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Abstract. We consider the Cauchy problem for the spatially inhomogeneous

non-cutoff Boltzmann equation with polynomially decaying initial data in the

velocity variable. We establish short-time existence for any initial data with
this decay in a fifth order Sobolev space by working in a mixed L2 and L∞ space

that allows to compensate for potential moment generation and obtaining new

estimates on the collision operator that are well-adapted to this space. Our
results improve the range of parameters for which the Boltzmann equation is

well-posed in this decay regime, as well as relax the restrictions on the initial
regularity. As an application, we can combine our existence result with the

recent conditional regularity estimates of Imbert-Silvestre (arXiv:1909.12729

[math.AP]) to conclude solutions can be continued for as long as the mass,
energy, and entropy densities remain under control. This continuation criterion

was previously only available in the restricted range of parameters of previous

well-posedness results for polynomially decaying initial data.

1. Introduction. We are concerned with the Boltzmann equation, a kinetic integro-
differential equation that models the particle density f(t, x, v) of a diffuse gas in
phase space. A solution f : [0, T ]× T3 × R3 → R+ satisfies

(∂t + v · ∇x)f = Q(f, f), (1.1)

where the bilinear collision operator is defined for functions f1, f2 : R3 → R+ by

Q(f1, f2) =

∫
R3

∫
S2

(f1(v′∗)f2(v′)− f1(v∗)f2(v))B(|v − v∗|, cos θ) dσ dv∗, (1.2)
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with

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ, and cos θ =

v − v∗
|v − v∗|

· σ.

(1.3)
Here, θ represents the angle between the post-collisional velocities v and v∗, and
the pre-collisional velocities v′ and v′∗.

The collision kernel B(|v−v∗|, cos θ) depends on the interaction potential between
particles. The common choice of an inverse power law potential φ(r) = 1/rα−1 for
some α > 2 leads to a kernel of the form

B(|v − v∗|, cos θ) = |v − v∗|γb(cos θ), b(cos θ) ≈ |θ|−2−2s, (1.4)

where γ = (α − 5)/(α − 1) and s = 1/(α − 1). We disregard the parameter α
and consider arbitrary pairs γ > −3, s ∈ (0, 1), which is fairly common in the
mathematical literature on the Boltzmann equation. More specifically, we restrict
our attention to the case

max

{
−3,−3

2
− 2s

}
< γ < 0,

with s ∈ (0, 1) arbitrary. See Section 1.2 below for an explanation of the technical
reasons for the restriction on γ.

The angular cross-section b(cos θ) has a non-integrable singularity for grazing
collisions (i.e. collisions with θ ≈ 0). This singularity reflects the fact that long-
range interactions are taken into account by the collision operator. The version
of (1.1) that includes this singularity is called the non-cutoff Boltzmann equation,
and that is the case of interest here.

In this article, we address the local well-posedness theory for (1.1). The key fea-
ture of our study is that the initial data is allowed to have merely polynomial (rather
than exponential or Gaussian) decay in the velocity variable. The only compara-
ble prior result we are aware of is the work of Morimoto-Yang [39], which proved
existence under similar assumptions, but only addressed the regime s ∈ (0, 1/2)
and γ ∈ (−3/2, 0]. We feel it is important to fill this gap in the literature, because
s ∈ [1/2, 1) is the most delicate case, at least with respect to the severity of the
grazing collisions singularity. This can readily be seen from (1.4). We should men-
tion that uniqueness in a polynomially-weighted Sobolev space, but not existence,
was proven in [9] for the same range of γ and s that we consider here.

Compared to [39], we also improve the required number of derivatives of fin

from six to five. By avoiding any cutoff-based approximation, we provide a method
for constructing solutions in weighted Sobolev spaces that is different from, and
arguably simpler than, the methods commonly seen in the literature.

To state our results precisely, we need to define the following function spaces.
With 〈v〉 =

√
1 + |v|2, define the weighted Lp and Sobolev norms

‖g‖Lp,n = ‖〈v〉ng‖Lp and ‖g‖Hk,n = ‖〈v〉ng‖Hk .
Next, for k, n,m ≥ 0, define

Xk,n,m := Hk,n ∩ L∞,m(R6) and Y k,n,mT := L∞t ([0, T ];Xk,n,m).

Notice that if f ∈ Y k,n,mT solves (1.1), then f ∈W 1,∞([0, T ];Hk−2s,n−(γ+2s)+) as
well (see, e.g., the estimates in [4, Theorem 2.1]). For succinctness, we sometimes
denote L∞([0, T ];Hk,n) as L∞t H

k,n
x,v (similarly for other well-known Banach spaces).

Our main result is
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Theorem 1.1. If 0 ≤ fin ∈ Xk,n,m with k ≥ 5, n > 3/2 + (γ + 2s)+, and m
sufficiently large depending on k, n, γ, and s, then there exists a time T > 0

(depending only on ‖fin‖Xk,n,m , γ, s, k, n, and m) and a unique f ∈ Y k,n,mT ∩
C([0, T ];Hk,n

x,v ) such that f solves (1.1) and f(0, ·, ·) = fin. Moreover, f ≥ 0.

As mentioned above, the uniqueness part of this theorem was established in [9].
Note that the assumption that fin ∈ L∞,m is not a requirement on the regularity

of f since Hk,n embeds into L∞,n; instead, it is only a requirement on the decay of
f for large velocities.

One application of Theorem 1.1 is as follows: by the conditional regularity the-
orem recently established in [34], when s ∈ (0, 1/2) and γ ∈ (−3/2, 0], spatially
periodic solutions can be extended past a given time T provided the mass, energy,
and entropy densities of f are uniformly bounded above, and the mass density is
uniformly bounded below; in other words,

0 < m0 ≤
∫
R3

f(t, x, v) dv ≤M0,

∫
R3

|v|2f(t, x, v) ≤ E0,

and

∫
R3

f(t, x, v) log f(t, x, v) dv ≤ H0,

(1.5)

uniformly in t ∈ [0, T ], x ∈ R3. The main idea is to pair the conditional regularity
estimates [33, 32] with a well-adapted short-time well-posedness result. In [34], the
authors use the well-posedness result of [39], which is the cause of their restriction
on s and γ. In view of Theorem 1.1, this can now be applied to s ∈ (0, 1) and
γ ∈ (max{−3/2− 2s,−3}, 0) as well. That is:

Corollary 1.2. With γ and s as above, assume in addition that γ+2s ∈ [0, 2]. Let
f be any solution f of (1.1) with initial data in Schwartz class, i.e. 〈v〉`∂αx ∂βv fin ∈
L∞(T3,R3) for all ` ≥ 0 and any multi-indices α, β ∈ N3. Then f can be extended
for as long as the condition (1.5) holds. In other words, if f exists on [0, T )×T3×R3

but cannot be extended to a solution on [0, T + ε)×T3 ×R3 for any ε > 0, then at
least one of the inequalities in (1.5) must degenerate as t→ T .

The fact that our initial data is allowed to decay merely polynomially is crucial
in establishing Corollary 1.2 because polynomial decay in v in the initial data is
propagated forward in time (see [32]) but it is not currently known if the same is true
for Gaussian decay. Since the proof of Corollary 1.2 is exactly as in the previously
established case of [34], we omit it. At the cost of more technical arguments, we
expect this continuation criterion can be extended to any solution with initial data
in Xk,n,m with m sufficiently large.

It would be interesting to extend our existence result to the two remaining cases,
γ ∈ (−3,max(−3/2 − 2s,−3)] and γ ≥ 0; we leave this for future work. Another
open issue is decreasing the required regularity of the initial data, as in our recent
work [30] on the closely related Landau equation, which required only polynomial
decay in v and Hölder continuity for fin to establish existence and uniqueness (and
if the assumption of Hölder continuity is dropped, we can establish existence but
not uniqueness).

1.1. Related work. We focus mainly on the non-cutoff Boltzmann equation in
this discussion. The cutoff case has its own long history that we omit here (see, for
example [42, Chapter 2, Section 3] and the references therein).

Existence results for the non-cutoff Boltzmann equation have come in the follow-
ing flavors:
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• Spatially homogeneous solutions. Many more results on existence and
regularity are available in the case when f and fin are independent of x: see
[18, 19, 21, 25, 41] and the references therein. Even in this case, global-in-
time existence has only been proven when γ ≥ −2: see [20]. We should
also mention measure-valued solutions, which are known to exist globally and
regularize depending on the value of γ [36, 38].

• Weak solutions. For the full, inhomogeneous equation, renormalized solu-
tions with defect measure were constructed by Alexandre-Villani [12], see also
[13]. These solutions are a generalization of the renormalized solutions first
constructed by DiPerna-Lions [22] for the cutoff Boltzmann equation. The
uniqueness and regularity of these solutions are not understood.

• Close-to-equilibrium solutions. When fin is sufficiently close to a Maxwellian

equilibrium state (c1e
−c2|v|2 with c1, c2 > 0) in an appropriate norm, solu-

tions exist globally and converge to equilibrium as t → ∞: see for example
[5, 10, 8, 14, 26, 28, 31]. This is the only setting in which global, classical
solutions to the inhomogeneous equation are known to exist.

• Short-time solutions. There are several existence results for solutions on
a time interval [0, T ], for example [2, 4, 7, 11]. Most commonly, the initial
data is required to have Gaussian decay in velocity, and lie in a Sobolev space
of order 4 or higher. In [39], the authors weaken the decay assumption from
Gaussian to polynomial at the expense of working in a weighted H6 space.

Global existence of spatially inhomogeneous solutions with non-perturbative ini-
tial data is a very challenging open problem. In the last few years, good progress
has been made on conditional regularity for solutions of non-cutoff Boltzmann un-
der the physically relevant assumptions (1.5). Silvestre [40] established a priori L∞

bounds, Imbert-Silvestre [35] established Cα regularity, Imbert-Mouhot-Silvestre
[32] established polynomial decay estimates as |v| → ∞, and Imbert-Silvestre [34]
finally showed C∞ regularity. As mentioned above, our Theorem 1.1 combined with
the result of [34] establishes (1.5) as a continuation criterion for solutions.

1.2. Proof ideas. The key tool in our proof is an a priori estimate, given a fixed

g ∈ Y k,n,mT , in the Y k,n,mT norm for solutions of the linear Boltzmann equation

∂tf + v · ∇xf = Q(g, f).

This estimate comes from the combination of polynomially-weighted L2 estimates
(that are proven by the energy method) and polynomially-weighted L∞ estimates
(that are proven using comparison principle arguments). Interpolating between
these two estimates compensates for the moment loss generated by the collision
operator Q in the energy estimates. A key observation is the following: when
seeking estimates of `th order, the moment loss can be avoided in the highest order
energy estimates (i.e., the estimates of ∂αx ∂

β
v f with |α| + |β| = `) by carefully

exploiting the symmetry properties of Q. However, intermediate terms do not have
such nice symmetry properties and the moment loss can be handled by trading
regularity for decay via interpolation (see Lemma 2.6). This uses the fact that we
have more moments on the 0th order term (reflected in the fact that m � n and

f ∈ L∞,m), and allows us to obtain a closed estimate for f in Y k,n,mT . A similar
idea was used by He and Yang to construct polynomially bounded solutions to the
Landau-Coulomb equation via cut-off Boltzmann equation [27]. We also mention
the work of Luk [37], who uses a mixture of L2 and L∞ spaces to prove stability of
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vacuum (the steady state 0) for the Landau equation. The choice of space for Luk is
crucial in obtaining appropriate time decay (see also the work of Chaturvedi [16, 17]
who sidesteps this with a “hierarchy of weighted norms” involving fewer weights on
higher regularity norms).

To pass from a priori estimates to an existence proof, we first construct a se-
quence fi with f0(t, x, v) = fin(x, v) and{

∂tfi + v · ∇xfi = Q(fi−1, fi),

fi(0, ·, ·) = fin.
(1.6)

To prove the existence of fi, we use the method of continuity combined with our a
priori estimates. With the existence of fi established, we can build a solution to
the true nonlinear equation (1.1) with a compactness argument based on the same a
priori estimates. A benefit of our construction is that we obtain the non-negativity
of fi for free (see Proposition 3.3).

It is interesting to compare our method to the overall strategy applied in ear-
lier works such as [4, 7, 11, 39]. This strategy, which has been quite successful in
constructing short-time solutions to the non-cutoff Boltzmann equation in various
regimes, is based on approximating (1.1) with the cutoff Boltzmann equation, by re-
placing b(cos θ) in (1.4) with a bounded function bε(cos θ) that converges to b(cos θ)
as ε→ 0.

Letting Qε(f, f) be the corresponding collision operator, this allows one to write
Qε as a sum of gain and loss terms, Qε = Q+ −Q−, with

Q+(f1, f2) =

∫
R3

∫
S2
f1(v′∗)f2(v′)|v − v′|γbε(cos θ) dσ dv∗,

Q−(f1, f2) =

∫
R3

∫
S2
f1(v∗)f2(v)|v − v′|γbε(cos θ) dσ dv∗.

Note that these integrals may not be well-defined if the singularity of b(cos θ) is
included. Then, the authors of [39] set up an iteration of the form{

∂tfi + v · ∇xfi = Q+(fi−1, fi−1)−Q−(fi−1, fi),

fi(0, ·, ·) = fin,

which is different from our iteration (1.6) because the right-hand side is not the
linear operator Q(fi−1, fi). This approach has the benefit that existence of fi can
be deduced easily from a Duhamel-type formula. Weighted Sobolev estimates on fi
provide convergence to a solution fε of the nonlinear (cutoff) Boltzmann equation
with right-hand side Qε(fε, fε), and finally, estimates that are uniform in ε establish
existence of a solution to the non-cutoff equation by compactness.

One benefit of working with the cutoff equation is that when s ≥ 1/2 the non-
cutoff collision operator Q is well-defined only in a “principal value” sense because
of the singularity in b(cos θ) and, in principle, integral estimates on Q may not
commute with the limit involved in this principal value. In previous well-posedness
proofs, this potential issue is sidestepped since estimates are obtained at the cutoff
level with bounded angular cross-section bε(cos θ). However, despite working at the
non-cutoff level, this issue causes no problems in our estimates. Indeed, for the only
estimates in which we work withQ directly (Proposition 3.1.(iii)), our manipulations
of Q follow the work of [7] in which the authors are working directly with the cutoff
kernel (although the bounds we obtain are slightly different). On the other hand,
when we work with the Carleman decomposition (see Lemma 2.2), our estimates
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are always done by decomposing integrals into sums of integrals over annuli, and
this is compatible with the principal value. Thus, we ignore this technical point in
the sequel.

The main novelty of [39] was the ability to estimate fi directly, rather than

dividing the solution by a time-dependent Gaussian µ = e−(ρ+κt)〈v〉2 and working
with the equation for g = µ−1f as in [4, 7, 11], so that the assumption of Gaussian
decay in velocity in the initial data can be removed.

Our method in this article is novel in that we base our approximation on the
linear, non-cutoff Boltzmann equation, so that no cutoff approximation is required.
It is also worth noting that essentially the same a priori estimates in L∞,m and
Hk,n are used to construct the linear and nonlinear solutions. This is in contrast to
previous works in which separate estimates are required at the linear (and cutoff)
and the non-linear (and non-cutoff) levels.

On a technical level, we make heavy use of the decomposition of Q(f, f) into a
fractional diffusion operator Qs(f, f) and a lower-order term Qns(f, f) (see Section
2.1), taking inspiration from [32, 34, 35, 40] and using some of their estimates out
of the box. We also borrow some Sobolev estimates on Q(g, f) from the work of the
AMUXY group such as [4, 6, 7] (see Section 2.2). Whenever possible, we rely on
these existing estimates; however, they are not on their own sufficient for the proof
of Theorem 1.1. Hence, our proof requires new estimates on the collision operator
in our mixed space Xk,n,m.

The restriction γ > max{−3,−3/2−2s} in our results comes from the use of the
estimates of [4, 6, 7]. (See in particular Theorem 2.4 below.) The restriction γ < 0
comes from our estimate of the nonlocal diffusion term Qs, where the pointwise
decay from |v − v′|γ is needed to control the tail of the integral (see Step Four of
the proof of Proposition 3.1(i) (Section 4.1).

1.3. Outline of the paper. In Section 2, we compile known results and relatively
easy-to-deduce estimates on the collision operator and on interpolations between
Sobolev spaces with weights. In Section 3, we state our main estimates (Propo-
sition 3.1) on the collision operator Q, and then use these estimates to construct
solutions. These estimates are what take up the bulk of the effort in this proof and
are established in Section 4. Finally, we include in the appendix an inequality that
relates integrals over somewhat complicated geometric spaces with their (weighted)
L1 norm.

2. Preliminaries and known results.

2.1. The Carleman representation of Q. We make use of the Carleman repre-
sentation of Q; that is, by adding and subtracting f1(v′∗)f2(v) inside the integral,
we write

Q(f1, f2) = Qs(f1, f2) +Qns(f1, f2),

with

Qs(f1, f2) :=

∫
R3

∫
S2

(f2(v′)− f2(v))f1(v′∗)B(|v − v∗|, cos θ) dσ dv∗,

Qns(f1, f2) := f2(v)

∫
R3

∫
S2

(f1(v′∗)− f1(v∗))B(|v − v∗|, cos θ) dσ dv∗.

Here, “s” stands for singular, that is, the smoothing operator, and “ns” stands for
nonsingular, that is, the lower order multiplication operator term. These names
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are justified by the following re-formulations of Qs and Qns. The formula for Qs

used below was established by Silvestre in [40], using Carleman’s change of variables
[15]. (See also [1] for earlier, related formulas.) The form of Qns (Lemma 2.3 below)
essentially follows from the cancellation lemma of [3].

Lemma 2.1. [40, Lemma 4.1] The term Qs(f1, f2) can be written

Qs(f1, f2)(v) = p. v.

∫
R3

Kf1(v, v′)[f2(v′)− f2(v)] dv′, (2.1)

where “p. v.” denotes the principal value and the kernel Kf1(v, v′) is defined by

Kf1(v, v′) :=
1

|v − v′|3+2s

∫
(v′−v)⊥

f1(v + w)|w|γ+2s+1b̃(cos(θ)) dw,

and cos(θ/2) = |w|/
√
|v − v′|2 + |w|2.

Note that here, we used the assumption (1.4) to write b(cos(θ)) = |θ|−2−2sb̃(cos(θ))

for a bounded, positive function b̃. In general, we abuse notation and omit the “p. v.”
in our notation below (see the discussion in Section 1.2). We have the following
estimates for Kf1 :

Lemma 2.2. For any measurable h : R3 → R, r > 0, and v ∈ R3,∫
B2r(v)\Br(v)

|Kh(v, v′)|dv′ . r−2s

(∫
R3

|h(z)||v − z|γ+2s dz

)
and

∫
R3\Br(v′)

Kh(v, v′) dv . r−2s

(∫
R3\Br(v)

|h(z)||z − v′|γ+2s dz

)
.

Also, denoting K ′h = Kh(v′, v) and fixing any ε > 0, we find, for any α ∈ [0, 1],∣∣∣∣p. v.∫
R3

(Kh −K ′h) dv′
∣∣∣∣ . ∫

R3

|h(z)||v − z|γ dz,

and, for all v, v′ ∈ R3,

|Kh −K ′h| .
‖〈·〉(2+(γ+2s+1)++εh‖Cα

|v − v′|3+2s−α

(
〈v〉γ+2s+1 + 〈v′〉γ+2s+1

)
.

Proof. The first three inequalities are simply [35, Lemmas 3.4 and 3.5]. The fourth
inequality follows by the observation that

Kh −K ′h = |v − v′|−(3+2s)

∫
(v−v′)⊥

(h(ξ − v)− h(ξ − v′))|ξ|γ+2s+1b̃(cos(θ)) dξ.

For the lower-order term Qns, we have:

Lemma 2.3. [40, Lemmas 5.1 and 5.2] The term Qns(f1, f2) can be written

Qns(f1, f2) = f2(S ∗ f1), (2.2)

where S(v) := CS |v|γ and CS > 0 depends only on s.
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2.2. Sobolev estimates on Q(g, f).

Theorem 2.4. [6, Proposition 2.9] Let 0 < s < 1 and 0 > γ > max
{
−3,− 3

2 − 2s
}

.
Then for any n ∈ R and k ∈ [−1, 0], there holds

‖Q(g, f)‖Hk,nv (R3) .
(
‖g‖

L
1,n++(γ+2s)+
v (R3)

+ ‖g‖L2
v(R3)

)
× ‖f‖

H
max{k+2s,(2s−1+ε)+},(n+γ+2s)+
v (R3)

,

for any f and g such that the right-hand side is finite. In addition, we have that
for any θ ∈ [−1, 0] and any g, f , h, that∣∣∣ ∫ Q(g, f)hdv

∣∣∣ .(‖g‖L1,(γ+2s)+ (R3)
+ ‖g‖L2

v(R3)

)
× ‖f‖

Hmax{θ+2s,(2s−1+ε)+},(γ+2s)+ (R3)
‖h‖H−θ(R3).

We note that the second estimate in Theorem 2.4 follows from [6, Proposition
2.1], which proves the estimate for the collision kernel localized to the low relative
velocity regime (|v − v′| . 1), and [4, Theorem 2.1], which handles the remainder
(|v − v′| & 1).

Finally, we state an estimate on the commutator of weights and the collision
operator.

Proposition 2.5. [6, Proposition 2.8] Let 0 < s < 1 and 0 ≥ γ. For any ` ∈ R and
ε > 0, ∫

h(〈v〉`Q(f, g)−Q(f, 〈v〉`g)) dv

. ‖f‖
L2,`+3/2+(2s−1)++ε‖g‖H(2s−1+ε)+,`+(2s−1)+‖h‖L2 .

2.3. Interpolation.

Lemma 2.6. Fix n ≥ 0 and m ≥ 0. Suppose that f ∈ L∞,m ∩ Hk,n(R3) and
k′ ∈ (0, k). Then if ` < (m− 3/2)(1− k′/k) + n(k′/k), we have

‖f‖Hk′,` . ‖f‖
1− k′k
L∞,m‖f‖

k′
k

Hk,n

Proof. Notice that

‖f‖2
Hk′,`

≈
∑
z∈Z3

‖〈v〉`f‖2
Hk′ (B2(z))

≈
∑
z∈Z3

〈z〉2`‖f‖2
Hk′ (B2(z))

.

Fix ε > 0 to be chosen. Let m′ < m− 3/2 be such that ` = m′(1− k′/k) +n(k′/k).
Using standard interpolation between Sobolev spaces, we find

‖f‖2
Hk′,`

.
∑
z∈Z3

〈z〉2`‖f‖
2
(

1− k′k
)

L2(B2(z))‖f‖
2k′
k

Hk(B2(z))

.
∑
z∈Z3

〈z〉2m
′
(

1− k′k
)

+ 2nk′
k ‖f‖

2
(

1− k′k
)

L∞(B2(z))‖f‖
2k′
k

Hk(B2(z))

≈
∑
z∈Z3

‖〈v〉m
′
f‖

2
(

1− k′k
)

L2(B2(z))‖〈v〉
nf‖

2k′
k

Hk(B2(z))

.
∑
z∈Z3

(
ε

k
k−k′ ‖〈v〉m

′
f‖2L2(B2(z)) + ε−k

′/k‖f‖2Hk,n(B2(z))

)
≈ ε

k
k−k′ ‖〈v〉m

′
f‖2L2 + ε−k

′/k‖f‖2Hk,n .
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Optimizing in ε leads to ‖f‖Hk′,` . ‖f‖1−
k′
k

L2,m′‖f‖
k′
k

Hk,n
. The proof is complete as

‖f‖L2,m′ . ‖f‖L∞,m .

3. Proof of the main theorem. In order to establish our main theorem, we first
construct a solution to the linear problem

(∂t + v · ∇x)f = Q(g, f)

for a fixed g. We then use an iteration argument to find a fixed point where g = f . In
both steps we require estimates on Q, which are stated in the following subsection.

3.1. Main estimates on Q. The bulk of our argument is in estimating various
quantities involving Q. We state these estimates now, but their proof is in Section 4.

Proposition 3.1. Fix any ε > 0, let η = 3/2 + (γ + 2s)+ + ε, and suppose that
n > η. We have the following estimates:

(i) Suppose that m > n+ 3/2 + γ + ε, α ∈ [0, 1) ∩ (2s− 1, 1), and f, g : R3 → R.
Then

‖Qs(g, f)‖L2,n .
(
‖f‖L∞,m + ‖〈v〉n+η+2Dvf‖Cα

)
‖g‖L2,n .

(ii) If f, g : R3 → R,

‖Qns(g, f)‖L2,n . ‖f‖L∞,n+η‖g‖L2,n .

(iii) If f : R3 → R and g : R3 → [0,∞) and m > 2n+ 3 + γ,∫
〈v〉2nfQ(g, f) dv . ‖f‖2L2,n‖g‖L∞,m .

(iv) Let ∂ = ∂xi or ∂vi for some i = 1, 2, 3. Then, if α ∈ ((2s − 1)+, s) and
f, g : T3 × R3 → R,∫

〈v〉2nQ(g, f)∂f dv dx .
(
‖g‖

L∞x L
2,n+η+(2s−1)+
v

+ ‖〈v〉5/2+ηg‖L∞x Cαv + ‖∂g‖L∞x L2,η
v

)
·
(
‖f‖2Hs,n+3/2+η + ‖f‖2H1,n

)
.

(v) If m > 3 + γ + 2s and f = 〈v〉−m, then

‖Q(g, f)‖L∞,m . ‖g‖L∞,m .

The estimates above are not necessarily sharp (particularly in the weights re-
quired); however, stating the sharp form obtained in the sequel is cumbersome
and unnecessary for our main well-posedness result. We also note that Proposi-
tion 3.1.(ii) is a consequence of [29, Lemma 2.1], so we omit its proof (indeed, we
can write Q(g, f) ≈ c̄[g]f in the notation of [29]). The remaining estimates are
proved in Section 4.

To our knowledge, with the exception of Proposition 3.1.(ii), these estimates are
new, and existing estimates do not suffice for our purposes. In general existing
estimates, such as those found in [4, 6, 7] cover or are tailored to settings where f
has Gaussian decay.
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3.2. Solving the linear equation. In order to show that the linear problem has
a solution, we use the method of continuity. In order to do this, we work with a
regularized equation that we formulate now. Let χ : R3 → R be a smooth-cutoff
function such that 0 ≤ χ ≤ 1, χ ≡ 1 on B1/2, χ ≡ 0 on Bc1, and

∫
χ(v) dv = 1. For

any ε, δ ≥ 0, we define the following quantities. First, for any φ : T3 × R3 → R, let

φε(x, v) =
1

ε6

∫
χ

(
x− y
ε

)
χ

(
v − w
ε

)
φ(y, w) dy dw if ε > 0,

and φε = φ if ε = 0. Then, let the regularized collision operator be defined by

Qε,δ(g(x, ·), f(x, ·))(v) = χ(δv)Q(gε(x, ·), χ(δ·)f) for any (x, v) ∈ T3 × R3.

Finally, for any σ ∈ [0, 1], we define the differential operator

Lσ,ε,δ(f) = ∂tf + σχ(δv)v · ∇xf − (ε+ (1− σ))∆x,vf − σQε,δ(g, f).

Here, σ is the parameter in the method of continuity; it connects the linear
Boltzmann equation and the heat equation. The parameter ε smoothes the initial
data and g and provides additional coercivity. Its purpose is to allows us to work
in a smooth setting where we can apply Schauder estimates up to {t = 0}. The
parameter δ cuts off large velocities and allows us to sidestep issues with moment
generation when we obtain estimates in order to apply the method of continuity.
The necessity for two regularization parameters is technical and has to do with the
fact that the important estimate (3.3) may not hold for δ > 0 (case four of its proof
relies on certain symmetries that are broken when δ > 0).

We now establish a priori estimates that hold for both the full equation and the
regularized one above. This is done in the following proposition.

Proposition 3.2. Suppose that T > 0, k ≥ 5, n > 3/2 + (γ + 2s)+, σ ∈ [0, 1],

ε, δ ≥ 0, and m ≥ 0. Suppose that R, f ∈ Y k,n,mT for some m and satisfy{
Lσ,ε,δf = R in (0, T )× T3 × R3,

f(0, ·, ·) = fin on T3 × R3.
(3.1)

For any µ > 0, if δ = 0 and m ≥ 3/2 + µ or if δ > 0, then, for all t0 ∈ [0, T ],

‖f‖L∞,m([0,t0]×T3×R3)

≤ exp
{
C

∫ t0

0

‖g(t)‖L∞,max{m,3/2+µ} dt
}

×
(
‖fin‖L∞,m(T3×R3) +

∫ t0

0

‖R(t)‖L∞,m(T3×R3) dt
)
.

(3.2)

If δ = 0 and m is sufficiently large depending on k, n, γ, and s,

‖f‖2
L∞t H

k,n
x,v ([0,t0]×T3×R3)

≤ exp
{
C

∫ t0

0

‖g‖L∞t Xk,n,mx,v ([0,t]×T3×R3) dt
}

×
(
‖fin‖2Xk,n,m + Ct0‖fin‖2L∞,m + C

∫ t0

0

‖R(t)‖2Xk,n,m(T3×R3) dt
)
.

(3.3)

Here C is a universal constant depending only on T , γ, s, k, n, and m. If m ≤ 3/2,
it additionally depends on δ in (3.2).
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Proof. The estimates are exactly the same when ε > 0 so, to make the notation less
cumbersome, we only consider the case ε = 0. We first establish the estimate on
the L∞,m-norm of f .

The L∞,m bound, (3.2). The case δ > 0 is simpler than the case δ = 0 so, we
consider only the case δ = 0 and omit the case δ > 0. It is enough to construct a
super-solution. Indeed, fix t0 and let

A(t) = C‖g(t)‖L∞,m(T3×R3),

for C to be determined, and

f(t, x, v) = e
∫ t
0
A(s) ds

(
‖fin‖L∞,m〈v〉−m +

∫ t

0

‖R(s)‖L∞,m ds

)
.

Clearly, fin ≤ f(0). Hence, by the comparison principle, we are finished if we show
that

(∂t + σv · ∇x)f − σQ(g, f)− (1− σ)∆x,vf −R ≥ 0. (3.4)

This follows easily from Proposition 3.1.(v). Indeed,

(∂t + σv · ∇x)f = Af + e
∫ t
0
A(s) ds‖R(t)‖L∞,m ,

and from Proposition 3.1.(v), we have |Q(g, f)| . ‖g(t)‖L∞,mf . In addition, a direct
computation yields ∆x,vf . f. Letting C be the sum of these two implied constants,

we obtain (3.4). Thus, f ≤ f by the comparison principle. This concludes the proof
of (3.2).

The Hk,n bound, (3.3).
Let α, β ∈ N3

0 be any multi-indices such that |α|+ |β| = k. Then, differentiating
(3.1), one has

∂αx ∂
β
v ft + σv · ∇x∂αx ∂βv f + σ

3∑
i=1

βi∂xi∂
α
x ∂

β−ei
v f

= σ
∑

α′+α′′=α,
β′+β′′=β

Q(∂α
′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f) + (1− σ)∆x,v∂
α
x ∂

β
v f + ∂αx ∂

β
vR.

(3.5)

Here e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), and by ∂αx we mean ∂α1
x1
∂α2
x2
∂α3
x3

.

The terms ∂βv are defined similarly.
Fix any t0 > 0. Multiplying (3.5) by 〈v〉2n∂αx ∂βv f and integrating in x and v

with t fixed (for the remainder of this proof, all x integrals are over T3, and all v
integrals are over R3), we find

1

2

d

dt

∫
|〈v〉n∂αx ∂βv f |2 dxdv = −σ

∫ ( 3∑
i=1

βi∂xi∂
α
x ∂

β−ei
v f

)
〈v〉2n∂αx ∂βv f dxdv

+ σ
∑

α′+α′′=α,
β′+β′′=β

∫
Q(∂α

′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)〈v〉2n∂αx ∂βv f dxdv

− (1− σ)

∫ ∣∣∇x,v∂αx ∂βv f ∣∣2 dx dv +

∫
∂αx ∂

β
vR〈v〉2n∂αx ∂βv f dxdv.

(3.6)

The first term on the right hand side is clearly bounded by ‖f‖2Hk,n , the third term
has a good sign, and the last term is clearly bounded by ‖R(t)‖Hk,n‖f(t)‖Hk,n .
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‖R(t)‖2Hk,n + ‖f(t)‖2Hk,n . Hence, we focus our attention on the second term on the
right hand side. We claim that, for any t,∑

α′+α′′=α,
β′+β′′=β

∫
Q(∂α

′

x ∂
β′

v g(t),∂α
′′

x ∂β
′′

v f(t))〈v〉2n∂αx ∂βv f dv dx

. ‖g(t)‖Xk,n,m‖f(t)‖2Xk,n,m .

(3.7)

We show how to conclude assuming that (3.7) is proved. In this case,

1

2

d

dt

∫
|〈v〉n∂αx ∂βv f(t)|2 dx dv . (‖g(t)‖Xk,n,m+1)‖f(t)‖2Xk,n,m+‖R(t)‖2Hk,n . (3.8)

Using the definition of X, we have ‖f(t)‖2Xk,n,m = ‖f(t)‖2
Hk,nx,v

+ ‖f(t)‖2L∞,m .
Plugging this into (3.8), we find

d

dt
‖f(t)‖2Hk,n . (‖g(t)‖Xk,n,m + 1)(‖f(t)‖2

Hk,nx,v
+ ‖f(t)‖2L∞,m) + ‖R(t)‖2Hk,n .

With the above inequality, we can apply Grönwall’s inequality to conclude that

‖f(t0)‖2Hk,n ≤ exp
{
C

∫ t0

0

‖g(t)‖Xk,n,m dt+ Ct0

}
×
(
‖fin‖2Hk,n + C

∫ t0

0

(‖R(t)‖2Hk,n + ‖f(t)‖2L∞,m) dt
)
.

Then (3.3) is established by using (3.2). Thus, the proof is concluded after estab-
lishing (3.7).

The proof of (3.7).
There are four major cases to consider, depending on the size of α′, α′′, β′ and

β′′. In each case, we consider t to be fixed and omit it notationally.
One inequality that is used throughout is that, for any ε > 0, ` ∈ R, and

h ∈ L2,`+3/2+ε,

‖h‖L1,` . ‖h‖L2,`+3/2+ε . (3.9)

Case one: |α′|+ |β′| ≤ k− 1 and |α′′|+ |β′′| ≤ k− 2. First, we apply Cauchy-
Schwarz to find∫

Q(∂α
′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)〈v〉2n∂αx ∂βv f dxdv

≤ ‖f‖Hk,n
(∫
|〈v〉nQ(∂α

′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)|2 dx dv

)1/2

.

From Theorem 2.4 and (3.9), we find that

‖Q(∂α
′

x ∂
β′

v g,∂
α′′

x ∂β
′′

v f)‖2L2,n =

∫
‖Q(∂α

′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)‖2
L2,n
v

dx

.
∫ (
‖∂α

′

x ∂
β′

v g‖2
L

1,(γ+2s)+
v

+ ‖∂α
′

x ∂
β′

v g‖2L2
v

)
‖∂α

′′

x ∂β
′′

v f‖2
H2s,n+γ+2s
v

dx

.
∫
‖∂α

′

x ∂
β′

v g‖2
L

2,(γ+2s)++3/2+ε
v

‖∂α
′′

x ∂β
′′

v f‖2
H2s,n+γ+2s
v

dx.

(3.10)
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If |α′|+ |β′| ≤ k − 2, then we continue (3.10) with Hölder’s inequality to get

‖Q(∂α
′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)‖2L2,n . ‖∂α
′

x ∂
β′

v g‖2
L∞x L

2,(γ+2s)++3/2+ε
v

‖∂α
′′

x ∂β
′′

v f‖2H2s,n+γ+2s .

Using Lemma 2.6, which we may apply as long as m is sufficiently large because
|α′′|+ |β′′|+ 2s ≤ k − 2(1− s) < k, we obtain

‖Q(∂α
′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)‖L2,n . ‖g‖
L∞x H

k−2,(γ+2s)++3/2+ε
v

‖f‖Hk−2(1−s),n+γ+2s

. ‖g‖Xk,n,m‖f‖Xk,n,m .

The last inequality is by the Sobolev embedding H2 ⊂ L∞.
If, on the other hand, |α′| + |β′| = k − 1 (so that ∂α

′′

x ∂β
′′

v f = ∂f), then we
continue (3.10) as follows. Applying Hölder’s inequality, we find

‖Q(∂α
′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)‖2L2,n . ‖g‖2
Hk−1,(γ+2s)++3/2+ε‖∂f‖2L∞x H2s,n+γ+2s

. ‖g‖2Xk,n,m‖f‖
2
Xk,n,m ,

where we once again used the Sobolev embedding and Lemma 2.6, with m suffi-
ciently large.

Thus we have∫
Q(∂α

′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)〈v〉2n∂αx ∂βv f dx dv . ‖g‖Xk,n,m‖f‖2Xk,n,m .

which finishes the proof of case one.

Case two: |α′|+ |β′| = k; i.e. α′ = α and β′ = β. Using Cauchy-Schwarz just
as we did above, it is enough to estimate the L2,n-norm of the Q-term. To this end,
using Proposition 3.1.(i) and (ii), we find

‖Q(∂αx ∂
β
v g, f)‖L2,n . ‖∂αx ∂βv g‖L2,n

(
‖f‖L∞,m + ‖〈v〉n+7/2+ε+(γ+2s)+Dvf‖L∞x Cθv

)
,

where θ ∈ ((2s − 1)+, 1). Here we used that m > n + 3/2 + γ + ε. In order to
bound the Cθ norm of Dvf , we use Lemma 2.6 and the Sobolev embedding theorem.
Indeed, choosing k′ = 4 + θ + ε, where ε is adjusted so that k′ < 5 ≤ k, we get

‖f‖Hk′,n+7/2+ε+γ . ‖f‖Xk,n,m ,

as long as m is chosen sufficiently large.
Then, applying the Sobolev embedding theorem we find

‖〈v〉n+7/2+ε+γDvf‖L∞x Cθv ≤ ‖f‖Hk′,n+7/2+ε+γ .

Thus, we have∫
Q(∂α

′

x ∂
β′

v g, ∂
α′′

x ∂β
′′

v f)〈v〉2n∂αx ∂βv f dx dv . ‖f‖2Xk,n,m‖g‖Xk,n,m ,

which finishes the proof of case two.

Case three: |α′′| + |β′′| = k, i.e. α′′ = α and β′′ = β. This case is handled
directly by Proposition 3.1.(iii), which immediately yields∫

Q(g, ∂αx ∂
β
v f)〈v〉2n∂αx ∂βv f dv dx .

∫
‖∂αx ∂βv f(x)‖2

L2,n
v
‖g(x)‖L∞,mv

dx

≤ ‖f‖2
Hk,nx,v
‖g‖L∞,m ≤ ‖f‖2Xk,n,m‖g‖Xk,n,m ,

finishing the proof of case three.
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Case four: |α′′| + |β′′| = k − 1. Let ∂ be the derivative falling on g instead

of ∂α
′′

x ∂β
′′

v f . Then ∂αx ∂
β
v f = ∂∂α

′′

x ∂β
′′

v f and so we may apply Proposition 3.1.(iv).
Fixing any α ∈ ((2s− 1)+, s), we obtain∫

Q(∂g, ∂α
′′

x ∂β
′′

v f)〈v〉2n∂∂α
′′

x ∂β
′′

v f dv dx

.
(
‖∂g‖

L∞x L
2,n+3/2+(2s−1)++ε
v

+ ‖〈v〉3+(γ+2s+1)++ε∂g‖L∞x Cαv + ‖∂2g‖
L∞x L

2,3/2+(γ+2s)++ε
v

)
×
(
‖∂α

′′

x ∂β
′′

v f‖2
Hs,n+3+(γ+2s+1)++ε + ‖∂α

′′

x ∂β
′′

v f‖2H1,n

)
.
(
‖g‖

H5/2+ε,n+3/2+(2s−1)++ε + ‖g‖
H4+α,3+(γ+2s+1)++ε

)
×
(
‖f‖2

H(k−(1−s),n+3+(γ+2s+1)++ε + ‖f‖2Hk,n
)
,

where in the second inequality we used the Sobolev embedding theorem.
Then, as long as m is sufficiently large, Lemma 2.6 and the above inequality yield∫

Q(∂g, ∂α
′′

x ∂β
′′

v f)〈v〉2n∂∂α
′′

x ∂β
′′

v f dv dx . ‖g‖Xk,n,m‖f‖2Xk,n,m ,

which concludes the proof of case four, and, thus (3.7). Hence, the proof is complete.

Having established the bounds above, we now construct a solution.

Proposition 3.3. Fix T > 0, g ∈ Y k,n,mT , and fin ∈ Xk,n,m. Then there exists a

unique solution f ∈ Y k,n,mT such that

(∂t + v · ∇x)f = Q(g, f).

and such that f(0, ·, ·) = fin. Moreover, f ≥ 0.

Proof. The tool that we use to construct f is the method of continuity. We do this
in three steps: (i) apply Schauder estimates from the heat equation, (ii) construct a
solution via the method of continuity, and (iii) use Proposition 3.2 to deregularize.

Step (i). Fix α ∈ (0, s(1−s)/2). We now apply the classical Schauder estimates
(see, e.g., [23, Chapter 3, Theorem 6]) to obtain, for any f with the right-hand side
finite,

‖f‖C2,α
para

. ‖Lσ,ε,δf‖Cαpara + ‖χ(δv)v · ∇xf‖Cαpara
+ ‖Qε,δ(g, f)‖Cαpara + ‖f |t=0‖C2,α

(3.11)

where Cαpara (resp. C2,α
para) is the classical parabolic space encoding Cα/2 regularity

in t and Cα regularity in x and v (resp. C1,α/2 regularity in t and C2,α regularity
in x and v). We note that the applied constant above depends only on ε, and that
all norms in (3.11) are over [0, T ]× T3 × R3.

We now outline how to simplify the second and third terms in (3.11). The third
term is significantly more technical, so we only outline how to handle that term and
omit discussion of the second term. From [34, Lemmas 6.4 and 6.9]1 and using that
we have cut-off large velocities both inside and outside the collision kernel, we have

‖Qε,δ(g, f)‖Cαpara
. ‖gε‖Cαspara

‖f‖C2s+αs
para

, (3.12)

1Actually, these estimates are given using the kinetic Hölder spaces so they do not apply
immediately. However, one can simply apply the estimate for each variable, thereby getting the

t, x, and v regularity estimates separately for the relevant Hölder spaces (in fact, this can be seen
directly from the proofs in [34].
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where αs = (1+2s)α/(2s). Using a classical interpolation lemma, we have ‖f‖C2s+αs
para

≤
Cθ‖f‖L∞ + θ‖f‖C2,α

para
for any θ > 0. Note that this requires 2s+αs < 2 +α, which

is true by our choice of α and αs. Then, using the estimates in (3.2), we find

‖f‖L∞ . ‖f |t=0‖L∞ + ‖Lσ,ε,δf‖L∞ .
Combining all above estimates and choosing θ sufficiently small to absorb the

‖f‖C2,α
para

terms into the left-hand side, we obtain

‖f‖C2,α
para

. ‖Lσ,ε,δf‖Cαpara + ‖f |t=0‖C2,α . (3.13)

Step (ii): Let

Tσ : C2,α
para([0, T ]× T3 × R3)→ Cαpara([0, T ]× T3 × R3)× C2,α(T3 × R3)

be defined by

Tσ(f) =
(
Lσ,ε,δf, f |t=0

)
.

It is clear that Tσ is a well-defined operator between Banach spaces and, using
Equation (3.13), there exists C > 0, independent of σ, such that

‖f‖C2,α
para
≤ C‖Tσf‖Cαpara×C2,α .

Finally, we notice that T0 is onto since this corresponds to the solvability of the
heat equation. The method of continuity (see, e.g., [24, Theorem 5.2]) then implies
that Tσ is a bijection for all σ ∈ [0, 1]. Thus defining

fε,δ := T −1
1 (0, χ(ε·)fεin),

we have that
(∂t + χ(δv)v · ∇x)fε,δ = ε∆x,vfε,δ +Qε(g, fε,δ)

and that fε,δ|t=0 = fεin. Note that by cutting off the regularized initial data fεin
with χ(ε·), we ensure the initial data will be compactly supported whenever ε > 0,
even for δ = 0. By classical maximum principal arguments, fε,δ ≥ 0 since fin ≥ 0.

Step (iii): Note that fεin ∈ L∞,m
′

for any m′. Thus, by Proposition 3.2, we

have that fε,δ is bounded in L∞,m
′

for any m′. We wish to argue exactly as above
using the Schauder estimates. The main thrust of the argument is the same, the
only difference being the necessity to include polynomial weights in v. This causes
no issues since we can use the decay of f ; for example, instead of interpolating the
Cαpara norm of Qε,δ(g

ε, fε,δ) between the C2,α
para and L∞ norms of fε,δ, we interpolate

between the C2,α
para and L∞,m

′
norms. If m′ is sufficiently large, the L∞,m

′
norm

can absorb the extra 〈v〉(γ+2s)+ growth of Qε,δ(g
ε, fε,δ) (see, e.g., the estimates in

[34]). We conclude that

‖fε,δ‖C2,α
para

. ‖fεin‖C2,α + ‖fε,δ‖L∞,m′ . ‖f
ε
in‖C2,α + ‖fin‖L∞,m′ ,

where the implied constant depends on ε but not δ. Thus, the Arzelà-Ascoli theorem
implies that, up to taking a subsequence, fε,δ → fε locally uniformly in C2,α

para as
δ → 0.

Further, iterating the Schauder estimates, we obtain bounds on 〈v〉n′fε ∈ L∞t W k′,∞

for any k′ and n′. Thus, fε ∈ Y k,n,mT ; however, we need estimates on its Y k,n,mT -
norm that are independent of ε. These are provided by2 Proposition 3.2. Hence, we

have that fε is bounded in Y k,n,mT independently of ε. From here, it is standard to

2Here we see the need for the two separate regularizations. Indeed, Proposition 3.2 does not
yield Hk,n bounds when δ > 0.
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obtain a limit f of fε via compactness, so we omit the details. This concludes the
construction of f . Since limits in Sobolev and Hölder spaces preserve non-negativity,
we find f ≥ 0 since fε,δ ≥ 0. This concludes the proof of the proposition.

3.3. Solving the full nonlinear equation: the proof of Theorem 1.1. We
are now in a position to prove our main theorem via an iteration argument.

Proof of Theorem 1.1. In order to show uniqueness, we note that, due to Lemma 2.6,
L∞,m ∩Hk,n ⊂ H2s,14 as long as m is sufficiently large. Hence, uniqueness follows
from [9, Theorem 1.1].

Let f0 = fin. For each i ∈ N, let fi be the unique solution to

(∂t + v · ∇x)fi = Q(fi−1, fi) in (0,∞)× T3 × R3 (3.14)

with initial data fin that is guaranteed by Proposition 3.3. Let

T0 = min{T1, T2},

where T1 and T2 are to be determined and depend only on ‖fin‖Xk,n,m , γ, s, k, n,
and m.

We first establish that the sequence fi is bounded in Y k,n,mT0
. We do this induc-

tively. We claim that ‖fi‖Y k,n,mT0

≤ 2‖fin‖Xk,n,m for every i. This is clearly true for

the case i = 0, hence, we assume it is true for i and show that it holds for i + 1.
From Proposition 3.2, we have

‖fi+1‖2Y k,n,mT0

≤ (1 + CT0)‖fin‖2Xk,n,m exp
{
C

∫ T0

0

‖fi‖2Xk,n,m dt
}
,

where C is independent of i. Then, by the inductive hypothesis, we have

‖fi+1‖2Y k,n,mT0

≤ (1 + CT0)‖fin‖2Xk,n,m exp
{

4CT0‖fin‖2Xk,n,m
}
.

The bound on fi+1 is now finished by defining

T1 = min
{ 1

4C‖fin‖2Xk,n,m
log(2), 1/C

}
and using that T0 ≤ T1.

We note that, since fi satisfies (3.14) and is an element of Y k,n,mT0
, fi belongs to

W 1,∞
t Hk−2s,n−2

x,v with bounds uniform in i. Differentiating (3.14) in time, we find

that fi ∈W 2,∞
t Hk−4s,n−4

x,v with bounds likewise uniform in i.

We now obtain a limit. For any i, let Fi = (fi, fi+1) ∈ Y k,n,mT0
× Y k,n,mT0

.

Thus, taking a weak limit in Y k,n,mT0
and a strong limit in any weaker space (e.g.

C1,α
t H1,n−4

x,v ∩ Cαt H2,n−2
x,v ), we find that there must exist a pair F = (f̄1, f̄2) such

that

(∂t + v · ∇x)f̄2 = Q(f̄1, f̄2).

Hence, our proof of existence is concluded after showing that f̄1 = f̄2. Let
wi = fi+1− fi. If we establish that ‖wi‖L2,n → 0 as i→∞, it follows that f̄1 = f̄2.
Notice that

(∂t + v · ∇x)wi = Q(fi, wi) +Q(wi−1, fi).

Multiplying this by 〈v〉2nwi and integrating, we find

1

2

d

dt

∫
〈v〉2n|wi|2 dv dx =

∫
〈v〉2nQ(fi, wi)wi dv dx+

∫
〈v〉2nQ(wi−1, fi)wi dv dx.
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We estimate the first term using Proposition 3.1.(iii) and the second term we esti-
mate using Proposition 3.1.(i)-(ii) in order to get

1

2

d

dt

∫
〈v〉2n|wi|2 dv dx . ‖fi‖L∞,m‖wi‖2L2,n + ‖fi‖Xk,n,m‖wi−1‖L2,n‖wi‖L2,n

≤
(
‖fi‖L∞,m +

1

2
‖fi‖2Xk,n,m

)
‖wi‖2L2,n +

1

2
‖wi−1‖2L2,n .

Using that ‖fi‖L∞,m ≤ C(1 + ‖fi‖Xk,n,m) we then have

1

2

d

dt

∫
〈v〉2n|wi|2 dv dx . C(1 + ‖fin‖Xk,n,m)2‖wi‖2L2,n +

1

2
‖wi−1‖2L2,n .

Integrating this in time, using that wi(0, ·, ·) ≡ 0, and taking a supremum in t yields

‖wi‖2L∞t L2,n ≤ 2CT0(1 + ‖fin‖Xk,n,m)2‖wi‖2L∞t L2,n +
T0

2
‖wi−1‖2L∞t L2,n .

We now choose T2 = min{ 1
2 , (4C(1 + ‖fin‖Xk,n,m)2)−1}. Since T0 ≤ T2, we obtain

‖wi‖2L∞t L2,n ≤
1

2
‖wi−1‖2L∞t L2,n ,

which implies that wi → 0 in L2,n. As noted above, this completes the proof of
existence.

Finally, we note that f ∈ C([0, T ];Hk,n
x,v ) by standard energy methods along with

the bounds above (see, e.g., the proof of [4, Theorem 4.1]) and that f ≥ 0 since
fi ≥ 0 for all i.

4. Estimates on Q: the proof of Proposition 3.1.

4.1. The estimate on Qs: the proof of Proposition 3.1.(i).

Proof of Proposition 3.1.(i). Recall the formula for Qs from Lemma 2.1. We begin
by using an annular decomposition of Qs(g, f)(v) for any fixed v ∈ R3. Let Ak(v) =
B2k|v|(v) \ B2k−1|v|(v), and, for convenience, let µ = n + 7/2 + γ + ε and η =
3/2 + ε+ (γ + 2s)+. We write

Qs(g, f) =
∑
k∈Z

∫
Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′.

Step One: estimating the sum for any k ≤ −1. Taylor expanding f at v,
we find

f(v′)− f(v) = ((Df)(ξv,v′)− (Df)(v)) · (v′ − v) + (Df)(v) · (v′ − v)

for some ξv,v′ on the line segment connecting v and v′. Thus,∫
Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

=

∫
Ak(v)

Kg(v, v
′)((Df)(ξv,v′)− (Df)(v)) · (v − v′) dv′

+

∫
Ak(v)

Kg(v, v
′)(Df)(v)(v − v′) dv′.
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It is easy to see that Kg(v, v
′) = Kg(v, v − (v′ − v)). Hence, the last integral

above vanishes by symmetry. The remaining integral can be estimated using the
‖〈·〉µDf‖Cα norm of f . After this, we use Lemma 2.2, which yields∣∣∣ ∫

Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣
≤ 〈v〉−µ‖〈·〉µDf‖Cα

∫
Ak(v)

Kg(v, v
′)|v − v′|1+α dv′

. 〈v〉−µ(2k|v|)1+α−2s‖〈·〉µDf‖Cα
∫
R3

|g(v′)||v − v′|γ+2s dv′.

(4.1)

Recall that 1 + α − 2s > 0 by assumption. We now apply Cauchy-Schwarz and a
straightforward estimate of the convolution of algebraic functions to find∣∣∣∣∣
∫
Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣
. 〈v〉−µ+1+α−2s(2k)1+α−2s‖〈·〉µDf‖Cα‖g‖L2,η

(∫
〈v′〉−2η|v − v′|2(γ+2s) dv′

) 1
2

. 〈v〉−µ+1+α−2s(2k)1+α−2s‖〈·〉µDf‖Cα‖g‖L2,η 〈v〉γ+2s.

(4.2)

Above we used that γ + 2s > −3/2 so that |v − v′|2(γ+2s) is integrable near v and
that η > 3/2 + (γ + 2s)+.

Summing over all k ≤ −1, we obtain

∑
k≤1

∣∣∣∣∣
∫
Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣
.
∑
k≤−1

〈v〉−µ+1+α+γ(2k)1+α−2s‖〈·〉µDf‖Cα‖g‖L2,η

. 〈v〉−µ+1+α+γ‖〈·〉µDf‖Cα‖g‖L2,η

where we used once more that 1 + α > 2s. Since 2(n+ 1 + α+ γ − µ) < −3,

∫
〈v〉2n

∣∣∣∣∣∣
∑
k≤−1

∫
Ak(v)

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣∣
2

dv . ‖〈·〉µDf‖2Cα‖g‖2L2,η . (4.3)

This is the desired estimate since µ ≤ n+ η + 2, so Step One is complete.

Step Two: estimating the sum for k ≥ 0 when |v′| ≥ 〈v〉/2. Fix any k ≥ 0.
Using Lemma 2.2, we find∣∣∣∣∣
∫
Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣ . 〈v〉−m‖f‖L∞,m
∫
Ak\B〈v〉/2

|Kg(v, v
′)|dv′

≤ 〈v〉−m‖f‖L∞,m
∫
Ak

|Kg(v, v
′)|dv′

. 〈v〉−m‖f‖L∞,m(2k|v|)−2s

∫
R3

|g(v′)||v − v′|γ+2s dv′.



SOLUTIONS OF THE BOLTZMANN EQUATION WITH SLOW DECAY 19

We now apply Cauchy-Schwarz exactly as we did in (4.2) to obtain∣∣∣∣∣
∫
Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣
. 〈v〉−m+γ+2s−ε‖f‖L∞,m(2k)−2s|v|−2s‖g‖L2,η .

Unfortunately, |v|−4s is not integrable near v = 0 in general. However, we notice
the following. Let kv = (−1 − log |v|)+, and, if 0 ≤ k < kv, then by a short
calculation, Ak \B〈v〉/2 = ∅. Thus,

∫
〈v〉2n

∣∣∣∣∣∣
∑
k≥0

∫
Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣∣
2

dv

=

∫
〈v〉2n

∣∣∣∣∣∣
∑
k≥kv

∫
Ak\B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣∣
2

dv

. ‖f‖2L∞,m‖g‖2L2,η

∫
R3

〈v〉2(n−m+γ+2s−ε)|v|−4s

∣∣∣∣∣∣
∑
k≥kv

2−2sk

∣∣∣∣∣∣
2

dv

. ‖f‖2L∞,m‖g‖2L2,η

∫
R3

〈v〉2(n−m+γ+2s−ε)〈v〉−4s dv

. ‖f‖2L∞,m‖g‖2L2,3/2+ε .

(4.4)

In the second-to-last inequality, we used that

|v|−4s

∣∣∣∣∣∣
∑
k≥kv

2−2sk

∣∣∣∣∣∣
2

. |v|−4s
∣∣2−2skv

∣∣2 . |v|−4s min{1, |v|4s} . 〈v〉−4s,

and in the last inequality, we used that m is sufficiently large so that 2(n−m+γ−
ε) < −3. This concludes Step Two.

Step Three: estimating the sum for k ≥ 0 when |v| ≤ 10 and |v′| ≤ 〈v〉/2.
When |v| ≤ 10, this estimate is straightforward because we do not have the issue
of weights as the integrals are on compact sets. In fact, the estimate can be done
exactly as in Step One. Hence, we omit the proof and assert that

∫
B10

〈v〉2n
∣∣∣∣∣∣
∑
k≥0

∫
Ak∩B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣∣
2

dv

.
∫
B10

〈v〉2n
∣∣∣∣∣
∫
B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣∣∣
2

dv

. ‖Df‖2Cα‖g‖2L2,3/2+ε .

(4.5)

This concludes Step Three.

Step Four: estimating the sum for k ≥ 0 when |v| ≥ 10 and |v′| ≤ 〈v〉/2.
We now consider the final portion of Qs(g, f). Fix any v such that |v| ≥ 10 and any
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k ≥ 0. First, by the triangle inequality, we see that∣∣∣∑
k≥0

∫
Ak∩B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣
.
∫
B〈v〉/2

K|g|(v, v
′)|f(v′)|dv′ +

∫
B〈v〉/2

K|g|(v, v
′)|f(v)|dv′.

(4.6)

The second term on the right hand side is easy to bound. Notice that B〈v〉/2 ⊂
(B2〈v〉(v) \B〈v〉/4(v)) since |v| ≥ 10. Then, using Lemma 2.2, we find∫

B〈v〉/2

K|g|(v, v
′) dv′ .

∫
B〈v〉/2

K|g|(v, v
′) dv′ .

∫
B2〈v〉(v)\B〈v〉/4(v)

K|g|(v, v
′) dv′

. 〈v〉−2s

∫
|g(v′)||v − v′|γ+2s dv′ . 〈v〉γ‖g‖L2,η .

Thus, using that η ≤ n,∫
Bc10

〈v〉2n
(∫

B〈v〉/2

K|g|(v, v
′)|f(v)|dv′

)2

dv . ‖g‖2L2,n‖f‖2L2,n . (4.7)

On the other hand, the first term in (4.6) requires a bit more work. Fix ε ∈
(0, |γ|). Applying Cauchy-Schwarz twice and using the definition of K, we find(∫

B〈v〉/2

K|g|(v, v
′)|f(v′)|dv′

)2

. ‖f‖2
L

2,3/2+ε
v

∫
B〈v〉/2

〈v′〉−(3+2ε)K|g|(v, v
′)2 dv′

= ‖f‖2
L

2,3/2+ε
v

∫
B〈v〉/2

〈v′〉−(3+2ε)
(∫

(v−v′)⊥ |g(v + w)||w|γ+2s+1〈w〉1+ε〈w〉−1−ε dw
)2

|v − v′|2(3+2s)
dv′

. ‖f‖2
L

2,3/2+ε
v

∫
B〈v〉/2

〈v′〉−(3+2ε)
∫

(v−v′)⊥ g(v + w)2〈w〉2(γ+2s+2+ε) dw

|v − v′|2(3+2s)
dv′.

Let H(w) := 〈w〉2n+1g(w)2. Notice that, since |v| > 10, then |v| ≥ 10〈v〉/11, which
implies that |v − v′| ≈ 〈v〉 (recall that v′ ∈ B〈v〉/2). In addition, since w ⊥ (v − v′),
we see that

|v + w|2 = |v|2 + 2(v − v′) · w + 2v′ · w + |w|2 ≥ |v|2 − 3

2
|v′|2 − 2

3
|w|2 + |w|2

≥ |v|2 − 3

4
〈v〉2 +

1

3
|w|2 ≥ |v|2 − 3

4

121

100
|v|2 +

1

3
|w|2 & |v|2 + |w|2,

(4.8)

and, hence, |v + w| ≈ |v|+ |w|. Using these observations, we find

∫
B〈v〉/2

〈v′〉−(3+2ε)
∫

(v−v′)⊥ g(v + w)2〈w〉2(γ+2s+2+ε) dw

|v − v′|2(3+2s)
dv′

.
∫
B〈v〉/2

〈v′〉−(3+2ε)

〈v〉2(3+2s)

∫
(v−v′)⊥

H(v + w)

〈v〉2n+1 + 〈w〉2n+1
〈w〉2(γ+2s+2+ε) dw dv′ dv.
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Next, we notice that supw〈w〉2(γ+2s+2+ε)(〈v〉2n+1+〈w〉2n+1)−1 . 〈v〉2(γ+2s+ε)+3−2n.
Using this and then spherical coordinates in the v variable (ρ = |v|, z ∈ ∂Bρ) yields∫
Bc10

〈v〉2n
(∫

B〈v〉/2

K|g|(v, v
′)|f(v′)|dv′

)2

dv

. ‖f‖2
L

2,3/2+ε
v

∫
Bc10

〈v〉2(γ+ε)−3

∫
B〈v〉/2

〈v′〉−(3+2ε)

∫
(v−v′)⊥

H(v + w) dw dv′ dv

. ‖f‖2
L

2,3/2+ε
v

∫ ∞
10

ρ2(γ+ε)−3

∫
Bρ/2

〈v′〉−(3+2ε)

(∫
∂Bρ

∫
(v−z)⊥

H(z + w) dw dz

)
dv′ dρ.

At this point, we apply Lemma A.1 to the w and z integrals to obtain∫
Bc10

〈v〉2n
(∫

B〈v〉/2

K|g|(v, v
′)|f(v′)|dv′

)2

dv

. ‖f‖2
L

2,3/2+ε
v

∫ ∞
10

∫
Bρ/2

ρ2(γ+ε)−3〈v′〉−(3+2ε)

(
ρ2

∫
R3\Bρ/2

H(w)

|w|
dw

)
dv′ dρ

. ‖f‖2
L

2,3/2+ε
v

∫ ∞
10

∫
Bρ/2

ρ2(γ+ε)−1〈v′〉−(3+2ε)

(∫
R3

〈w〉2ng(w)2 dw

)
dv′ dρ

= ‖f‖2
L

2,3/2+ε
v

‖g‖2L2,n

∫ ∞
10

∫
Bρ/2

ρ2(γ+ε)−1〈v′〉−(3+2ε) dv′ dρ . ‖f‖2
L

2,3/2+ε
v

‖g‖2L2,n .

The last inequality follows from the fact that ε ∈ (0, |γ|) so that γ + ε < 0.
Putting this together with (4.7) yields, in view of (4.6),∫
Bc10

∣∣∣∑
k≥0

∫
Ak∩B〈v〉/2

Kg(v, v
′)(f(v′)− f(v)) dv′

∣∣∣2 dv . ‖f‖2
L

2,3/2+ε
v

‖g‖2L2,n . (4.9)

The proof is finished after compiling (4.3), (4.4), (4.5), and (4.9).

4.2. An estimate on
∫
〈v〉2nQ(g, f)f dv: the proof of Proposition 3.1.(iii).

Proof of Proposition 3.1.(iii). This proof is very similar to [7, Section 4, “Estimate
of A1”]; though, their proof does not work out of the box as they use the Gaussian
decay of f assumed in that paper. As such, we sketch steps which are exactly the
same; the interested reader can consult [7].

Let F (v) := 〈v〉nf(v), then we have∫
〈v〉2nQ(g, f)f dv =

∫
FQ(g, F )dv +

∫
F (〈v〉nQ(g, f)−Q(g, 〈v〉nf)) dv

=: I1 + I2.
(4.10)

The estimate on I2 will include a term that we cannot bound using the Y k,n,mT -
norm of f or g. Instead, the I1 term, being symmetric, will provide a corresponding
negative term of the same order which will close the estimate on I2. For ease of
notation, we replace v∗ with w. A useful tool is the so-called pre/post collisional
change of variables:

v → v + w

2
+
|v − w|

2
σ = v′, w → v + w

2
− |v − w|

2
σ = w′, σ → v − w

|v − w|
=: σ′.

(4.11)

This change has unit Jacobian, and reflects the “micro-reversibility” of the collision
operator. Moreover, it leaves the quantities cos θ = σ · σ′ and |v − w| unchanged.
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Step One: estimating I1 with a coercive contribution. Following [7], we
have that

I1 = −1

2
D +

∫
Q(g, F 2) dv, (4.12)

where

D =

∫
R6×S2

(F (v′)− F (v))
2
g(w)B(|v − w|, cos θ) dσ dw dv. (4.13)

Recall that Q(g, F 2) = Qs(g, F
2) +Qns(g, F

2). To bound the Qs term, we use a
change of variables and Lemma 2.2 to get∫

Qs(g, F
2) dv =

1

2

∫
F (v)2

∫
(Kg(v

′, v)−Kg(v, v
′)) dv′ dv

. ‖F‖2L2
v

sup
v

(∫
|g(z)||v − z|γ dz

)
≤ ‖f‖2L2,n‖g‖L∞,m .

(4.14)

The nonsingular term is handled by easily using Lemma 2.3:∫
Qns(g, F

2) dv ≤ CS‖F‖2L2 sup
v

(∫
g(z)|v − z|γdz

)
. ‖f‖2L2,n‖g‖L∞,m . (4.15)

Thus,

I1 +
1

2
D . ‖f‖2L2,n‖g‖L∞,m . (4.16)

Step Two: estimating I2. Using (1.2), we have∫
F (〈v〉nQ(g, f)−Q(g, 〈v〉nf)) dv

=

∫
R6×S2

(〈v〉n − 〈v′〉n) f(v′)F (v)g(w′)B(|v − w|, cos θ) dσ dw dv.
(4.17)

Since v′ is a dependent variable, it would be very difficult to estimate integrals of
f(v′), especially with weights. Instead, we employ the pre/post-collisional change
of variables (4.11). Thus,

I2 =

∫
R6×S2

(〈v′〉n − 〈v〉n) f(v)F (v′)g(w)B dσ dw dv

=

∫
R6

f(v)F (v)g(w)

∫
S2

(〈v′〉n − 〈v〉n)B dσ dw dv

+

∫
R6×S2

(〈v′〉n − 〈v〉n) f(v) (F (v′)− F (v)) g(w)B dσ dw dv

=: I21 + I22.

(4.18)

For I21, we Taylor expand the difference in weights to obtain

〈v′〉n − 〈v〉n = n〈v〉n−2v · (v′ − v) +
n(n− 2)

2
〈ṽ〉n−4 (ṽ · (v′ − v))

2
, (4.19)

where ṽ = τv′ + (1− τ)v for some τ ∈ (0, 1). By (1.3), we also note that

v′ − v =
|v − w|

2
(σ − σ′ cos θ) +

|v − w|
2

(cos θ − 1)σ′, (4.20)

so in particular |v′−v|2 = 1
2 |v−w|

2(1−cos θ). Using the pre/post-collisional change
of variables makes the integration in σ much simpler in I21. Indeed, using (4.19)
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and (4.20), we see that∫
S2

(〈v′〉n − 〈v〉n)B dσ =
n

2
〈v〉n−2|v − w|v ·

∫
S2

(σ − (σ · σ′)σ′)B dσ

+
n

2
〈v〉n−2|v − w|v · σ′

∫
S2

(cos θ − 1)B dσ

+
n(n− 2)

2

∫
S2
〈ṽ〉n−4 (ṽ · (v′ − v))

2
B dσ,

(4.21)

remembering that σ′ is independent of σ, but ṽ is not.
The first term of (4.21) is zero; the change of variables σ → −σ+2(σ ·σ′)σ′ leaves

the collision kernel B unchanged, but changes the sign of the integrand. Using (1.4),
the second term of (4.21) is bounded by

〈v〉n−1|v − w|1+γ

∫
S2

(cos θ − 1)|θ|−2−2s dσ . 〈v〉n−1|v − w|1+γ . (4.22)

For the third term, we must estimate the size of ṽ in terms of v and w. Since we
have conservation of energy (|v|2 + |w|2 = |v′|2 + |w′|2), we in particular have that
〈v′〉2 ≤ 〈v〉2 + 〈w〉2, which implies that

〈ṽ〉n−2 = 〈τv′ + (1− τ)v〉n−2 . 〈v′〉n−2 + 〈v〉n−2 . 〈w〉n−2 + 〈v〉n−2. (4.23)

Using the above and that |v′−v|2 = 1
2 |v−w|

2(1−cos(θ)), the third term is bounded
above by (

〈w〉n−2 + 〈v〉n−2
) |v − w|2+γ

2

∫
S2

(1− cos θ)|θ|−2−2s dσ

.
〈
w〉n−2 + 〈v〉n−2

)
|v − w|2+γ .

(4.24)

Define

φ(v, w) := 〈v〉n−1|v − w|1+γ + 〈w〉n−2|v − w|2+γ + 〈v〉n−2|v − w|2+γ .

Then substituting the estimates for (4.21) into the expression for I21 (and remem-
bering that m > n+ 3 + γ) yields

|I21| .
∫
F (v)f(v)

∫
g(w)φ(v, w) dw dv

.
∫
F (v)f(v)‖g‖L∞,m

(
〈v〉n−1〈v〉1+γ + 〈v〉2+γ + 〈v〉n−2〈v〉2+γ

)
dv

. ‖f‖2L2,n‖g‖L∞,m .

(4.25)

The remaining term I22 is outwardly more complicated because it involves F (v′).
However, this term can be absorbed into the negative contribution from I1. Specif-
ically, we use (4.13) and the Cauchy-Schwartz and Young’s inequalities to obtain

|I22| ≤
1

2
D +

1

2

∫ ∫
f(v)2g(w)

∫
S2

(〈v′〉n − 〈v〉n)
2
B dσ dw dv. (4.26)

The second term above can be bounded in the same way as I21. Indeed, one way to
see this is to write (〈v〉n−〈v′〉n)2 = 2〈v〉n(〈v〉n−〈v′〉n)−(〈v〉2n−〈v′〉2n). Therefore,

I22 ≤
1

2
D +

∫ ∫
f(v)2g(w)〈v〉n

∫
S2

(〈v〉n − 〈v′〉n)B dσ dw dv

+

∫ ∫
f(v)2g(w)

∫
S2

(
〈v′〉2n − 〈v〉2n

)
B dσ dw dv =:

1

2
D − I21 + Ī22.

(4.27)
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Clearly the second term can be bounded exactly as above. The third term is
bounded similarly, yielding the estimates (4.19) – (4.24) with 2n in place of n.
Then, since m > 2n+ 3 + γ, we have

|Ī22| .
∫
f(v)2

(
〈v〉2n−1‖g‖L∞,m〈v〉1+γ + ‖g‖L∞,m〈v〉2+γ + 〈v〉2n−2‖g‖L∞,m〈v〉2+γ

)
dv.

(4.28)

This completes the proof of Proposition 3.1.(iii).

4.3. An estimate on
∫
〈v〉2nQ(g, f)∂f dv: the proof of Proposition 3.1.(iv).

Proof of Proposition 3.1.(iv). The proof is simpler when ∂ = ∂xi , so we omit this
proof and show the more involved case when ∂ = ∂vi . As a convenient consequence,
the x variable plays no role in our proof, so we omit it from all notation.

As before, we set F = 〈v〉nf . Notice that 〈v〉n∂vif = ∂viF −n〈v〉n−2vif . Hence,∫
Q(g, f)∂f〈v〉2n dv =

∫
[〈v〉nQ(g, f)−Q(g, 〈v〉nf)]〈v〉n∂f dv

−
∫
Q(g, F )fnvi〈v〉n−2 dv +

∫
Q(g, F )∂F dv.

(4.29)

The first term in (4.29). We use the commutator estimate of Proposition 2.5.
Indeed, we find, for ε > 0 satisfying (2s− 1)+ + ε < 1,∫

[〈v〉nQ(g, f)−Q(g, 〈v〉nf)]〈v〉n∂f dv

. ‖g‖
L2,n+3/2+(2s−1)++ε‖f‖H(2s−1+ε)+,n+(2s−1)+‖∂f‖L2,n .

(4.30)

The second term in (4.29). We may now appeal to Theorem 2.4 (with θ = −1),
which yields∣∣∣ ∫ Q(g, F )(fvi〈v〉n−2) dv

∣∣∣ . (‖g‖L1,(γ+2s)+ + ‖g‖L2
v

)
× ‖F‖

H(2s−1+ε)+,(γ+2s)+‖fvi〈v〉n−2‖H1 .

(4.31)

This yields the desired estimate after using (3.9).

The third term in (4.29). This term requires the most work. Before beginning,
we describe the obstruction. In this term, we are able to distribute derivatives over
each F term; however, we want an estimate in terms of no more than 1 derivatives
of f ; however, Q(g, F ) can be thought of as 2s-derivatives applied to F . Hence, we
have two F terms and 1+2s derivatives to distribute over them. Without appealing
to a special symmetry, one of the F terms must accept at least 2s-derivatives, which
makes our proof impossible. Thus, we search for a symmetry to aid us.

We decompose Q into Qs and Qns. The nonsingular term is easy to estimate.
Indeed, recalling Lemma 2.3, we have∫

Qns(g, F )∂F dv =

∫
(S ∗ g)F∂F dv = −(1/2)

∫
S ∗ (∂g)F 2 dv

. ‖S ∗ (∂g)‖L∞‖F‖2L2 . ‖∂g‖
|γ|
3

L∞‖∂g‖
3+γ
3

L1 ‖F‖2L2

. (‖g‖W 1,∞ + ‖g‖H1,3/2+ε)‖f‖2L2,n .

(4.32)
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The singular term requires more care. First, we symmetrize the equation to
obtain

2

∫
Qs(g, F )∂F dv =

∫
Kg(F

′ − F )(∂F − (∂F )′) dv′ dv

+

∫
(Kg −K ′g)(F ′ − F )∂F dv′ dv

=: I1 + I2,

where we use Kg to denote Kg(v, v
′) and K ′g to denote Kg(v

′, v). Similarly, let ∂′

denote ∂v′i , which is useful in the sequel. With this notation, (∂F )′ = ∂′F ′.

Estimating I1. Notice that

2I1 = −
∫
Kg(∂ + ∂′)(F ′ − F )2 dv′ dv =

∫
(∂ + ∂′)Kg(F

′ − F )2 dv′ dv

= 2

∫
K∂g(F

′ − F )2 dv′ dv.

Denote the diagonal strip SD = {(v, v′) : |v − v′| < 1}. Then∫
K∂g(F

′ − F )2 dv′ dv =

∫
SD

K∂g(F
′ − F )2 dv′ dv +

∫
ScD

K∂g(F
′ − F )2 dv′ dv

=: I11 + I12.

For I11, we decompose the integral into a sum over integrals on compact sets and
apply a cut-off. Indeed, let p = (γ + 2s)+, and let χ be any smooth function that
is one in B10 and zero outside of B20. Then,

|I11| ≤
∑
z∈Z3

∫
B10(z,z)

K|∂g|(F
′ − F )2 dv′ dv .

∑
z∈Z3

∫
K|∂g|(χ

′F ′ − χF )2 dv′ dv.

We can now appeal to [35, Theorem 4.1] to find

|I11| .
∑
z∈Z3

〈z〉γ+2s‖∂g‖L2,η‖χF‖2Hs .
∑
z∈Z3

‖∂g‖L2,η‖F‖2
Hs,p/2(B20(z))

〈z〉p−(γ+2s)

. ‖∂g‖L2,η‖F‖2Hs,p/2 .

(4.33)

The bound of I12 is simpler. We first use Young’s inequality:

|I12| .
∫
ScD

K|∂g|(F
′)2 dv′ dv +

∫
ScD

K|∂g|F
2 dv′ dv.

Both terms above are bounded in essentially the same way; hence, we only include
the proof of the bound for the first term as it is slightly more involved. Using
Lemma 2.2, we find∫

ScD

K|∂g|(F
′)2 dv′ dv =

∫
R3

F (v′)2

(∫
B1(v′)c

K|∂g|(v, v
′) dv

)
dv′

.
∫
R3

F (v′)2〈v′〉γ+2s‖∂g‖
L2,3/2+(γ+2s)++ε dv′ ≤ ‖F‖2L2,γ/2+s‖∂g‖L2,η .

Thus,

|I12| . ‖F‖2L2,γ/2+s‖∂g‖L2,η . (4.34)

This concludes the proof of the bound of I1.
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Estimating I2. Recall the definition of SD from above. Then

I2 =

∫
SD

(Kg−K ′g)(F ′−F )∂F dv′ dv+

∫
ScD

(Kg−K ′g)(F ′−F )∂F dv′ dv =: I21 +I22.

Since the estimate of I22 is more straightforward, we begin with that. Indeed, we
split the integral in two:

I22 =

∫
ScD

(Kg −K ′g)F ′∂F dv′ dv −
∫
ScD

(Kg −K ′g)F∂F dv′ dv. (4.35)

Using Lemma 2.2, it is clear that∣∣∣ ∫
ScD

(Kg −K ′g)F∂F dv′ dv
∣∣∣ . (‖g‖L2,3/2+ε + ‖g‖L∞)

∫
〈v〉γ |F∂F |dv

≤ (‖g‖L2,3/2+ε + ‖g‖L∞)‖F‖L2‖F‖H1 .

The first term in (4.35) is estimated similarly, though with a bit more subtlety.
Indeed, from Lemma 2.2, we see that∫

ScD

(Kg −K ′g)F ′∂F dv′ dv

.
∫
ScD

‖g‖L∞,3/2+η
(
〈v〉γ+2s+1 + 〈v′〉γ+2s+1

)
|v − v′|3+2s

|F ′||∂F |dv′ dv.

Since |v − v′| ≥ 1, we have that 〈v〉γ+2s+1|v − v′|−1−γ−2s . 〈v′〉(γ+2s+1)+ . Thus,∫
ScD

(Kg −K ′g)F ′∂F dv′ dv .
∫
ScD

‖g‖L∞,3/2+η 〈v′〉(γ+2s+1)+

|v − v′|2−γ
|F ′||∂F |dv′ dv

= ‖g‖L∞,3/2+η
∫
R3

〈v′〉(γ+2s+1)+ |F ′|

(∫
B1(v′)c

|∂F |
|v − v′|2−γ

dv

)
dv′

. ‖g‖L∞,3/2+η‖F‖L2,(γ+2s+1)++3/2+ε‖∂F‖L2 . ‖g‖L∞,3/2+η‖f‖L2,n+1+η‖f‖H1,n .

In the second-to-last inequality we used Cauchy-Schwarz twice and that 2−γ > 3/2.
The last equality is just by recalling the definition of F . Thus, we have established

|I22| . (‖g‖L2,3/2+ε + ‖g‖L∞,3/2+η )‖f‖L2,n+1+η‖f‖H1,n . (4.36)

Now we consider I21. First, let p = (γ + 2s+ 1)+. Then we re-write I21:

I21 =

∫
SD

(
Kg −K ′g
〈v〉p

((〈v〉pF )′ − (〈v〉pF ))∂viF

)
dv′ dv dx

+

∫
SD

(
Kg −K ′g
〈v〉p

(〈v′〉p − 〈v〉p)F ′∂F
)

dv′ dv dx

=: I211 + I212.

We first obtain a useful bound on the kernel. Let α ∈ (s, 2s) and let θ = 2s− α.
Notice that θ ∈ (0, s). Then, using Lemma 2.2 and recalling that (v, v′) ∈ SD
implies 〈v〉 ≈ 〈v′〉, we find

|Kg −K ′g| . ‖〈·〉2+p+εg‖Cαv 〈v〉
γ+2s+1|v − v′|−3−θ.
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We estimate I211 first. Let ε′ ∈ (0, s − θ). Using the bound on Kg above and
Cauchy-Schwarz, we see that

|I211| . ‖〈·〉2+p+εg‖Cαv

∫
SD

(
|(〈v〉pF )′ − (〈v〉pF )|
|v − v′|3/2+θ+ε′

)(
|∂F |〈v′〉γ+2s+1−p

|v − v′|3/2−ε′
)

dv′ dv

. ‖〈·〉2+p+εg‖Cαv

(∫
SD

|(〈v〉pF )′ − (〈v〉pF )|2

|v − v′|3+2(θ+ε′)
dv dv′

)1/2

×
(∫

SD

|∂F |2

|v − v′|3−2ε′
dv dv′

)1/2

.

We used here that γ + 2s+ 1− p ≤ 0.
The first parenthetical term, up to extending the domain of integration, equals∫

(〈v〉pF )(−∆)θ+ε
′
(〈v〉pF ) dv.

Thus, it is bounded by ‖F‖Hθ+ε′,p , which is, in turn, bounded by ‖F‖Hs,p . On the
other hand, the second parenthetical term is bounded by ‖∂F‖L2 , by integrating
first in v′ and then in v. We conclude that

|I211| . ‖〈·〉2+p+εg‖Cαv ‖f‖Hs,n+(γ+2s+1)+ ‖f‖H1,n . (4.37)

We now turn to I212. This follows by an easy application of Taylor’s theorem
(again, using that 〈v〉 ≈ 〈v′〉 on SD). This yields

|I212| . ‖〈·〉2+p+εg‖Cα‖f‖L2,n+(γ+2s)+‖f‖H1,n (4.38)

but omit the details as it is simpler than the argument for I211.
The combination of eqs. (4.30) to (4.34) and (4.36) to (4.38) concludes the proof.

4.4. Weighted L∞ bounds on Q: the proof of Proposition 3.1.(v).

Proof of Proposition 3.1.(v). First, we estimate Qns(g, f). Using Lemma 2.3, we
find immediately that

‖Qns(g, f)‖L∞,m ≤ ‖g‖L∞,3‖f‖L∞,m .

Hence, the bulk of the work is in estimating Qs(g, f).
Let Ak(v) = B|v|2k(v) \B|v|2k−1(v). Then we write

Qs(g, f) =
∑
k∈Z

∫
Ak(v)

(f(v′)− f(v))Kg(v, v
′) dv′.

Bounding the terms k ≤ −1, k ≥ 0 when |v| ≤ 10, and k ≥ 0 over the domain
Ak(v) ∩ Bc〈v〉/2 when |v| ≥ 10 is exactly as in Proposition 3.1.(i). Hence, we omit

them and consider the remaining case.
Fix any k ≥ 0. Suppose that |v| ≥ 10 and consider the integral over the set

Ak(v)∩B〈v〉/2. Since |v| ≥ 10, then 〈v〉 ≤ 10|v|/11. It follows that Ak(v)∩B〈v〉/2 = ∅
unless k = 0 or k = 1. We prove the case k = 0 but the case k = 1 follows similarly.

We claim that, for all v′ ∈ B〈v〉/2(0),

|Kg(v, v
′)| . ‖g‖L∞,m〈v〉−m+γ . (4.39)
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We postpone the proof of (4.39) and show how to conclude using it. Note that∣∣∣∣∣
∫
BR/2∩A0(v)

(f(v′)− f(v))Kg(v, v
′) dv′

∣∣∣∣∣
.
∫
BR/2∩A0(v)

(f(v′) + f(v))‖g‖L∞,m〈v〉−m+γ dv

. ‖g‖L∞,m〈v〉−m+γ .

(4.40)

Thus, the proof is completed up to establishing (4.39).
We now prove (4.39). Using (4.8), if w ∈ (v′ − v)⊥, then |v + w|2 ≈ |v|2 + |w|2.

Thus,

|Kg(v, v
′)| = 1

|v − v′|3+2s

∣∣∣ ∫
(v−v′)⊥

g(v + w)|w|γ+2s+1 dw
∣∣∣

.
1

|v − v′|3+2s
‖g‖L∞,m

∫
(v−v′)⊥

(|v|+ |w|)−m|w|γ+2s+1 dw

≈ |v|
−m+γ+2s+3

|v − v′|3+2s
‖g‖L∞,m .

Next, using that |v′| ≤ 〈v〉/2 ≤ 11|v|/20, we have |v′ − v| & |v|. Using this in the
above estimate of Kg(v, v

′) concludes the proof of (4.39) and, thus, the proposition.

Appendix A. Technical Lemma. The following inequality is used crucially above
in Step Three of Proposition 3.1.(i). When v0 = 0, it follows from a change of
variables (see [35, Lemma A.10]); however, when v0 6= 0, the geometry becomes
non-trivial and so a proof is required.

Lemma A.1. For any ρ > 0 and v0 ∈ R3 such that ρ ≥ 2|v0|, and any H : R3 →
[0,∞) such that the right-hand side is finite, we have∫

∂Bρ(0)

∫
{w∈R3:w·(z−v0)=0}

H(z + w) dw dz . ρ2

∫
Bc
ρ/2

(0)

H(w)

|w|
dw. (A.1)

Proof. First, we notice that we may assume that ρ = 1 without loss of generality
by scaling.

Next, we notice that if w · (z− v0) = 0 and |z| = 1, then z+w ∈ Bc√
3/2

. Indeed,

|z + w|2 = |z|2 + 2(z − v0) · w + 2v0 · w + |w|2 ≥ |z|2 − |v0|2 ≥ 1− (1/2)2 = 3/4.

By density and linearity, we may assume that H = 1Br(v̄) where r ∈ (0, 1/4),
and up to rotation, we can assume that v̄ + v0 lies on the positive x-axis. Also, we
may assume that |v̄| ≥ 3/5 because, if not, then the left hand side of (A.1) is, by
our computation above, zero.

The right hand side of (A.1) is easy to compute. Since |v̄| ≥ 1/2, we find∫
Bc

1/2

|H(w)|
|w|

dw =

∫
Bc

1/2
∩Br(v̄)

1

|w|
dw &

∫
Bc

1/2
∩Br(v̄)

1

|v̄|
dw ≥ 2πr3

3|v̄|
. (A.2)

The last inequality holds because Bc1/2 ∩Br(v̄) contains half of a ball of radius r.

We now consider the left hand side of (A.1). Let

A = {z ∈ ∂B1 : there exists w ∈ Br(v̄ − z) such that w · (z − v0) = 0}.
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Fix any z ∈ A. Then {w ∈ Br(v̄ − z) : w · (z − v0) = 0} is the intersection of a
plane with a ball of radius r and so can have measure at most πr2. If z /∈ A, then
{w ∈ Br(v̄ − z) : w · (z − v0) = 0} = ∅. Thus,∫

∂B1(0)

∫
{w∈R3:w·(z−v0)=0}

|H(z + w)|dw dz ≤
∫
A
πr2 dz = πr2|A|.

In view of this and (A.2), we are finished if we establish that

|A| . r

|v̄|
. (A.3)

For any z ∈ ∂B1, z ∈ A if and only if the distance between the plane Pz = {u ∈
R3 : (u − z) · (z − v0) = 0} and v̄ is less than r. Hence, using elementary linear
algebra, if z ∈ A,

r ≥
∣∣∣∣ z − v0

|z − v0|
· (v̄ − z)

∣∣∣∣ ≥ 2

3
|z · v̄− z · z− v0 · v̄+ v0 · z| =

2

3
|z · (v̄+ v0)− (1 + v0 · v̄)|.

Importantly, we have that |v̄| ≥ 3/5 and |v0| ≤ 1/2 so that |v̄+ v0| & |v̄|. Then the
above implies that ∣∣∣ cos(θ)− 1 + v0 · v̄

|v̄ + v0|

∣∣∣ ≤ Cr

|v̄|
,

where θ is the angle between z and v̄ + v0 and C is a universal constant.
Let θ ∈ [0, π] be the angle between z and v̄ + v0. Let θ−, θ+ ∈ [0, π] be defined

by

cos(θ−) = max

{
1 + v0 · v̄
|v̄ + v0|

− Cr

|v̄|
,−1

}
and cos(θ+) = min

{1 + v0 · v̄
|v̄ + v0|

+
Cr

|v̄|
, 1
}
.

It follows that θ ∈ [θ+, θ−].
The z such that θ ∈ [θ+, θ−] make up a set that is symmetric about the x-axis set

with angles between [θ+, θ−] (recall that we assumed that v̄+ v0 lie on the positive
x-axis). By elementary calculus, the area of this set is

2π

∫ θ−

θ+

sin(θ) dθ = 2π [cos(θ+)− cos(θ−)] ≤ 4πCr

|v̄|
.

We conclude that |A| . r/|v̄|; that is, (A.3) holds, and, hence, the proof is complete.
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