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A method for calculating the properties of Rydberg states and Rydberg-Rydberg interaction
between two 87Sr atoms is described. The method is based on a multichannel quantum defect
theory (MQDT) description of the Rydberg states that accounts for the hyperfine splitting of the
87Sr+ ground state. Results are given for the scalar and tensor polarizabilities and the eigenvalues
of the C6 matrix for the 5sns FT = 9/2 series. These results illustrate the new features that arise
due to the hyperfine splitting of the thresholds. In particular, there should be several couple Förster
resonances above n = 50 unlike the case of 88Sr which has none.

I. INTRODUCTION

The interaction between two Rydberg atoms provides
the possibility for entanglement between the electronic
states of atoms separated by more than a µm. This
possibility arises due to the extreme character of Ryd-
berg states[1]. There is interest[2, 3] in the alkaline earth
atoms due to the long lifetime of some excited states as
well as the flexibility due to the extra electron. For exam-
ple, the inner valence electron could be used to match po-
larizability of the ground and Rydberg state[4–6] which
would allow for magic trapping of Rydberg atoms. As an-
other example, the inner electron can be used to probe
the status of the Rydberg electron[7, 8].

The purpose of this paper is to elucidate a theory
capable of accurate calculation of properties of Ryd-
berg atoms for odd isotopes of Sr. The calculation of
Rydberg-Rydberg interactions has progressed from alkali
atoms[9, 10] where the core electrons are 1S to even iso-
topes of alkaline-earth atoms[11, 12] where the core has
angular momentum 1/2 but not hyperfine splitting to the
most general case where the core has angular momentum
and hyperfine splitting[13]. The odd isotopes of the al-
kaline earth atoms have nuclear spin I and the positive
ions have ground states F = I±1/2 with non-zero hyper-
fine splitting. The results below for 87Sr were obtained
by applying the theory in Ref. [13]. In some cases, we
applied the theory in Ref. [11] for I = 0 to understand
the role of the hyperfine splitting.

Unlike the alkali atoms, several of the Rydberg series
of Sr have a complicated dependence on n, even without
the hyperfine splitting, due to perturbers attached to the
higher lying 4d and 5p thresholds[12, 14–23]. Because
we are interested in the high-n Rydberg states, much of
the complications of the two electron states can be sub-
sumed within the machinery of multichannel quantum
defect theory (MQDT)[20]. The main parameters needed
in the calculations are the energy dependent quantum
defects for the different channels. We will use the compi-
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lation of quantum defects in Ref. [11] and the recent mea-
surements in Refs. [22, 23] in all of the calculations. The
recent measurements in Refs. [22, 23] have improved the
quantum defects for some 5sns and 5snd series at higher
n but more accurate values are needed for other series.
The biggest need is for measurements of the 5snp 1,3P
quantum defects at higher n because this would allow ac-
curate calculations of the polarizability and C6 matrices
for the 1,3S series. Because we use ideas from hyperfine
frame transformation[13, 16–18, 24], the quantum defects
from the even isotopes of Sr are a good approximation in
the calculations.

The paper is organized as follows. Section II gives a
description of the method used in the calculations. Sec-
tion III gives results for calculations of 87Sr including en-
ergy levels compared to recent measurements[22], scalar
and tensor polarizability, and the eigenvalues of the C6

matrix. Section IV contains brief conclusions. The units
in the different calculations are specified.

II. METHODS

In this section, the method for performing MQDT
calculations[20] of Rydberg-Rydberg interactions is de-
scribed. The method is similar to that in Ref. [13] but
with a different coupling scheme for the channel func-
tions. The coupling scheme for 87Sr is chosen to take
advantage of the angular momenta for this atom: there
are simplifications for 87Sr because the core electron has
total orbital angular momentum Lc = 0. The change in
channel coupling leads to different details for the MQDT
equations compared to those in Ref. [13].

The MQDT treatment of the bound states attached
to the hyperfine split thresholds is also similar in style
to that in Refs. [17, 18, 24] but with a different angu-
lar momentum coupling. Given the quantum defects in
Table I and the hyperfine splitting, they would obtain
the same bound state energies in Tables II and III. The
main difference from Refs. [17, 18, 24] is that they did
not give a method for calculating the polarizability and
C6 matrices.
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A. 87Sr properties

In the calculations below, we use properties of 87Sr to
calculate several Rydberg state energies, polarizabilities,
and C6-matrices. The main properties used are the mass
of the 87Sr+, the hyperfine splitting of the 87Sr+ ground
state, and the quantum defects of the different series.

The hyperfine interaction of the ground state was taken
to be

Vhf = a5s
~I · ~s/~ (1)

with a5s = −2π 1.000473673 GHz[25], I = 9/2, and
s = 1/2. The 87Sr+ ground state has F = 5 and F = 4
with a splitting ε5 − ε4 = 5a5s~. The negative value of
a5s means the ground hyperfine state has F = 5 and is
approximately 5 GHz below the F = 4 hyperfine state.
The weighted threshold is 45 932.1956 cm1 [22].

The mass of 87Sr+ was taken from Ref. [26] to be
M87+ = 86.90887750u − me with u = 1.66053906660 ×
10−27 kg and me = 9.1093837015× 10−31 kg taken from
the CODATA values. The Rydberg constant, R87, was
taken to be scaled from the CODATA R∞ value as R87 =
109 737.315 681 60 cm−1 ×M87+/(M87+ +me).

The MQDT formulas below use the quantum defects
of the different LSJ channels as energy dependent quan-
tities. This is somewhat different than the definition
used in experimental fits which have the quantum de-
fects taken to be functions of n, the principal quantum
number. The quantum defect as a function of n is usually
written as

µ(n) = µ0 +
µ2

(n− µ0)2
+

µ4

(n− µ0)4
(2)

where the µa are constants. MQDT treats these parame-
ters as existing as functions of energy with boundary con-
ditions at r →∞ determining which energies are allowed.
To motivate the conversion, we note that the energy of a
Rydberg state n is written as εn = εthr−R87/[n−µ(n)]2

with ε in units of cm−1 and εthr the threshold energy.
We will take the quantum defects as a function of energy
to be

µ(ε) = µ0 + η(ε)µ2 + η2(ε)µ4 (3)

where η(ε) ≡ (εthr− ε)/R87. Since these two expressions
for µ are not equivalent, it seems that the µa need to be
converted between the two expressions. However, one can
show that 1/[n−µ0]2 = 1/[n−µ(n)]2 plus a term of order
1/(n − µ0)5 which means the µa are the same through
the orders shown. For calculations requiring the highest
accuracy, it may be necessary to refit the values of µa in
Eq. (3) but that level of accuracy is not appropriate in
the calculations below considering the experimental un-
certainty in the µa. To give a numerical example, the
change in energy of the 5s50d 3D3 state, which has the
largest µ2 and µ4, has magnitude 2.3× 10−5 cm−1 when
using Eq. (2) versus Eq. (3). Compare this to the uncer-
tainty in the measured energy which was 2.2×10−3 cm−1

[22].

The values for the different quantum defects are given
in Table I. Note, there are 3 series that have two values
listed: 3S1, 3D1, and 3D2. The values in Ref. [22] were
obtained from fits to 87Sr Rydberg series while those from
Ref. [23] were obtained from fits to 88Sr Rydberg series.
We compare the results from calculations using the quan-
tum defects of Ref. [22] or [23] below. All of the other
values were taken from the compilation of Ref. [11] which
fit the energies found in Refs. [15, 27–29]; see Ref. [11]
for a discussion of this process. All of the series from
Ref. [11] arise from fits to energy levels with n ≤ 50 and
several for n � 50; thus, using these quantum defects
involves an extrapolation from the fit range and have
larger uncertainty for our calculations than simply from
the uncertainty in the µa. For example, Ref. [22] found
differences in the 5snd 3D quantum defects of ∼ 0.02
from the extrapolated values of Ref. [11]; these are series
with large energy variation in the quantum defects due
to perturbers attached to the 4d or 5p thresholds. How-
ever, the 3S1 quantum defect from Ref. [11] matches that
from Refs. [22, 23] within the stated error bars. Taking a
large µ2, µ4 as a sign of possible problems for extrapolat-
ing the quantum defects, one might suspect that the 1P1

and 1D2 series might have the largest errors in quantum
defect for n > 50. The quantum defects from Ref. [23]
have a fit range that goes up to n = 50 so these quan-
tum defects are probably not as accurate as the stated
uncertainty for n > 50.

In addition to the quantum defects, there is a mixing
between channels with the same parity and J quantum
number. The strongest of these mixings is between the
1D2 and 3D2 channels. Above n ∼ 50, we will take the
mixing to be constant:(
〈1D2|
〈3D2|

)
rot

=

(
cos θ sin θ
− sin θ cos θ

)(
〈1D2|
〈3D2|

)
≡ R

(
〈1D2|
〈3D2|

)
(4)

where θ = −0.14 radians; more accurate parameteriza-
tion would include an energy dependence for θ. The right
hand side represents the pure singlet and triplet states.
These channels are relatively strongly mixed due to a
perturber near n = 15, but other channels (e.g. 3S1 and
3D1) should be mixed as well. In our calculations, we
only included the mixing between 1D2 and 3D2. This
type of mixing will probably need to be included for the
other channels to obtain the highest accuracy of the Ry-
dberg series.

B. Overview MQDT

Section II of Ref. [13] gives the details for how to deter-
mine the bound state energies, polarizabilities, C6 matri-
ces, etc. for Rydberg states attached to hyperfine split
thresholds. Refer to this paper for intermediate steps in
the formulas given in this section. For a given K-matrix,
the bound states, b, are determined by finding the ener-
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Table I. Quantum defects used in the calculations. See the text for a discussion of uncertainties in these values.

µ0 µ2 µ4 Fitted Range Ref.
1S0 3.26896(2) -0.138(7) 0.9(6) 14 ≤ n ≤ 34 [11]
3S1 3.37065 0.443 -0.553 30 ≤ n ≤ 99 [22]
3S1 3.370778(4) 0.418(1) -0.3(1) 15 ≤ n ≤ 50 [23]
1P1 2.7295(7) -4.67(4) -157(2) 10 ≤ n ≤ 29 [11]
3P0 2.8866(1) 0.44(1) -1.9(1) 8 ≤ n ≤ 15 [11]
3P1 2.8824(2) 0.407(5) -1.3(1) 8 ≤ n ≤ 22 [11]
3P2 2.8719(2) 0.446(5) -1.9(1) 8 ≤ n ≤ 18 [11]
1D2 2.3807(2) -39.41(6) -1090(20) 20 ≤ n ≤ 50 [11]
3D1 2.673 -5.4 -8166. 50 ≤ n ≤ 98 [22]
3D1 2.67517(20) -13.15(26) -4444(91) 28 ≤ n ≤ 50 [23]
3D2 2.662 -15.4 -9804. 50 ≤ n ≤ 98 [22]
3D2 2.66142(30) -16.77(38) -6656(134) 28 ≤ n ≤ 50 [23]
3D3 2.612 -41.4 -15363. 50 ≤ n ≤ 98 [22]
1F3 0.089(1) -2.0(2) 30(2) 10 ≤ n ≤ 25 [11]
3F2 0.120(1) -2.2(2) 120(20) 10 ≤ n ≤ 24 [11]
3F2 0.120(1) -2.2(2) 120(20) 10 ≤ n ≤ 24 [11]
3F2 0.120(1) -2.4(2) 120(20) 10 ≤ n ≤ 24 [11]

gies, εb, that allow for the solution of∑
i

(tan(βi,b)δi′,i +Ki′,i)
cos(βi)

ν
3/2
i

Ai,b = 0. (5)

with βi,b = π(νi,b − `i) and the effective quantum num-
ber in channel i, νi,b, is defined by εb = εc,i−2R87/[2ν

2
i,b]

with εb−εc,i being the difference between the total energy
and the energy of the i-th core state in cm−1. In prac-
tice, we solve for εb by finding when the determinant of
the matrix given by Mi′i = δi′i sin(βi) +Ki′i cos(βi) goes
through zero. This determines the bound state energy εb
and allows for a solution of Eq. (5) for Ai,b. When the
quantum defects vary slowly with energy, the normaliza-
tion condition is ∑

i

A2
i,b = 1 (6)

to a good approximation. With these definitions, the
bound state wave function can be written as

|ψb〉 =
∑
i

|Φi〉Pνi`i(r)Ai,b (7)

where the Φi is the channel function which represents all
of the quantum numbers except the radial function of the
Rydberg electron which goes to 0 at infinity:

Pνi`i(r) = [fi(r) cosβi + gi(r) sinβi]/ν
3/2
i . (8)

where atomic units are used for r and energy in the f, g
radial Coulomb functions.

1. Frame transformation

The K-matrix is obtained by using a frame transfor-
mation on the LSJ K-matrix. Adhering as much as pos-
sible to the notation of Ref. [13], the coupling when the

Rydberg electron is close to the core is written as

|in〉 ≡ |(((Jcso)S`o)JI)FTMT 〉 (9)

where Jc = 1/2 is the total core angular momentum,
so = 1/2 is the spin of the Rydberg electron, S is the
total spin of the two electrons, `o is the orbital angular
momentum of the Rydberg electron, J is the total angu-
lar momentum of the two electrons, I = 9/2 is the spin
of the nucleus, and FT ,MT is the total hyperfine angular
momentum and its z-projection. This symbol is read by
starting from the innermost “( )” and working out. In
words, this ket symbolizes: the total angular momentum
of the core is coupled to the spin of the Rydberg elec-
tron to give total spin S which is coupled to the orbital
angular momentum of the Rydberg electron to give to-
tal electronic angular momentum J which is coupled to
the spin of the nucleus to give the total hyperfine angu-
lar momentum FT and projection MT . An example case
is |(((1/2, 1/2)1, 2)3, 9/2)13/2, 5/2〉 meaning a 5snd 3D3

coupled with I = 9/2 to give FT = 13/2, MT = 5/2.
As with Ref. [13], we obtain the final channel functions
using two recouplings. The first is

|out(1)〉 = |(((Jcso)SI)F̄ `o)FTMT 〉 (10)

where F̄ is a dummy angular momentum arising from
coupling the total spin to the spin of the nucleus. As
with the previous ket, this symbol is read by starting
from the innermost “( )” and working out. The second
is

|out(2)〉 = |(((JcI)Fcso)F̄ `o)FTMT 〉 (11)

where Fc is the hyperfine quantum number of the core.
The recoupling matrix arises from projecting the different
couplings onto each other. The first recoupling matrix is

〈in|out(1)〉 = (−1)Λio [J, F̄ ]

{
`o S J
I FT F̄

}
(12)
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where {...} is the 6-j symbol, Λio = `o + F̄ − J − I −
2FT and [a, b, ...] =

√
(2a+ 1)(2b+ 1).... The second

recoupling matrix is

〈out(1)|out(2)〉 = (−1)Λoo [S, Fc]

{
so Jc S
I F̄ Fc

}
(13)

where Λoo = so + Fc − S − I − 2F̄ . Equations (3.5.14)
and (6.1.5) of Ref. [30] were used in both projections.

The K matrix is obtained by a series of rotations. For
example,

Kout(1),out(1)′ =
∑
in,in′

〈out(1)|in〉Kin,in′〈in′|out(1)′〉.

(14)
A similar rotation is performed to obtain the K-matrix
in the |out(2)〉 coupling scheme. The channel rotation in
Eq. (4) can be taken into account by using the rotated
transform(
〈in(1D2)rot|out(1)〉
〈in(3D2)rot|out(1)〉

)
= R

(
〈in(1D2)|out(1)〉
〈in(3D2)|out(1)〉

)
(15)

By including this rotation, the K-matrix in Eq. (14) sim-
plifies to a diagonal matrix:

Kout(1),out(1)′ =
∑
in

〈out(1)|in〉Kin〈in|out(1)′〉 (16)

with Kin = tanπµin.

2. Matrix elements

In Ref. [13] Eq. (17), the one electron matrix elements,

Q
(kq)
b,b′ , determine the polarizability, C5 matrix, and C6

matrix[10, 31–33]. These properties require the calcula-
tion of matrix elements between bound states b, b′. For
these parameters, the operator mainly acts on the Ryd-
berg electron. These cases have an operator of the form
Q̂(kq) = rkYk,q(Ω) which has a contribution of size ∼ n2k

when it acts on the Rydberg electron and of size ∼ 1
when it acts on the core electron. In the following, we
only account for the contribution to the matrix element
from the Rydberg electron. For this approximation, the
matrix element is

Q
(kq)
b,b′ =

∑
i,i′

(AT )b,i〈Φi|Ykq|Φi′〉R(k)
ib,i′b′Ai′,b′ (17)

where the radial integral is

R
(k)
ib,i′b′ =

∫ ∞
0

drrkPνi,b`i(r)Pνi′,b′`i′ , (18)

with the radial function defined in Eq. (8).
For the results below, we are only interested in the

dipole matrix elements, k = 1. The angular matrix ele-
ment, Eq. (19) and (20) of Ref. [13], is changed due to

the difference in recoupling. Using the channel coupling
of Eq. (11), the angular part of the matrix element is

〈Φi|Ykq|Φi′〉 = 〈((Fcso)F̄ `o)FTMT |Ykq|((F ′cso)F̄ ′`′o)F ′TM ′T 〉
(19)

where Jc = J ′c and I = I ′ automatically hold for
87Sr. The angular matrix element can be evaluated using
Eqs. (5.4.1), (5.4.5), and (7.1.8) of Ref. [30] to obtain

〈Φi|Ykq|Φi′〉 = (−1)ΛδFcF ′
c
δF̄ F̄ ′

[FT , F
′
T , `o, `

′
o, k]√

4π(
FT k F ′T
−MT q M ′T

)(
`o k `′o
0 0 0

)
{
`o FT F̄
F ′T `′o k

}
(20)

where (...) is the 3-j symbol and Λ = 2FT −MT + F̄ +
`o + `′o + k. The first 3-j symbol restricts MT = M ′T + q
and |FT − F ′T | ≤ k. The second 3-j symbol restricts
|`o − `′o| ≤ k and `o + `′o + k to be an even integer.

These expressions can be used in equations from
Ref. [13] to obtain the C5 matrix [Eq. (40)], the C6 matrix
[Eqs. (42) and (43)], and the polarizability matrix.

3. Approximations

This section discusses some of the approximations that
arise from the MQDT method and our implementation
of it.

The uncertainty in the threshold splitting and Ryd-
berg constant are too small to be important. The aver-
age threshold energy affects where the states appear in a
spectrum but does not affect any of the other properties
(e.g. polarizability or C6).

The actual values of the quantum defects are impor-
tant and uncertainty in the experimental values was dis-
cussed above, but an important aspect was not discussed.
Except for Ref. [22], the quantum defects were measured
in isotopes that were not 87Sr. There should be an iso-
tope shift to the quantum defects which will lead to er-
rors in the calculation of properties of the 87Sr Rydberg
states. There has not been a discussion of how the quan-
tum defects change with small changes in the mass of the
ion. It is reasonable to assume the change in quantum de-
fect is proportional to the change in reduced mass. Thus,
measurements in 86,88Sr will have differences of magni-
tude ∼ 1/(87 × 1836) = 6.3 × 10−6 but opposite sign
from 87Sr. Averaging the quantum defects from 86,88Sr
will cancel the first order error and give errors of roughly
the square of this quantity. Using the data from Tab. I,
the 5s50s 3S1 state has quantum defect of 3.37085 for
87Sr[22] and 3.37097 for 88Sr[23] which is a difference of
magnitude 1.2× 10−4. It is not clear to us that this dif-
ference is real because the 3S1 energies in Tab. II agree
to all digits measured in Ref. [22].

The frame transformation method is an approximation
when the quantum defects have energy dependence. The
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error enters through the change in quantum defect over
an energy range ∼ 1/2 that of the threshold splitting.
For 87Sr, this energy is 3.8× 10−7 a.u. Taking the most
rapidly varying quantum defects, it would be like an error
of ∼ 3× 10−5 in the µ0 for the nd series and a factor of
100 smaller for the 3S series.

In the calculation of matrix elements, there should be
terms containing the derivative of the quantum defect
with respect to energy[20]. The relative size of the error
is roughly dµ/dE/(dν/dE) = dµ/dn. This is roughly
2µ2/(n − µ0)3 + 4µ4/(n − µ0)5. The worst cases would
be the nd series. Taking n = 50 would give an error of
∼ 0.1% for 1D and 3D3 which are the largest.

Lastly, while Pν`(r) is finite and well defined outside
of the core region, this form does not hold all of the way
to r = 0. How to treat the radial dependence at small r
introduces uncertainty in the calculation. However, the
small r part of the radial function contributes very little
to the matrix elements of Rydberg properties like polariz-
ability, C5 matrix, and C6 matrix. We tried two methods
for extending the radial function to r = 0 and found they
resulted in the same value of the matrix element to bet-
ter than 0.1%. In both methods, we solved the radial
Schrödinger equation from large r to 0 using a Numerov
algorithm. In one method, we used a model radial po-
tential developed for Rb and in the other we used a pure
−1/r. We stopped the Numerov algorithm at a small
r when the semiclassical turning point, rp, was reached;
the semiclassical turning point used (` + 1/2)2/2r2. For
r < rp, the P (r) = (r/rp)

`+1[P (rp) + C × (1 − r/rp)]
which automatically gives a continuous P (r). The C was
chosen to give a continuous derivative as well. We believe
the method that used the Rb model potential was more
accurate.

III. RESULTS

This section presents various results for the hyperfine
Rydberg states of 87Sr. We have calculated the energies,
polarizabilities, and C6 matrices for several different se-
ries. In this section, we compare the calculated energies
to those measured in Ref. [22]. We also present examples
of the polarizability for the 5sns FT = 9/2 series. In the
last section, we present C6 coefficients for the pair states
[(5sns, FT = 9/2), (5sns, FT = 9/2)].

A. One atom energies and mixings

This section discusses properties of the Rydberg states
of a single atom for different n. Reference [22] measured
several energies for 5sns and 5snd states. From these
energies, they fit the quantum defects for the 3S1 and
3D series. They also performed calculations using a two
electron model of the Hamiltonian. Tables II and III
show a representative comparison of their measured and
their calculated energies (marked by superscript “a” in

the tables) for a few of the Rydberg states they mea-
sured. Also shown are the energies calculated using the
MQDT quantization condition, Eq. (5), using two sets of
quantum defects: columns marked with superscript “b”
are the quantum defects from Refs. [11, 22] and columns
marked with superscript “c” use the 3D3 from Ref. [22],
the (3S1, 3D1, 3D2) from Ref. [23], and the rest from
Ref. [11]. In Table II, the ∆E is the energy difference
from the corresponding 5sns 3S1 F = 11/2 state in GHz.
In Table III, the ∆E is simply the energy difference be-
tween the close states in each group.

For all of the lines, the MQDT calculations are in bet-
ter agreement with the experiment than the calculations
in Ref. [22]. There are only two lines where one of the
MQDT calculations is outside of the experimental error
bars (5s50d 3D3 F = 7/2 using the Ref. [11, 22] quantum
defects and 5s40s 3S1 F = 11/2 using Ref. [23] quantum
defects) whereas the Ref. [22] calculations are outside of
the error bars for ∼ 1/2 the levels in the tables and sub-
stantially outside of the error bars for a couple of lines.

The extrapolated values for the 1S series agrees with
the measured lines indicating the quantum defects for
this series are accurate outside of the fit range. The
quantum defects from Ref. [23] tend to give 5snd energies
in better agreement with the measured lines of Ref. [22]
than the quantum defects from Ref. [22]. It is not clear
whether this observation is significant because both sets
of quantum defects give energies within the experimental
uncertainties.

Finally, the splittings of the 5s50d states suggests there
is some room for improvement of the quantum defects.
While the MQDT calculations reproduce the main split-
ting there are errors at the few MHz level whereas the
experimental uncertainty is ∼ 70 kHz.

B. One atom perturbations in the even series

One of the interesting aspects of the hyperfine split
thresholds is that there can be interesting perturbations
between the different Rydberg series of one atom with the
same parity and FT . This can arise when the Rydberg
states attached to the F = 4 threshold become nearly
degenerate with those attached to the F = 5 threshold.
As an example of this, the two 5sns FT = 9/2 series are
shown in Fig. 1. The y-axis is proportional to a simu-
lated absorption oscillator strength where only transition
into the 3S character is allowed. The largest oscillator
strength has been normalized to ∼ 1. Near n = 50, the
state mainly composed of 3S character and that mainly
composed of 1S character are clearly identified by the
size of the oscillator strength. As n increases, there is
an overall decrease in oscillator strength proportional to
1/n3. However, because of the interaction between the
two series, there is an interesting trend where the oscilla-
tor strength of the “1S” series actually increases to n ∼ 60
because of the increased interaction between the series.
Near n ' 110, there is a nearly complete cancellation
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Table II. Energies for the 5sns series. The columns for E are in cm−1 and the columns for ∆E are the energy difference to the
5sns 3S1 FT = 11/2 state in GHz.

n Term F Eex ∆Eex Ea
th ∆Ea

th Eb
th ∆Eb

th Ec
th ∆Ec

th

40 1S0 9/2 45 850.8762(21) 16.35(8) 45 850.8702 16.22 45 850.8743 16.31 45 850.8743 16.32
60 1S0 9/2 45 898.1444(22) 7.28(9) 45 898.1421 7.26 45 898.1434 7.26 45 898.1433 7.26
82 1S0 9/2 45 914.5606(22) 5.66(9) 45 914.5589 5.67 45 914.5602 5.67 45 914.5602 5.67

40 3S1 7/2 45 850.4974(21) 4.99(8) 45 850.4960 5.0 45 850.4972 5.00 45 850.4967 5.00
60 3S1 7/2 45 898.0688(21) 5.02(9) 45 898.0668 5.0 45 898.0681 5.00 45 898.0680 5.00
82 3S1 7/2 45 914.5380 5.00 45 914.5379 5.00

40 3S1 9/2 45 850.4078(21) 2.31(8) 45 850.4061 2.31 45 850.4074 2.31 45 850.4070 2.31
60 3S1 9/2 45 897.9488 1.42 45 897.9487 1.42
82 3S1 9/2 45 914.3958(21) 0.72(9) 45 914.3935 0.71 45 914.3947 0.71 45 914.3947 0.71

40 3S1 11/2 45 850.3308(15) 0 45 850.3291 0 45 850.304 0 45 850.3299
60 3S1 11/2 45 897.9014(19) 0 45 897.9000 0 45 897.9013 0 45 897.9011
82 3S1 11/2 45 914.3718(22) 0 45 914.3699 0 45 914.3711 0 45 914.3711

a Theory calculations from Ref. [22].
b MQDT calculations using the 3S quantum defects from Ref. [22] and the 1S from Ref. [11].
c MQDT calculations using the 3S quantum defects from Ref. [23] and the 1S from Ref. [11].

Table III. Energies for the 5s50d states. The columns for E are in cm−1 and the columns for ∆E are the energy difference to
one level within a scan (the state with ∆E = 0) in MHz.

Term F Eex ∆Eex Ea
th ∆Ea

th Eb
th ∆Eb

th Ec
th ∆Ec

th
3D1 7/2 45 883.1440(22) -295.60(7) 45 883.1414 -299.01 45 883.1427 -296.94 45 883.1438 -296.83
3D1 9/2 45 883.1538(22) 0 45 883.1514 0 45 883.1526 0 45 883.1537 0
3D2 11/2 45 883.1685(22) 439.39(7) 45 883.1662 443.71 45 883.1673 441.11 45 883.1684 440.75

3D2 7/2 45 883.2882(21) 0 45 883.2855 0 45 883.2866 0 45 883.2876 0
3D2 9/2 45 883.2922(21) 118.91(7) 45 883.2893 114.7 45 883.2904 116.20 45 883.2915 114.75
3D1 11/2 45 883.2972(21) 269.12(7) 45 883.2942 260.55 45 883.2954 263.73 45 883.2963 261.22

3D3 11/2 45 883.3849(22) -890.64(7) 45 883.3814 -890.22 45 883.3828 -888.59 45 883.3830 -887.29
3D3 9/2 45 883.4146(22) 0 45 883.4111 0 45 883.4124 0 45 883.4126 0

3D3 7/2 45 883.4374(22) 45 883.4339 45 883.4351 45 883.4352
a Theory calculations from Ref. [22].

b MQDT calculations using the 3D quantum defects from Ref. [22] and the 1D from Ref. [11].
c MQDT calculations using the 3D3 quantum defects from Ref. [22], the 3D1,2 quantum defects from Ref. [23], and the 1D

from Ref. [11].

in the oscillator strength of one of the series. This near
zero arises because the difference in ν between the two
channels is 1 at that energy; when this condition occurs,
the channels behave as pure 1S and 3S channels and the
1S channel has 0 oscillator strength in the calculation.

This suggests that there is strong mixing within the
series below n = 110. As an estimate, one can set the
condition that the ν state attached to the upper threshold
to be equal in energy to the ν+1/2 state attached to the
lower threshold as the condition for strong interaction:

∆ε =
1

2ν2
− 1

2(ν + 1/2)2
' 1

2ν3
(21)

which gives ν ∼ 87. This condition comes from a clas-
sical argument: when the Rydberg period is 1/2 that of

the core state, the Rydberg electron interacts with a dif-
ferent Fc each time it returns to small r. (Oddly, when
the Rydberg period matches that of the core state, the
Rydberg electron interacts with the same Fc each time it
returns to small r which is like having no hyperfine split-
ting at all!) This estimate does not take into account
the difference in quantum defects of the different series.
This is roughly where the oscillator strength in the two
channels are equal, n ' 81, which is the condition for the
states to have equal mixture of 3S and 1S character.



7

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 45880  45890  45900  45910  45920

3
S

1
S

S

E (cm
-1

)

Figure 1. A simulated absorption oscillator strength for the
two 5sns FT = 9/2 series where only transition into the 3S
character is allowed. Each ∗ represents a Rydberg state. The
range shown is from n ' 50 to ' 120. For small n, there are
two states for each n. At the highest energies shown, it is
more useful to think of one Rydberg series attached to each
hyperfine threshold.

C. One atom polarizability of the 5sns FT = 9/2
series

The polarizability of a Rydberg state determines the
coefficient of the quadratic shift of the energy with the
strength of a static electric field, E . The shift arises from
second order perturbation theory and, for states with
non-zero angular momentum, has the form

∆E = −1

2

(
α0 +

3M2 − F (F + 1)

F (2F − 1)
α2

)
E2 (22)

where α0, α2 are the scalar and tensor polarizabilities, F
is the total angular momentum of the state and M is
its projection on the z-direction. For simple series, the
α0, α2 scale like ν7 because the dipole matrix elements
scale like ν2 and the energy difference scales like 1/ν3:
there is the product of two dipole matrix elements in the
numerator and the energy difference in the denominator.

We calculated the scalar and tensor polarizability for
the 5sns FT = 9/2 series with the results shown in Fig. 2.
To avoid the difficulty of two thresholds, the ν is defined
relative to the weighted average of the thresholds. The
results are plotted versus n ≡ ν + 3.32 which is approx-
imately the principal quantum number of the Rydberg
states; the 3.32 was obtained by averaging the µ0 for the
1S and 3S series. For n ∼ 50, the states have dominant
3S or 1S character and have been labeled for the scalar
polarizability.

There are a few interesting features worth noting. For
almost the full range shown, the scalar polarizability
is roughly 100× larger than the tensor polarizability.
This is because the electric field mainly acts on the spa-
tial dependence of the Rydberg electron which has S-

character. For n ' 65, 105, and 117, the scalar polariz-
ability smoothly changes sign which leads to one of the
states having its scalar polarizability much smaller than
expected; a small scalar polarizability means the state
is relatively insensitive to static electric fields. Finally,
there are a few states near n = 90 that have especially
large polarizabilities. This arises through the near degen-
eracy with 5snp states which allows for strong mixing and
shifts with small electric fields. All of these n-dependent
features arise due to the hyperfine splitting of the thresh-
olds. We did a calculation where the hyperfine splitting
was artificially reduced by a factor of 100. We found
that the polarizability of both series smoothly evolved
with n. For example, α0/ν

7 for the 1S series smoothly
changes from −0.43 at n = 50 to −0.51 at n = 120 (when
the hyperfine splitting is reduced by a factor of 100, the
1S polarizability is reproduced to better than 1% by the
expression α0/ν

7 = −0.57 + 6.5/ν over the range from
n = 50 to 120).

Because the quantum defects for the 5snp states are
not known as well as for the 5sns, the actual values of
the polarizabilities near n = 90 are probably not very
accurate. However, the way the energy differences change
with n will be similar. Thus, the results in Fig. 2 should
have the same general features of real 87Sr.

D. Two atom C6 eigenvalues: identical 5sns
FT = 9/2 states

This section discusses the Rydberg-Rydberg interac-
tion between a pair of 87Sr atoms. For Rydberg states
with outer s-electron, the C5 matrix is identically zero.
The first non-zero long range interaction is from the C6

matrix. The eigenvalues of the C6 matrix scale like ν11

when the states are part of a simple Rydberg series.
There is a product of 4 dipole matrix elements in the
numerator (giving ν8) divided by an energy difference
(giving a factor of ν3).

Reference [11] found that the 88Sr C6 coefficient for
the 5sns 1S series was negative and smoothly varying
between n = 30 and 70 while that for the 3S series was
somewhat larger in magnitude, positive, and smoothly
varying as well. We do find that the C6 coefficient for the
5sns 1S series was negative near n = 50 while that for the
5sns 3S series was positive near n = 50 and somewhat
larger in magnitude. However, at larger n, the 87Sr 5sns
series are complicated by the threshold splitting and by
the non-zero angular momentum of the states due to I 6=
0.

We define FT = FT1 + FT2 = 2FT1 since the calcu-
lations are only for identical states. In our calculations,
we take the atoms to be separated along a line in the
z-direction which means the total z-component of the
angular momentum, MT = MT1 + MT2, is conserved.
Because we are only treating identical states with iden-
tical atoms, there are even states and odd states upon
swap between the atoms. Also, the symmetry of these
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Figure 2. The scalar, α0, and tensor, α2, polarizability for
the 5sns FT = 9/2 states as a function of n ≡ ν + 3.32. The
ν is calculated from the hyperfine averaged threshold. The
solid (red) line shows α0 = 0.
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Figure 3. For FT1 = FT2 = 9/2, the scaled C6 coefficient as a
function of n ≡ ν + 3.32 for MT = 9, i.e. the stretched state.
The value enclosed by a (red) square is for the 5s63s 3S state.
To convert to GHz µm6, multiply by 1.44× 10−19.

states means the eigenvalues for MT are the same as for
−MT . For a given MT , the number of even states is 1 +
mod (FT − |MT |, 2) while the number of odd states is
mod (FT − |MT |+ 1, 2).

Results are presented for the C6 matrix for identi-
cal states with 5sns character and FT1 = FT2 = 9/2.
These are the mixed 3S and 1S series. The case where
MT = FT = 9 is the stretched state and only has one
eigenvalue. The scaled C6 coefficient for this case is plot-
ted in Fig. 3. The strong increases in the C6 near n ∼ 64
and 105 is due to near degeneracy with [(5snp), (5sn′p)]
pair states which arises from the hyperfine splitting of the
thresholds: when we decreased the threshold splitting by
a factor of 100, the scaled C6 coefficient was slowly vary-
ing over this range. The smooth C6 for tiny hyperfine
splitting reproduces the trends in Ref. [11]: they found
smoothly varying C6 for the 5sns series in this range of n.
The only Förster resonance they showed was for the 5snp
3P1 series near n = 30 due to interaction with the 5sns
3S series which arises because of the energy dependence
of the quantum defects.

The C6 for the MT = FT = 9 5s63s 3S state is
4.23 × 1022. All of the contributions are from 5snp
FT = 7/2, 9/2, or 11/2 states Of the 4.23, 1.31 is from
two 9/2 states, 1.06 is from a 9/2 and a 11/2 state, and
0.65 is from two 11/2 states. The rest of the contribu-
tion is from many other pairs. Second order perturbation
theory, which leads to the C6, is only relevant when the
coupling is smaller than the energy difference. For this
state, the coupling equals the energy difference at a sep-
aration of 6.4 µm. At a separation of 10 µm, the shift
from the C6 would be 6.1 MHz and the coupling would
be 1/4 of the splitting.

The C6 eigenvalues for all MT are shown in Fig. 4 for
a pair of 5s50s 1S states, a pair of 5s50s 3S states, and
a pair of 5s63s 3S states. The 5s63s 3S states corre-
spond to the point enclosed by the (red) square in Fig. 3.
The C6 for the 5s64s and 65 3S states are larger but
probably less accurate due to the smaller energy differ-
ence with the np states. Because the atoms are identical
there are even states and odd states upon swap between
the atoms. There are some interesting features worth
noting. The first is that the spread in eigenvalues of the
C6 matrix is smallest for the pair of 5s50s 1S states. Per-
haps, this is not surprising because the 1S states are only
in the FT = 9/2 series and their isotropic nature is pre-
served for n ∼ 50. Another interesting feature, that was
also found in Ref. [13], is that some of the even and odd
states become nearly degenerate when MT → 0. For the
5s50s 1S states, all of the odd states are nearly degen-
erate with an even state for MT ≤ 7. For the 5s50s 3S
states, only the lowest two odd states become nearly de-
generate with even states as MT → 0. This effect is not
present at all for the 5s63s 3S states which may be due
to the near Föster resonance for this state. Also, the
relative spread in C6 coefficients is much larger for the
5s63s 3S states which probably reflects the importance
for the hyperfine splitting to obtain such large C6. Using



9

  -32.47

  -32.46

  -32.45

 0  2  4  6  8  10

5s50s 
1
S

C
6
/ν

1
1

MT

  91

  92

  93

  94

  95

 0  2  4  6  8  10

5s50s 
3
S

C
6
/ν

1
1

MT

 1000

 2000

 3000

 4000

 0  2  4  6  8  10

5s63s 
3
S

C
6
/ν

1
1

MT

Figure 4. The eigenvalues of the C6 matrix for three different
states as a function of the total z-component of the angu-
lar momenta, MT = MT1 + MT2. The even state (+) and
odd states (x) are plotted. To convert to GHz µm6, multiply
by 1.44 × 10−19. The different values of ν are 46.744429 for
5s50s 1S, 46.623502 for 5s50s 3S, and 59.598383 for 5s63s 3S.

the values of ν given in the caption, the eigenvalues in
the figures can be converted to SI units: the 5s50s 1S
states have C6 ' −10.9 GHz µm6, the 5s50s 3S states
have C6 ' 30 GHz µm6, and the 5s63s 3S states have
C6 ∼ 6 − 20 THz µm6. As with the polarizability cal-
culations, we do not expect high accuracy for the 5s63s
state but we do expect there to be large C6 matrices in
the neighborhood of this state.

As a test of the C6 calculations, we computed the
C6 coefficient for the 5s50s 1S state when setting the
threshold splitting to 0 and compared that value to the
tabulated results in Ref. [11] supplementary material.
Our value was −6.792 × 1019 and Ref. [11] reported
−6.820 × 1019: a difference of 0.4%. We do not know
the origin of this difference since we use the same quan-
tum defects as Ref. [11] for both s-series and all of the
p-series. We tried two different methods for calculating
the radial matrix elements and found a difference more
than a factor of 10 smaller than 0.4%. We also tried dif-
ferent convergence criteria in our sum over intermediate
states, but, again, the change in our calculated value was
too small to explain this difference.

IV. CONCLUSIONS

We have calculated various energies, polarizabilities,
and C6 matrices of 87Sr Rydberg states using a varia-
tion of the theory described in Ref. [13]. Because the
quantum defects of Sr are known to much higher accu-
racy than the Ho example in Ref. [13] and the threshold
structure is much simpler, we expect that the polarizabil-
ities and C6 coefficients of 87Sr to be much more accurate
than those for Ho. For example, the 5sns and 5snp series
are approaching the level of accuracy needed for quanti-
tative predictions. In order to predict the C6 matrix for
the 5sns series more accurately, the most pressing mea-
surement is of the 5snp quantum defects above n = 50.
The values from Ref. [11] are obtained by a fit to levels
10 ≤ n ≤ 29 for 1P while the 3P series has 8 ≤ n ≤ 15,
22, and 18 for J = 0, 1, and 2 respectively.

Most importantly, the perturbations and energy shifts
that arise due to the hyperfine splitting of the thresh-
olds lead to strong enhancement of the polarizability and
the C6 coefficents that might not be present without the
threshold splittings. This property is shared with the
calculations in Ho which also has hyperfine split thresh-
olds. Therefore, it should be possible to find many cases
where the interactions between a pair of atoms is rela-
tively strong. The relatively large C6 interaction term
could be useful for quantum simulators or computers.

In the case of the polarizability, the strong energy de-
pendence leads to the polarizability changing sign with
increasing n. This might be a useful feature because a
state will have a small polarizability near the sign change.
The smallest polarizability in Fig. 2 is at n = 64.91
with the value α0 = −1.26 × 10−3ν7 = −4.23 × 109,
much smaller than the n = 50 value of 9.13 × 1010.
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States with anomalously small polarizabilities are some-
what protected from stray electric fields which might be
useful for quantum simulators or computers.

Although the hyperfine split thresholds lead to more
complicated Rydberg series, there appears to be possi-
ble advantages that make continued investigations worth-
while.
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