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Abstract

Lyme disease (LD), which is caused by genospecies of the Borrelia burgdorferi sensu lato
complex, is the most common vector-borne disease in the Northern hemisphere. Spirochetes are
transmitted by Ixodes ticks and maintained in diverse vertebrate animal hosts. Following tick
bite, spirochetes initially establish a localized infection in the skin. However, they may also
disseminate hematogenously to several distal sites, including heart, joints, or the CNS. Because
they need to survive in diverse microenvironments, from tick vector to mammalian hosts,
spirochetes have developed multiple strategies to combat the numerous host defense
mechanisms. One of these strategies includes the production of a number of complement-
regulator acquiring surface proteins (CRASPs) which encompass CspA, CspZ, and OspE
paralogs to blunt the complement pathway. These proteins are capable of preventing complement
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activation on the spirochete surface by binding to complement regulator Factor H. The genes
encoding these CRASPs differ in their expression patterns during the tick-to-host infection cycle,
implying that these proteins may exhibit different functions during infection. This review
summarizes the recent published reports which investigated the roles that each of these
molecules plays in conferring tickborne transmission and dissemination in vertebrate hosts.
These findings offer novel mechanistic insights into LD pathobiology and may facilitate the
identification of new targets for preventive strategies against Lyme borreliosis.

1. Lyme disease spirochetes evade the vertebrate hosts’ complement.

Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere (Steere
et al., 2016). A recent report from the CDC categorizes LD as one of the zoonotic diseases of the
greatest concern in the United States. The disease is caused by spirochetes of the Borrelia
burgdorferi sensu lato complex (Rosa et al., 2005;Brisson et al., 2012;Radolf et al., 2012).
Among the ~20 Borrelia species that comprise the sensu lato complex, at least six have been
confirmed to cause LD in humans including Borrelia (B.) burgdorferi sensu stricto (hereafter
referred as B. burgdorferi), B. afzelii, B. garinii, B. spielmanii, B. bavariensis, and B. mayonii,
all of which are transmitted by Ixodes ticks and maintained in diverse reservoir hosts (mainly
small mammals and birds) (Tufts et al., 2019). Upon tick feeding, spirochetes are exposed to host
blood and the first line of innate immunity which they must overcome to survive (Hovius et al.,
2007;Steere et al., 2016) (Figure 1). Spirochetes then migrate through the tick midgut epithelium
and the salivary glands and are then transmitted to the host skin to establish the infection (Hovius
et al., 2007;Steere et al., 2016) (Figure 1). In untreated humans, the spirochetes may disseminate
hematogenously to distal tissues and organs (Coburn et al., 2013;Hyde, 2017;Bernard et al.,
2019) (Figure 1).

Complement is a central component of the host innate immune system and the first line of
defense against bacterial infection. Evasion of the host complement system is essential for
Borrelia  to successfully establish infection (Caine and Coburn, 2016;Kraiczy,
2016;Marcinkiewicz et al., 2017)(see (Sjoberg et al., 2009;Zipfel and Skerka, 2009;Meri, 2016)
for more thorough reviews). The complement system is composed of more than 30 proteins and
inactive precursors (Zipfel and Skerka, 2009). Activation of complement cascades on the
microbial surface is initiated via three distinct pathways (Meri, 2016). Antibody-antigen
complexes trigger activation of the classical pathway (CP) whereas the mannose-binding lectin
pathway (LP) is activated by recognition of carbohydrate complexes (collectins and ficolins) on
microbial surfaces. The alternative pathway (AP) is activated when C3b is bound to the surface
of invading microbes. Activation of all three pathways leads to the formation and deposition of
C3 and C5 convertases on the microbial surface. This result in the insertion of the pore-forming
membrane attack complex (MAC), leading to bacterial cell lysis.

In the absence of invading microbes or cell/tissue damage, vertebrate hosts produce complement
regulatory proteins (CRPs) which are deposited on host cells/tissues to avoid non-specific
damage by the complement cascade (Sjoberg et al., 2009;Zipfel and Skerka, 2009;Meri, 2016).
Factor H (FH) is a CRP that binds to C3b by recruiting the serum protease, factor 1. This
complex leads to the degradation of C3b and coincidently terminates activation of the alternative
pathway (Zipfel and Skerka, 2009;Zipfel et al., 2013).
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LD spirochetes produce several outer surface proteins that facilitate host complement evasion (de
Taeye et al.,, 2013;Caine and Coburn, 2016;Kraiczy, 2016;Marcinkiewicz et al., 2017). B.
burgdorferi produce five complement-regulator acquiring surface proteins (BbCRASPs or
CRASPs) (Kraiczy and Stevenson, 2013). These CRASPs include CspA (CRASP-1, BBA6S),
CspZ (CRASP-2, BBH06), and OspE paralogs (i.e. ErpP (CRASP-3, BBN38), ErpC (CRASP-
4), and ErpA/I/N (CRASP-5, BBP38, BBL39)) (Table 1). While all these proteins bind to FH to
inactivate human complement, CspA and CspZ also bind to FH-like protein 1 (FHL-1), the
truncated form of FH (Zipfel and Skerka, 1999))(Kraiczy and Stevenson, 2013). Additionally,
ErpP, ErpC, and ErpA bind to different FH-related proteins (CFHR), a family of CRPs with
similar sequence identity and high-resolution structures to that of FH (Zipfel et al., 2002;Kraiczy
and Stevenson, 2013). The expression of the genes encoding these outer surface proteins varies
at different stages of the infection cycle, e.g. during spirochete transmission and dissemination,
(Miller et al., 2003;von Lackum et al., 2005;Bykowski et al., 2007;Brissette et al., 2008). These
findings suggest that CRASPs play distinct roles in facilitating spirochete survival in ticks and/or
vertebrate hosts. However, until recently, the role of these CRASPs in the spirochete infection
cycle in vertebrate hosts is still unclear.

In this review, we summarize previous findings regarding the role of CRASPs in the
pathobiology and provide mechanistic insights into transmission and dissemination of LD
spirochetes in ticks and different vertebrate animals.

2. CspA facilitates spirochete survival in ticks’ blood meal and during transmission from
ticks to hosts.

During feeding, ticks are vulnerable to the attack by complement present in the blood meal. To
neutralize complement and other dangerous constituents, ticks generate a cocktail of diverse
immunomodulatory proteins with immunosuppressive, anti-inflammatory, and anti-complement
activity in their saliva (Tyson et al., 2007;Schuijt et al., 2008;Tyson et al., 2008;Schuijt et al.,
2011;Wagemakers et al., 2016) (see (de Taeye et al., 2013) for the review). These proteins shield
spirochetes from complement-mediated killing in the ticks’ midgut. However, ticks devoid of
any one of these anti-complement proteins can still transmit spirochetes to vertebrate animals
(Schuijt et al., 2011;Wagemakers et al., 2016). Additionally, LD spirochetes survive at similar
levels in the ticks feeding on wild-type or complement-deficient mice (Rathinavelu et al.,
2003;Hart et al., 2018). These results suggest that spirochetes have developed additional means
to evade complement when residing in fed ticks.

The cspA gene is located on a linear plasmid 54 (Ip54) which is essential for LD spirochetes
survival in the infection cycle (Purser and Norris, 2000) (Table 1). This gene is uniquely
expressed in spirochetes residing in ticks, suggesting that CspA plays a role during spirochetal
colonization of ticks (von Lackum et al., 2005;Bykowski et al., 2007;Hart et al., 2018) (Table 1).
Ectopically producing CspA into a non-infectious, serum-sensitive, and cspA-deficient B.
burgdorferi strain enables this strain to inactivate complement and survive when exposed to sera
from various vertebrate animals in vitro (Kraiczy et al., 2004b;Brooks et al.,
2005;Hammerschmidt et al., 2014;Muhleip et al., 2018) (Table 1). Conversely, deleting cspA
from a low passage and fully infectious B. burgdorferi strain results in the inability of this strain
to survive in presence of serum from vertebrate animals and enhances complement activation on
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spirochete surface (Kenedy et al., 2009) (Table 1). These results demonstrate the role of the
CspA protein in conferring spirochetal evasion from complement.

Moreover, a recent study demonstrates that CspA also confers protection when spirochetes are
exposed to complement components in blood acquired during tick feeding. A recent study shows
that a LD Borrelia strain deficient in cspA is eliminated in nymphs after the nymphs feed on
wild-type mice (Hart et al., 2018). However, this strain survives in the nymphs feeding on
complement deficient mice, indicating that CspA promotes spirochetal evasion of complement in
ticks’ blood meal (Hart et al., 2018). The CspA-mediated blood meal survival has been attributed
to the ability of CspA to bind FH (Hart et al., 2018) (Figure 1 and Table 1). CspA orthologs
from different LD species differ in their ability to bind to FH from other vertebrate animals
including birds, mice, and humans. (Bhide et al., 2009;Hart et al., 2018;Mubhleip et al., 2018).
CspA of B. burgdorferi displays less than 50% of sequence identity compared to other LD
borrelia species but greater than 95% identity on the intra-species level (von Lackum et al.,
2005;Wywial et al., 2009). Further, the sequence variability of CspA orthologs correlates with
their ability to interact with FH from humans and other hosts (von Lackum et al., 2005;Bhide et
al., 2009;Hammerschmidt et al., 2014;Hart et al., 2018;Muhleip et al., 2018). Of note, one
previous study showed that recombinant CspA from B. burgdorferi B31 does not bind to non-
human FH in the sera applied on a Far-Western blot (McDowell et al., 2006). This result
suggests that those non-human FH variants are required to be maintained as a native form in
order to display their ability to bind to CspA. Consistent with the allelic differences in FH-
binding activity of CspA, a cspA-deficient B. burgdorferi strain producing CspA from B. garinii
was incapable of surviving in nymphs upon feeding on wild-type mice (Hart et al., 2018). That
isogenic strains survived in nymphs feeding on the complement-deficient mice, similar to the
isogenic strain producing CspA from B. burgdorferi strain B31 (Hart et al., 2018). These
findings imply an allelic variation of CspA-mediated FH-binding activity. Such results also lead
to an intriguing possibility that CspA determines spirochete host tropism by driving the
transmission from ticks to specific hosts (Kurtenbach et al., 2002;Kraiczy, 2016;Tufts et al.,
2019).

Recent investigations also revealed that CspA acts in multiple ways to inactivate complement.
CspA was shown to inactivating AP complement cascade by binding to FH and FHL-1 as well as
by binding to complement proteins C7 and C9 to block MAC formation. (Hallstrom et al., 2013)
(Table 1). The presence of CspA on the bacterial surface prevents the formation of MAC,
suggesting a FH-independent mechanism to confer complement evasion. However, compared to
the high affinity binding to FH (Kb < 100nM), CspA binds only moderately to C7 and C9 (Kp >
S5uM). These results raise questions regarding the physiological relevance of CspA-mediated C7-
and C9-binding activity (Kraiczy et al., 2004a;Hallstrom et al., 2013;Hart et al., 2018).

3. The role of CspZ in promoting spirochete dissemination after invading vertebrate hosts.

A previous finding indicates that a B. burgdorferi strain deficient in cspA is capable of surviving
at the inoculation site in skin at similar levels to the wild-type parental strain introduced by
needle infection (Hart et al., 2018). This suggests that additional proteins confer this phenotype
and/or work collaboratively with CspA to facilitate the establishment of infection. In fact, CspZ
has been identified as an additional FH/FHL-1-binding protein which is encoded on the linear
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plasmid 28-3 (Ip28-3) of B. burgdorferi B31 (Table 1). During tick-to-host transmission, the
expression of cspZ is undetectable when spirochetes reside in ticks, but up-regulated when
spirochetes reach the bite site in host skin (Bykowski et al., 2007). Further investigation reveals
that cspZ is expressed throughout different infection stages in vertebrate animals (Bykowski et
al., 2007;Marcinkiewicz et al., 2019), suggesting that the expression of CspZ and its role in the
infection is restricted to the host (Table 1). Similar to CspA, introduction of CspZ into a cspZ-
deficient, serum sensitive borrelial strain allows the transformed strains to survive in vitro in
presence of serum from various vertebrate animals by preventing complement activation
(Hartmann et al., 2006;Siegel et al., 2008) (Table 1). However, an infectious, serum-resistant,
yet cspZ-deficient B. burgdorferi also survived in sera and colonized mouse tissues at similar
levels as the parental strain. (Coleman et al., 2008;Marcinkiewicz et al., 2019) (Table 1). These
findings support the following notions that such indistinguishable phenotypes could be attributed
to low expression levels of cspZ in B. burgdorferi B31 (Bykowski et al., 2007;Rogers and
Marconi, 2007;Marcinkiewicz et al., 2019). As LD spirochetes produce additional complement
interacting proteins that confer evasion during dissemination, delineating CspZ’s phenotype can
be cumbersome (Kraiczy et al., 2003;Alitalo et al., 2004;Kraiczy et al., 2004a;Alitalo et al.,
2005;Pietikainen et al., 2010;Bhattacharjee et al., 2013;Garcia et al., 2016;Caine et al., 2017).

To amplify the phenotype conferred by these genes, vertebrate blood has been used to cultivate
spirochetes as cue to mimic in vivo conditions, possibly due to host-specific nutrients and ions in
blood (Tokarz et al., 2004). Several borrelial genes upregulated during transmission in vivo can
be triggered in vitro by incubation of the spirochetes with host blood (Tokarz et al., 2004),
including CspZ. These findings are consistent with additional data showing that a cspZ-deficient
strain in an infectious background of B. burgdorferi displays reduced ability to survive when
incubated with vertebrate sera (Marcinkiewicz et al., 2019) (Table 1). Furthermore, this cspZ
mutant strain when pre-treated with blood shows a delayed onset of dissemination and lower
burdens in distal tissues, compared to wild-type B. burgdorferi strain, demonstrating CspZ’ role
in promoting spirochete dissemination (Marcinkiewicz et al., 2019) (Figure 1 and Table 1).

Further, several studies examined the role of CspZ (or the plasmid encoding cspZ) in infection
cycle. CspZ was shown not essential for spirochetes acquisition from mammalian hosts to ticks
(Coleman et al., 2008). However, fewer mice develop antibody reactivity against whole
spirochete cell lysates after being fed on by the ticks carrying a B. burgdorferi strain missing
1p28-3 plasmid which encodes cspZ, compared to wild-type parental spirochete strain (Dulebohn
et al., 2013). These findings suggest that the proteins encoded by 1p28-3 (e.g. CspZ) facilitate
spirochete to establish an infection and disseminate to distal sites after tick bites. A previous
study revealed that LD patients with manifestations (e.g. acrodermatitis, neuroborreliosis,
erythema migran) and/or positivity in two-tier LD serological tests elicited antibodies to CspZ,
indicating that spirochetes produced this protein during the infection process (Kraiczy et al.,
2008;Rogers et al., 2009)

Rogers et al. observed that CspZ shows allelic variability in binding to human FH (Rogers and
Marconi, 2007;Rogers et al., 2009). As CspZ is highly conserved (nearly 98% identical among
B. burgdorferi strains and approximately 70% identical among LD spirochete), the difference of
these variants may convey the observed strain-to-strain variation in binding activity to human FH
(Rogers et al., 2009;Brangulis et al., 2014). Several sequence diverse regions in CspZ have been
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identified (Brangulis et al., 2014). According to a recently reported high-resolution co-crystal
structure of CspZ-FH binding complex (Liu, 2018) some of these variable regions are located in
the binding site/interface with human FH. These results support the possibility that these variable
regions of CspZ mediate the different levels of FH-binding activity and spirochete survival in the
infection cycle (Table 1).

4. The role of OspE paralogs in spirochete survival during the infection cycle remains
unclear.

Not every spirochete strain isolated from ticks feeding on LD spirochetes-infected vertebrate
hosts encodes CspZ (Rogers and Marconi, 2007;Kraiczy et al., 2008), supporting that additional
FH-binding proteins confer dissemination during infection. In fact, LD spirochetes produce
multiple copies of OspE proteins, encoded by several circular plasmids 32 (cp32) (Marconi et al.,
1996;Stevenson et al., 1996;Akins et al., 1999;Caimano et al., 2000;Kraiczy and Stevenson,
2013) (Table 1). Most of these OspE paralogs bind to FH in vitro and share similar promoter
sequences (as known as upstream homology box or “UHB”) to other outer surface proteins on
cp32, such as OspF (Marconi et al., 1996;Akins et al., 1999;Caimano et al., 2000;Brissette et al.,
2008). Because of these similarities, these OspE/F-related proteins were grouped under the term
as Erps (Brissette et al., 2008).

Although Erps have been shown to bind FH and confer complement evasion, their role in
spirochete survival during the infection remains less clear. A serum-sensitive B. burgdorferi
strain which expresses erpP or erpA (the genes encoding OspE paralogs in B. burgdorferi B31)
driven by the endogenous promoters, remains susceptible to complement-mediated killing in
human serum (Siegel et al., 2010;Hammerschmidt et al., 2012) (Table 1). This result is
consistent with other B. burgdorferi strains (i.e. the cspA-deficient strain) encoding erpP and
erpA under the control by the endogenous promoters which remain serum susceptible. However,
when those genes are expressed ectopically in a serum-sensitive B. burgdorferi strain using a
strong and constitutive promoter, these spirochetes inactivate complement and survive when
incubated with human sera (Kenedy and Akins, 2011) (Table 1). These results imply that high
expression levels of OspE are needed for complement inactivation and serum resistance.

The genes encoding OspE paralogs are not expressed when spirochetes are in post-molting flat
nymphs whereas they are upregulated immediately after blood meals (Hefty et al., 2001;Miller et
al., 2003). Additionally, the expression of ospE is maintained throughout different stages of
infection after spirochete transmission from ticks to hosts (Hefty et al., 2001;Miller et al.,
2003;Miller et al., 2005) (Table 1). Consistent with the expression profiles of these ospE genes,
spirochete burdens are reduced in nymphs feeding on mice passively immunized with anti-OspE
IgG, but remain unaffected when feeding on mice inoculated with Ig isotype control (Nguyen et
al., 1994). Further, the transposon-inserted erp4 mutant in an infectious B. burgdorferi strain
causes a two-week delay in dissemination to distal tissues when co-infected with a library of
other transposon-inserted mutants (Lin et al., 2012) (Table 1). These findings suggest that OspE
paralogs may play a role in conferring tick-to-host transmission of spirochetes as well as
facilitating rapid dissemination to distal tissues (Figure 1). However, the off-target silencing by
antibody-dependent deletion or transposon insertion methodologies may be the confounding
effects of these results. Generating the deletion mutant of ospE paralogs could be the favorable



276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

approach to address this caveat, but multiple copies of OspE present in LD spirochetes could be
cumbersome. Thus, the gain-of-function approach such as producing these OspE paralogs in a
serum-sensitive strain and evaluating bloodstream survival during a short-term infection may be
a suitable approach to address these technical hurdles (Caine and Coburn, 2015).

OspE paralogs among different strains have highly variable sequences (Marconi et al.,
1996;Sung et al., 1998;Akins et al., 1999;Caimano et al., 2000;Stevenson and Miller,
2003;Brissette et al., 2008). These variants differ in their ability to bind to vertebrate animals’
FH (Stevenson et al., 2002;McDowell et al., 2003;Hovis et al., 2006). These results imply
potential roles of OspE paralogs in promoting LD spirochetes complement evasion in a host-
specific manner. Beside FH, OspE also binds to different isotypes of CFHR (Zipfel et al.,
2002;Siegel et al., 2010;Kraiczy and Stevenson, 2013;Skerka et al., 2013;Jozsi et al., 2015).
However, the physiological importance of CFHR-binding activity of OspE proteins is unclear
and warrants further investigation.

5. Conclusion.

To survive their complex life cycle, LD spirochetes have developed several strategies to evade
the host immune system that they encounter in ticks during feeding (blood meal) and in the
bloodstream of vertebrate animals. A key evasion mechanism is to circumvent the complement
components by producing complement- or CRP-binding proteins, including CRASPs, which
facilitate complement inactivation. These CRASPs proteins have been shown to confer
spirochete transmission from ticks to hosts and promote infection and dissemination in vertebrate
hosts. However, the concurrent production of CRASPs increases the complexity in delineating
the contribution of these proteins individually in each of the stages within the infection cycle.
Elucidating such mechanisms will provide new insights into how spirochetes survive in two
distinct environments, ticks, and vertebrate hosts. Such information will provide foundation for
the development of preventions through targeting CRASPs to block these infection mechanisms,
which will ultimately reduce LD burdens in humans.
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CRASPs: Complement regulator acquiring surface proteins
OspE: OspE paralogs

CP: Classical Pathway

LP: Mannose-binding lectin pathway

AP: Alternative pathway

TP: Terminal pathway

MAC: Membrane attacking complex

CRPs: Complement regulatory proteins

FH: Factor H

BbCRASPs: Borrelia burgdorferi sensu lato complement regulator acquiring surface proteins
FHL-1: Factor H like protein 1

CFHR: Factor H related protein

Ip54: Linear plasmid 54

1p28-3: Linear plasmid 28-3

cp32: Circular plasmid 32

UHB: Upstream homology box

LD: Lyme diseases
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Figure 1: The roles of CRASP proteins in the enzootic cycle of LD spirochetes. During the
infection, LD spirochetes require the ability to evade the complement in the vertebrate blood.
CspA facilitates spirochete survival in the blood meal of fed ticks and thereby enabling
spirochetes to be transmitted to the host. CspZ promotes spirochete survival in the bloodstream
of vertebrate animals, allowing in dissemination to distal tissues. While the role that OspE
paralogs (OspE) play in enzootic cycle remain unclear, the current evidence supports that these
proteins confer spirochete dissemination in the vertebrate animals.
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Table 1 In vitro and in vivo characteristics of CRASPs 2P

CspA CspZ OspE paralogs
Synonyms and other CRASP-1 CRASP-2 CRASP-3 CRASP-4 CRASP-5
designations BbCRASP-1 BbCRASP-2 BbCRASP-3 BbCRASP-4 BbCRASP-5
BBAG68 BBHO06 BBN38 ErpC Erpl
FHBP ErpN
ErpA
BBP38
BBL39
Gene name cspA cspZ erpP erpC erpA
Gene location in B. Ip54 1p28-3 cp32-9 cp32-2 cp32-1
burgdorferi strain B31 cp32-5
cp32-8
Fed larvae + + (low expression) | + (high expression) | + (high expression) | + (high expression)
E w Unfed + (high expression) - - - -
S E nymphs
§ ; Fed nymphs | + (low expression) | + (low expression) i | &
g2
o E Tick biting + + (high + (high expression) | + (high expression) | + (high expression)
g @ sites expression)
Dissemination - + (high + (high expression) | + (high expression) | + (high expression)
expression)
Purified + + + - +
proteins
=
ié GOF* + + + - +
=
=
= LOF1 + +¢ NDf ND ND
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631
632
633
634
635
636
637
638
639
640

Additional non-FH
ligands related to
complement inactivation

GOF*
3
£z
ﬁ = LOF
<5
S
Spirochetes
transmission
by ticks
D
[=%
2
=
2 Spirochete
= acquisition by
= .
S ticks
N
(5}
=
= Intradermal
inoculation

C7, C9, FHL-1

Mutant showed
defects in surviving
at fed nymphs and
transmission to
hosts

FHL-1

+e

ND

Mutant showed
defects in
bloodstream
survival and tissue
colonization®

CFHRI1
CFHR2
CFHR5

+g

ND

ND

ND

CFHRI1
CFHR2

ND

ND

ND

CFHRI1
CFHR2
CFHR5

+8

ND

ND

Mutant showed
defects in tissue
colonization”

“Table adapted from Kraiczy and Stevenson (Kraiczy and Stevenson, 2013).

"Different information may be shown because of different strains used to define that information. The information here is derived from B.

burgdorferi B31.

“Produced in a gain-of-function background (GOF).
4Produced in a loss-of-function background (LOF).
°Only in blood treated condition.

fNot determined

£0nly when ErpP and ErpA are expressed under flaB promoter in a cspA-deficient B. burgdorferi in the infectious background

hPerformed using a transposon-inserted erp4 mutant in an infectious B. burgdorferi background.
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