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ABSTRACT. We consider the Cauchy problem for the spatially inhomogeneous Landau equation
with soft potentials in the case of large (i.e. non-perturbative) initial data. We construct a so-
lution for any bounded, measurable initial data with uniform polynomial decay in the velocity
variable, and that satisfies a technical lower bound assumption (but can have vacuum regions).
For uniqueness in this weak class, we have to make the additional assumption that the initial
data is Holder continuous. Our hypotheses are much weaker, in terms of regularity and decay,
than previous large-data well-posedness results in the literature. We also derive a continuation
criterion for our solutions that is, for the case of very soft potentials, an improvement over the
previous state of the art.

Résumé. Nous considérons le probléme de Cauchy pour ’équation de Landau non-homogéne
en espace avec potentiels mous dans le cas de grandes (i.e. non perturbateur) données initiales.
Nour construisons une solution pour toute données initiale bornée et mesurable a décroissance
polynomiale uniforme dans la variable de vitesse, et qui satisfait une hypothése technique de
borne inférieure (il est toujour permis d’avoir des régions de vide). Pour étre unique dans cette
famille générale, nous devons supposer que les données initiales sont Holder continues. Nos hy-
potheéses sont beaucoup plus faibles, en termes de régularité et de décroissance, que les résultats
de la littérature sur le caractére bien-posé dans le cas de grandes données. Nous dérivons
également un critére de continuation pour nos solutions qui est, pour les potentiels trés mous,
une amélioration par rapport a I’état de lart.

1. INTRODUCTION

We consider the spatially inhomogeneous Landau equation in the whole space: for (¢,x,v) €
R, x R? x R3, the solution f(t,z,v) > 0 satisfies

(11) (615 +v- vz)f = QL(fa f) =V, - (&fvvf) + Bf ' vvf + Effv

where the nonlocal coefficients are defined by

al (¢ = I_g w Y2t _ d
a’ (t,xz,v) a,y/Rs< |w\®|w| |w|"™=f(t,z,v — w) dw,

(1.2) b (t,z,v) : bv/ lw[ wf(t, z,v —w) dw,
R3

& (t,x,v) = Cy /3 [w]? f(t,z,v —w) dw,
R

and a~, by, c, are constants with a,,cy, > 0. We are concerned with the case of soft potentials,
ie. v € [-3,0). When v = —3, the formula for & must be replaced by & = cf. In fact, the

constants are such that Bzf = =0y, dlfj, so that if f € C2, (1.1) may equivalently be written in
non-divergence form:
(1.3) (0 +v-V,)f =tr(@ Df) + & 1.

We use both forms of the equation.
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The v = —3 case of (1.1), called the Landau-Coulomb equation, is used in plasma physics to
model the density f(t,z,v) of charged particles in phase space as it evolves in time. For v > —3,
the equation arises as a formal limit of the Boltzmann equation as grazing collisions (such that the
angle between pre- and post-collisional velocites goes to zero) predominate. In addition to its own
interest, part of the motivation for studying the Landau equation (particularly the non-Coulomb
cases) is to shed light on the Boltzmann equation without angular cutoff (see, e.g., [30, 10] or [5]
for the physical background).

Until relatively recently, the theory of classical solutions of the inhomogeneous Landau equation
focused mainly on global-in-time solutions that are perturbations of a (global) Maxwellian equi-
librium state (i.e. p(t,z,v) = cre=ell” with 1, ¢z > 0). This study began with the work of Guo
[21] in 2002 and was subsequently extended by many authors; see Section 1.3 below for a partial
bibliography.

Regarding the non-perturbative case, it is an outstanding open problem to construct global-in-
time solutions for large (i.e. non-perturbative) initial data. This problem is extremely difficult,
perhaps out of reach for the foreseeable future. As such, our focus is on two more modest but
still nontrivial goals: local well-posedness among a “reasonable” class of large initial data, and
physically meaningful conditional assumptions on f under which global well-posedness holds.

There are two previous large-data existence results for the inhomogeneous Landau equation we
are aware of: He-Yang [22] constructed solutions for the case v = —3 with spatially periodic initial
data satisfying |v|F fin € H7(T? x R?), for P an exponent on the order of 100, and in our previous
work [24], we constructed solutions for initial data satisfying erlol® fin in an H* space! on RS for
some p > 0.2 The strength of these hypotheses, in terms of regularity and decay, is comparable to
the state of the art for the non-cutoff Boltzmann equation [2, 3, 4] but is especially unsatisfactory
when compared to (i) what is needed to make sense of the equation and (ii) the conditions required
for good a priori control of solutions, which are zeroth-order and impose only mild polynomial
decay in v (see Section 1.2). The main results of this paper go a long way toward bridging this gap,
by proving existence of solutions in a merely polynomially-weighted L*>° space, which requires no
control on derivatives or exponential moments of f;,, as well as uniqueness, under the additional
assumption that the initial data is Holder continuous. We also slightly improve the conditions
under which solutions can be extended past a given time.

1.1. Main results. In order to state our results, we define weighted Lebesgue spaces as follows:
let (v) = \/1+ |v]2, 1 <p < oo, k€R, and Q be any set of the form R? or w x R? with the R?
variable denoted v, then define

||9||vak(9) = ||<v>kg||LP(Q)'

We also require the kinetic Holder spaces, denoted Cy, and Cﬁi’s for a € (0,1) and defined in
Section 1.5, that are analogous to the standard parabolic Holder spaces. We use the standard
Holder spaces, C* and C%°, as well.

One quantity that plays a large role in our analysis is

‘I’(t) — ||f||L?,°xL1lﬂ2([0,t]><R6)7 v € (_270)’
Il e L1([0,t]xRS) T+ ”f”L?f;Lﬁ(RG), ~e[-3,-2],

taty

(1.4)

where p > 3/(34++) and p = oo for v = —3. In the case v € [0, 2], U is related to the hydrodynamic
quantities of mass density and energy density (see Section 1.2 below). Notice that ¥ is bounded
by the L°** norm of f if k > 5.

IMore precisely, [24] took fi, in a “uniformly local” space Hﬁl, which imposes no decay as |z| — co.

2Sh0rtly after the present work was submitted, Chaturvedi [11] proved local existence for the Landau equation
with hard and Maxwellian potentials (y € [0, 1]), with similarly strong assumptions, namely that f;, has exponential
decay in v and lies in a tenth-order Sobolev space.
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We require the following condition on our initial data, recalled from [24]. It ensures that the
self-generating lower bounds on our solution are uniform in x (after a small time has passed):

Definition 1.1. A function g : R? x R? — [0, 00) is well-distributed with parameters R,d,r > 0
if, for every x € R?, there exists &y, € Br(x) and vy, € Br(0) such that g > 61p, (4, ..)-

Our first result establishes the existence of solutions in L>*([0, T x R®):

Theorem 1.2. Let k > max{5,15/(5 +~)}. Assume | fillporre)y < K, fin(z,v) >0 in R®, and
fin is well-distributed with parameters §, v, and R. Then:

(i) (Existence) There exists T > 0 and f > 0, such that, for any compact Q C (0,T] x
RS, f € C’EIS(Q) for some a € (0,1), and f satisfies (1.1) classically. Fach of T and
| 1l oo ([0,7) xRSy depend only on vy, K, 6, r, and R, and o depends on the same quantities

lus Q.

(i) ?Matching with initial data) For any compact K, C R® and any ¢(t,x,v) satisfying,

for some n > 0,

¢ € CLL2T*([0,T] x Ky x R3)), (8 +v-Vy)p € L>/21([0,T] x K, x R?)
Voo € LPYH2([0,T) x Kp xR and  supp(¢) C [0,T) x K, x R?,

the solution f constructed in (i) satisfies

fin(z,v)$(0, 2,v) do dv
(1.5) RO

:/ (O +v-Vo)p = Vb (a!V,f) = fbF - Vo) dzdvdt.
[0,T]xR6

(i1i) (Higher regularity) Let Tr be the mazimal time of existence of the solution constructed
above, and let T € (0,Tg]. For any partial derwvative 80°97, there exists kay > 0 and
Lyr depending only on W(T), T, ~, §, r, R, and M = 2j + 3|8| + |n|, such that if fi, €
Lok (RS) | then
PN f e Lok = ([0, T) x RY)

and is continuous for all positive times.

A few comments are in order. Firstly, if the initial data is continuous, we can show that f
does match the initial data in the pointwise sense (see Proposition 3.1). Secondly, by “classical”
solutions, we mean those elements of 012{:,100 that satisfy (1.1) pointwise; this does not necessitate
that 0;f and V. f exist pointwise but rather that (9;+v-V,,)f does (see Section 1.5 for a discussion
of the kinetic Holder spaces). Lastly, we point out that Theorem 1.2.(iii) implies that if f;, € L>*
for all k, then f is smooth and has infinitely many moments, that is, 3g3£8{] € L>F for any j, 3,
n, and k, for as long as ¥ remains bounded.

Next, we extend our continuation criterion from [24] to the solutions of Theorem 1.2, and
sharpen it in the case of very soft potentials:

Theorem 1.3. The solution [ constructed in Theorem 1.2 can be extended for as long as the
quantity U remains finite, where p > 3/(3 +7) and p = oo for v = —=3. More formally, Tp =
sup{t > 0: U(t) < oo}, where Tg is defined in Theorem 1.2.

Because the solution constructed in Theorem 1.2 lies in a weak space relative to the order of
the equation, uniqueness is a challenging issue, and in fact our proof requires stronger assumptions
on fi,: Holder continuity and a lower bound assumption that rules out vacuum regions in x (see
Section 1.4 below for an explanation of these extra hypotheses). The uniqueness or non-uniqueness
of the solutions of Theorem 1.2, without any extra assumptions on fi,, remains an open question.

In nonlinear equations where the initial data has low regularity, it often more difficult to prove
uniqueness than existence of solutions even when they smooth immediately. For another example
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of such a situation, where uniqueness has not been established without extra hypotheses, even
though the system regularizes instantantly, see the work of Kiselev-Nazarov-Shterenberg [29] on
the fractal Burgers equation (i.e., Burgers equation with fractional dissipation).

Theorem 1.4. Assume that fi, satisfies:

o fin € C% for some a € (0,1), and fi, € L°* for some k;
o there ewist r,0, R > 0 such that for each x € R®, there exists |v,| < R such that fi, >
61BT(I7'U.T,)'

Let f be the solution constructed in Theorem 1.2, and let T > 0 be any time such that ¥(T') < oo.
Then there exists ko and Ty € (0,T] such that if k > ko, then f € C2 ([0, Tx] x R®) and, for any
uniformly continuous g € L>3T7+1([0, Ty] x R®) with n > 0 such that g solves (1.1) weakly and
g(t,z,v) = fin ast — 0+, we have f = g. Moreover, if fi, € L°* for all k > 0, then the above
holds with Ty = T. We have that ks depends only on o and v and Ty depends only on r, §, R,
k: @, 7, HfiIlHLOOJW and ||fin||C‘¥

Let us make some brief comments on Theorem 1.4. First, our notion of weak solution is made
precise in Section 5 (see the comment after Proposition 5.2). Second, our assumptions on fi, imply,
via interpolation between C® and L>*, that

(ymfeCPRS)  ifm<k (1 - 5) ,
«
see Lemma B.2. For the sake of convenience, we prove that the conclusion of Theorem 1.4 holds
under the assumption that fi, € L%*(RS) and (v)™ fi, € C*(R) for m and k sufficiently large,
depending on « and 7 (see Proposition 4.4), which, by the above, is enough to establish Theo-
rem 1.4. Finally, we note that the positivity condition, that is, the existence of §, r, and R, is met
in many standard cases such as for initial data that is continuous, periodic, and positive.

1.2. Conditional regularity and continuation. This paper fits within the program of seeking
weaker conditions under which solutions of the Landau equation remain smooth and can be ex-
tended past a given time. To describe this recent thread of research in more detail, let us recall
the following hydrodynamic quantities associated to the solution f:

Ms(t,x) = ft,z,v)dv, (mass density)
R3

E¢(t,z) = / lv|2f(t, z,v) dv, (energy density)
R3

Hy(t,x) = ft,z,v)log f(t, z,v) dv. (entropy density)
R3

We note that, in the homogeneous (i.e., z-independent) setting, M,(t) and E[(t) are conserved
and H(t) is non-increasing, and this behavior is crucial to the well-posedness theory.

In [18], Golse-Imbert-Mouhot-Vasseur established local Hélder regularity for solutions of (1.1)
with My bounded above and away from zero, and Ey, Hy, and ||f(t,,)|[r> bounded above,
uniformly in ¢ and 2. Under these conditions, the coefficients in (1.2) are all bounded above,
and @/ is uniformly elliptic. The equation can then be treated as a linear kinetic Fokker-Planck
equation with bounded measurable coefficients, and the main contribution of [18] was in adapting
De Giorgi’s method to such linear equations (see also [36, 44].) In [7], Cameron-Silvestre-Snelson
derived a conditional global L* estimate in terms of the upper bounds for My, E;, and Hy,
and the lower bound for My, in the case v € (—2,0] (see [39] for a similar result for v € (0, 1]).
Next, Henderson-Snelson [23] established C*° regularity in the same conditional regime, with the
additional assumption that infinitely many L' moments of f in v are finite. This study also relied
on the linear theory via Schauder estimates for kinetic equations, but made essential use of the
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coupling between f and the coefficients in the bootstrapping procedure. (See also the earlier result
[12], which proved C*° regularity under stronger conditional assumptions.)

Most recently, in [24] the present authors combined local well-posedness with these conditional
results to derive a continuation criterion and improved this criterion by establishing self-generating
lower bounds for f that suffice to remove the assumptions that My is bounded below and Hjy is
bounded above. For very soft potentials (y € [—3,—2]), the methods of [23] and [24] all go
through, but under stricter conditions on f that, unlike the hydrodynamic quantities above, are
not physically meaningful. In the above notation, the continuation criterion established in [24] was

~ f oo 1,2 65 /-y c _2,0 7
(16) ( ) — {H ||Lt,zL/,, ([0,£] xRS) ( )

||f||L§fTL,1,’Z([O,t]xRG) + HfHL?YOTYU([O,t}X]RG% vEe [_37 _2]7
with ¢ > 3|v|/(5 + 7). For v € [-3,—2], Theorem 1.3 above improves this criterion in two ways.
The improvement from || f|[zgs,  to ||f|zsc Lz with p as in Theorem 1.3 was attainable with the

toa,v

methods of [24], but improving || f|| « ;1. to |[f][zs L1 requires the more general decay estimates
t,atv It

of the current paper. Theorem 1.3 is also an improvement over [24] because it applies to solutions
with more general initial data.

The significance of lower bounds for f, besides implying that vacuum regions in the initial data
are instantly filled, is in getting a lower ellipticity constant for @/, which is needed to apply local
estimates (either De Giorgi or Schauder type). Taking fi, to be well-distributed (see Definition
1.1) guarantees this ellipticity constant is uniform in z, after a short time has passed. The extra
lower bound assumption of Theorem 1.4 ensures this ellipticity constant does not degenerate as
t — 0. It would be interesting to remove these structural lower bounds for fi, from the results
in the current paper, both for a more robust local well-posedness theory, and because doing so
may lead to better understanding of continuation for states that are not controlled uniformly in
. Doing so would, however, require a completely new approach that does not depend on the
regularity estimates near ¢ = 0.

There is a parallel program of conditional regularity for the non-cutoff Boltzmann equation: see
[37, 28, 26, 25, 27]. To pair these conditional estimates with a compatible local existence result, one
would need to work with polynomially-decaying initial data. This has only been accomplished for
certain ranges of the physical parameters (see [33]). In a forthcoming article, we plan to extend this
result to a less restrictive setting. See also the review [34] for more on the conditional regularity
of both equations.

1.3. Related work. There are many existence and regularity results for the spatially homoge-
neous (z-independent) Landau equation, see [6, 43, 15, 1, 45, 19, 20, 14, 38, 17] and the references
therein. In this setting, large-data global solutions are known to exist in the cases v € [—2,1], but
for v € [-3,—2), the problem remains open.

In the inhomogeneous setting considered here, a suitable notion of weak solution has been
defined. Global solutions in this class have been established by Villani [42] for general initial data
(see also Lions [31] and Alexandre-Villani [5]). The uniqueness and regularity of these solutions
are not understood.

As mentioned above, there is a large literature on close-to-Maxwellian solutions of the Landau
equation that exist globally and converge to equilibrium as ¢ — co: see for example [21, 35, 40,
41, 9, 8, 16]. The majority of these papers work with initial data that is close to a Maxwellian in
an exponentially-weighted (in v) norm, which implies fi, decays exponentially at worst, but the
work of Carrapatoso-Mischler [8] improves this to a polynomially-weighted H2L? norm (see also
[9], which works with polynomially-weighted norms in the case v > 0.) In terms of regularity,
early results took fi, in a high-order Sobolev space, and subsequent works gradually enlarged the
allowable space.
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The recent interesting work of Duan-Liu-Sakamoto-Strain [16] constructs mild solutions with
initial data close to a Maxwellian in an exponentially-weighted L}CL% space (here, L,lC refers to the
Wiener algebra in x which contains all C* functions but not all Holder continuous functions) on
T3 x R3. When working on a bounded spatial domain instead of T3, they require an additional
derivative in this space. Uniqueness is also shown, as is convergence to the Maxwellian, which is
their main interest.

A somewhat different setting was considered by Luk in [32]. For v € (—2,0), he has shown the
global existence of a solution with initial data close to the vacuum state f = 0.

To our knowledge, polynomially decaying solutions have not been established previously for
the Landau equation except in T3 x R3 (as in [22, 8, 16]) or when f;, is “localized” in z (e.g.,
fin € L*(R%) as in [11]). This distinction is important because, in these settings, no moment loss
can occur due to the transport operator (9; +v-V,); however, on R? x R? without any assumption
of decay for large z, the transport operator causes moment loss. Indeed, it is easy to construct
solutions to (9; +v - V;)g = 0 on RS such that g(0,-,-) € L? but g(t,-,-) ¢ L? for some t > 0.

1.4. Proof ideas.

1.4.1. Emistence. First, let us point out some disadvantages of the usual method of L?-based energy
estimates like the one pursued in [24]. Because of their physical relevance, we wish for our class
of initial data to include (global) Maxwellians, which do not have finite L2 , (R°) norm. Thus, it
makes sense to estimate [¢f(t)|rz2  for cut-off functions ¢ in x. To this end, after multiplying

(1.1) by ¢?f and integrating over RS, we find, after some formal computations,

(1.7) Ld lefliZs =/ <—;f2v Val(@?) = Vo f - (@' Vo f) + ;cfff?) da dv.
RS

2dt

The first difficulty is that the f2v-V,(p?) term may be unbounded for large |v|. Thus, this term
cannot be controlled by the unweighted L? , norm of f. In [24], we avoid this issue by dividing the
solution f by a time-dependent Gaussian, i.e. studying the equation for g = elp—r)(v)? f, which
has an extra term of x(v)?g with the right sign to absorb the other terms with growth in v in
the energy estimates (this approach was applied earlier to the Boltzmann equation in [2, 3, 4]).
However, this method requires the initial data f;; to have Gaussian decay in v, and we want to
get around this requirement.

If the spatial domain were the torus T2 instead of R, no cut-off would be necessary so this
term would disappear from the energy estimates, which is one reason the spatially periodic case is
simpler. It is important to note that this is not a purely technical issue; as discussed in Section 1.3,
transport can cause moment loss when working on the whole space. See Morimoto-Yang [33] for a
different approach to this obstacle, in the context of the Boltzmann equation.

The second difficulty is that the coefficients are not adequately controlled by the L?-norm of
f. For example, & clearly must be bounded in L> in order to make the last term in (1.7) finite
for ¢ f merely in L?. Unfortunately, ||/ |z is not controlled by |¢f]||z2, and one instead needs a
bound on [[¢f||zerz for p > 2 depending on . This necessitates bounds on higher derivatives of
f in order to use an embedding theorem.

When searching for bounds on derivatives of f, we encounter another issue. To obtain such
bounds, one might be tempted to differentiate the equation and then follow a similar strategy as
above to obtain estimates. Unfortunately, differentiating the equation brings up new technical
difficulties—for example, when derivatives fall on @/, positive-definiteness is lost, so the corre-
sponding term does not have a good sign anymore. Thus, it is significantly harder to obtain higher
order energy estimates.

The key observation that allows us to overcome the above issues is to work in L>*([0, 7] x RS).
The associated norm is not affected by the moment loss due to the transport operator and the
coefficients @/ and & can be bounded in terms of it when & > 5+ . The basis of our construction
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is an estimate (Lemma 2.3) on || f|| .+ that follows from a comparison principle argument with
barriers of the form e%*(v)~F. It is interesting to note that Lemma 2.3 does not rely on lower
bounds for the matrix af or on the anisotropy of @/ in v. The L°* estimate gives good upper
bounds on the coefficients, which then allows us to adapt the mass-spreading theorem of [24] to
get lower bounds of f that imply coercivity of a’.

The L *-estimates established above are not sufficient to ensure that the constructed solution f
is classical; however we can obtain higher regularity via (properly rescaled versions of) the De Giorgi
and Schauder estimates previously established in [18, 23]. To pass from these a priori estimates—
which require good smoothness and decay—to an existence theorem, we must approximate fi, €
L°>°*(R%) by smooth, compactly supported functions f£, and apply our previous existence theorem
from [24] for H*, rapidly-decaying data. Using the L>* estimate of Lemma 2.3 and—crucially—
our continuation criterion from [24], we can extend these approximate solutions up to a time
independent of €. This step is where the restriction k¥ > max{5,15/(5++)} comes from, because for
such k, || f||p.x controls the quantities in the continuation criterion of [24] (see (1.6)). Finally, we

can apply the local regularity estimates of [18, 23] to obtain a solution f in Ci .

in,loc by compactness.

1.4.2. Uniqueness. To demonstrate some of the difficulties in proving uniqueness in a weak space,
let us consider two solutions f and g with the same initial data. Then w := f — g satisfies

Ow + v - Vyw = tr(a? D2w) + tr(a¥ D2 f) + fw + e f.

Ignoring the growth of terms on the right for large v (which we can deal with by multiplying w by
a polynomial weight), the most difficult term in this equation to bound in terms of w is tr(a* D?f).
With initial data only in L°*, we certainly cannot expect a uniform-in-time bound on D2 f, but
for a Gronwall-style argument, an upper bound that is integrable in ¢ is good enough. Schauder
estimates for kinetic equations, along with a standard interpolation between C%* and C®, provide
a bound like

1D2 fll e (it/2.xe) S 6 fllep (e/2,0xR),
where 7(a) = a?/(6 — ). (Again, we are ignoring velocity weights. See Lemma 4.1 for the precise
statement.) At this point, to bound the C norm of f, one could try to apply the De Giorgi-type
estimate of [18] in a kinetic cylinder of radius ~ t~1/2 centered at each (t,z,v), but the constant
in this estimate degenerates like t~/2, giving a total decay like D2 f(t, z,v) < t~17%/2+7(®) which
is not integrable.

We are therefore led to take initial data f;, that is Holder continuous, and try to propagate the
Holder modulus forward in time. This is the subject of Section 4. Our method of proof adapts an
idea used in [13] for the forced critical SQG equation: for (¢,z,v,x,v) € Ry x RS x B1(0)? and
¢ > 0, define
|f(t,1?+X,U+I/) —f(t,x,v)|2

- ¢
g(tax7U7X7V) - (|X|2+|V|2)a <U> .
The function g is chosen so that the size of g in Lg°, | , controls the weighted C, norm?® of f. The

factor (v)* is there to account for polynomial decay in the Holder modulus for large |v|. Calculating
the equation satisfied by g, it can be shown that all the terms either respect a maximum principle,
or can be bounded by a constant times g, so the L°° norm of g is bounded for some positive amount
of time. Since this argument only gives Holder continuity in  and v for f, we also have to show,
via the equation, that this implies Holder continuity in all three variables. This is established
by a general technique that may be of independent interest (see Appendix A). This argument
provides a method to establish Hélder continuity of f—in the case that f;,, happens to be Holder
continuous—without appealing to the De Giorgi estimate of [18].

3in the Euclidean Holder metric, i.e. without the kinetic scaling of p(z,2’). This choice is imposed on us by the
proof—the reason is explained in Section 4.
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1.5. Notation. To aid the reader, whenever possible we denote supersolutions with overlines and
subsolutions with underlines, e.g. f and f.

We often use z to refer to a point (¢,7,v) € [0,T] x R? x R3, and if z is decorated by a symbol
the coordinates are as well, e.g. 7 = (¢, %, ).

For z, 2/, define the kinetic distance

(1.8) p(z,2) =t —t|"2 + 2" —x — (' —t)o|2 4+ ' —v|.

It is not a metric since the triangle inequality is not satisfied and it is not necessarily symmetric;
however, it is straightforward to check that p(z1,22) < p(22, 21) for any z; and zs.

The kinetic distance p gives rise to kinetic Holder norms, which give rise to the kinetic Holder
spaces in the obvious way. For Q C [0,T] x RS, we define the Hélder seminorm

|u(2) — u(z)]
1.9 U ce = sup ——F———
(1.9) [uleg, @ S (e

and the norm |ju||ce

o (@) = [Uce (@) +supg |ul. In addition, we define the second order norm

Il = suplul +sup 1V + | D3l @)+ (0 - Vadull @) < o
The differential operator 9; + v - V,, has been extended to the space Cfi’g (Q) by density, and even
though (9; + v - V. )u is continuous, dyu and v - V,u need not exist in a classical sense.
We denote by @,(z0) a ball under p, i.e. a kinetic cylinder:

Qr(z0) = {z € (—o0,tg] X RS : p(z0,2) <T}.

Notice that this includes only times before ty. If the center point zg is omitted in the notation, it
is assumed that zp = 0. We also use B,-(p) to denote a ball in the standard metric.

We use the notation A < B if there is a constant C such that A < CB. In each section we
clarify the dependencies of C, but in general, C' may depend on v, §, r, R, and k. We use A~ B
if A< Band B S A

1.6. Outline. The rest of the paper is organized as follows. In Section 2, we establish the existence
of solutions (Theorem 1.2) and prove our continuation criterion (Theorem 1.3). In Section 3, we
prove that f is continuous up to ¢ = 0, as long as f;; is continuous. In Section 4, we show
propagation of Holder regularity and a time-integrable bound for D2 f, and in Section 5, we prove
uniqueness of solutions (Theorem 1.4). In Appendix A, we prove that Holder continuity in z and
v implies Holder continuity in ¢, and in Appendix B, we prove some interpolation lemmas.

2. EXISTENCE

The purpose of this section is to prove Theorem 1.2 by constructing a classical solution to (1.1).
As discussed in Section 1.4, the key ideas are: (i) an a priori estimate in the space L% ([0, 7] x R)
(Lemma 2.3), and (ii) an argument that extends conditional regularity and continuation results
to solutions in this weak space. Some steps of this construction—which we will indicate—involve
adapting results and proof techniques from [7], [23], and [24], which are previous works on the
Landau equation involving the present authors. We avoid giving full details of these steps, in order
expedite the presentation and to emphasize the more novel aspects of the argument. However, for
the reader’s convenience, we outline the omitted proofs when possible.

2.1. Coefficient bounds. Our first step is to obtain bounds on the coefficients that are compatible
with the L>* norm.



SOLUTIONS OF THE LANDAU EQUATION WITH ROUGH DATA 9

Lemma 2.1. Ifk > v+ 5, then, with all norms over R, we have
a’ (t,2,0) S (@) f(t 2, )] o
b7 (¢, 2, 0)] S @)D £ (8,2, e
1f@t 2, e, v=-3,
{Ilf(t,-»-)ngw 7 € (=3,0),

whenever the right-hand sides are finite, with implied constants depending on v and k.

& (t,x,v) <

~

Proof. Tt is elementary to show that for r > —3 and g : R® — R, there holds for v € R3,

(g [-1")(v) S )™ llgllpeer,
where k > r + 3 and ry = max{r,0}. The statement of the lemma follows from this convolution
estimate and the formulas for @/, b%, and & in (1.2). O

For the proof of the continuation criterion, we also require bounds on the coefficients in terms
of Ll-based norms:

Lemma 2.2. For f such that the right-hand sides are finite, we have, with all norms over R3,
<U>7+2||f(t, z, ')HL%,’?a Y € (_270)a

@z, ) porcenen + 11 (G2, )y, v e [=3,-2],
<’U>’Y+1||f(tvx")|L};1> v E <_170)7

||f(t,$, ')||L3/(4+“f>+77 + ||f(t,l‘, )”L},) e [_37 _1}7

| f(t, =, ')||L§/(3+“/)+’1 + ||f(t71'7 >| LY, v € (=3,0),
||f(t>$7')||L$,°7 v = -3,

with n > 0 any small constant. If f has even more decay, then the quadratic form associated to af
satisfies the following anisotropic upper bounds for e € S?: If v € [-3,—2], then

(V)72 e L,
7, el

where p > 3/(5+7) and £ > 3|y|/(5+7~). If v € (=2,0), then the same estimate holds without the
L? bound, and with 2 replacing £.

ja’ (t,z,v)] SC{

7 (8, 0)| S {

Ef(t,a?,v)| < {

(2.1) a%wmm%<0@mw»my+umm»m){

Proof. The isotropic upper bounds follow from standard integral estimates and are omitted. For
the proof of (2.1), see [7, Lemma 2.1] for the case v € (—2,0) and [23, Lemma A.3] for the case
v € [-3, —2]. The statement of [23, Lemma A.3] uses the LS° norm rather than the L? norm, but
the same proof works with LZ. O

2.2. A priori estimates. A key element of our construction is the following closed estimate in
the space L°>*(R%) for suitable k, which is proven using the maximum principle for the linear
Landau equation.
Lemma 2.3. Let ko > v+ 5. If f is a smooth solution to (1.1) on [0,T] x R®, || fin |l 1o k0 we) +
| 1l oo-ko ([0, 71 xrE) < 00, and f € C’tLﬂz%k"([O,T} x RY), then there exists Ty > 0 depending on
Il fin| Lo ko rs)y and v, and C > 0 depending only on v, such that

£t Mz roges) < Cllfinllzmro oy, 0 <t < min(T, Tp).
Furthermore, if || finllpoo.kmey < 00 for any k > ko, and either ||f| pooro(o,r)xre)y o7 ¥(t) +
[ fllLz oo, xrey is finite (recall the definition of W in (1.4)), with p > 3/(3 + ), then the
inequality

||f(t7 K ')”L“’vk(RG) < ||fin||L°°=k(]RG)eCKta 0<t< Ta
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holds for either K = || f|| poo.ko(jo,r1xre) 07 K = U(t) + || fllLos L2 ([0, 1)xRe), where C depends on -y
and k.

Although this estimate depends on || f|[ze 12 (jo,r)xre) for all v € [=3,0), this dependence is
removed in the case v € (—2,0) during the proof of the continuation criterion (Theorem 1.3).

Proof. Define the linear operator L by
Lg=0dg+v-Vag—tr(a/ Dlg) — &g
With 8> 0 and k > 0 to be chosen, define ¢(t, z,v) = e%*(v)~*. Then
1050] = € [k(k + 2)(v) "F ~tv0; — k(0)T*72035] < (v) 29,
and
Lo =36 — tx(a’ D7) — '
> B9 — CK ()" (1) 76 - CK¢ > (8 — CoK)9,

where K is any quantity such that laf| < K(v)t2* and |&/| < K, and Cjy depends on 7 and k.
With 8 = Co K, we have Lo > 0. If k is such that || fin| oo.rrs) < 00, we can apply the maximum
principle to || fin|lL.r@ — f and conclude

(2.2) £t 5 ) ook rey < || finll oo sy exp(CoKt), t € [0,T].

Now we set k = ko, and for ¢ € [0, T, define H(t) = || f|| Lo.ko([0,¢)xre)- Since H is increasing, (2.2)
applied on [0,¢] with K = H(t) implies H(t) < || finl|lpoc.k0o exp(CotH(t)) for t € [0,T]. From this
inequality and Lemma 2.4 below, we have H(t) < C|| fin|loo.ko if Collfinllzo.0t < 1/e, and we can
choose Ty = (eCol| finl| oo ko) ™"

For the second conclusion of the lemma, we apply (2.2) for any k > ky. We may choose
K = || fll Lo ko (jo,7]xrs) Py Lemma 2.1, or K = W(¢) + ”fHLfwaﬁ([O,T]XRG) by Lemma 2.2. O

Lemma 2.4. If H : [0,T] — Ry is a continuous increasing function and H(t) < AeBH W for all
t € [0,T] and some positive constants A and B, then

. 1
H(t)<eA for 0<t<T,:=min (T, eAB) )
Proof. First, we may assume that T, = 1/(eAB) by simply extending H(t) to be constant after ¢t =
T. For each t € (0,1/(eAB)), let ¢;(x) = AeP™ —z and let zpin(t) = —(Bt) ! log(ABt). A simple
computation implies that ¢¢(Zmin(t)) < 0. We claim that H(1/(eAB)) < Zmin(1/(eAB)), which
establishes the claim because H is increasing. We argue by contradiction supposing H(1/(eAB)) >
Tmin(1/(eAB)). Since H(0) < zmin(0), the intermediate value theorem implies that H(ty) =
ZTmin(to) for some tyg < 1/(eAB), which implies that ¢(H(to)) = ¢(Tmin(to)) < 0. This is a
contradiction since ¢ (H(t)) > 0 for all ¢ € [0, T,] by hypothesis. This finishes the proof. O

We require the following result guaranteeing a lower ellipticity bound for @’ that is controlled
from below whenever @/ is bounded above. Lemma 2.5 follows from the work in [24], although it
is not explicitly stated as a lemma in that paper. We require the following definition: for k£ > 0,
the uniformly local Sobolev norm H, is defined by

ol ey = > sup | [o(a - a)9202 g(z,v)|? dz dv,
jal+181<k “SF TR
where ¢ € C§°(R?) is a cutoff satisfying 0 < ¢ <1, ¢ =1 in By, and ¢ = 0 in R? \ By. A bound
on f in the HY norm is needed to apply the results of [24] directly, but none of the conclusions
depend quantitatively on this norm.
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Lemma 2.5. Let f > 0 be a solution of (1.1) in [0,T] x R® with initial data fi, well-distributed
with parameters 6,7, R > 0, and such that e*I"I” f, € HL(RS) for some p > 0. If K is a constant
such that |af (t,z,v)| < K{)O0F2+ in [0,T] x RS, then f satisfies the pointwise lower bound

) = e (e PO (1 a,0) € B
where ¢1(t) > 0 depends only on v, 6, r, R, and K. Furthermore, the matric al satisfies

(v)7, e € S?,

(23) a’zfj (ta €, U)eiej > CQ(t) {<v>fy+2’ e-v=0,

for 0 <t < T, with c3(t) depending on v, §, r, R, and K. The functions c¢1(t) and co(t) may
degenerate as t — 0 but are otherwise uniformly positive.

If, in addition, fin is such that for all x, there is some |vy,| < R such that fin(-,-) > 01B, (2,0,.)
then (2.3) holds with ca(t) replaced by a uniform positive constant cr > 0 depending on v, 8, r, R,
K, and T, that are positive for any T < oo.

Proof. The first statement follows directly from [24, Theorem 1.3]. As stated, that theorem requires
a bound on the hydrodynamic quantities (precisely W(t) defined in (1.6)), but the only role these
quantities play in the proof is providing an upper bound of the form |a/ (¢, z,v)| < K{v)(0t2)+ so
any such K suffices (see [24, Section 4]).

The lower ellipticity bound (2.3) for @/ follows from the lower bound for f and [24, Lemma 4.3].

The last statement follows from an examination of the proof of [24, Proposition 4.1]. For any
x € R3, let v, be such that fi,(x,-) > 01, (v,,), Where |vy,| < R. Step 1 of the proof of [24,
Proposition 4.1] establishes the existence of some T, € (0,7] depending on ~, K, and r, such that
for all t € [0,T%],

)
f(t7'7') > ilBr/z(z‘)XBr/z(vm)'

The proper v-dependence for ¢ € [0,T,] is then implied by the proof of [24, Theorem 1.3(ii)]. We
can take c; to be the minimum of 6/2 and inf,cr, 77 c1(t), and similarly for () in (2.3). O

Remark. [t is seen from the proof of Theorem 1.2.(i) that the quantitative lower bounds of Lemma
2.5 also apply to the solution constructed in Theorem 1.2.

2.3. A convenient transformation and new coefficients. Since the ellipticity ratio of af
degenerates as [v| — oo, it is convenient to use a change of variables developed in [7, Lemma 4.1]
that makes @/ uniformly elliptic (see also [23, Lemma 3.1] for the extension to the case v < —2).
This makes it possible to apply the local regularity estimates from [18, 23] and understand precisely
how the constants degenerate for large |v|. We define this transformation here.

Fix zp € Ry x RS, and let S be the linear transformation such that

g {(Uo>1+7/ze, e-vg=0
e =

(vo)7/%e, e vy = |vol,
and
(2.4) 1 = (vo)~3F/D+ min (1, M) .
Next, define

(2.5) S.,(t,z,v) = (to +t,20 + Sz + tvg,v9 + Sv) and .z = (rit,riz, rv).



12 CHRISTOPHER HENDERSON, STANLEY SNELSON, AND ANDREI TARFULEA

There are two important, elementary features of these transformations that we require throughout
the proof:

0(80,2,0,,2") =11p(2,2")  and
2:6) min (1, v/A072) (00) (/D120 ) < S, (Bry2): Se (61, 2)
< min (1, \/tO/Q) p(z, 7).

Given any function g and any point z = (¢, z,v) € @1, we define

(2.7) 9z (2) = 9(82 (01, 2)).
First we prove an L°°-based bound on the coefficients. This is necessary to obtain the Holder

regularity of f.

Lemma 2.6. Fiz 29 = (tg,70,v0) € Ry x R3 xR3 and £ € R. Let a be a matriz and g be a scalar-
or vector-valued function, and assume that, for all z € [ty/2,to] x R® x R? and e € S?,

) 7 iflevl = o,
(2.8) 9(2)| S () and aiJ‘(Z)eiej“’{@)Hw ife-v=0.

Let A = S71a,,S™1. Then there exist 0 < X\ < A, depending only on the implied constants in
(2.8), such that, in Q,

M <A(z) AT and  [gzy(2)] < Avo) N9l Lowre (b0 /2.80] xR0)-
In particular, \ and A are independent of zg.

Proof. The proof of the bounds of A is exactly as in [23, Lemma 3.1]. The bound on g., follows
directly from the fact that if z € Q1, then (r1.Sv + vo) = (vo). O

In order to obtain bounds on the C’lfi’rol‘ norm of f, we require Holder regularity of the coefficients
of (1.1) after applying our transformation. The following lemma is similar to [23, Lemma 3.3].

Lemma 2.7. Fiz zp € Ry x RS, a € (0,1), and m > max{5,5 + v + «/3}. Suppose that
(V)™ f € Cg,([to/2,to] x R®). Let A(z) = S~'al S~ and C =ricf . Then we have

[Z] C22/3(Qy) S <Uo>2+a/3[< >mf}cgn ([to/2,to] xRE)>

[Cloaass gy S (0} EFPH ™ floe 1172001k,

kln
. a/3 «@ m
[faolc2ers ) < min{1, 15" Huo) B [(0)™ Floe (@1 (zo)n(lt0/2,t0] xES)) -

Proof. We prove only the first inequality; that is, the inequality for A. The bound for C is exactly
analogous, and the bound for f,, is straightforward after using (2.6).

The following calculation is similar to [23, Lemma 3.3]. For z,z’ € Q, let Z = S,,(d,,2) and
7 =8.,(6,,2"). For A(z) = S7'af(S.,(0,,(2)))S™", we have, using |S~e| < (vg)~7/?|e],

) = A S ) [ ol 21 a 5= w) = F73 0 = w)]dw
(2.9)
S (007 [0l (o520 4 5220 0l Flog, 2ty 00
where we have used that

p((E:2,0 —w), (7, 7,0 —w)) < p(2,2) + p(2,7)**|w|'/?,
which can be seen by a direct computation.

The inequality [gh]ce < |lgllr=[Rlce + [9]ce

kin k1n kin

h|| Lo implies

[Flog, (ito /2022 x By (vo—w)) S (V0 —w) " [{0)™ fllcg,,-

in
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(Here, and for the remainder of the proof, we write C¢ = C& ([to/2,to] x R®).) Feeding this
estimate into (2.9) and using (2.6) and that m > max{3,5 + v + «/3}, we have
o [A(2) — A(z")) 2+a/3
[Algzars g,y = sup  ———=2= S [{0)" fllog, (vo)™ /"
Crin’ ~(Q1) 22 €Qn p(z, 2')2e/3 kin
A similar calculation, with ~ replacing v + 2, implies

€] (o) ~EEVEHIES ()™ £l e

. <
ci/? Q) ~
O

2.4. Existence of a solution: Theorem 1.2. We are now ready to prove the existence of
solutions:

Proof of Theorem 1.2. (i) Fix any € > 0 and define the following mollification and cut-off functions.
Fix any ¢ € C2°(R®) such that ¢ > 0 and fRG Ydrdv = 1. Let ¢. = e 5 (x/e,v/e). In addition,
let (. € C*°(R3) be such that (.(v) = 1 when |v| < 1/e, ¢.(v) = 0 when |v] > 1/ + 1, and
V.Gl S 1.

Then let

(2.10) in = Ce(v)(fin * Ye) (2, v).

Note that || fS||per S || finllpex- The smoothed, cut-off initial condition f5 is compactly sup-
ported in v, smooth, and nonnegative, so e”""?ffn is in Hﬁl(RG) for any p > 0. Hence, we can
apply [24, Theorem 1.1] to obtain a solution f€ : [0,7.] x R® — R,. We may assume T, is the
maximal time of existence of the solution f¢. By the existence theorem [24, Theorem 1.1], we have
e/ f= e 12o([0, T, HA,(RE)) € L([0, T.] x R®), which clearly implies f¢ € Lo*([0, Tz] xRS).

Since k > 5, Lemma 2.3 yields

(2.11) I £¥1 Loeor (0,13 ],k0) < Cllfinllpoe s < Ol finll poeor,

where Ty = min(To, Tt), To < (|| finll %0 ) ™", and C' is independent of e.

For ¢ small enough (depending only on §, R, and r), we have that f (x,v) is well-distributed
with parameters 0/2, r/2, and R. Therefore, [24, Theorem 1.5] implies f€ can be extended for as
long as

Hfs(tv'?')”L;OL},'Q’ e (_an)a

||f5(t, " )HL;CL},Z + ||f5(t, * ')”Lgfva Y e [_37 _2]'
remains finite, where ¢ > 3|y|/(5 + 7). This quantity is controlled by || f*(¢,-,-)|| fec.»(rs) since
k > max{5,15/(5+)}. Therefore, (2.11) implies the maximal time of existence T. must be larger
than Tp, i.e. f€ exists for ¢ € [0, Tp] for all €.

The bound (2.11) holds for f¢ on [0, Ty], so the upper bounds for a/*, 5", and &* of Lemma
2.1 and Lemma 2.2 hold independently of ¢, since all the relevant norms of f are controlled by
[ £l oo, Since fg is well-distributed, the smoothing theorem [24, Theorem 1.3] implies f€ is a C*°
classical solution of (1.1), with regularity estimates that may depend on . The decay estimate
(2.11) and Lemma 2.5 with K < || fin|| e imply lower bounds for f¢ and a/~ that depend only
ont, x, d, r, and || fin||peo.r, but not on e, for ¢ € [0, Tp].

Next, we want to apply local regularity estimates at any point zp € Ry x RS. To track the
dependence of these estimates on v, we must use the change of variables defined in (2.5). Recall
the definition of f., via (2.7). By Lemma 2.6 (which relies on our e-independent bounds for a/”,
bf", and &, most crucially the anisotropic bounds (2.1) and (2.3)), we have that f¢ satisfies

(2.12) O, +v-Vofo =V (A()VofS) + B(2) - VoS, + C(2) [

z0?

which comes from (1.1), and

(2.13) Ocfs, + v Vafs, = tr (A(2) DY f5,) + C(2) [,
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which comes from (1.3), in Q1, with the coefficients

A(2) = 5710 (856, ()57, Blz) =S (85 (61, (2))),

2.14 _ .

240 and  C(2) = 126! (.0 (6, ()

satisfying

(2.15) Ao < A(2) <AL, |B(2)|+|C(2)| <A,

with A depending only on || f*|Lee.x([o [0,To] xES) S < K, and Ay, 5, depending on K, g, J, r, and R.
The dependence on tg comes from ¢(t) in Lemma 2.5, which is uniformly positive on any compact
subset of (0, 7.

The divergence-form equation (2.12) allows us to apply [18, Theorem 3] to fz

(2.16) 15 llee @12 < CUFE 2@ + ICFE =) S (vo) 7,

with implied constant depending on Ay, and K. The Holder exponent « € (0,1) also depends on
At, and A, and therefore on K. Undoing this change of variables and using (2.6), we find that

||f€HC§2n(er/z(zo)) < min{1, to}fa/z<v0>a((1+w/2)+fv/2) (= HC&H(Ql/z)
< min{1, ,50];&/2<v0>fk+a((1+v/2)+ﬂ/2)7

where 71 is defined in (2.4). Applying the straightforward interpolation
l9llce, @i S 77 Ngllee(@iza)) +  suP : l9lleg, (@r(22)

22€Q1 (21

for any g, 21, 22, and r, we deduce
(2.17) ||f8||C%n(Q1(ZO)ﬂ([O,T]XRG)) 5 min{l’to}—a/Q<v0>—k+o¢((1+’y/2)+—’)’/2).

Since it is not an important point in this proof, we absorb all dependence on ty into the implied
constant for the remainder of this section.

Next, we pass this regularity to A and C via Lemma 2.7, which requires [(v)™ f¢ Joe ((to/2,t0] xRS) <
Cty, where m > max{5,5 + v + a/3}. By assumption k > 5 so this holds with m = k — a((1 +

v/2)+ —v/2), up to decreasing . Thus,

[Alc C3(Qu) ~ S {wo)?te/%, [Cle c/? (@) ~

with constants depending on ¢ty and K. It is then straightforward to show that
X 2+a/3
”A”cif;/?’(c;)l) < (vo)?T*/3, and

[6f§0]ciian/s@1) < (up) TR+ trta/3,

< (v 0>—(2+’Y)++’)’+0¢/3’

Now, using the non-divergence form equation (2.13), we can apply the Schauder-type estimate [23,
Theorem 2.9] to fZ :

34243
[fso]cﬁgf“/?’(Ql/z 5 [Cf } 2a/3(Q1) + ||A|| QT/S(Q )HszHLOO Q1)

(2.18)
(vo) TR @IV FvFA/S L (40)P (wg) TF,

A

where p > 0 depends on «, which in turn depends on K and tg. The implied constant in (2.18)
depends on the same quantities.
Translating from f7 back to f¢, we clearly see that f€ is Cif

(2.19) 1) £l o0/ 01y S 1

for some p depending on K and t;. We, again, stress that the implied constant in (2.19) depends
on ty and may degenerate faster than ¢, ! to any power since At, may be exponentially small in
tot.

> 2a/3 away from ¢ = 0 and that
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For any zg € (0, T]xR® and o/ € (0,2a/3), since C’Ei’ﬁ‘/ (Qr, (20)) is precompact in Cﬁi’ia/s(@h (20)),
a subsequence of f€ converges to a limit f in Cfi’g‘ (Qr,(20)). Since zo € (0,T] x R is arbitrary, we
have that f € CE{E%?((O,T] x RY) and satisfies a bound such as (2.19). Since f¢ — f pointwise,
the bound (2.11) extends to f. By (2.11) and the Dominated Convergence Theorem, we conclude
al” —af, bf" = bf and & — & as e — 0. This establishes the existence part of the theorem.

(ii) The proof of (1.5) relies on the following lemma:

Lemma 2.8. Fiz any compact set K, C R3. With f¢ as above, we have

(i) f55—> fin L*P([0,T) x K, x R3) for any p < 7/2,
(ii) @V, f¢ = a/V, f weakly in L>~F/2([0,T] x K, x R®), and
(iii) fb!" converges weakly to fb in L*¥((0,T] x K, x R?) for any p < max{5,15/(5+7)} -
5/2 —~.

We postpone the proof of this lemma momentarily and proceed with the proof of Theorem
1.2.(ii). Recall that our test functions ¢ satisfy

¢ € C([0,T); L> 7> (K, x R®)), (8 +v-Va)pe L>721(0,T] x K, x R?)
Voo € L2720, T] x K, xR?)  and  supp(¢) C [0,T) x K, x R,

for some small 7 > 0. Note that the collision term Q(f, f) in (1.1) may be written Q(f, f) =
Vo (@a'V,f+ b/ f). Since f¢ is smooth and satisfies (1.1), we find
(2.20)

/ m®(0)dz dv = / (fg(at +0-Va)p— Vo (@ Vofe) — fool - vv¢>) dz dvdt,
RS [0,T] xRS

where ¢(0) = ¢|(;—o}. It is straightforward to show from the definition (2.10) that f — fi, in
L120c as € = 0. On the other hand, by Lemma 2.8, the right hand side of (2.20) converges to

/ (f(Or +v-Vu)p—Vud- (@' Vyuf) — fb - Vyo) dzdodt
[0,T]xR6

as € — 0. Thus, we recover (1.5) as claimed.

(iii) For higher regularity, we return to the sequence fZ and apply the argument of [23]: pass
the regularity provided by (2.19) to the coefficients of the equation (if the pointwise decay in v of
/¢ is sufficiently strong, i.e. if k is large enough compared to p), apply local Schauder estimates,
and repeat, differentiating the equation to estimate higher derivatives in Cy, ;.- As e — 0, this
implies the same local regularity for f, with o' replacing . The number of iterations allowed is
limited by the decay of f¢ in v (which, by (2.11), is determined by the decay of fi,). If fin decays
faster than any polynomial, then the solution f is C*°, which implies f is C°® as in [23]. The
details are omitted. O

We now prove the lemma.
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Proof of Lemma 2.8. (i) We first recall that f¢ — f locally uniformly in (0, 7] x R®. Thus, for any
é > 0, we have

T
limsup/ / (0)?|f¢ — f)* dedvdt
0 JEK,xR3

e—=0

5 T
< limsup/ / W)?|f¢ — fI*dzdvdt + limsup/ / ()?|f° — f|*dedvdt
0 » XR3 5 «XB1,5(0)

e—0 e—0

e—0

T
+ lim sup/ / ()?P|f¢ — fI*dadvdt
4 KIXBl/(;(O)C
< OO Kq|(lim sup || ]| oe.s + [ fllpees)? + 0+ C(T — O) K| (limsup || f=][ <o + £l oes)207 722
E—r E—r

Recall that 2p < 7. Taking § — 0 establishes the result.

(ii) We begin by showing that |a/"V, f¢| is bounded in L*»~(+7/2)([0,T] x K, x R3). This
guarantees that a/” V, f¢ has a weak subsequential limit. First, note that

T
de va&”%?«f(lw/z) :/ /K 2 (U>_(2+V)|(af )1/2(af )1/2va|2dv de dt
0 X
T €
5 »/O L R3 <’U>7(2+’y) (<’U>2+’YHfE||LmJ€) |(C_Lf )1/2vvf|2dv dx dt
x X

T
:HfE”Loo,k/ / Vo f¢ - (@' Vo f)dvdzdt,
0 = XR3

since @/~ is symmetric. Therefore, it is enough to show that (a/")'/2V,, f¢ is bounded in L2([0, T x
K, x R?) uniformly in . To this end, fix any non-negative v € C°(R3) that equals 1 on K.
Using that f° satisfies (1.1) and that @/* is non-negative definite, we find

T T
OS/ / Vq,fe-(@favvf‘f)dmdvdtg/ UV, f% - (@ V) dedodt
(2.21) 0 JKe 0 JR

1 1 (T 1
< f/ Pl fil? d dv + 7/ / 1P (v - Vb + 2/ ) da dv dt.
2 Jrs 2Jo Jre 2

It is clear that the right hand side is bounded uniformly in €, due to the uniform L>-*(R%) bound
that holds on fZ and f°.

We next show that any subsequence of af” V, f¢ has a subsequence that converges weakly to
a/V,f. Tt is an elementary fact that this is equivalent to the weak convergence of a/"V,f¢ to
a’V, f. Fix any subsequence ¢, — 0. From the uniform bound above, we find g € L*~1+7/2)([0, T] x
K, x R?)? and a further subsequence &,, — 0 such that a/ IV, f converges weakly to g in
L3([0,T] x K, x R3)3.

On the other hand, from the Schauder estimates of the proof of part (i), and the uniform bounds
on f€ € L%, we find that f° € CE{EQB(K) and a/" € 0531/3(1() with uniform-in-¢ bounds
for any compact K C (0,7] x RS. Thus, up to passing to a further subsequence, V, f*" — V,f
and a7 — a/ uniformly on K. It follows that g = (af)}/2V,f on K. Since this holds for any
K, we find g = afV, f almost everywhere in [0, T] x K, x R3, which concludes the proof.

(iii) We omit this proof as it is similar to and easier than the proof of (ii). O

2.5. Continuation of solutions: Theorem 1.3. Now, we prove our continuation criterion for
the solutions of Theorem 1.2:
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Proof of Theorem 1.3. Suppose first that v € [—3, —2]. If, for some 7" > 0, the quantity ¥(T") =
Hf”L‘t’f’lL’;([O,T/]XRG) + ||f||Loo L1([0,T"] xR6) is ﬁnite, Lemma 2.3 yields

||f(t7 K ')”L‘X’JC(]RG) < ||fin||L°°vk(]R6)€CT s 0<t< T/a

with C' depending on ¥(7”)). Since fi, is well-distributed, Lemma 2.5 with K = ¥(7”) implies
fT’, -, ) is well-distributed with parameters that can only degenerate if 7" — oco. Therefore,
f(T’,-,-) satisfies the hypotheses of Theorem 1.2, and we can continue the solution past ¢t = T".

If v € (=2,0), we can bound || f||zsc L2 (77 /2,7/]xRrs) by applying the argument of [7, Theorem
1.1]. This gives an upper bound for |’|f||Loc([T//2,T/]><]R6) depending only on ||f||L;>° p12 and the
lower ellipticity bound for @/ on [T”/2, T'] given by Lemma 2.5 (which can be bounded in terms of
U(T") and the initial data). This gives a bound for f in L°LP for t € [T'/2,T’], which, combined
with the reasoning of the previous paragraph, lets us continue the solution past ¢t = T". O

3. POINTWISE MATCHING OF INITIAL DATA

In this section we show that, under the additional assumption that f;, is continuous, we have
fin(z,v) = limy_,04 f(¢,2,v). The proof uses a simple barrier argument.

Proposition 3.1. Let f be the solution to (1.1) constructed in Theorem 1.2. If fi, = f(0,-,-) €
Lk (RS) is continuous, then f(t,z,v) — fin(z,v) as t — 0+, uniformly on compact sets of RS.
If fin is uniformly continuous in x, then the convergence as t — 0+ is uniform.

Proof. We work with the approximating solutions f¢ from Theorem 1.2, obtaining a uniform bound
in . Thus, we obtain the result in the limit e — 0. Importantly, these f¢ are smooth on [0, 7] x RS,
so we may use the classical comparison principle. In an abuse of notation, we denote f¢ simply by
f for the remainder of the proof.

We show that continuity of fi, at a fixed (zg,vo) € RS implies f(¢,xo,v0) — fin(z0,v0) ast — 0.
Fix n > 0. If |vg| is sufficiently large, then the finiteness of ||| .o, 7)xre) guarantees that
f(t,x,v9) < n for all z and for all ¢ sufficiently small. Hence, we need only consider vy € Bg, (0)
for some large R, > 0 depending only on 1 and || f|| foe.x(0,7)xRs)-

Let 6 > 0 be such that

| fin(2,0) = fin(wo,v0)| <n,  if |z — x0> + Jv — vo|* < 67
With M, 8, p > 0 to be determined, define
h(t,z,v) = €’ [M(|z — g — vt|* + [v — vo|®) + 0 + fin(z0,v0) + pt] .
Recall the linear operator Lg = 0;g+v- Vg — tr(af D2g) — ¢/ g from the proof of Lemma 2.3. We
have D2h = 2MeP*(1 + t?)Id, and
Lh = Bh + pePt —2MePH (1 + tH)tr(al) — & h.
Since & < || fll poe (jo,7), Lok (o)) and @l < <v>(7+2)+||f||Loo([0’T]7Loo,k(Rs)) (by Lemma 2.1), one has
Lh >0 in [0,1] x RS, provided 8 and p are large enough. By our choice of §, we have
fin(@,v) < fin(zo,v0) + 1 < h(0,2,0),  for |z —wo|* + [v — vo|* < 6.
Next, choose M > 0 large enough so that, for ¢ < §/(4(R,, + 0)) and |z — zo|? + [v — vo|* = 82,
there holds
h(t,z,v) > M(|lz — zo|*> + t2|v|* = 2t(x — 20) - v + |v — vo|?)
> M(6% — 2t(x — x0) - v)
> M6%/2 > || fll Lo (o, xR%)-

We may now apply the maximum principle to obtain f(t,z,v) < h(t,z,v) in [0,5/(4(R,, + §))] x
Bjs(xo,vo).
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Let &' = \/n/M and
t '{11 (1+m), —2 n}
=min<{ = lo , ————, — 7.
° 55T ul+0) »
If (t,x,v) € [0,t9) X Bs/(x0,v0), we have

|z — 20 — to|> 4+ v — vo|? < 2]x — xo|* + v — vo|? + 2t%|v|? < 4()?,
and, thus,
f(tw,v) < ht,x,v) < e [AM(8)? + 0+ fin(wo, v0) + pt] < (1+1) [4n+n+ fin(wo, v0) +11].

Since n was arbitrary, we conclude lim sup,_,q f(¢,20,v0) < fin(Z0, o).
For the reverse inequality, define

h(t,2,v) = e P [ fin — M(Jz — 20 — vt|* — v —vo|?) —n — pt] .

By a similar calculation, we have Lh < 0 for ¢t < 1, and fi,(t,2,v) > h(t,x,v) on the parabolic
boundary of [0,d/(2(|vg| + 68))] x Bs(xo,v0), if M, 3, p are chosen large enough. The rest of the
proof follows similarly to establish that fi, (2o, vo) = lim—o4 f(t, 2o, vo).

Clearly, 0 (and therefore M, &', and tg) can be chosen uniformly on any compact set of R, If
¢ is independent of xg, then o can be chosen depending only on 1 and || f|| fee.x(o,1)xrs) (recall
that R, depends only on 1 and || f||zc.x([0,7]xre)), Which yields the uniform convergence. Thus,
the proof is complete. O

4. PROPAGATION OF HOLDER REGULARITY AND HIGHER REGULARITY ESTIMATES

In this section, we prove that if fiy(z,v) is Holder continuous, with Holder norm decaying
appropriately for large velocities, then our solution f is Holder continuous in (¢, 2,v) up to some
short time T. This is a necessary ingredient of our proof of uniqueness (see Section 5).

In this section, we are not interested in the dependence of constants on || f||;.x. Thus, we allow
the implied constant in any “<” to depend on || f{| ok (jo, 7] xRo) -

Following the proof outline given in the introduction, the first step is to revisit the Schauder
estimates from the proof of Theorem 1.2.(i) under stronger assumptions on f;, that ensure good
lower bounds for f as t — 0. The non-scale-invariance of this estimate reflects the dependence of
the coefficients in (1.3) on f.

Lemma 4.1. Let f € L>*([0,T] x R%) be a solution to (1.1) with fi, satisfying the hypotheses of
Theorem 1.2. Assume in addition that for all x, there is some |vy,| < R with fin(+,-) > 01p, (2,0,,)-
For any to € (0,T], we have

o) ™= a ORI D2 fl e g, ey S b T )™ Pl eos2t0)x80)P),
for any m € (max{3,5+ v+ «/3}, k] such that the right-hand side is finite, with
p(a) =3+ 2a/3 + 3/a,
a(y, . kym) = (2+7)4 =7

b (1 5 ) w0 (b= w3 2o+ a/2)p(e) — K m)

and the implied constant depending only on m, vy, o, T, &, v, R, k, and || f|| oo .x ([, /2,t0] xRS) -

Proof. Let zy € (0,T] x RS be fixed, and let f,,(2) = f(S.,(6,,2)), with r; defined by (2.4) and
S, defined by (2.5) as in the proof of Theorem 1.2. The function f,, satisfies (2.13) in @Q;. By
Lemma 2.5, Lemma 2.6, and our extra assumption on f;,, the diffusion matrix A(z), given by (2.14),
satisfies upper and lower ellipticity estimates that are independent of zp. In other words, A\, in
(2.15) depends only on the initial data and T', not on t.
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Our goal is to apply the Schauder estimate [23, Theorem 2.12(a)]. Using the bounds in
Lemma 2.7, along with the fact that [f,,] c20/3(gy) < [f20)ce. (@), we find

[DngO}Cﬁf;/s(Ql/z) g [éfzo]ciio:/e’ + ”A”p 2a/3(Q1)||fZOHL°°(Q1)
S [6} 2“/3(Q1)Hfzo||L°°(Q1 + HC||L°°(Q1)”fzo”crzio:l/f’(Ql)
+ () FF/IP | (pym P (1)

< <<U0>*(2+7)++7+a/3<vo>fk + <UO>*(2+7)++‘Y7k/372m/3) ||<U>mf||cgn

~

o (o) /IO oy 8

S (o) 7A@k (14 ||} fllcg, )
where, as above, we use the shorthand C% = C&, ([to/2,t0] x R®), and we have defined
40,y by m) = max {—(2+ )+ +7 — (k—m)/3,(2+ a/3)p(a) — (k —m)}.

The reduction to the maximum of these two values is due to the fact that —(2 +~)y + v+ /3 —
(k—m) < (2+a/3)p(a) — (k—m). In the third line of (4.1), we also used an interpolation between
Cg, and L°* (see Lemma B.2) to write

1/3 2/3 . a/3 — —2m m p12/3
(42)  [Fralozersign S sl o) feol e () S min{Ltg  }wo) H52m B wym st |

kin
and used to < 1.
Using (4.2) again, and an interpolation between C¢ and C>% (see Lemma B.1), we find

2a/3 2a/3

__2a/3 1— - 2o/3
||D’l2jf20 ||L°°(Q1/4) S [fZU]Cf:in(Ql/2 [fzo] 22512/3/(2 [ f20]0a?5(12/2/)3)

a 2a o o 5
 (min{0, 15/ Hoo) ™+ min{1, 8 7 Yo7 o) (- ) st tim )
(L +[I(w)™ Flleg, )P
(12 ~
Smind1, 57 Hog) HOTFERACTEM (14 |0 flcp, .
Undoing the change of variables, we get that

et
Ckin

_ _ 14+ 24— = —v)—m — 22— )g(a,y,k,m m
D2 ()| < r %S zszzO<o>|s(1+to o )<vo>“2*”+ Dot (1= Ak oy g

Since q(a, v, k,m) = ((2+7v)+ —7v)+ (1 — %) G(a, 7y, k, m) and since zp was arbitrary, the claim
is proved. O

The purpose of the next lemma is passing from Holder regularity in (z,v) to Holder regularity in
(t,x,v). This lemma is proven in Appendix A, in a more general form. Since the reverse implication
is immediate, we see that bounding our solution f in Ly°CY;, ,  is equivalent to bounding f in
Cg,» up to velocity weights.

Lemma 4.2. For any locally Hélder continuous solution to (1.1) with f € L>*([0,T] x R%) and
k as in Theorem 1.2, there holds

ya(L7/2)+ (

I fllee (@i (zo)no.T)xrS) S (Vo [ 1lzoe o, xmey + [f [l Loy, . U(Qg(zo)ﬁ[O,T]xRG)> ;

for any zo € [0,T) x RS, where, for any A C RS,

|f(@1,v1) = f(22,02)]
f A sup
[ ] Cilin.a WA= (z1,v1),(z2,v2)EA (‘xl - $2‘1/3 + |Ul + v2|)a
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The implied constant depends only on || f|| ook -
By combining Lemma 4.2 and Lemma 4.1, we deduce the following, whose proof is omitted.

Lemma 4.3. Let the assumptions of Lemma 4.1 hold and additionally assume that m > max{3,5+
v+a/3t+a(l+v/2)4. Let

q'(a,v,k,m) = qa, vy, k,m — a1 +7/2)4) + a(14+7/2) 4.
Then

4 —1+4a? —« m o
[(wym=d rakm D2 )| < g IO Q) fll e (1o j2,00]x6) )P

kin,z,v

Now we are ready to show that Holder continuity at ¢ = 0 implies Holder continuity for positive
time. The proof requires us to work with the Euclidean Hélder norm || - [|ge(rs). This norm is
always only in x, v variables.

Proposition 4.4. Let f be the solution constructed in Theorem 1.2. Suppose that (v)™ fi, €
C*(RY) and fi, € L= (R®) and that o, m, and k satisfy

m >max{3,5+7+a/3} +a(l+v/2)+ and ¢ (a,v,k,m)<(2+7)+.
Then there exists Ty € (0,T] such that
{0} fll Lz co o, 71 xre) S 1{0)™ finll oo (o)
The implied constant above and Ty depend only on m, k, a, v, || fl Lo » (0,1 xRs), 9, 7, and R.

Proof. Let f¢ be the regularizing approximation from the proof of Theorem 1.2. We show that
the conclusion of the proposition holds for f¢, with Ty independent of ¢, so the same conclusion
for f follows. The smoothness and decay of f¢ is used to obtain a first touching point with a
supersolution, and to ensure the right-hand side of Lemma 4.1 is finite, but none of the estimates
depend quantitatively on €. To keep the notation clean, we denote f = f¢ for this proof.

Step 1: Defining g and deriving its equation. As discussed in the introduction, for (¢,z,v,x,v) €
Ry x RS x B1(0)? and m > 0, we define

Tf(t,z v, x,v) = ft,x + X, v +v),
5f(t7I707XaV) :Tf(t,{E,U,X,I/) 7f(t,x,’l}),

|5f(ta$>U,XaV)|2 2m
g t’x’ U’ X7 V) = U N
( WE e

Note that g encodes the Euclidean Holder norm of f, as stated in the following elementary lemma.

Lemma 4.5. Let m > 0. Fiz any f : RS — R and let g : R® x B1(0)2 — R be defined by
g(@,v, x,v) = [6f(z,v,x,v)[*(©)*™/(|x* + [v|*)*. There holds

(4.3)

gl 2 e x By 0)2) + [0)™ FllL0 (mey = 1(0)™ Gy = SUD()* " | F|Ee (5, (2.0

x,v
where the implied constants depend only on m and a.
Hence, deriving a time-dependent upper bound on ¢ suffices to prove the proposition. We obtain

a bound on g by showing that it satisfies an equation where all terms are either bounded nicely or
respect a maximum principle. By a short computation, g satisfies

2av - x
X+ TvP?
_ 2(tr(a‘st;%Tf+c‘sz;{6f) +rf+elof)of
(Ix[? + [v?)~

Og+v-Vyg+v-Vyg+
(4.4)

{0)™.
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The first three terms on the left enjoy a maximum principle. The last term on the left is clearly
bounded by g. The terms on the right can be shown to be bounded, which is the main thrust of
the argument below.

Before continuing with the proof, we discuss why the Euclidean Holder norm occurs naturally
here. In the definition of g, one might expect to see a denominator of (|x|> + |v|%)®/3 or another
term with this balance of powers that respects the kinetic scaling that is natural to the equation.
However, this would replace the last term on the left hand side of (4.4) by

200 v )

3 2+ v’
which is not bounded. This forces the choice of (|x|? + |v|?)® for the denominator of g, which is
why this proposition is stated in terms of the Euclidean Holder norm.

To find a time-dependent upper bound of g that remains finite for some time interval, we
use (4.4) and construct a super-solution of g.

Step 2: A super-solution and the mazimum principle argument. With N > 0 to be chosen later,
define G to be the unique solution to
— o2 _ p(a)+1
{th(t) =Nt "o (1+G@1) *
G(0) =1+ [1g(0, )|z mox By (0)2) + NN oo (0,7 x0) -

This solution G exists on a maximal time interval [0, T ) with Tg depending on N, 3, a, ||g(0, -) | Lo (RS x B, (0)2)
and || f[| oo (jo, 7 x®e). Our goal is to show that g(t,z,v, x,v) < G(t) for all t € [0,min{T,Tg}). By

Lemma 4.5, this implies the existence of T as in the statement of the proposition. Let ¢y be the

first time that [|g|| o ([0,t0]xREx B, (0)2) = G(to). It is clear, by construction, that to > 0. We seek a
contradiction at t = tg.

First, we claim that we may assume there exists (zg,vo, X0,%0) € RS x B1(0)? such that
g(to, zo,v0, X0, ¥0) = G(to). If there is no such point, then fix any sequence z, € RS x B;(0)?
such that g(to,2,) — G(to). Recall that f (which is actually the regularization f€) is C'°
and satisfies pointwise Gaussian decay in v. Because of this Gaussian decay, we can take z, €
R? x Br(0) x B1(0)? for some R > 0. Since g does not decay as |z| — oo, we need to re-center
as follows: let g,(t,x,v,x,v) = g(t,x + x,,v,x,v). Up to passing to a subsequence, it is clear
that there exists g and (vo, x0,%0) € Bgr(0) x B1(0)? such that g, — g locally uniformly and
g(to,0,v0, X0,v0) = G(to). Further, 191l Lo (j0,6) xRS x B, (0)2) < G(t) for all t < tyg. The smoothness
of g implies that, again up to passing to a subsequence, g, — g in Cfoc for any ¢ € N, so that g
satisfies the same equation as g, i.e. (4.4). The proof may then proceed using g in the place of g.
Hence, we may assume the existence of (g, vo, X0, V0)-

Next, we notice that (xo,v9) € B1(0)2. Indeed, if xo or vg were in dB;(0), then

(4.5)

5 f(to, o, v0, X0, ¥0)|?
g<t07x0>v07X07V0) S | f( 9> =0 10 X0 0)| <’U0>27n

< f(to, 2o + X0, vo + 10)* (v0)*™ + f(to, z0,v0)* (Vo)™ S [ f |7 o0 -
Then, choosing N sufficiently large, we find g(to, zo, vo, X0, %0) < N||f||2=.m. On the other hand,
by (4.5), G is increasing. Hence, we have G(ty) > G(0) > N|| f||% «.m, which contradicts the fact
that G(to) = g(to, 0, vo, X0, Vo). Thus, we conclude (xo,v0) € B1(0)2.
In order to conclude the proof, we establish that, at (¢o, 2o, vo, X0, V0),

p(a)+1
2

N
(4.6) g < ——= (1+y9)
5=
as long as N is chosen sufficiently large, depending on «, m, k, and the constant in Lemma 4.1.
Since, at this location, there holds ¢ = G and 9rg > (d/dt)G, this yields a contradiction in view
of (4.5).
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Step 3: Re-writing (4.4) at (to, xo, vo, X0, ¥0). In order to prove that (4.6) holds, we return to (4.4)
and examine the right hand side. Notice that

tr(a®f D27 f + al D25 f) \2m
e o
r @5}“ 2(r v)2m
@) — (@ D2g) + 25 2O s — 00, 6) - @000
B 2m(v)2m=2 v (a) - ,  (2m—2w- (@) ..
e (10 @9 as + (ahior + CUER gy

On the other hand (xq, vo, X0, o) is the location of a global maximum of g. Hence, at (z¢, vo, X0, Vo),
we obtain the identity

261V, (61) 0112
(Ixol* + [vo[*)* (Ixol* + [vol?)>”
or V,(8f) = —m{vg) 28 fvg. Then (4.7) becomes, at (xo,vo, X0, Vo),

tr(a%f D27 f + al D25 f)

0=V,g9= <v0>2m + 2mvo(vo)2m_2

T LRA
— tr(a! D2 tr(a’/ D2 (7 f)) o) 2 2myg m oo - (@ o) — (o) 2tr(a!
= tr(a! Dig) + 2 g a0 o) g ((m o+ 2)wo - (@) — wo)tr(a’))

Using again that (o, v, X0,0) is the location of a maximum, we have a/ D2g < 0 and V,g =
Vg = 0. Therefore, from (4.4) we obtain, at (x¢, vo, X0, ¥0);

(4.8)
B Yo Xo tr(@/ D3 (1)) am | 2Mg (@ o) — (v 2tr(a)
%9 < OB P! T o+ ol 00 gya (O 2) o @ o) = fro (@)
lrfof m L o
(|XOC|2 _7’-_ |I/()|2)O‘ <U0>2 + QCfg

= J1+Jo+ Js+ Js+ Js.

It is clear that Ji, J3, JJ5 < g (see Lemma 2.1 for J3 and J5). We now bound the remaining two
terms.

Step 4: Bounding Jo and Jy. Re-writing Jy and taking the absolute value, we find
2 || f| Vg
[l < 2 2\a/2
(Ixol* 4 [v0]?)

It is clear that we must bound the Hélder modulus of &f. If 4 € (=3, 0), then using Lemma 4.5,
we have

(vo)™.

7 d f(to, To, vo — w, X0, Vo)
= c,y/ |w]Y dw
(Ixol? + [wo[?)/2 R3 (Ixo[? + [wo[?)/2

Jw|” 1 3
< /Rs (v — w)™ 190, M £ (o x 3, (0y2) A < Cllg(tos ) oo (m6 3, 012

because m > 3 4+ . On the other hand, if v = —3, we have (up to a constant) ¢/ = §f, and
Lemma 4.5 directly implies the same upper bound for &/ (|xo|? + |10]?)~%/2. In addition, it is
clear that |7 f[(v)™ < || f||pe.» because k > m. By construction, we have ||g(to, -)|| 1o (ro x B, (0)2) =
g(to, zo, Vo, Xo, Vo). Thus, at (to, xo, vo, X0, ¥0), we have

J4 S Cg.
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For J,, we begin with a similar approach; observe that

7§f <a / | |2+76f to,fEO,’UO w7X07VO) dw
(Ixol? + [wo[?)e/2 = 7 (Ixol? + [wo]2)>/2
4.9 |w[>+7
) =® /Rs Tao —wym 1900 e ooy 40

< Cllg(tOv')HLoc(]RoxBl (0)2 )<v0>( )+,

This holds since m > 5 + ~ by assumption. Thus

(4.10) T2 S D20 F) o)™ 20 [lg(to, V12 oy o)

To close the estimate, we require an upper bound on ||(v)™+Z+M)+ D2 f|| L, which is provided by
Lemma 4.1; however, the results in Lemma 4.1 require working with the kinetic Holder norms. In
this case, it suffices to notice that

1{0)™ fllcg

This inequality follows from the easy-to-establish fact that |z — 2/| < p(z,2’) when ¢t = ¢/ and
|z—2'| < 1. Putting this together with Lemma 4.1 and using the fact that q(a, v, k,m) < —(2479) 4,
we have

([to/2,t0] xRE) ~ S )™ f||0a([t0/2,t0]xR6)-

kin,z,v

— (o9 m 1 m «
(o)™ VDY f|| o < (o)™ MR DE f e S ———5= (14 [[(0)™ f |0 (110 /2,80) x0) )L
to 6—a
Thus,
1 m
T2 S (0™ A5 o ey + 1) D900 I o, o
tg ~°
Ihen, using Lemma 4.5 and the fact that Hg(to, ')||L00(R6><Bl(0)2) = ||g||L°°([0,to]XR5X31(0)2)7 since
G is increasing, we find
1 ()41
J2 /S o2 (1 _|_g)l’ 2,

which concludes the bound of Js.

Step 5: FEstablishing (4.6) and concluding the proof. Putting together the bounds on Ji,...,Js
with (4.8), we find, at (to, o, vo, X0, V0),

p(a)+1 1 p(a)+1
= (1+g9) 7 < (I+g) 2
e 1-&2
Lo Lo

(4.11) g S g+

The second inequality follows by using Young’s inequality to show that g < 1 + g¥®). Choosing
N to be larger than the implied constant in (4.11), we obtain (4.6). This yields a contradiction,
as outlined above. Thus, our proof is concluded. O

Finally, combining Lemma 4.3, Lemma 4.2, and Proposition 4.4, we obtain a time-integrable
bound on D2f for our solution:

Lemma 4.6. Let the assumptions of Proposition 4.4 hold, and let f be the solution constructed in
Theorem 1.2 corresponding to fin. Then fort € [0, Tx],

1
H<’U>m+(7+2)+Dgf(t7 Bl ')”L‘X’(RG) <

~ a2

tl 6—a

The implied constant depends on v, k, m, &, || fin|lpoo.x, and ||{0)™ fin|lco -
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5. UNIQUENESS

We are now ready to prove our solutions are unique. In this section, we allow all implied
constants in the < notation to additionally depend on || f||pee.x and ||g||fec.5+~+7, where k, g, and
1 are given below.

In order to state our result, we clarify the type of weak solution we work with. To use the
results of [18, 23], we require g to be in the kinetic Sobolev space required in these works; namely,
for Q C [0,00) x RY), let

Hllln(Q) = {¢ € Lz(Q) : VUQS € L2(Q)7 (at +v- v£)¢ € L%,rH;l(Q)}?
and let Hyj, ..
the sense of integration against test functions in Hy, ([0, Tp] x R®) with compact support.

First, we show uniformly continuous weak solutions have pointwise regularity:

be defined in the obvious way. By a weak solution of (1.1), we mean a solution in

Lemma 5.1. Suppose that g € HY, 1,.((0,To] x R) N Lo>T1([0, Tp] x RY), with n > 0, solves (1.1)
weakly and is uniformly continuous on [0, To] x R® and g(0,-,-) = fin. Then g € Cg;, ,.((0,Tp] x
RY).

Proof. In view of the arguments used in Theorem 1.2, namely an application, up to rescaling, of [18,
Theorem 3] and [23, Theorem 2.12(a)], it is enough to verify that M, ', M,, E,, and H, (recall
the notation from Section 1.2) are bounded uniformly. The upper bounds on M,, E,;, and H,
follow directly from the L°°t7 bound on g. Therefore, the proof is completed after establishing

a uniform positive lower bound on M, on [0, 7p] x RS.
First, we set some notation. Let

A =2||tr(@%) | o (o,m)xre) + 1 and R = 24/ ATj.

Next, notice that since g € L>577([0, Ty] x R), g is uniformly continuous, and My, > (4m/3)dr3,
then there exists Ty € (0, Tp] such that, for all (t,z) € [0,T;] x R3,

1
(5.1) My(t,2) > 70

This concludes the proof on [0, 73] x R?, establishing that g € CZ, 1,.((0,T1] x R®). Now that
g is sufficiently regular, we note that a classical comparison principle argument yields g > 0 on
[0,T7] x RS.

We now obtain a lower bound on M, on [T, Tp] x R3. Since we have bounds on Mg_l, Mg, Eg,
and H, on [0,77], we may iteratively apply the Harnack inequality for the Landau equation [18,
Theorem 4] in order to find € > 0 such that

SR*<g  on {T1} x R® x Bg(0).

Let
gt 2,0) = e(R? — [of? — A(t — T1))+,

and notice that, when |v|? < R? — A(t — T1),
(5.2) (0 +v-Vy)g—tr(a?Dig) — g < 0.

If g < g on [T, To] x RS, it is clear that we are finished since the choice of R and A imply that,
for any (t,z) € [T1,To] x R3,

R5
/ g(t,z,v)dv > SR eR®/10,
BR/ﬁ B 6\/§
and, hence, M, > eR®/10 on [Ty, Tp] x R3. This, combined with (5.1) yields the desired lower
bound on M, and would complete the proof.
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Hence, we assume that g £ g on [T1, Ty] x R, Let
Ty, = sup{t € [T1, Ty] : g(s,z,v) < g(t,x,v) for all (s,z,v) € [T1,t] x R®}.

We claim that T}, = Tgy. If this were true, our proof would be finished; hence, we suppose it is
not true. At time 7T},, we have that g > g, by continuity. Hence My(T1,z) > eR5/10 for all x.
As above, we find > 0 such that M, (¢,z) > p for all (t,z) € [T1,T1 + p] x R3, and, hence, a
g€ Cﬁin’loc and a classical comparison principle argument shows that g > 0 on [T}, T} + ] x RS.

From above, we have established that M, is positive on [0, 7}, + ] x R® and g > 0 on the same
set. Thus, we may apply the Harnack inequality [18, Theorem 4] in order to conclude that g > 0
on [0, Ty + p] x RS.

By definition and since T}, < Ty, we find 29 € [T, T), + 1] x R® such that g(z0) < g(20). By the
positivity of g and up to recentering, we have that there exists z;, € [Ty, T}, + u] x Br x R3 such
that g(zn) = g(z), while g > g on [0, 5] x R®.

Let ¢ = g — ¢g. From the work above, we have that zj, is the location of a minimum of ¢ where
#(zn) = 0. Hence

(O +v-Vy)p—tr(a?D2g) —cf¢ <0
On the other hand, using (1.1) and (5.2), we find
(0 +v - V)b — tr(a? D?¢) — &%¢ > 0,
which contradicts the previous inequality. We conclude that Tj, = T}, and the proof is finished. [

Proposition 5.2. Suppose that o € (0,1), k and m satisfy the conditions in Proposition 4.4 and
m>5,0< fin € LF(RY), and (v)™ fin, € C*(R®). Let f be the solution of (1.1) with initial data
fin constructed in Theorem 1.2, with Ty > 0 such that (v)™f € C*([0,Tp] x R®).

Let g be a weak solution of (1.1) satisfying the hypotheses of Lemma 5.1. Then f = g.

Before proceeding we comment briefly on the assumptions. The above is a form of weak-strong
uniqueness; that is, the uniqueness holds in a weaker class than the constructed solution. We believe
that this is not the weakest class in which uniqueness holds and, at the expense of more technical
arguments, one may remove the added assumption that g is uniformly continuous. Indeed, if the
lower bounds of Lemma 2.5 were extended to weak solutions, one would get uniform continuity
“for free” from the Holder estimate of [18].

Proof. We assume that fi, £ 0. Indeed if fi, = 0, uniqueness holds via [24, Theorem 1.1]. By
Lemma 5.1, g € CF 1,.([0, To] x RY).

By Proposition 3.1 and our assumptions, f and g are both continuous up to ¢t = 0. For a positive
function r € C(0,Ty] N L*(0,Tp] to be determined, let

w=e Mo T(S)ds(g —f) and W= %<v>10w2.

Then a straightforward computation yields that, whenever W £ 0,
(5.3)

OW+v -V, W =tr (@'DIW) = W'V, W - (a9V,W) + 10{v) v - (a'V, W)

+ (—35(11)_411 (a%) 4+ 5(v) *tr(@?) + &) W+ (v)Ywtr (@¥ D f) + (v)Owe” f — rW.

Fix € > 0, and assume by contradiction that supy rjxre W(t,z,v) > €. Up to re-centering the
equation as in Step 2 of the proof of Proposition 4.4, we may assume there exists z. = (tc, e, ve) €
(0,Tp] x R® such that W(z.) = ¢ and W(t,z,v) < ¢ for all t < t. and (z,v) € R®. Note that
this reduction uses strongly that the f and g are uniformly continuous for two reasons: (i) the

re-centering requires an Arzela-Ascoli-based compactness argument on the z-translates of W and
(2) to conclude that ¢. > 0 after the re-centering.
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We immediately have that, at z., V,W = 0 and D?W < 0. Derivatives in ¢ and 2 may not exist
pointwise, but we have (0; +v- V)W > 0. (This follows by considering the directional derivative
of W(t,z,v) at z in the direction (1,v,0), since 2. is a maximum point in [0,#.] x R%.) It is also
clear that W(z.) = & = [[W/||Le([0,t.]xre)- Finally, since g € L3471 we have that a9 and ¢9 are
bounded according to Lemma 2.1. Using the above in (5.3) and moving the rW term to the left
hand side, we find

(5.4) rW S W + (o) wl[a®[| D3 f| + (v)°[wl]e*].
Next, we notice that, at z.,
(5.5) 1a”| < ()™ Jw(te, )| peo@sy = (0)TTw  and, similarly, [¢*] < (v)°w.
Recall that m > 5, and, thus, m + (2 + )4+ > 7+ 7. We can also apply Lemma 4.6 to obtain

2
RRRIGET

(5.6) (0e) D] < D3 S (tes ) Lo (o) S te

Using (5.5) and (5.6) in (5.4) and recalling the relationship between w and W, we find a constant
C, such that

w1 +t;“6%)w.
With this value of C, we obtain a contradiction by defining
r(t) = 0(2 + t‘lﬂ%za).
We therefore conclude that z. cannot exist. Since this is true for all €, we find that W = 0, which
implies that g = f. |
Finally, it is straightforward to prove Theorem 1.4 from Proposition 5.2:

Proof of Theorem 1.4. By Proposition 4.4, there exists Ty > 0 such that (v)”f € C2, ([0, Tx] X
R%). Thus, we may apply Proposition 5.2 to conclude the first part of Theorem 1.4.

We now consider the case where fi, € L>* (R®) for all ¥'. Combining Theorem 1.2.(iii) and
Theorem 1.3, we see that f is smooth and all its derivatives lie in L>* ([0, T] x RS) for all k.
Thus, Proposition 5.2 applies with Ty = T, which concludes the proof. O

APPENDIX A. REGULARITY IN  AND v IMPLIES REGULARITY IN ¢

We consider solutions f to the linear equation
(A.1) Ouf +v-Vof =tr(aD}f) + cf,

where a is a non-negative definite matrix that grows at most like (v)2%7, ¢ is uniformly bounded,
and (A.1) enjoys a maximum principle. All implied constants depend only on the upper bounds
of a and ¢, but do not depend on any lower bound of a.

In this appendix, we show the following:

Proposition A.1. Suppose that f € Cgj, 1,.([0, T] xR®)NL>([0, T] xR®) and solves (A.1). Then,
for any zo, we have

e (Hf||L°°([0,T]xR6)+ sup £t e, v(BQ(””O’”O)))'
t€[max{0,to—1},t0] o

[ fllce. (@i (zo)ni0,7)xRE) S (Vo)
The implied constant depends only on the upper bounds of a and c.

A useful transformation here is given by
Teo(2) = (to + t, o +  + tvg, vo + V).

Recall also 0, from (2.6). The main lemma is the following.
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Lemma A.2. For any zo € [0,T] x RS, r € (0,1], t; € [0, (vo)~®++] such that r’t; +to € [0,T]
and |z1],|v1| < 1, and for z; = (t1,x1,v1), we have

(T2, (20)) = £ ()| 1™ (17 ok + [0, e, Batrone)) -
A.1. Concluding Proposition A.1 from Lemma A.2.

Proof of Proposition A.1. Fix any z1 and 25 in Q1(20). Recall that p(z1, 22) & p(22, 21) so we may
assume that to > t1.
We consider first the case when p(z,21) > (v1)~(1*7/2)+ Then we have

|f(22) — f(z1)] 1+
WA=2) — J\FUL v/2) 4 - < (1+v/2)+a -
p(22,21)° < (vr) Iflle ([0,T]xRS) (vo) Il ([0,T] xRS)>
since (v1)(1 72+ & (o) 1+7/2)+
Next we consider the case when p(zy,21) < (v1)~(H7/2)+ Clearly, then, to —t; < (vo)~Z+7)+.
Let

To — L1 — 7“282’01

to —t Vg — U
>_(2+’Y)+7 T2: 2 17 Wo = 2 1a and Yo =

52 = (v1 3
So r T

Notice that 2o = T, (52, Y2, wa), [s2| < (v1) =G+ and r € (0,1). Hence, we may apply Lemma A.2
to find

|f(z2) = f(z)| S 7 (Hf||L°°([O,T]><R6) + [t e, . v(Bg(:Eo,vo))) :
Recalling the definition of r, we have

)= f() v

(||f||L°°([O,T]><RG) + [f(tla K .)}CSHYI,U(BQ(IO,UO)))

plz2,21)% 7~ plz2,21)*
‘tQ _ t1|a/2
= 2 (Ul oy + 0 Mg, Batanann)
517" p(z2,21)
The proof is finished after noting that 51_0‘/2 < ()24 and |ty — t1|*/2 < p(zo, 21)*. O

A.2. The proof of Lemma A.2.

Proof of Lemma A.2. The proof is based on a maximum principle argument. Let zg be as in the
statement of the lemma. Without loss of generality, we may assume that ¢t; = 0 and xg = 0. Then
21 € [0, min{(vo) ®++ T} x B1(0) x Bi(vo).

Step 1: A cut-off function. Let ¢ € C°(RY) be a cut-off function such that
0<¢<1, ¢=1on B(0),
¢ < (v) ()2,
(A.2) 10y, 0| S (0)"Hx)™2  foralli=1,2,3,
0,,0| S (v)*(z)~* foralli=1,2,3, and
|0v,0,0] S (0) ()™ foralld,j =1,2,3.
We also set some useful notation. For any r > 0 and any function g, let
9r(2) = 9(T=,(0:(2)))-
Step 2: An auxiliary function and its equation. Then, let
F(2) = fr(2) = f(0,0,v0).
It is straightforward to check that
F,+v-V,F— tr(arD?}Z*:’) =r2¢c, fp.
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Let 3
Y(t,x,v) = p(x —tv,v) and F =¢F.
Again, after a straightforward computation, we find
Fitv -V F —tr(a,D?F) + 2(a,V, log(y)) - V,F
— F (2, log(4) - (a,V, log()) — tr(a,yy~ ' D29)) + r2e .
Fix R = 2(vo)?/r. We claim that there exists a constant C' > 0 such that, on [0, ] x R? x Bg(0),
(A.3) 2(Vylog(¥) - (ar Vo log(¥))| + [tr(art ™" D39)| < Cuo) )

This is established at the end of this proof.
Assuming (A.3), let

F(t) = etClo 7+ <|F(0, | oo ey + sup F(s,2,0)4 + r2t|c|| g ||f||Lw> :
s€[0,t1],2€R3,|v|=R
Then, since F> 0,
Fi4v -V, F —tr(a,.D?F) + 2(a,V, log(v)) - V, F
= C () * VT + r2c]| poo | fl] poo € 100Y 7T
> F (2V, log(¥) - (arVy log(v)) — tr(ay ™" Dj)) + r2¢e, fr.

Above, we used (A.3) and that || f.||r = || f|[L=. Note that 1 is compactly supported in . Thus,
by the maximum principle, we find F(t,z,v) < F(t) on [0,1] x R® x Bg(0). In particular, we have

o) 2T
F(ty,z1,v1) < @0l 777 <||F(07 s )L (moy + sup F(s,z,v) +t1’°2||C|L°°|f||L°°> :
s€[0,t1],2€R3,|v|=R

For the lower bound of F(t1,x1,v1), consider
F(t,z,v) = _tCwo) EH7+ |F(0)|| Lo + sup F(s,z,v)_ | .
s€[0,t1],z€R3,|v|=R

By an argument similar to the one for F, but simpler because one can use 0 < r21c, f,, we have
F(t,z,v) > F(t) on [0,#1] x R? x Br(0). Altogether, we have
(A4)

o) (27
|F(t1,l‘1,’U1)| < el @vo) N (”F(O’ ) ')||L°°(RG) + sup |F(S,l‘,’l})| +T2||C|L°°||f||L°°> .
s€[0,t1],z€R3,|v|=R

Step 3: Quantitative bounds on the right hand side of (A.4). Unpacking the coordinate transfor-
mations and using the decay of ¢, it is easy to verify that

(A.5) [F(0, -, )| Lo ey S 7 ([f(07 S )ee (Ba(o,we)) +11£(0, - ')||L°°(R6)) :
Indeed, fix any (z,v) € RS. We consider two cases. First, if r3|z|,r|v| < 2, then
[4(0, 2,v)(f(0,2,v) = £(0,0,v0))| < (&) 7> (v) °| (0,72, rv + vo) — £(0,0,vo)]
< ()" (0) 7 p((0, 7%z, v 4 v0), (0,0,90))*[f] e, (02(0.0.00))
= (@) (0) (2% + ) [flee, (@000 < T [flog, (@2(0.0.0))-
Second, if 73|x| or r|v| is greater than 2, then
100, - )l Lo (me)

|1/}(0,:L’,1))(fr(0,:L',U)ff(o,o,vo)” ,S <a’,‘>3<’0>3

since < 1. Hence (A.5) holds.

SIF0, - ) pee ey < rOIF(0, - )l poe (ge),
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Next, we check the boundary term. Indeed, if (s,z,v) € [0,¢1] x R® x Bg(0), then

Al o Pl flleee

|F(S7I”U)‘ = w(samavﬂF(sava” S <£L' — ’U8>3<’U>3 ~ <’U()>9

< Sl

We conclude that

(A.6) sup |F(s,z,0)] S fllnee-
s€[0,t1],2€R3,|v|=R

Plugging (A.5) and (A.6) into (A.4), and using the fact that ¢; < (vg)~?+)+ we find

o) 2Tt
(A7) |F(t1,l‘1,1}1)| /S 6C< o) tr ([f(oa %y ')]Cf:m(B2(0,Uo)) + ||f||L°°) .

Step 4: Unpacking the transformations to obtain the desired estimate. Since |t1], |x1|, |v1] < 1, then
Y(ty,z1,v1) = 1 and v; € Bg(0). We thus conclude, from (A.7), that

ol w00 = F0,0,00)] = F(tr @, 00) S €91 ([£(0,- Vog, aomon + 112 ) -
Hence, the proof is finished once we establish (A.3), which is the last step.

Step 5: The coefficient bounds (A.3). We show that the first term on the left in (A.3) is bounded
by C(vo)?+7)+. We omit the proof for the second term, which is similar

Notice that V¢ (t,z,v) = (V, —tV,)é(z — vt,v). Using the non-negative definiteness of a, we
obtain

(A.8) [|Vylog(¥) - (a,V,log())| <2 (Vv log(¢) - (a,V, log(#)) + tQVx log(¢) - (a,Va 10g(¢>)) .

In the above, we have abused notation in the following way: a, is evaluated at (¢, z,v) while ¢ is
evaluated at (x — vt,v).
For the first term on the right in (A.8), we find from (A.2) that

{vo + V)2t
(v)2

It is straightforward to establish, by considering the four cases when |rv| is comparable or not to
|vg| and when v > —2 or v < —2, that the right hand side is bounded by (vg)?*7.

The second term in (A.8) can be handled as follows. When v < —2, since all terms are bounded,
we find

(A.9) Vo 1og(9) - (a,Vy 1og(9)) < |ar|[Vy log(¢)]* <

12V log(¢) - (a, Vs log(9)) £ 1 < (vo) *+7)+.
Next, consider the case when 2 4+~ > 0. Again using (A.2), we find

5 (Vo + rv)2 Ty

PV 108(0) - (4, V2 log(9)) < Plar |V log(o)” S 25

This case is more subtle than (A.9) because the z — vt term in the denominator may not be large,
even if v is large. Therefore, we must use the smallness of ¢ to balance the fact that (vy + rv) may
be large. Recall that [v] < R = 2(vp)3/r and t < (vg)~ 37+, Since (x — vt) > 1, we have

5 (Vo + Tv)2 Y

—2(2+ 3(2+7y) __ 24y 2+
e < () ( v)<v0> 2+v) — (vo)?+ = (vo>( 'v)+,

as desired. This completes the proof of (A.3), which completes the proof of the lemma. ]
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APPENDIX B. INTERPOLATION LEMMAS

Here, we collect the technical interpolation lemmas used in Section 4. The first lemma is for
functions on R3 with the standard Euclidean Hélder metric:

Lemma B.1. Suppose that d € N and ¢ : R — R is a bounded C’1
For any o € (0,1),

function, with g € (0,1).

ocC

B B
(B'l) ||D2¢HLOO(Bl(z)) § [¢]Ca(32(z)) + [¢]ca(32 Z))[D2¢}0521§§(5)
Proof. Let z € R? be a given point. Taking x € B;(z) and h € R? sufficiently small, we see that

¢(z +h) = d(x) = Vo(&1)h = Vo(x)h + (Vo (&) — Vo())h,

where & = x + 61h for some 6; € (0,1). Let o > 0 be a constant, to be chosen later. If |h| < o,
then

Vo (&) = V()| < o[ D?0]| (5, ())-
If we let h = oVo(x)/|Ve(z)|, we then get

(B.2) Vo ()| < o M leo(p, (2) + I D*G|| L (B, (x))-
Now, taking the Taylor expansion of ¢ to first order about a point € By(z) gives

1
oz +h) = ¢(x) + Vo(@)h + ShD*$(&2)h,
where & = x + 03k for some 05 € (0,1). We rewrite this as

hD?*¢(x)h = 2(¢(x + h) — ¢(x)) = 2Vd(2)h + h(D*¢(z) — D*$(&2))h.

Since D?¢(x) is a real symmetric matrix, its matrix norm is given by its largest eigenvalue, which
is achieved by some unit eigenvector ©. With r > 0 to be chosen later, setting h = rv yields

2| D2 ¢()| = 2(¢(x + h) — ¢(x)) — 2V(x)h + h(D*¢(x) — D*V(€))h
< 27 [Bloe (B, (@) + 271Vl Lo (B, (2)) + TP TP [D*Gles (B, ) -
Taking the supremum in x over Bi(z), we get that
ID?@|| oo (8 (2)) S 72 [Blca(Brarz) + 1 IVl Loo(Bryn ) + TP ID*Blos By, (2))-
Using (B.2) on the middle term yields
(B3 ID?¢ll Lo By () S (172 + 17107 [Blea By (o)
+ 01 N DG L (8141 (@) + TP (D Blon By 2))-

We can then take o = cr for ¢ < 1 small enough that we can absorb the middle term into the norm
on the left hand side. As long as r < 1/2, this yields

1Dl S 2[Plon(Ba(e)) + 7D bles (Ba(2))-
Thus, choosing
7 = min {1/2, ([¢]CQ(B2(Z))/[D2¢]05(Bz(z)))M%a} :
then we obtain (B.1). O
Our next, somewhat elementary lemma allows us to trade regularity (in the form of a larger
Holder exponent) for pointwise decay. It is stated for the (time-independent) kinetic Holder spaces,

however, it is straightforward to prove it for the time-dependent kinetic and standard Holder spaces
as well.
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Lemma B.2. Suppose that ¢ : RS — R is such that ¢ € L>*1(R®) and (v)*2¢ € C2 (R®), for
some a € (0,1) and k1 > ko > 0. If B € (0,0) and £ € [k, k1] are such that

Egkl (1_B>+k257
[0} «Q

then
¢ < V2 gla -2
1Yl mey S 10010 cmo) 6155, o
The same result is true with the standard Holder spaces replacing the kinetic ones.

Proof. We omit the proof with the standard Hoélder spaces since it is exactly the same. Let
_ 1/«
R = ()55 6]l gt o) (0020158 mo) )

Let (21,v1), (22, v2) € RS, If |21 — 22|Y/3 + |v; — v2| > R, then

W)(xl,vl) - ¢($2, U2)| <

(|1 = @213 + o1 —va])? ™~

(v)

B 1-£2
oy 2|9l oo k1 (s _ [<U>kz¢]g‘%n(3)||¢||L°°(»!k1(R6)
RS <v>k1( —8) k22
On the other hand, suppose that |z; — x5|"/3 + [v; — va| < R. Let 0 = |z — 22|Y/3 + |v; — vy).
We have

\(b(m,m)g—ﬁqﬁ(xz,wﬂ _ |¢($1,U1)0—a¢(332,v2)| Z% < <U>_k2[<U>k2¢]cgn(B)Ra_B~

From the definition of R, we obtain

B 1-8
621, 01) = Oz, v2)] _ [0 0leg () 191l i ey
07 - (oyk (1= ) +ha§
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