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Photon scattering from a cold, Gaussian atom cloud
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We study the effect of a weakly driven atomic cloud’s polarization distribution on its photon
scattering lineshape. In doing this, we find three distinct polarization regimes. First, for dilute
clouds, the polarization magnitude is relatively constant. Second, for denser clouds, polarization
builds at the front of the cloud for near-resonant light. Third, when the cloud condenses to the
point where its dimensions become comparable to the wavelength, light refocuses towards the back
of the cloud for red detuning. For these regimes, we show which ‘mean-field’ frameworks accurately
describe the differing photon scattering lineshapes. Finally, for even denser clouds, mean field models
become inaccurate and necessitate the full point dipole model that includes atom-atom correlations.

I. INTRODUCTION

Scientists study light-matter interactions with an os-
tensibly diverse set of physical models. “Microscopic”
models—that treat atoms as point dipoles—have been
integral to understanding effects such as superradiant
spontaneous emission [1–4], coherent scattered radiation
[2, 5–15], collective Lamb-shifts [16], and Anderson lo-
calization [17–19]. Within the microscopic model, some
analyses leverage other mean-field approximations such
as assuming an evenly excited phase distribution (timed-
Dicke state) [2, 6], or using clouds that are denser but
have less atoms than the represented cloud [10]. “Mean-
field” approaches—that treat illuminated matter as con-
tinuous dielectrics [20]—are also an intuitive tool for un-
derstanding many of these same effects [21–23]. While
there has been recent work towards understanding the re-
lationships between these treatments [23–25], where and
why models fail to reproduce the results of the full point
dipole system remains largely unexplored.
In this work, we compare the continuous dielectric

model with the full point dipole calculations of a frozen
atomic cloud of two-level atoms driven by a weak laser.
In order to do this, we implement a unique iterative nu-
merical technique capable of simulating over 105 atoms
without approximation. We find three distinctive regimes
of the cloud (see Fig. 1), each characterized by its polar-
ization distribution. The figure shows a continuum di-
electric calculation of the scaled |E|ρ where |E| is the
local magnitude of the electric field and ρ is the average
atom density; in the plots, y = 0 and the light is polar-
ized in the x-direction and propagates in the z-direction.
The left column is for detuning ∆ = 0 while the right col-
umn is for red detuning, ∆ = −0.4(1+ b0/4)Γ. First, for
clouds with small optical depths, OD, the atom excita-
tions are nearly evenly distributed throughout the cloud
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Figure 1. The continuummodel calculation for the y = 0 cross
section of the spatial dependence of |E|ρ which is proportional
to the polarizability. In all plots, |E| has been divided by |E|
at z → −∞ and the density is divided by the peak density;
if there were no attenuation or focusing, the |E|ρ would have
a maximum value of 1 at x = z = 0. In all calculations,
the on resonance and on axis optical depths OD = 2b0. The
spatial density is characterized by ξ = 2, Eq. (1) and N =
211. The detuning is set at ∆ = 0 for the left column and
∆ = −0.4(1 + b0/4)Γ for the right column to accentuate the
focusing effect. The electric field is scaled by the incident field
and the density is scaled by the maximum density.

for all laser detunings (see the b0 = 1/8 case); thus,
models that assume an even distribution [6] give good
agreement with the full point dipole model. When the
cloud becomes more dense, the laser intensity is substan-
tially reduced as it traverses the cloud, causing excita-
tion to be much more likely in the front of the cloud for
near-resonant light, causing non-Lorentzian lineshapes;
this is exemplified by the b0 = 2 case where ∆ = 0,
left column, has considerable attenuation while the de-
tuned case, right column, has more uniform excitation.
We find that, in this regime, our cloud is well described
by a continuous dielectric solved using the eikonal ap-
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proximation in Maxwell’s equations. When the eikonal
approximation is valid, the photon scattering is well de-
scribed by a single parameter, OD. Finally, for clouds
with dimensions comparable to a wavelength, the light
refocuses towards the back of the cloud for red detuning
[8] (see the b0 = 32 case); the red detuned light causes
larger polarization for z > 0 through the center of the
cloud whereas there is almost no polarization near the
center of the cloud for zero detuning, causing the eikonal
approximation —and the cloud’s dependence on OD—to
break down. For all of the cases in Fig. 1, the continuum
dielectric model reproduces the total photon scattering
and forward photon scattering rate from point dipole cal-
culations averaged over many spatial configurations, even
the b0 = 32 cases although accuracy requires the higher-
order paraxial approximation, which includes focusing.
At even higher densities, we find differences between the
continuum dielectric and point dipole calculatations; the
Clausius-Mossotti equations do not improve the agree-
ment between the point dipole and the continuum model
and, in fact, tend to give worse agreement at higher den-
sities, as was found in Refs. [24, 25]. This is due to the
emergence of dipole-dipole correlations between atoms,
and diffraction perpendicular to the laser.
The paper is organized as follows: Sec. II contains the

methods used in the calculations, Sec. III contains the
results of the calculations, Sec. IV contains a short dis-
cussion of conclusions, and the appendix contains infor-
mation about the numerical method used to solve for the
coupled dipoles, Sec. VA, and a discussion of the paraxial
approximation, Sec. VB.

II. METHODS

This section describes the calculation of a plane wave
of low intensity light interacting with a Gaussian cloud
of atoms. This is done using two separate formalisms.
In Sec. II A, we describe treating the atoms as stationary
and interacting through the point dipole Green’s function
[8–11, 24, 26–28]. In Sec. II B, we treat the cloud as a
continuum dielectric, χe, with a Gaussian spatial depen-
dence. For all calculations we assume that the direction
of propagation is z and the direction of polarization is x:
~k = kêz and êlas = êx. All of the calculations assume
J = 0 to J = 1 transitions. Finally, this section assumes
that the change in k over a resonance line width is much
smaller than k, which is an accurate approximation for
optical transitions.
In our calculations, the atoms were given random po-

sitions following a Gaussian density distribution:

ρ(x, y, z) =
N

(2π)3/2r3f
e−[(x2+y2)ξ+z2/ξ2]/(2r2f ) (1)

where N is the number of atoms, rf is the geomet-
ric mean of the x, y, z standard deviations of the atom
cloud, ξ is a shape parameter, and the average density

is ρ̄ = N/([4π]3/2r3f ). The ξ equals 1 for a spherical dis-
tribution and is greater than 1 for a cloud elongated in
the direction of propagation. The cooperativity parame-
ter b0 = 3N/(r2fk

2) is related to the on-resonance optical
depth, OD, through the center of the cloud: OD = ξb0.

A. Light scattering from atoms

In the weak field limit, the effect of a monochromatic

beam of wave number, ~k, and polarization, êlas, on a

cloud of atoms can be determined by the a
(α)
j ≡ 〈σ(α)

j 〉,
i.e. the expectation value of the lowering operator for
component j of the α-th atom [5, 14, 29]. In this limit,
the equations of motion for the amplitude of oscillation
are

da
(α)
j

dt
=

(

i∆− Γ

2

)

a
(α)
j − i

ΩR

2
(êlas · êj)ei~k·~R

(α)

−
∑

α′ 6=α

∑

j′

gj,j′(~R
(α,α′))a

(α′)
j′ (2)

where α represents an atom index, the position of atom α

is ~R(α), ~R(α,α′) = ~R(α) − ~R(α′), and j, j′ is indicating the
component. Here, ΩR is the transition Rabi frequency,
∆ is the detuning of the laser from the transition, and
Γ is the decay rate of the excited state. The êj is the
unit vector in the j-direction. The point dipole Green’s
function g is given by

gj,j′(~R) =
Γ

2

[

δj,j′h
(1)
0 (s) +

3R̂jR̂j′ − δj,j′

2
h
(1)
2 (s)

]

(3)

where h
(1)
ℓ (s) = jℓ(s) + inℓ(s) are spherical Hankel func-

tions of the first kind and s = k|~R| [20]. We solve for
the steady state ~a(α) by setting the time dependence of
Eq. (2) equal to 0 and solving the resulting matrix equa-
tion. When the number of atoms, N , was small, we nu-
merically solved the linear equations using standard La-
pack programs that temporally scale ∝ N3. When N
was larger than ∼ 103, however, we solved for ~a using
an efficient, ∝ N2, iterative method that we developed.
This numerical technique enabled us to simulate clouds
with more than 2×105 atoms; the technique is described
in the appendix, Sec. VA. For these calculations we used
the two state approximation where only the êlas compo-
nent of ~a is nonzero. We compared this to the case where
all three components of ~a are allowed to be non-zero and
found only small changes.

The angular differential photon scattering rate into k̂f ,
normalized by Ω2

R/Γ, is given by

dγ

dΩ
=

Γ2

2πΩ2
RN

(

|~P (~kf )|2 − |k̂f · ~P (~kf )|2
)

(4)

where the Ω is the solid angle, and

~P (~kf ) ≡
∑

α

~a(α)e−i~kf ·~R
(α)

. (5)
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Finally, the total scattering rate per atom, normalized by
Ω2

R/Γ, is equal to

γ =

∫

dγ

dΩ
dΩ = − 2Γ

Ω2
RN

ℜ[iΩR

2
êlas · ~P (~k)]. (6)

where ℜ[...] means to take the real component. The di-
mensionless form of the photon scattering rate, γ, above
is useful since the calculations are far from saturation
and, thus, independent of ΩR up to a scaling factor.

B. Continuum model of photon scattering

To compare to the light scattering from stationary
atoms, we solved Maxwell’s equations with a continuum
electric susceptibility, χe, giving the equations

∇2 ~E − ~∇(~∇ · ~E) + k2 ~E = −k2χex̂(x̂ · ~E) (7)

where the x̂(x̂ · ~E) on the right hand side accounts for us-
ing the two state approximation for the transition instead
of all three components of J = 1.
For a J = 0 → 1 transition, the low density form of

the electric susceptibility is[30]

χ(ld)
e (∆) =

χ
(ld)
e (0)

1− (2i∆/Γ)
=

iρσ/k

1− (2i∆/Γ)
(8)

where ∆ is the laser detuning, σ is the cross section for
scattering photons out of the original direction, and ρ
is the density of atoms in Eq. (1). For a J = 0 → 1
transition, the cross section is σ = 6π/k2. The electric
susceptibility for a perfect, homogeneous, and isotropic
gas is given by the Clausius-Mossotti (or Lorentz-Lorenz)
form[20]

χe

χe + 3
=

1

3
χ(ld)
e ⇒ χe(∆) =

iρσ/k

1− (2i∆′/Γ)
(9)

where ∆′ = ∆+ (Γρσ/[6k]). This gives a density depen-
dent shift of the resonance of −πΓρ/k3.
In the paraxial approximation [31], the scattered wave

has a slow dependence in the direction transverse to ~k.

Assuming ~k = kêz and the polarization of the incoming
light to be êx, the electric field is approximated by

~E(x, y, z) ≃ êxe
ikzE0ψx(x, y, z) (10)

where, to lowest order,

i
∂ψx

∂z
= − 1

2k
∇2

Tψx − k

2
χeψx (11)

with ψx(x, y, z → −∞) = 1, ∇2
T = ∂2/∂x2 + ∂2/∂y2,

and there is spatial dependence to χe from the density,
Eq. (1). Higher order terms are discussed in the ap-
pendix, Sec. VB. Except for Fig. 9, the first and second
order corrections did not significantly change the results,

implying the paraxial approximation is accurate for the
case discussed in Sec. III C.
We also considered the eikonal approximation, which

simplifies Eq. (11) as

i
∂ψx

∂z
= −k

2
χeψx ⇒ ψx = ei

k
2

∫
z

−∞
χe(x,y,z

′)dz′

(12)

which leads to an analytic ψx. As a result, the detuning
dependence of the forward and total photon scattering is
fully described by OD for systems where the eikonal ap-
proximation is accurate. This means that—in this regime
—clouds with larger N and smaller ρ may be accurately
described by clouds with smaller N and larger ρ.
Using Eq. (10), the amplitude of oscillation for the α-

th atom is approximately

~a(α) = êx
ΩR

2∆+ iΓ
eikZ

(α)

ψx(~R
(α)). (13)

The sum in Eq. (5) is approximated as an integral

~P (~kf ) ≃
∫

~a(~r)ρ(~r)d3r

= êx
ΩR

2∆+ iΓ

∫

ρ(~r)ei(
~k−~kf )·~rψx(~r)d

3r. (14)

This expression can be used in Eq. (4) to obtain the dif-
ferential scattering rate in the forward direction, or in
Eq. (6) to obtain the total scattering rate. However, it
can not be used for angles substantially different from the
forward direction because of the paraxial approximation
and because it does not account for the random scat-
tering from individual atoms, which dominates at larger
angles.
The maximum χe is when ∆′ = 0 and ~r = 0 which

leads to χe,max = ib
3/2
0 /

√
6πN . This can be used to

estimate how well the low density limit holds everywhere
in the gas. However, this estimate can be misleading
because the light does not reach the center of the cloud
when b0 is large and diffraction can be ignored. For light
going on axis, the intensity is decreased by the factor
of exp(−ξb0/2) when it reaches the center of the cloud
for the spatially large clouds. However, atom clouds with
smallerN are also spatially small and diffraction becomes
increasingly important, see the b0 = 32 case of Fig. 1.
We performed calculations for b0 = 8, 16, 24, 32, and 40
although only results for 8 and 40 are given below. The
b0 ≥ 24 cases have negligible intensity at the center of
the cloud if diffraction effects can be ignored. However,
for some of our parameters, diffraction is important and
light has non-negligible intensity at the cloud center for
some of the large b0 cases.

III. RESULTS

We initially present results for the dilute gas limit in
order to illustrate the effects of absorption and focusing
by the cloud; these calculations require larger N because
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Figure 2. The total scattering rate per atom, Eq. (4), versus
detuning for ξ = 1 and for different cooperativity parameters,
b0, calculated using Eq. (2). Each plot shows the results for
two different numbers of atoms: solid (red) line N = 211 and
long dashed (blue) line N = 217. For both plots, the different
calculations are nearly the same, so that the different lines
are nearly indistinguishable. Plots for b0 = 16, 24 and 32 and
for N > 211 showed similar level of agreement.

χe,max is inversely proportional to
√
N for a fixed b0

and ξ, which necessitates our iterative numerical method
(see appendix, Sec. VA). We find that, in this dilute
regime, the continuum model gives excellent agreement
with the point dipole model. We then show that, for
dense clouds, calculations based on classical electrody-
namics treatments break down. This indicates the impor-
tance of correlations between neighboring atoms induced
by dipole-dipole interactions.

A. ξ = 1, dilute gas limit

In this and the next section, all of the calculations of
the paraxial approximation of the continuum use the low
density limit of the electric susceptibility, Eq. (8). This

choice is explained in Sec. III C.
The first results are for the total scattering per atom

for different number of atoms for b0 = 8 and 40 and
ξ = 1. In Ref. [8], it was shown that the width of the
resonance was Γ′ = (1 + b0ξ/8)Γ so these calculations
should give resonances from 2× to 6× that of the single
atom resonance when ξ = 1 and from 3× to 11× larger
when ξ = 2. Calculations were also done for b0 = 16,
24 and 32 but are not reported because their properties
can be inferred from the calculations described below.
Results are reported for 211 = 2048 and 217 = 131, 072
atoms. The calculations were averaged over many runs
until a total of 219 atoms were included in the calculation.
To give some rough sizes, the peak density times λ3

gives the peak number inside a cubic wavelength. This
is (b02π/3)

3/2/
√
N . For b0 = 40 and N = 217, there are

∼ 2 atoms per cubic wavelength at the center of the cloud
while N = 211 gives 17 atoms per cubic wavelength. If
the more relevant quantity is the density times 1/k3, then

the max number is (b0/[6π])
3/2/

√
N . By this quantity,

all calculations in Fig. 2 have much less than 1 atom per
1/k3 (≃ 0.07 atoms for b0 = 40 and N = 211).
Figure 2 shows plots of the total scattering rate per

atom versus the detuning for 2 different cooperativity
parameters: b0 = 8 and 40. In each plot, there are two
calculations for different values of N . The N values are
chosen to be N = 211 and 217. Despite the drastically
different parameters for each of the clouds, the overall
lineshape depends only on the value of OD. Although N
varies by a factor of 64, the total scattering rate per atom
is essentially the same. This is because for these parame-
ters, the eikonal approximation, Eq. (12), gives very good
agreement with the calculations from randomly placed
atoms. There are two interesting trends to note. The
first is that the resonance line width is increasing with
b0. This effect was described in Refs. [2, 7, 8, 10]. The
second is that the line shape is changing with increasing
b0. For b0 = 8, the line is approximated by a Lorentzian.
However, for b0 = 40, the central part of the line is nar-
rower than for a Lorentzian. Also, the region near ∆ = 0
appears to have a dependence like |∆|, instead of ∆2, for
b0 = 40. Calculations were performed for b0 = 16, 24,
and 32 with similar levels of agreement.
Figure 3 shows a comparison of 3 different calculations

of the total photon scattering rate, γ, versus detuning
for 2 different coherence parameters: b0 = 8 and 40. The
solid (red) line is using the full calculation Eq. (2), with
N = 217 atoms in each run and was averaged until 219

atoms were included. The long dash (blue) line is from
the paraxial approximation in Eq. (13) substituted into

Eq. (14). The resulting ~P (~k) was then used in Eq. (6).
There were no adjustable parameters. The model calcu-
lation accurately reproduces the full calculation. The
dashed (orange) line is a Lorentzian using the width,
Γ′ = (1 + b0ξ/8)Γ, with the height of the Lorentzian
fit to give agreement in the wings. Similar results were
found for b0 = 16, 24, and 32.
Figure 3 raises an interesting point. References [7, 8,
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Figure 3. The total scattering rate per atom, Eq. (4), versus
detuning for ξ = 1 and for different cooperativity parameters,
b0. Each plot shows the results for the full calculation, Eq. (2),
with N = 217 solid (red) line, the model calculation, Eq. (13),
long dash (blue) line, and for a Lorentzian proportional to
1/(1 + (2∆/Γ′)2), dashed (orange) line. For all plots, the
model and the full calculations are in such good agreement
that the different lines are indistinguishable. Plots for b0 =
16, 24, and 32 showed similar level of agreement.

10] derived the broader line width Lorentzian (dashed
orange line) by solving for the superradiant time de-
pendence uniformly excited across the Gaussian distri-
bution of atoms (timed-Dicke state). However, neither
the paraxial nor eikonal approximation of a continuum
dielectric use this concept. The width in Eq. (13) is
the single atom width Γ. The larger width emerging
from Eq. (14) is solely due to the interplay of the non-
uniform light intensity across the atom cloud as well as
the phase change in Eq. (10). Figure 3 also shows that
for larger values of b0 —when the polarization ceases to
significantly penetrate the full cloud —point dipole and
continuous dielectric models show a narrowing of the line-
shape near resonance; the timed-Dicke state models do
not show this since the uniformly polarized state ansatz

 0.0
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Figure 4. The forward scattering rate (see text for descrip-
tion) versus detuning for different cooperativity parameters,
b0. Each plot shows the results for the full calculation with
N = 217 solid (red) line and the model calculation long dash
(blue) line. For all plots, the different calculations are in such
good agreement that the different lines are indistinguishable.
For the larger value of b0 shown here, the scattered lineshape
plateaus near-resonance, due to the fact that light does not
penetrate the cloud in this regime.

becomes insufficient.

The calculations allow us to untangle the coherent
scattering of photons in the forward direction and the
random scattering into large angles. To obtain the
forward scattering rate, we integrated Eq. (4) over φ
from 0 to 2π and integrated θ from 0 to cos(θmax) =
1 − 13.8/(k2r2f ). The θmax was chosen so that forward
scattering has decreased by at least two orders of mag-
nitude from its maximum value. The result is shown in
Fig. 4. There is a plateau in the forward scattering rate
for a range of detuning around ∆ = 0. The atomic cal-
culations of the forward scattering rate are, again, well
reproduced by the paraxial approximation of the contin-
uum distribution for all of the optical depths that were
calculated. The eikonal approximation also agreed well
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Figure 5. The angular scattering rate per atom, Eq. (4) for
b0 = 40 and N = 217. There are calculations for 3 detunings:
0, 3/2, and 3Γ. The solid (red) and dotted (green) lines are
the atom and paraxial calculation for ∆ = 0. The long dash
(blue) and dash-dot (purple) lines are the atom and paraxial
calculation for ∆ = 3Γ/2. The dashed (orange) and dash-
dot-dot (brown) lines are the atom and paraxial calculation
for ∆ = 3Γ.

with the atom calculation for the forward scattered pho-
tons except for at large b0 and small N .
Figure 5 shows the full atom calculations as well as the

paraxial approximation for the angular scattering rate
per atom, Eq. (4) for b0 = 40 and N = 217. This shows
that coherently scattered light can be reproduced by the
continuum dielectric model. The figure shows results
from three different detunings. The ∆ = 0 case shows
strong diffraction minima due to the strong scattering of
light in the center of the cloud; these minima are too
deep for the continuum calculation because it does not
include the random scattering from pointlike atoms. At
large detuning, the absorption is less, so the scattered
light more closely follows a Gaussian form.

B. ξ = 2, dilute gas limit

When the Gaussian cloud is elongated in the laser
propagation direction, there is more absorption and fo-
cusing of the laser beam. For ξ = 2, the total scattering
versus detuning for N = 211, 213, 215, and 217 are shown
in Fig. 6. Unlike Fig. 2, the calculations with different
numbers of atoms give different results for b0 ≥ 24 indi-
cating the breakdown of the eikonal approximation. In
all of the calculations, the scattering rates converge to
a symmetric form as N → ∞, but, for smaller N , the
scattering rate is larger for ∆ < 0. In fact, there is a
significant hump for b0 = 40 at ∆ < 0 for the N = 211

calculation, solid (red) line. These new parametrical de-
pendencies arise due to focusing of the light at ∆ < 0,
which correlates with a breakdown of the eikonal approx-
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Figure 6. The total scattering rate per atom, Eq. (4), versus
detuning; same as Fig. 2 except for ξ = 2. Each plot shows
the results for four different numbers of atoms: solid (red)
line N = 211, dashed (orange) line is for N = 213, the dotted
(green) line is for N = 215, and long dashed (blue) line N =
217.

imation. The focusing bends the light skirting the edge
of the cloud so that it interacts more strongly with atoms
to the back of the cloud than would happen without fo-
cusing: since more light goes through the cloud, there is
more scattering. The focusing is also the cause of the
more extreme case of the effect seen in Ref. [8] where
atoms at the back of the cloud with ξ ≫ 1 were more
strongly excited than atoms at the front of the cloud.
The effect is larger at smaller N because the cloud is
smaller and denser which leads to more focusing. Even
more than ξ = 1, the large b0 scattering rate has a de-
pendence more similar to |∆| than to ∆2.
These distributions are well reproduced by the con-

tinuum dielectric model that uses the paraxial approx-
imation. Figure 7 shows the comparison between the
atomic and the continuum model calculations of the to-
tal scattering rate for N = 211 and 217; the continuum
model calculations are nearly indistinguishable from the
atomic calculations. Note that the hump at negative ∆
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Figure 7. The total scattering rate per atom, Eq. (4), versus
detuning; same as Fig. 3 but for ξ = 2. Each plot shows
the results for the full calculation, Eq. (2), (N = 217 solid
(red) line and N = 211 dotted (green) line), for the model
calculation, Eq. (13), (N = 217 long dash (blue) line and N =
211 dash-dot (purple) line), and for a Lorentzian proportional
to 1/(1 + (2∆/Γ′)2), dashed (orange) line. Note there are 5
curves plotted.

for N = 211 is well reproduced.
The forward scattering rate for ξ = 2, b0 = 40, and

N = 217 and 211 are shown in Fig. 8. This has a similar
form to the spherical cloud although the plateau starts
at smaller b0 (not shown). The results from the paraxial
approximation to the continuum model are also shown.
The N = 217 results are in excellent agreement but there
is a noticeable difference for N = 211 and small |∆|.
The difference arises when the light diffracts back into
the atom cloud. We found that including the next order
term did not improve the paraxial approximation which
suggests that this difference is due to a breakdown of
the continuum dielectric model for light propagation at
higher density. The possibility that this difference arises
because we use the low density form of the susceptibility,
instead of Eq. (9), is addressed in the next section.

C. Denser gases

Reference [24] showed that the Clausius-Mossotti (or
Lorentz-Lorenz) form of the susceptibility, Eq. (9), does
not describe the model of light scattering from station-
ary atoms, Eq. (2). In all of the calculations above, the
paraxial approximation of the continuum model used the
low density form for the susceptibility, Eq. (8). This did
not make much difference in the calculations because the
maximum of χ

(ld)
e was not very large. Nevertheless, we

also found that the calculations using χ
(ld)
e were more

accurate than using χe from Eq. (9) for smaller N .
Figure 9 shows a comparison between the atom calcu-

lation (solid (red) line) and the paraxial equation using

 0.00
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Figure 8. The forward scattering rate (see text for descrip-
tion) versus detuning; same as Fig. 4 but for ξ = 2. Each
plot shows the results for the full calculation (N = 217 solid
(red) line and N = 211 dotted (green) line) and the contin-
uum model calculation (N = 217 long dash (blue) line and
N = 211 dash-dot (purple) line). The distributions for other
b0 have better agreement.

the low density electric susceptibility (long dashed (blue)
line), Eq. (8), and the the Clausius-Mossotti susceptibil-
ity (dashed (orange) line), Eq. (9). The continuum calcu-
lation using the low density electric susceptibility seems
to overestimate the effect from focusing for ∆ ∼ −3Γ
whereas the Clausius-Mossotti susceptibility is not accu-
rate throughout the range |∆| < 3Γ. We found that the
second order correction to the paraxial approximation
did not explain the difference for N = 29; although the
correction to the paraxial approximation was not negligi-
ble for the n = 27 calculation, it could not explain the dif-
ference with the atom calculation. Overall, the low den-
sity form of the susceptibility gives a more accurate rep-
resentation of the total scattering versus detuning. The
Clausius-Mossotti susceptibility gives a blue shift to the
line whereas the low density form gives a slight red shift
due to focusing for ∆ < 0. The size of the effect is smaller
than Ref. [24] because they used a much higher density
and they used a uniform density whereas a Gaussian den-
sity was used in this paper. The calculations in Ref. [24]
were for ρ/k3 = 2 whereas Fig. 9 has ρmax/k

3 = 0.27 for
N = 27 and 0.14 for N = 29. These results show that the
Clausius-Mossotti (or Lorentz-Lorenz) electric suscepti-
bility does not reproduce the stationary atom calculation
even in cases where ρ/k3 < 1.

IV. CONCLUSIONS

We have performed calculations of light scattering from
a weakly driven Gaussian cloud of stationary atoms. We
showed nontrivial effects on the scattering when moving
from small to large optical depths. We also demonstrated
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Figure 9. The total scattering rate per atom, Eq. (4), versus
detuning for ξ = 1; same as Fig. 3 but for N = 29 and 27.
Each plot shows the results for the full calculation, Eq. (2),
solid (red) line, the continuum model calculation, Eq. (13),

using χ
(ld)
e long dash (blue) line, and the continuum model

using the Claussius-Mossotti (or Lorentz-Lorenz) electric sus-
ceptibility, Eq. (9), dashed (orange) line.

a method that can solve for light scattering from many
more atoms than is typical in current calculations. Thus,
simulations can approach the number of atoms in exper-
iments; results for up to N = 217 were presented.

We showed that the photon scattering rate versus de-
tuning is quite different from a Lorentzian at larger op-
tical depths. This is because when poralization begins
to build in the front of the cloud, the on-resonant for-
ward scattered light does not propagate through and
plateaus. For larger numbers of atoms, the total and
forward scattering rates were quantitatively reproduced
by a continuum model that used the low density expres-
sion for the electric susceptibility. Even though it only
contains linear absorption, the continuum dielectric cal-
culation gave better agreement with the full point dipole
calculations than models that use the single photon su-
perradiance framework. The full point dipole results for

smaller atom number differ somewhat from the contin-
uum model. Interestingly, worse results were obtained
when using the Clausius-Mossotti (or Lorentz-Lorenz)
form for the electric susceptibility, in agreement with the
findings in Ref. [24].
We thank J. Ruostekoski for interesting discussions

about this concept and for suggesting the paraxial ap-
proximation as a method for solving the continuum
model. FR was supported by the National Science Foun-
dation under Grant No. 1804026-PHY. Part of this work
was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore Laboratory under
Contract DE-AC52-07NA27344. LLNL-JRNL-786838-
DRAFT

V. APPENDIX

Below are more detailed description of numerical meth-
ods used in the calculations above.

A. Iterative method

The steady state solution of Eq. (2) involves the solu-
tion of a linear equation. For most of the calculations in
this paper, we restricted the oscillators to only be in the
x-direction which means only the terms with j = x are
included. The discussion in this section will focus on this
case for simplicity but it should be clear how to general-
ize to include all polarizations. For N atoms, this leads
to an N ×N matrix equation of the form:

∑

b

Ab′bab = sb′ (15)

For small number of atoms (less than ∼ 1000), we used
Lapack subroutines to directly solve for ab. For larger
number of atoms, we used an iterative method based on
successive over-relaxation.
The method proceeded in five stages. First, we ordered

the atoms in the direction of laser propagation; for the
~k = kêz used above, the atoms are ordered from smallest
z to largest z; the ab are updated in this order so that the
atom with most negative z is updated first and the atom
with most positive z is updated last. Next, for each atom
β, we found the nearestM − 1 atoms b′; these atoms will
have the largest g (hence, the largest Ab′β). The third
step constructs an M ×M linear problem using the ab
from the previous iteration. The smaller linear system is
defined by

Ãb′b = Ab′b for b′, b ∈M

s̃b′ = sb′ −
∑

b/∈M

Ab′bab for b′ ∈M (16)

We next solve the much smaller linear equation
∑

b

Ãb′bãb = s̃b′ (17)
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using standard Lapack subroutines and update only the
atom β: aβ = (aβ + ãβ)/2.
We order the atoms from small to large z because

atoms with smaller z affect those at larger z more
strongly than vice versa. By taking them in order, the
convergence speed was improved. More importantly, by
directly solving Eq. (17), we are able to account for the
large coupling between close pairs (or triples or quadru-
ples etc.) of atoms.
We were able to converge all of the calculations with

more than 210 atoms using this method. Typically, we
used 9 iterations before convergence. Most of the calcula-
tions converged withM−1 = 7 closest atoms. The calcu-
lations with the largest b0 and smallest N sometimes did
not converge for M = 8 but did converge for M = 16.
The calculation speed improves with smaller M so we
first did all calculations with M = 8 and only repeated
the failed ones withM = 16. The failed calculations were
easy to determine because they had discontinuous jumps
in scattering rate versus detuning.
This algorithm was much faster than directly solving

Eq. (15). This also solved the problem of memory (Ab′b

has N2 complex numbers); when N was too large for the
memory of our computer, we could compute the Ab′b on
the fly instead of storing them in an array. Although not
reported here, we did calculations with N = 218 atoms
and one test calculation with N = 219. The calculation
with 219 atoms would require an A with ∼ 1/4 trillion
elements (i.e. over a terabyte of RAM) if done by direct
solution. Such large N can be reached because the den-
sity decreases with N which allows a smaller value of M
to be used. The algorithm can be parallelized; most of
the calculations were done on a 4 processor workstation,
but the largest calculations were done on a 20 processor
workstation.

B. Paraxial approximation

To derive the paraxial approximation as used in this
paper, start from the expression for the exact Maxwell
equation, Eq. (7), and substitute the form

~E = E0e
ikz ~ψ ≡ E0e

ikz(~ψT + ẑψz) (18)

where ~aT ≡ axx̂+ ayŷ for any vector ~aT . This gives

i
∂ ~ψT

∂z
+

1

2k
∇2

T
~ψT +

k

2
χ
e
~ψT

= − 1

2k

∂2 ~ψT

∂z2
+

1

2k
~∇T

(

~∇T · ~ψT + ikψz +
∂ψz

∂z

)

(19)

and

ψz =
i

k
~∇T · ~ψT − 1

k2
∇2

Tψz +
1

k2
∂

∂z
~∇T · ~ψT (20)

where χ
e
~ψT ≡ χeψxx̂. These equations are exact but are

still difficult to solve. To simplify the equations below we

define the operator B as

B ~ψT ≡ i
∂ ~ψT

∂z
+

1

2k
∇2

T
~ψT +

k

2
χ
e
~ψT (21)

We modify Eq. (19) by substituting Eq. (20) for ψz to
give

1

k
B ~ψT = − 1

2k2
∂2 ~ψT

∂z2

+
1

2k2
~∇T

(

− i

k
∇2

Tψz +
i

k

∂

∂z
~∇T · ~ψT +

∂ψz

∂z

)

(22)

To obtain the paraxial approximation, one scales x, y
by a width w and z by a length L ≡ w/f (i.e. x = wx̄,
y = wȳ, and z = Lz̄ with the barred coordinates being
dimensionless). The ratio w/L = f is set equal to f ≡
1/(kw). For the paraxial approximation, f should be
small which means the distance scale of variations in x, y
should be large compared to 1/k and the distance scale of
variations in z should be large compared to that in x, y.
Substituting this scaling into the differential equations
suggests that the three terms on the right hand side of
Eq. (20) are of order f1, f2, and f3 respectively. The
terms on the left hand side of Eq. (22) are of order f0

or f2 and on the right hand side are of order f3 if they

involve ψz and f4 if they involve ~ψT .
The functions are written as a series

~ψT = ~ψ
(0)
T + ~ψ

(2)
T + ~ψ

(4)
T + ...

ψz = ψ(1)
z + ψ(3)

z + ψ(5)
z + ... (23)

To obtain the equations for the different terms, one
groups the same orders together. For example, since the
first term on the right hand side of Eq. (20) is of order

f1, a term like (i/k)~∇T · ~ψ(4)
T is of order 5 since the ~ψT

is order 4 and the operation is of order 1. Equation (20)
is transformed to

ψ(n)
z =

i

k
~∇T · ~ψ(n−1)

T − 1

k2
∇2

Tψ
(n−2)
z +

1

k2
∂

∂z
~∇T · ~ψ(n−3)

T

(24)
when grouping terms of order n. Defining the order of
the (1/k)B operator is somewhat problematic due to the
χe term. We take it to be an order 2 operator, consis-
tent with the two differential terms. Equation (22) is
transformed to

1

k
B ~ψ(n)

T =− 1

2k2
∂2 ~ψ

(n−2)
T

∂z2
+

1

2k2
~∇T (−

i

k
∇2

Tψ
(n−1)
z

+
i

k

∂

∂z
~∇T · ~ψ(n−2)

T +
∂ψ

(n−1)
z

∂z
) (25)

when grouping terms of order n + 2. If n = 0, 1, or 2,
the functions on the right hand side can have negative su-
perscript. The rule for evaluating these are: any function
with a negative superscript is zero everywhere.
The case discussed in the paper has the atoms only

being polarizable in the x-direction. This means all of
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the quantities of interest can be calculated from the ψx. Thus, through order 2, the equations to be solved are

Bx̂ψ(0)
x = 0 ψ(0)

y = 0

ψ(1)
z =

i

k

∂ψ
(0)
x

∂x

Bx̂ψ(2)
x = − 1

2k

(

∂2ψ
(0)
x

∂z2
+
∂2[χeψ

(0)
x ]

∂x2

)

x̂ (26)

with the ψ
(2)
x set to 0 as z → −∞. Note the ψ

(2)
y is

nonzero, but it is not used in our calculations.
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