ∥z∥`2

(b)
≤ C
√
nσ +C (√p +√n)Kα

holds with probability at least 1− 2e−cn. Here, (a) follows from well known bounds on the Euclidean
norm of a Gaussian vector and the spectral norm of a Gaussian matrix and (b) follows from the fact
that ∥z∥`2 ≤Kα. We thus have ∥v∥`2 ≤ C2 (√p +√n), with high probability. Now using the second
equation we have

∥u∥`2 ≤∥v∥`2√
p
+
ε
√
δ√
p
∥θ0 +√pz∥`2

≤Cσ
√
δ +C(1 +√δ)Kα +

ε
√
δ√
p
∥θ0∥`2 + ε√δ ∥z∥`2

≤Cσ
√
δ +C(1 +√δ)Kα + ε

√
δC̃ + ε

√
δKα

≤Kβ ,

for some bounded constant Kβ . In the penultimum step we used the fact that
∥θ0∥`2√

p
is bounded and∥z∥`2 ≤Kα.
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C Proofs for scalarization of Auxilary Optimization (AO)

C.1 Proof of Lemma 6.1

We restate the lemma for the convenience of the reader.

Lemma C.1. [Restatement of Lemma 6.1] The conjugate of

`(v;z) ∶= 1

2p
(∥v∥2`2 + 2 ε√

p
∥v∥`1 ∥θ0 +√pz∥`2 + ε2p ∥θ0 +√pz∥2`2)

with respect to the variable z is given by

̃̀(v;q) ∶= sup
z

qTz − `(v;z) = − 1√
p
qTθ0 +

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1

2p
∥v∥2`2 .

Proof. We begin by calculating the conjugate of a slightly simpler function

¯̀(v;θ) ∶= 1

2p

n

∑
i=1

(∣vi∣ + ε√
p
∥θ∥`2)2 .

We have

¯̀∗(v;q) = sup
θ

qTθ − ¯̀(v;θ)
= sup

θ

qTθ −
1

2p

n

∑
i=1

(∣vi∣ + ε√
p
∥θ∥`2)2

= sup
θ

sup
ξ≥0

qTθ −
1

2p

⎛⎝∥v∥2`2 + 2ε√
p
∥v∥`1 ⎛⎝

∥θ∥2`2
2ξ
+
ξ

2

⎞⎠ + δε2∥θ∥2`2⎞⎠
= sup

ξ≥0

sup
θ

qTθ −
1

2p

⎛⎝∥v∥2`2 + 2ε√
p
∥v∥`1 ⎛⎝

∥θ∥2`2
2ξ
+
ξ

2

⎞⎠ + δε2∥θ∥2`2⎞⎠
Setting derivative w.r.t θ to zero, we get

q −
ε ∥v∥`1
p3/2ξ θ −

δε2

p
θ = 0 ⇒ θ = (ε ∥v∥`1

p3/2ξ +
δε2

p
)−1 q

Setting the derivative with respect to ξ to zero we conclude that ξ = ∥θ∥`2 . Plugging the latter into
above we conclude that

θ = ( ε ∥v∥`1
p3/2∥θ∥`2 +

δε2

p
)−1 q

Taking the Euclidean norm from both sides we conclude that

∥θ∥`2 ( ε ∥v∥`1
p3/2∥θ∥`2 +

δε2

p
) = ∥q∥`2 ⇒ ∥θ∥`2 =

∥q∥`2 − ε∥v∥`1
p
3
2

δε2

p

=
p

δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1
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If p
δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1 < 0 then it is easy to verify that the objective is less than − 1

2p
∥v∥2`2 and hence

the optimal is given by θ = 0.
Thus

θ = ( p

δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1) q∥q∥`2 = (

p

δε2
−

1

δε
√
p

∥v∥`1∥q∥`2 )q
Substituting for θ we have

¯̀∗(v;q) =( p

δε2
−

1

δε
√
p

∥v∥`1∥q∥`2 )∥q∥2`2
−

1

2p

⎛⎝∥v∥2`2 + 2ε√
p
∥v∥`1 ( p

δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1) + δε2 ( p

δε2
∥q∥`2 − 1

δε
√
p
∥v∥`1)

2⎞⎠
=

p

2δε2
∥q∥2`2 − 1

δε
√
p
∥v∥`1 ∥q∥`2 + 1

2δp2
∥v∥2`1 − 1

2p
∥v∥2`2

=
1

2δp2

⎛⎝p
3

2

ε
∥q∥`2 − ∥v∥`1⎞⎠

2

−
1

2p
∥v∥2`2

if ∥v∥`1 ≤ p
3
2

ε
∥q∥`2 . Otherwise,

¯̀∗(v;q) = − 1

2p
∥v∥2`2 .

We can put the two cases together using the notation z+ =max(z,0).
¯̀∗(v;q) = 1

2δp2

⎛⎝p
3

2

ε
∥q∥`2 − ∥v∥`1⎞⎠

2

+

−
1

2p
∥v∥2`2 .

Now to calculate the conjugate of `(v;z) note that

`(v;z) = ¯̀(v;θ0 +√pz)
To continue note that if we have f(x) = g(Ax +x0) the conjugate is given by

f∗(y) = −⟨A−1x0,y⟩ + g∗ (A−Ty)
Thus using above with x0 = θ0 and A =

√
p we arrive at

̃̀(v;q) = − 1√
p
⟨θ0,q⟩ + ¯̀∗ (v; 1√

p
q)

= −
1√
p
qTθ0 +

1

2δp2
(p
ε
∥q∥`2 − ∥v∥`1)2

+

−
1

2p
∥v∥2`2 ,

concluding the proof.
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C.2 Proof of Lemma 6.2

Lemma C.2 (Restatement of Lemma 6.2). The function

f(γ, β, τh) ∶= γ2 + β2
p
∥h∥2`2 − 2 γ√

p
∥βh − θ0

α
∥
`2

is jointly convex in the parameters (γ, β, τh).
Proof.

γ2 +
β2

p
∥h∥2`2 − 2 γ√

p
∥βh − θ0

α
∥
`2

= γ2 +
β2

p
∥h∥2`2 − 2 γ√

p

√
β2 ∥h∥2`2 + 1

α2
∥θ0∥2`2 − 2

α
βhTθ0

with the Hessian with respect to (γ, β) equal to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −
1√
p

2β∥h∥2`2− 2

α
hT θ0√

β2∥h∥2`2+ 1

α2
∥θ0∥2`2− 2

α
βhT θ0

−
1√
p

2β∥h∥2`2− 2

α
hT θ0√

β2∥h∥2`2+ 1

α2
∥θ0∥2`2− 2

α
βhT θ0

2
∥h∥2`2

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The determinant is equal to

4

p

⎛⎜⎜⎝∥h∥
2

`2
−

(β ∥h∥2`2 − hT θ0
α
)2

β2 ∥h∥2`2 + 1

α2 ∥θ0∥2`2 − 2

α
βhTθ0

⎞⎟⎟⎠
=

4

pα2

1

β2 ∥h∥2`2 + 1

α2 ∥θ0∥2`2 − 2

α
βhTθ0

(∥h∥2`2∥θ0∥2`2 − (hTθ0)2)
≥ 0

Thus

α

2
γ2 +

α

2

β2

p
∥h∥2`2 − γ√

p
∥αβh − θ0∥`2 = α2 (γ2 + β

2

p
∥h∥2`2 − 2 γ√

p
∥βh − θ0

α
∥
`2

)
is jointly convex in (γ, β). Therefore the perspective function

τh (α
2
( γ
τh
)2 + α

2

β2

pτ2
h

∥h∥2`2 − γ

τh
√
p
∥α β
τh

h − θ0∥
`2

) = α

2τh
γ2 +

αβ2

2pτh
∥h∥2`2 − γ√

p
∥αβ
τh

h − θ0∥
`2

is jointly convex in (γ, β, τh).
C.3 Proof of Lemma 6.3

We begin by stating and proving the following lemma.
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Lemma C.3. The value of the following problem (with λ > 1)

min
v∈Rn

λ

2
∥x − v∥2`2 − 1

2n
(γ − ∥v∥`1)2+

is given by

min
τ≥0

λ

2
∥x − ST(x; τ)∥2`2 − 1

2n
(γ − ∥ST(x; τ)∥`1)2+

where ST(x; τ) is the soft-thresholding function.

Notably the lemma above transforms the first optimization (on vector v) to an optimization over
scalar τ .

Proof. We consider two case:
Case I: ∥x∥`1 > γ
In this case the optimal value is achieved by v = x resulting in an objective value of zero. We shall
proceed by contradiction and assume v = x is not an optimal solution. First note that under this
contradictory assumption we must have ∥v∥`1 < γ as otherwise the (⋅)+ term would be inactive and
the objective value would be greater than or equal to zero in which case v = x would achieve the
optimum value negating the contradictory assumption. We thus focus on the case that ∥v∥`1 < γ. To
reach a contradiction in this case note that we have

λ

2
∥x − v∥2`2 − 1

2n
(γ − ∥v∥`1)2+

≥
λ

2
∥x − v∥2`2 − 1

2n
(∥x∥`1 − ∥v∥`1)2

≥
λ

2
∥x − v∥2`2 − 1

2n
∥x − v∥2`1

>
1

2
∥x − v∥2`2 − 1

2n
∥x − v∥2`1

≥ 0,

where in the penultimum Since ST(x; 0) = x and we showed that it is the optimal v, the claim holds
in this case. Namely, the minimizer is achieved at a point in {ST(x; τ) ∶ τ ≥ 0}.
Case II: ∥x∥`1 ≤ γ
Since ∥v∥`1 is invariant with respect to the sign of its entries, it is clear that at the solution v,
we must have sign(v) = sign(x). Moreover, without loss of generality we can assume ∥v∥`1 ≤ γ as
otherwise similar to the previous case v = x would be a solution and the minimizer is achieved at a
point in {ST(x; τ) ∶ τ ≥ 0}. At the optimal solution we must have5

0 ∈ λ(v −x) − 1

n
(∥v∥`1 − γ)∂ ∥v∥`1

As we argued previously at an optimal solution we must have sign(v) = sign(x) and thus ∂ ∥v∥`1 =
∂ ∥x∥`1 rearranging the terms gives

v ∈ x +
1

λn
(∥v∥`1 − γ)∂ ∥v∥`1 = x − 1

λn
(γ − ∥v∥`1)∂ ∥x∥`1

Thus v = ST(x; τ) for τ = 1

λn
(γ − ∥v∥`1) ≥ 0 and the claim follows.

5We note that since λ > 1 the objective λ
2
∥x − v∥2`2 −

1

2n
(γ − ∥v∥`1)

2

+

is convex and thus optimality is given by zero

being a sub-gradient.
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With the lemma above in place we turn our attention to completing the proof of Lemma 6.3. To
this aim note that since f(v) is convex and ∥x − v∥2`2 is strictly convex, then 1

2µ
∥x − v∥2`2 + f(v) is

jointly striclty convex in (x,v). Since partial minimization preserves convexity, ef(x;µ) is strictly
convex in x (also see [TAH15, Lemma C.5]).

We write the Moreau envelope as

ef(x;µ) =min
v

1

2µ
∥x − v∥2`2 + 1

2
∥v∥2`2 − 1

2δp
(p
ε
γ − ∥v∥`1)2

+

=min
v

1

2
( 1
µ
+ 1)∥v − x

µ + 1
∥2
`2

+
1

2(µ + 1) ∥x∥2`2 − 1

2δp
(p
ε
γ − ∥v∥`1)2

+

Using Lemma C.3 with λ = 1+µ
µ
> 1, we arrive at

ef(x;µ) = 1

2(µ + 1) ∥x∥2`2 +min
τ≥0

1

2µ(µ + 1) ∥x − ST(x; τ(µ + 1))∥2`2
−

1

2n
(p
ε
γ −

1

1 + µ
∥ST(x; τ(µ + 1))∥`1)2

+

. (C.1)

The result follows by a change of variable τ(µ + 1)→ τ .

C.4 Proof of Lemma 6.4

We begin by restating the lemma for the convenience of the reader.

Lemma C.4 (Restatement of Lemma 6.4). Let w ∈ R
n be a Gaussian random vector distributed as

N (0, ω2In). Also assume

G(w;µ, τ) ∶= 1

2µ(µ + 1) ∥w − ST(w; τ)∥2`2 − 1

2n
(p
ε
γ −

1

1 + µ
∥ST(w; τ)∥`1)2

+

.

Then

lim
n→∞

1

n
G(w;µ, τ) = ω2

2µ(µ + 1) ⎛⎝⎛⎝1 −
√

2

π

τ

ω
e
−

τ2

2ω2

⎞⎠ + ( τ
2

ω2
− 1) erfc( 1√

2

τ

ω
)⎞⎠

−
ω2

2(µ + 1)2 ⎛⎝γ(µ + 1)δεω
+
τ

ω
⋅ erfc( 1√

2

τ

ω
) −
√

2

π
e
−

τ2

2ω2

⎞⎠
2

+

.

Furthermore,

min
τ≥0

lim
n→∞

1

n
G(w;µ, τ)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if γ(µ + 1) ≤√ 2

π
δεω

ω2

2µ(µ+1) (1 − erfc( τ∗( γ(µ+1)δεω
,µ)√

2
) − γ(µ+1)

δεω
τ∗ (γ(µ+1)

δεω
, µ)) if γ(µ + 1) >√ 2

π
δεω

where τ∗(a,µ) is the unique solution to

a −
µ + 1

µ
τ + τ ⋅ erfc( τ√

2
) −
√

2

π
e−

τ2

2 = 0 (C.2)
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Alternatively using the fact that erf = 1 − erfc we can rewrite this in the form

min
τ≥0

lim
n→∞

1

n
G(w;µ, τ)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if γ(µ + 1) ≤√ 2

π
δεω

ω2

2µ(µ+1) (erf ( τ∗( γ(µ+1)δεω
,µ)√

2
) − γ(µ+1)

δεω
τ∗ (γ(µ+1)

δεω
, µ)) if γ(µ + 1) >√ 2

π
δεω

where τ∗(a,µ) is the unique solution to

a −
1

µ
τ − τ ⋅ erf ( τ√

2
) −
√

2

π
e−

τ2

2 = 0

Proof. First note that by law-of large numbers we have

lim
n→∞

1

n
∥w − ST(w; τ)∥2`2 =Eg∼N (0,1) [ (ωg − ST(ωg; τ))2 ]

=ω2
Eg∼N (0,1) [ (g − ST(g; τ

ω
))2 ]

=ω2 ( 2√
2π
∫
+∞

+
τ
ω

τ2

ω2
e−

x2

2 dx +
1√
2π
∫
+

τ
ω

−
τ
ω

x2e−
x2

2 dx)
=ω2
⎛⎝⎛⎝1 −

√
2

π

τ

ω
e
−

τ2

2ω2

⎞⎠ + ( τ
2

ω2
− 1) erfc( 1√

2

τ

ω
)⎞⎠

=ω
⎛⎝ω −

√
2

π
τe
−

τ2

2ω2

⎞⎠ + (τ2 − ω2) erfc( 1√
2

τ

ω
)

Next note that

lim
n→∞

1

n
∥ST(w; τ)∥`1 =Eg∼N (0,1) [ ∣ST(ωg; τ)∣ ]

=ω Eg∼N (0,1)
⎡⎢⎢⎢⎢⎣ ∣ST(g;

τ

ω
)∣ ⎤⎥⎥⎥⎥⎦

=
ω√
2π
(∫ +∞

+
τ
ω

(x − τ
ω
) e−x2

2 dx −∫
−

τ
ω

−∞

(x + τ
ω
) e−x2

2 dx)
=

√
2

π
ω (∫ +∞

+
τ
ω

(x − τ
ω
) e−x2

2 dx)
=

√
2

π
ω ⋅ e

−
τ2

2ω2 − τ ⋅ erfc( 1√
2

τ

ω
)

Therefore,

lim
n→∞

1

2n2
(p
ε
γ −

1

1 + µ
∥ST(w; τ)∥`1)2

+

= lim
n→∞

1

2
( γ
δε
−

1

1 + µ

∥ST(w; τ)∥`1
n

)2
+

=
1

2

⎛⎝ γδε + τ

1 + µ
erfc( 1√

2

τ

ω
) −
√

2

π

ω

1 + µ
e
−

τ2

2ω2

⎞⎠
2

+
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The proof of the first identity follows by combining the two summands.
To prove the second identity note that using a change of variable τ/ω → τ

min
τ≥0

lim
n→∞

1

n
G(w;µ, τω)

=
ω2

2(µ + 1)2 ⋅min
τ≥0

µ + 1

µ

⎛⎝⎛⎝1 −
√

2

π
τe−

τ2

2

⎞⎠ + (τ2 − 1) erfc( τ√
2
)⎞⎠

−
⎛⎝γ(µ + 1)δεω

+ τ ⋅ erfc( τ√
2
) −
√

2

π
e−

τ2

2

⎞⎠
2

+

To continue note that if only the first term is active the derivative is given by

2
µ + 1

µ
τerfc( τ√

2
) ≥ 0

and when both terms are active the derivative is given by

2τ
µ + 1

µ
erfc( τ√

2
) − 2erfc( τ√

2
)⎛⎝γ(µ + 1)δεω

+ τ ⋅ erfc( τ√
2
) −
√

2

π
e−

τ2

2

⎞⎠
= −2erfc( τ√

2
)⎛⎝(µ + 1) ( γ

δεω
−
τ

µ
) + τ ⋅ erfc( τ√

2
) −
√

2

π
e−

τ2

2

⎞⎠
We note that the function (µ+ 1) ( γ

δεω
−

τ
µ
)+ τ ⋅ erfc( τ√

2
)−√ 2

π
e−

τ2

2 is always decreasing when τ ≥ 0

and its value at τ = 0 is given by γ(µ+1)
δεω

−

√
2

π
. To continue further consider two cases.

Case I: γ(µ + 1) ≤√ 2

π
δεω:

In this case the function is always increasing in τ ∈ [0,+∞) and thus the minimum is achieved at
τ = 0 with the corresponding optimal value given by

−
ω2

2(µ + 1)2 ⎛⎝γ(µ + 1)δεω
−

√
2

π

⎞⎠
2

+

= 0

Case II: γ(µ + 1) >√ 2

π
δεω:

In this case the function is decreasing at the beginning and then increases. Therefore, the minimum
is achieved at a point where

(µ + 1) ( γ

δεω
−
τ

µ
) + τ ⋅ erfc( τ√

2
) −
√

2

π
e−

τ2

2 = 0

Note that at such a point we have

γ(µ + 1)
δεω

+ τ ⋅ erfc( τ√
2
) −
√

2

π
e−

τ2

2 =
µ + 1

µ
τ
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and

⎛⎝1 −
√

2

π
τe−

τ2

2

⎞⎠ + (τ2 − 1) erfc( τ√
2
) =τ2 ⋅ erfc( τ√

2
) − τ

√
2

π
e−

τ2

2 + 1 − erfc( τ√
2
)

=
µ + 1

µ
τ2 −

γ(µ + 1)
δεω

τ + 1 − erfc( τ√
2
)

Thus

µ + 1

µ

⎛⎝⎛⎝1 −
√

2

π
τe−

τ2

2

⎞⎠ + (τ2 − 1) erfc( τ√
2
)⎞⎠ − ⎛⎝γ(µ + 1)δεω

+ τ ⋅ erfc( τ√
2
) −
√

2

π
e−

τ2

2

⎞⎠
2

+

=
(µ + 1)2
µ2

τ2 −
γ(µ + 1)2
δεωµ

τ +
µ + 1

µ
(1 − erfc( τ√

2
)) − (µ + 1)2

µ2
τ2

=
µ + 1

µ
(1 − erfc( τ√

2
) − γ(µ + 1)

δεω
τ)
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