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Abstract  34 
 35 
Lyme disease (LD), which is caused by genospecies of the Borrelia burgdorferi sensu lato 36 
complex, is the most common vector-borne disease in the Northern hemisphere. Spirochetes are 37 
transmitted by Ixodes ticks and maintained in diverse vertebrate animal hosts. Following tick 38 
bite, spirochetes initially establish a localized infection in the skin. However, they may also 39 
disseminate hematogenously to several distal sites, including heart, joints, or the CNS. Because 40 
they need to survive in diverse microenvironments, from tick vector to mammalian hosts, 41 
spirochetes have developed multiple strategies to combat the numerous host defense 42 
mechanisms. One of these strategies includes the production of a number of complement-43 
regulator acquiring surface proteins (CRASPs) which encompass CspA, CspZ, and OspE 44 
paralogs to blunt the complement pathway. These proteins are capable of preventing complement 45 
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activation on the spirochete surface by binding to complement regulator Factor H. The genes 46 
encoding these CRASPs differ in their expression patterns during the tick-to-host infection cycle, 47 
implying that these proteins may exhibit different functions during infection. This review 48 
summarizes the recent published reports which investigated the roles that each of these 49 
molecules plays in conferring tickborne transmission and dissemination in vertebrate hosts. 50 
These findings offer novel mechanistic insights into LD pathobiology and may facilitate the 51 
identification of new targets for preventive strategies against Lyme borreliosis.  52 
 53 
1. Lyme disease spirochetes evade the vertebrate hosts’ complement. 54 
 55 
Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere (Steere 56 
et al., 2016). A recent report from the CDC categorizes LD as one of the zoonotic diseases of the 57 
greatest concern in the United States. The disease is caused by spirochetes of the Borrelia 58 
burgdorferi sensu lato complex (Rosa et al., 2005;Brisson et al., 2012;Radolf et al., 2012). 59 
Among the ~20 Borrelia species that comprise the sensu lato complex, at least six have been 60 
confirmed to cause LD in humans including Borrelia (B.) burgdorferi sensu stricto (hereafter 61 
referred as B. burgdorferi), B. afzelii, B. garinii, B. spielmanii, B. bavariensis, and B. mayonii, 62 
all of which are transmitted by Ixodes ticks and maintained in diverse reservoir hosts (mainly 63 
small mammals and birds) (Tufts et al., 2019). Upon tick feeding, spirochetes are exposed to host 64 
blood and the first line of innate immunity which they must overcome to survive (Hovius et al., 65 
2007;Steere et al., 2016) (Figure 1). Spirochetes then migrate through the tick midgut epithelium 66 
and the salivary glands and are then transmitted to the host skin to establish the infection (Hovius 67 
et al., 2007;Steere et al., 2016) (Figure 1). In untreated humans, the spirochetes may disseminate 68 
hematogenously to distal tissues and organs (Coburn et al., 2013;Hyde, 2017;Bernard et al., 69 
2019) (Figure 1).  70 
 71 
Complement is a central component of the host innate immune system and the first line of 72 
defense against bacterial infection. Evasion of the host complement system is essential for 73 
Borrelia to successfully establish infection (Caine and Coburn, 2016;Kraiczy, 74 
2016;Marcinkiewicz et al., 2017)(see (Sjoberg et al., 2009;Zipfel and Skerka, 2009;Meri, 2016) 75 
for more thorough reviews). The complement system is composed of more than 30 proteins and 76 
inactive precursors (Zipfel and Skerka, 2009). Activation of complement cascades on the 77 
microbial surface is initiated via three distinct pathways (Meri, 2016). Antibody-antigen 78 
complexes trigger activation of the classical pathway (CP) whereas the mannose-binding lectin 79 
pathway (LP) is activated by recognition of carbohydrate complexes (collectins and ficolins) on 80 
microbial surfaces. The alternative pathway (AP) is activated when C3b is bound to the surface 81 
of invading microbes. Activation of all three pathways leads to the formation and deposition of 82 
C3 and C5 convertases on the microbial surface. This result in the insertion of the pore-forming 83 
membrane attack complex (MAC), leading to bacterial cell lysis. 84 
 85 
In the absence of invading microbes or cell/tissue damage, vertebrate hosts produce complement 86 
regulatory proteins (CRPs) which are deposited on host cells/tissues to avoid non-specific 87 
damage by the complement cascade (Sjoberg et al., 2009;Zipfel and Skerka, 2009;Meri, 2016). 88 
Factor H (FH) is a CRP that binds to C3b by recruiting the serum protease, factor I. This 89 
complex leads to the degradation of C3b and coincidently terminates activation of the alternative 90 
pathway (Zipfel and Skerka, 2009;Zipfel et al., 2013).  91 
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LD spirochetes produce several outer surface proteins that facilitate host complement evasion (de 92 
Taeye et al., 2013;Caine and Coburn, 2016;Kraiczy, 2016;Marcinkiewicz et al., 2017). B. 93 
burgdorferi produce five complement-regulator acquiring surface proteins (BbCRASPs or 94 
CRASPs) (Kraiczy and Stevenson, 2013). These CRASPs include CspA (CRASP-1, BBA68), 95 
CspZ (CRASP-2, BBH06), and OspE paralogs (i.e. ErpP (CRASP-3, BBN38), ErpC (CRASP-96 
4), and ErpA/I/N (CRASP-5, BBP38, BBL39)) (Table 1). While all these proteins bind to FH to 97 
inactivate human complement, CspA and CspZ also bind to FH-like protein 1 (FHL-1), the 98 
truncated form of FH (Zipfel and Skerka, 1999))(Kraiczy and Stevenson, 2013). Additionally, 99 
ErpP, ErpC, and ErpA bind to different FH-related proteins (CFHR), a family of CRPs with 100 
similar sequence identity and high-resolution structures to that of FH (Zipfel et al., 2002;Kraiczy 101 
and Stevenson, 2013). The expression of the genes encoding these outer surface proteins varies 102 
at different stages of the infection cycle, e.g. during spirochete transmission and dissemination, 103 
(Miller et al., 2003;von Lackum et al., 2005;Bykowski et al., 2007;Brissette et al., 2008). These 104 
findings suggest that CRASPs play distinct roles in facilitating spirochete survival in ticks and/or 105 
vertebrate hosts. However, until recently, the role of these CRASPs in the spirochete infection 106 
cycle in vertebrate hosts is still unclear.  107 
 108 
In this review, we summarize previous findings regarding the role of CRASPs in the 109 
pathobiology and provide mechanistic insights into transmission and dissemination of LD 110 
spirochetes in ticks and different vertebrate animals.  111 
 112 
2. CspA facilitates spirochete survival in ticks’ blood meal and during transmission from 113 
ticks to hosts. 114 
 115 
During feeding, ticks are vulnerable to the attack by complement present in the blood meal. To 116 
neutralize complement and other dangerous constituents, ticks generate a cocktail of diverse 117 
immunomodulatory proteins with immunosuppressive, anti-inflammatory, and anti-complement 118 
activity in their saliva (Tyson et al., 2007;Schuijt et al., 2008;Tyson et al., 2008;Schuijt et al., 119 
2011;Wagemakers et al., 2016) (see (de Taeye et al., 2013) for the review). These proteins shield 120 
spirochetes from complement-mediated killing in the ticks’ midgut. However, ticks devoid of 121 
any one of these anti-complement proteins can still transmit spirochetes to vertebrate animals 122 
(Schuijt et al., 2011;Wagemakers et al., 2016). Additionally, LD spirochetes survive at similar 123 
levels in the ticks feeding on wild-type or complement-deficient mice (Rathinavelu et al., 124 
2003;Hart et al., 2018). These results suggest that spirochetes have developed additional means 125 
to evade complement when residing in fed ticks.  126 
 127 
The cspA gene is located on a linear plasmid 54 (lp54) which is essential for LD spirochetes 128 
survival in the infection cycle (Purser and Norris, 2000) (Table 1). This gene is uniquely 129 
expressed in spirochetes residing in ticks, suggesting that CspA plays a role during spirochetal 130 
colonization of ticks (von Lackum et al., 2005;Bykowski et al., 2007;Hart et al., 2018) (Table 1). 131 
Ectopically producing CspA into a non-infectious, serum-sensitive, and cspA-deficient B. 132 
burgdorferi strain enables this strain to inactivate complement and survive when exposed to sera 133 
from various vertebrate animals in vitro (Kraiczy et al., 2004b;Brooks et al., 134 
2005;Hammerschmidt et al., 2014;Muhleip et al., 2018) (Table 1). Conversely, deleting cspA 135 
from a low passage and fully infectious B. burgdorferi strain results in the inability of this strain 136 
to survive in presence of serum from vertebrate animals and enhances complement activation on 137 
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spirochete surface (Kenedy et al., 2009) (Table 1). These results demonstrate the role of the 138 
CspA protein in conferring spirochetal evasion from complement. 139 
 140 
Moreover, a recent study demonstrates that CspA also confers protection when spirochetes are 141 
exposed to complement components in blood acquired during tick feeding. A recent study shows 142 
that a LD Borrelia strain deficient in cspA is eliminated in nymphs after the nymphs feed on 143 
wild-type mice (Hart et al., 2018). However, this strain survives in the nymphs feeding on 144 
complement deficient mice, indicating that CspA promotes spirochetal evasion of complement in 145 
ticks’ blood meal (Hart et al., 2018). The CspA-mediated blood meal survival has been attributed 146 
to the ability of CspA to bind FH (Hart et al., 2018) (Figure 1 and Table 1). CspA orthologs 147 
from different LD species differ in their ability to bind to FH from other vertebrate animals 148 
including birds, mice, and humans. (Bhide et al., 2009;Hart et al., 2018;Muhleip et al., 2018). 149 
CspA of B. burgdorferi displays less than 50% of sequence identity compared to other LD 150 
borrelia species but greater than 95% identity on the intra-species level (von Lackum et al., 151 
2005;Wywial et al., 2009). Further, the sequence variability of CspA orthologs correlates with 152 
their ability to interact with FH from humans and other hosts (von Lackum et al., 2005;Bhide et 153 
al., 2009;Hammerschmidt et al., 2014;Hart et al., 2018;Muhleip et al., 2018). Of note, one 154 
previous study showed that recombinant CspA from B. burgdorferi B31 does not bind to non-155 
human FH in the sera applied on a Far-Western blot (McDowell et al., 2006). This result 156 
suggests that those non-human FH variants are required to be maintained as a native form in 157 
order to display their ability to bind to CspA. Consistent with the allelic differences in FH-158 
binding activity of CspA, a cspA-deficient B. burgdorferi strain producing CspA from B. garinii 159 
was incapable of surviving in nymphs upon feeding on wild-type mice (Hart et al., 2018). That 160 
isogenic strains survived in nymphs feeding on the complement-deficient mice, similar to the 161 
isogenic strain producing CspA from B. burgdorferi strain B31 (Hart et al., 2018). These 162 
findings imply an allelic variation of CspA-mediated FH-binding activity. Such results also lead 163 
to an intriguing possibility that CspA determines spirochete host tropism by driving the 164 
transmission from ticks to specific hosts (Kurtenbach et al., 2002;Kraiczy, 2016;Tufts et al., 165 
2019).  166 

 167 
Recent investigations also revealed that CspA acts in multiple ways to inactivate complement. 168 
CspA was shown to inactivating AP complement cascade by binding to FH and FHL-1 as well as 169 
by binding to complement proteins C7 and C9 to block MAC formation.  (Hallstrom et al., 2013) 170 
(Table 1). The presence of CspA on the bacterial surface prevents the formation of MAC, 171 
suggesting a FH-independent mechanism to confer complement evasion. However, compared to 172 
the high affinity binding to FH (KD < 100nM), CspA binds only moderately to C7 and C9 (KD > 173 
5µM). These results raise questions regarding the physiological relevance of CspA-mediated C7- 174 
and C9-binding activity (Kraiczy et al., 2004a;Hallstrom et al., 2013;Hart et al., 2018). 175 
 176 
3. The role of CspZ in promoting spirochete dissemination after invading vertebrate hosts. 177 
 178 
A previous finding indicates that a B. burgdorferi strain deficient in cspA is capable of surviving 179 
at the inoculation site in skin at similar levels to the wild-type parental strain introduced by 180 
needle infection (Hart et al., 2018). This suggests that additional proteins confer this phenotype 181 
and/or work collaboratively with CspA to facilitate the establishment of infection. In fact, CspZ 182 
has been identified as an additional FH/FHL-1-binding protein which is encoded on the linear 183 
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plasmid 28-3 (lp28-3) of B. burgdorferi B31 (Table 1). During tick-to-host transmission, the 184 
expression of cspZ is undetectable when spirochetes reside in ticks, but up-regulated when 185 
spirochetes reach the bite site in host skin (Bykowski et al., 2007). Further investigation reveals 186 
that cspZ is expressed throughout different infection stages in vertebrate animals (Bykowski et 187 
al., 2007;Marcinkiewicz et al., 2019), suggesting that the expression of CspZ and its role in the 188 
infection is restricted to the host (Table 1). Similar to CspA, introduction of CspZ into a cspZ-189 
deficient, serum sensitive borrelial strain allows the transformed strains to survive in vitro in 190 
presence of serum from various vertebrate animals by preventing complement activation 191 
(Hartmann et al., 2006;Siegel et al., 2008) (Table 1). However, an infectious, serum-resistant, 192 
yet cspZ-deficient B. burgdorferi also survived in sera and colonized mouse tissues at similar 193 
levels as the parental strain. (Coleman et al., 2008;Marcinkiewicz et al., 2019) (Table 1). These 194 
findings support the following notions that such indistinguishable phenotypes could be attributed 195 
to low expression levels of cspZ in B. burgdorferi B31 (Bykowski et al., 2007;Rogers and 196 
Marconi, 2007;Marcinkiewicz et al., 2019).  As LD spirochetes produce additional complement 197 
interacting proteins that confer evasion during dissemination, delineating CspZ’s phenotype can 198 
be cumbersome (Kraiczy et al., 2003;Alitalo et al., 2004;Kraiczy et al., 2004a;Alitalo et al., 199 
2005;Pietikainen et al., 2010;Bhattacharjee et al., 2013;Garcia et al., 2016;Caine et al., 2017).  200 
 201 
To amplify the phenotype conferred by these genes, vertebrate blood has been used to cultivate 202 
spirochetes as cue to mimic in vivo conditions, possibly due to host-specific nutrients and ions in 203 
blood (Tokarz et al., 2004). Several borrelial genes upregulated during transmission in vivo can 204 
be triggered in vitro by incubation of the spirochetes with host blood (Tokarz et al., 2004), 205 
including CspZ. These findings are consistent with additional data showing that a cspZ-deficient 206 
strain in an infectious background of B. burgdorferi displays reduced ability to survive when 207 
incubated with vertebrate sera (Marcinkiewicz et al., 2019) (Table 1). Furthermore, this cspZ 208 
mutant strain when pre-treated with blood shows a delayed onset of dissemination and lower 209 
burdens in distal tissues, compared to wild-type B. burgdorferi strain, demonstrating CspZ’ role 210 
in promoting spirochete dissemination (Marcinkiewicz et al., 2019) (Figure 1 and Table 1).  211 
 212 
Further, several studies examined the role of CspZ (or the plasmid encoding cspZ) in infection 213 
cycle. CspZ was shown not essential for spirochetes acquisition from mammalian hosts to ticks 214 
(Coleman et al., 2008). However, fewer mice develop antibody reactivity against whole 215 
spirochete cell lysates after being fed on by the ticks carrying a B. burgdorferi strain missing 216 
lp28-3 plasmid which encodes cspZ, compared to wild-type parental spirochete strain (Dulebohn 217 
et al., 2013). These findings suggest that the proteins encoded by lp28-3 (e.g. CspZ) facilitate 218 
spirochete to establish an infection and disseminate to distal sites after tick bites. A previous 219 
study revealed that LD patients with manifestations (e.g. acrodermatitis, neuroborreliosis, 220 
erythema migran) and/or positivity in two-tier LD serological tests elicited antibodies to CspZ, 221 
indicating that spirochetes produced this protein during the infection process (Kraiczy et al., 222 
2008;Rogers et al., 2009) 223 

 224 
Rogers et al. observed that CspZ shows allelic variability in binding to human FH (Rogers and 225 
Marconi, 2007;Rogers et al., 2009). As CspZ is highly conserved (nearly 98% identical among 226 
B. burgdorferi strains and approximately 70% identical among LD spirochete), the difference of 227 
these variants may convey the observed strain-to-strain variation in binding activity to human FH 228 
(Rogers et al., 2009;Brangulis et al., 2014). Several sequence diverse regions in CspZ have been 229 
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identified (Brangulis et al., 2014). According to a recently reported high-resolution co-crystal 230 
structure of CspZ-FH binding complex (Liu, 2018) some of these variable regions are located in 231 
the binding site/interface with human FH. These results support the possibility that these variable 232 
regions of CspZ mediate the different levels of FH-binding activity and spirochete survival in the 233 
infection cycle (Table 1).  234 
 235 
4. The role of OspE paralogs in spirochete survival during the infection cycle remains 236 
unclear.  237 
 238 
Not every spirochete strain isolated from ticks feeding on LD spirochetes-infected vertebrate 239 
hosts encodes CspZ (Rogers and Marconi, 2007;Kraiczy et al., 2008), supporting that additional 240 
FH-binding proteins confer dissemination during infection. In fact, LD spirochetes produce 241 
multiple copies of OspE proteins, encoded by several circular plasmids 32 (cp32) (Marconi et al., 242 
1996;Stevenson et al., 1996;Akins et al., 1999;Caimano et al., 2000;Kraiczy and Stevenson, 243 
2013) (Table 1). Most of these OspE paralogs bind to FH in vitro and share similar promoter 244 
sequences (as known as upstream homology box or “UHB”) to other outer surface proteins on 245 
cp32, such as OspF (Marconi et al., 1996;Akins et al., 1999;Caimano et al., 2000;Brissette et al., 246 
2008). Because of these similarities, these OspE/F-related proteins were grouped under the term 247 
as Erps (Brissette et al., 2008).   248 
 249 
Although Erps have been shown to bind FH and confer complement evasion, their role in 250 
spirochete survival during the infection remains less clear. A serum-sensitive B. burgdorferi 251 
strain which expresses erpP or erpA (the genes encoding OspE paralogs in B. burgdorferi B31) 252 
driven by the endogenous promoters, remains susceptible to complement-mediated killing in 253 
human serum (Siegel et al., 2010;Hammerschmidt et al., 2012) (Table 1). This result is 254 
consistent with other B. burgdorferi strains (i.e. the cspA-deficient strain) encoding erpP and 255 
erpA under the control by the endogenous promoters which remain serum susceptible. However, 256 
when those genes are expressed ectopically in a serum-sensitive B. burgdorferi strain using a 257 
strong and constitutive promoter, these spirochetes inactivate complement and survive when 258 
incubated with human sera (Kenedy and Akins, 2011) (Table 1). These results imply that high 259 
expression levels of OspE are needed for complement inactivation and serum resistance.   260 
 261 
The genes encoding OspE paralogs are not expressed when spirochetes are in post-molting flat 262 
nymphs whereas they are upregulated immediately after blood meals (Hefty et al., 2001;Miller et 263 
al., 2003). Additionally, the expression of ospE is maintained throughout different stages of 264 
infection after spirochete transmission from ticks to hosts (Hefty et al., 2001;Miller et al., 265 
2003;Miller et al., 2005) (Table 1). Consistent with the expression profiles of these ospE genes, 266 
spirochete burdens are reduced in nymphs feeding on mice passively immunized with anti-OspE 267 
IgG, but remain unaffected when feeding on mice inoculated with Ig isotype control (Nguyen et 268 
al., 1994). Further, the transposon-inserted erpA mutant in an infectious B. burgdorferi strain 269 
causes a two-week delay in dissemination to distal tissues when co-infected with a library of 270 
other transposon-inserted mutants (Lin et al., 2012) (Table 1). These findings suggest that OspE 271 
paralogs may play a role in conferring tick-to-host transmission of spirochetes as well as 272 
facilitating rapid dissemination to distal tissues (Figure 1). However, the off-target silencing by 273 
antibody-dependent deletion or transposon insertion methodologies may be the confounding 274 
effects of these results. Generating the deletion mutant of ospE paralogs could be the favorable 275 
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approach to address this caveat, but multiple copies of OspE present in LD spirochetes could be 276 
cumbersome. Thus, the gain-of-function approach such as producing these OspE paralogs in a 277 
serum-sensitive strain and evaluating bloodstream survival during a short-term infection may be 278 
a suitable approach to address these technical hurdles (Caine and Coburn, 2015). 279 
 280 
OspE paralogs among different strains have highly variable sequences (Marconi et al., 281 
1996;Sung et al., 1998;Akins et al., 1999;Caimano et al., 2000;Stevenson and Miller, 282 
2003;Brissette et al., 2008). These variants differ in their ability to bind to vertebrate animals’ 283 
FH (Stevenson et al., 2002;McDowell et al., 2003;Hovis et al., 2006). These results imply 284 
potential roles of OspE paralogs in promoting LD spirochetes complement evasion in a host-285 
specific manner. Beside FH, OspE also binds to different isotypes of CFHR (Zipfel et al., 286 
2002;Siegel et al., 2010;Kraiczy and Stevenson, 2013;Skerka et al., 2013;Jozsi et al., 2015). 287 
However, the physiological importance of CFHR-binding activity of OspE proteins is unclear 288 
and warrants further investigation.  289 
 290 
5. Conclusion. 291 
 292 
To survive their complex life cycle, LD spirochetes have developed several strategies to evade 293 
the host immune system that they encounter in ticks during feeding (blood meal) and in the 294 
bloodstream of vertebrate animals. A key evasion mechanism is to circumvent the complement 295 
components by producing complement- or CRP-binding proteins, including CRASPs, which 296 
facilitate complement inactivation. These CRASPs proteins have been shown to confer 297 
spirochete transmission from ticks to hosts and promote infection and dissemination in vertebrate 298 
hosts. However, the concurrent production of CRASPs increases the complexity in delineating 299 
the contribution of these proteins individually in each of the stages within the infection cycle. 300 
Elucidating such mechanisms will provide new insights into how spirochetes survive in two 301 
distinct environments, ticks, and vertebrate hosts. Such information will provide foundation for 302 
the development of preventions through targeting CRASPs to block these infection mechanisms, 303 
which will ultimately reduce LD burdens in humans.  304 
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Figure 1: The roles of CRASP proteins in the enzootic cycle of LD spirochetes. During the 594 
infection, LD spirochetes require the ability to evade the complement in the vertebrate blood. 595 
CspA facilitates spirochete survival in the blood meal of fed ticks and thereby enabling 596 
spirochetes to be transmitted to the host. CspZ promotes spirochete survival in the bloodstream 597 
of vertebrate animals, allowing in dissemination to distal tissues. While the role that OspE 598 
paralogs (OspE) play in enzootic cycle remain unclear, the current evidence supports that these 599 
proteins confer spirochete dissemination in the vertebrate animals.  600 
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 629 
Table 1 In vitro and in vivo characteristics of CRASPs a,b   630 

 CspA CspZ OspE paralogs 

Synonyms and other 

designations 

CRASP-1 

BbCRASP-1 

BBA68 

FHBP 

CRASP-2 

BbCRASP-2 

BBH06 

CRASP-3 

BbCRASP-3 

BBN38 

CRASP-4 

BbCRASP-4 

ErpC 

 

CRASP-5 

BbCRASP-5 

ErpI 

ErpN 

ErpA 

BBP38 

BBL39 

Gene name cspA cspZ erpP erpC erpA 

Gene location in B. 

burgdorferi strain B31 

lp54 lp28-3 cp32-9 cp32-2 cp32-1 

cp32-5 

cp32-8 
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n
 

en
zo
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ti
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cy

cl
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Fed larvae + + (low expression) + (high expression) + (high expression) + (high expression) 

Unfed 

nymphs 

+ (high expression) - - - - 

Fed nymphs + (low expression) + (low expression) + + + 

Tick biting 

sites  

+ + (high 

expression) 

+ (high expression) + (high expression) + (high expression) 

Dissemination - + (high 

expression) 

+ (high expression) + (high expression) + (high expression) 

F
H

 b
in

d
in

g
 

Purified 

proteins 

+ + + - + 

GOFc + + + - + 

LOFd + +e NDf ND ND 
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*Table adapted from Kraiczy and Stevenson (Kraiczy and Stevenson, 2013). 631 
#Different information may be shown because of different strains used to define that information. The information here is derived from B. 632 
burgdorferi B31.  633 
cProduced in a gain-of-function background (GOF). 634 
dProduced in a loss-of-function background (LOF).  635 
eOnly in blood treated condition. 636 
fNot determined 637 
gOnly when ErpP and ErpA are expressed under flaB promoter in a cspA-deficient B. burgdorferi in the infectious background 638 
hPerformed using a transposon-inserted erpA mutant in an infectious B. burgdorferi background.  639 
 640 

Additional non-FH 

ligands related to 

complement inactivation 
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CFHR2 

CFHR5 

CFHR1 

CFHR2 

CFHR1 

CFHR2 

CFHR5 

S
er

u
m

 

re
si

st
a
n

ce
 

GOFc + + - - - 

LOFd + +e +g - +g 

In
fe

c
ti

o
n

 p
h

en
o
ty

p
e
 

Spirochetes 

transmission 

by ticks  

Mutant showed 

defects in surviving 

at fed nymphs and 
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hosts 
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acquisition by 
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- 
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ND 

 

ND 

 

ND 

Intradermal 

inoculation 
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survival and tissue 

colonizationc 
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colonizationh 


