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Abstract—While a great deal of research has been directed
towards developing neural network architectures for RGB im-
ages, there is a relative dearth of research directed towards
developing neural network architectures specifically for multi-
spectral and hyper-spectral imagery. We have adapted recent
developments in small efficient convolutional neural networks
(CNNs), to create a small CNN architecture capable of being
trained from scratch to classify 10 band multi-spectral images,
using much fewer parameters than popular deep architectures,
such as the ResNet or DenseNet architectures. We show that
this network provides higher classification accuracy and greater
sample efficiency than the same network using RGB images.
Further, using a Bayesian version of our CNN architecture we
show that a network that is capable of working with multi-
spectral imagery significantly reduces the uncertainty associated
with class predictions compared to using RGB images.

Index Terms—multi-spectral, convolution, bayesian, uncer-
tainty

I. INTRODUCTION

Sources of hyper-spectral and multi-spectral imagery are
becoming increasingly prevalent. For example, the European
Space Agency launched the Sentinel-2A satellite in June of
2015, and the Sentinel-2B satellite was launched in March of
2017. Both satellites are capable of imaging in 13 different
spectral bands, ranging from 443 nm to 2190 nm. These
satellites have a high revisit rate, with every area of Earth
beneath these satellites orbital path being imaged every five
days. The full Sentinel constellation is expected to generate
approximately 8 terabytes of data every day in operation [1].
This type of data can be incredibly valuable in land manage-
ment, agriculture and forestry, disaster control, humanitarian
relief operations, and environmental monitoring [2].

Processing and interpreting this amount of data is a chal-
lenge. Machine learning and computer vision techniques could
automate the process of extracting useful information from
the raw multi-spectral imagery provided by sources such as
the Sentinel satellite constellation, and NASA’s LANDSAT
mission.

However, while the use of machine learning to process and
classify generic RGB images has received a great deal of
attention, and in general has been quite successful, much less
energy has been devoted to extending machine learning models
like convolutional neural networks to process the type of multi-
spectral imagery provided by space based systems. One issue

has been the lack of large, labeled training datasets for satellite
imagery, compared to RGB images where there exist several
large publicly available datasets such as ImageNet [3] and
CIFAR-10 [4]. It is difficult to train a deep convolutional
neural network (CNN) on a small dataset without overfitting to
the training data due to the CNN’s large number of parameters.
The increased number of spectral channels in a multi-spectral
image compared to a three channel RGB image, increases the
already significant amount of computational resources required
to train a typical deep CNN.

Previous approaches to creating CNNs for multi-spectral im-
agery have focused on fine-tuning CNNs that were pre-trained
on RGB images, typically ImageNet. Three band combinations
had to be selected manually from multi-spectral images due
to the architectural constraints of the original RGB network.
If a new three band combination was desired, the network
had to be re-trained [5–7]. This approach discards a signif-
icant portion of the spectral information present in a multi-
spectral image, almost defeating the purpose of acquiring high
dimensional imagery in the first place. Other approaches that
attempt to use more than three spectral bands often employ
complex, multi-stage strategies to separate individual bands,
reduce the dimensionality of the spectral bands, then perform
some form of concatenation of the transformed spectral bands
for later stages of a classifier [8, 9]. If we could have a
small network architecture that could be trained from scratch
on multi-spectral images, we could extract features from all
spectral bands simultaneously, more effectively utilizing the
information present in all of the available spectral bands, while
at the same time keeping computational costs low. A small
network with few parameters would also reduce the risk of
overfitting to the smaller labeled datasets that are common
with high dimensional imagery.

In this work we adapt recent developments in compressed,
efficient convolutional networks (e.g. MobileNets [10] and
SqueezeNets [11]) to create a small (in terms of number of
parameters) and computationally efficient convolutional neural
network, capable of being trained to process the full spectral-
spatial input space from multi-spectral satellite imagery. We
show that it is possible to train such a network end-to-end
on multi-spectral imagery, using no data augmentation, that
achieves greater classification accuracy and higher sample



efficiency than an identical network trained on RGB images.
We extend our analysis to a Bayesian version of the CNN

architecture in question, using Monte Carlo dropout [12], and
show that with a multi-spectral network, epistemic uncertainty
in the model is significantly reduced compared to an identical
network using 3-channel RGB images. This allows us to be
more confident in the predictions a multi-spectral network
is making. This is the first analysis that we are aware of
comparing the uncertainty characteristics of RGB images vs.
multi-spectral images.

The main contributions of this work are:
1) Demonstrating that small CNN architectures can be

extended successfully to high dimensional imagery. This
is in stark contrast to the large and complex models used
in other studies.

2) Analyzing the performance of depthwise separable con-
volutions when applying CNNs to high dimensional
imagery

3) Analyzing the uncertainty associated with using a deep
neural network to make predictions with high dimen-
sional multi-spectral imagery vs. using RGB images.

II. RELATED WORK

CNNs have been used to classify individual pixels in
remote sensing imagery by performing 1-D convolutions on
the spectrum of each pixel [13]. In [9] this work was extended
to be a spectral-spatial approach by applying 1-D convolutions
on a flattened vector formed from the spectra of a group of
adjacent pixels. None of these approaches maintains the phys-
ical distribution of spatial features when performing inference;
the shape of spatial features is completely lost.

More recent work on the application of CNNs to satellite
and multi-spectral imagery incorporated spatial context and
generally focused on transfer learning approaches. Pretrained
networks, typically using ImageNet as the training dataset,
were fine tuned to work with satellite imagery by removing
the final one or two layers from the pretrained network and
then new final layers were inserted and trained from scratch
on a small amount of labeled satellite imagery [14].

In [5–7], the aforementioned transfer learning technique was
explored using RGB imagery. Penatti et al. [6] investigated
how well features extracted from images of everyday objects
extended to remote sensing and aerial scenes. They also fine
tuned a network pretrained on ImageNet to predict poverty
estimates based on night time light intensity. Castelluccio et al.
[7] performed similar work, applying two networks pretrained
on ImageNet to aerial RGB images. These transfer learning
approaches worked surprisingly well, given that the datasets
the networks were trained on included classes of objects from
entirely different perspectives than those obtained from high
altitude overhead images.

Relatively little work has been devoted to applying CNNs
to high dimensional multi-spectral imagery. In [14] multi-
spectral images from the Sentinel satellite constellation were
analyzed, again used a transfer learning approach. The authors
used a Google LeNet and a ResNet-50 network, pretrained

on ImageNet, to perform land cover classification. These
networks were fine tuned to produce land cover classifications
by replacing their final fully connected layers. The authors
manually chose 3 band combinations as inputs to the net-
work, since the architecture of the pretrained model could
not be modified to accept more than three spectral bands.
Zhao and Du [15] used compressed spectral features from a
local discriminant embedding method that are concatenated
with spatial features from a CNN and fed into a multi-class
classifier. In [8] a relatively complex network was created that
splits a high-dimensional image into separate channels that
were then fed to individual sub-networks to learn band specific
features, these features were then concatenated and fed into a
series of fully connected layers for final classification.

III. ADAPTING EFFICIENT ARCHITECTURES

The primary difficulties in working with multi-spectral
imagery lie in its high dimensionality and the lack of large
labeled datasets for training. Both of these factors make
training recent deep network architectures from scratch on
multi-spectral imagery difficult, often to the point of being
impractical. A modern deep architecture such as a ResNet
[16], or DenseNet [17], contains enough parameters to easily
overfit to a small dataset. The high dimensionality of multi-
spectral imagery can also significantly increase computational
requirements.

To overcome these issues, we adopt strategies that maximize
accuracy with a limited budget of parameters. Several relevant
strategies to this goal are presented in recent work on small
and efficient convolutional neural networks (e.g. SqueezeNets
[11] and MobileNets [10]). While both SqueezeNets and
MobileNets were originally conceived as a way to reduce the
number of parameters in convolutional neural networks and
make them more efficient, we hypothesize that, in addition
to improving efficiency, some of the techniques used in
those architectures will also be effective for processing high
dimensional imagery.

A. Parameter Reduction Strategies

The first parameter reduction strategy is to forgo placing a
fully connected network on top of the convolutional layers.
Instead we use the same approach as the original SqueezeNet,
and use a final convolutional layer with the number of output
filters equal to the number of classes. A global average pooling
is performed over these final filters to produce a logit for
each class. This approach was inspired by Lin et al. [18]. The
second parameter reducing strategy is to incorporate a large
number of 1× 1 convolutions vs. 3× 3 convolutions, as 1× 1
convolutions have 9× fewer parameters. The final parameter
reducing strategy is to limit the number of input channels to
the 3 × 3 filters, since 3 × 3 filters make up the majority of
parameters in the network. As the total number of parameters
in a convolutional layer made up of 3 × 3 filters is (number
of input channels) × (number of filters) × (3 × 3), reducing
the number of input channels to these layers can significantly
reduce the total number of parameters in a network.



In the original SqueezeNet architecture “squeeze” layers
were introduced to reduce the number of input channels to
“expand” layers that consisted of a mix of 3 × 3 filters and
1 × 1 filters. The squeeze layers consisted entirely of 1 × 1
convolutions and were originally used as a parameter reduction
strategy. We adapt the squeeze layer in our architecture to
reduce the number of parameters in the network and to
compress the high dimensional input. Since the squeeze layer
consists entirely of 1×1 convolutions, it essentially computes
linear combinations between spectral bands.

This strategy worked well with RGB images [11], but it is
not obvious that these “squeeze” layers would perform well
with high-dimensional images where rapidly collapsing the
initial input represents a major information bottleneck. The
challenge then is to balance this bottleneck effect with the
number of parameters in the network. In an effort to offset
the reduced spatial context incurred by a large number of
1 × 1 convolutions, we also reduce the amount of pooling
taking place early in the network, compared to the original
SqueezeNet architecture, to maintain large activation maps.

B. Depthwise Separable Convolutions

In order to reduce the computational cost of working
with high dimensional imagery, we also developed a second
version of our network architecture that incorporates depthwise
separable convolutions. Depthwise separable convolutions are
composed of depthwise and pointwise convolutions. As shown
in Fig. 1, the depthwise convolutions apply a single filter to
each input channel, after which a 1× 1 pointwise convolution
is applied to create a linear combination of the outputs from
the depthwise filters. Depthwise convolution can be written as,

Ĝk,l,m =
∑
i,j

K̂i,j,m × Fk+i−1,l+j−1,m

where M is the number of channels, K̂ is the depthwise
convolutional kernel of size DK ×DK ×M and F is a set of
filters. The mth channel in K̂ is applied to the mth filter in
F.

The computational cost of depthwise separable convolutions
is the sum of the depthwise and pointwise convolutions,

O(MD2
KD2

F +MND2
F ),

where DF is the spatial shape of a square input, M is the
number of input channels, and N is the number of output
filters. Regular convolutional filters have a cost of,

O(MND2
KD2

F ).

Thus, depthwise separable convolutions reduce computation
by a factor of,

MD2
KD2

F +MND2
F

MND2
KD2

F

=
1

N
+

1

D2
K

There is actually a significant amount of similarity be-
tween elements of the squeeze layers presented earlier, and
depthwise separable convolutions. The pointwise convolutions
in the depthwise separable convolutions are equivalent to

Fig. 1. Depthwise separable convolution.

the squeeze layers. They act to create linear combinations
of input channels. Given this similarity, depthwise separable
convolutions can be substituted for the squeeze layers in our
CNN architecture.

In our first network architecture, a single convolutional
kernel is used to extract cross channel correlations and spatial
correlations simultaneously. The key difference between the
first network architecture and this architecture which incor-
porates depthwise separable convolutions is the decoupling
between spectral bands and the spatial correlations. The Xcep-
tion architecture hypothesizes that cross-channel correlations
and spatial correlations are sufficiently decoupled that it is
actually preferable not to map them jointly [19].

It is not clear if this decoupling is preferable when dealing
with multi-spectral imagery. In a RGB classification task like
ImageNet, which has many classes that are easily separable
even if the images are grayscale and contain no color in-
formation (e.g. space shuttle and soccer ball), simultaneously
mapping the coupling between spectral and spatial correlations
likely matters little. However, when working on a task where
spectral information almost always provides useful additional
information, such as land cover classification, it may be
desirable to map spatial and spectral correlations together.

IV. THE SPECTRUMNET ARCHITECTURE

We are calling our network SpectrumNet, and it closely
mimics the macro-architectural design of the SqueezeNet
architecture [11] while adapting the micro-architectural el-
ements to work well with high-dimensional imagery. The
macro-architecture of the network defines “spectral” modules,
which consist of the squeeze and expand layers described in
the previous section. A depiction of the spectral module is



Fig. 2. A spectral module.

shown in Fig. 2. This type of macro-architectural element was
referred to as a “fire” module in [11].

The primary adaptations we made were to further limit
the number of 3 × 3 convolutions in the network, by setting
the percentage of 1 × 1 convolutions in the network to 75%,
in addition to delaying any pooling operations until midway
through the network, with one final max pooling operation
before the final spectral module. These settings were tuned
through a series of experiments on our validation set. Our
adapted SpectrumNet architecture is shown in Table I.

The second version of our network incorporates depthwise
separable convolutions into the squeeze and expand layers of
the spectral module. Table II details the reduction in network
parameters and multiply-add operations that can be achieved
with such an architecture.

V. UNCERTAINTY QUANTIFICATION

The probabilities given by a softmax layer at the output of a
neural network are often wrongly construed as the confidence
a model has in its output. It is entirely possible for a model
to have a high softmax output and high uncertainty in that
output. Principled uncertainty estimates can provide crucial
information, allowing us to handle uncertain network outputs
and be more confident when deploying deep learning models.
As an example, on a classification task we could forward
images that a model is highly uncertain about to a human
for review.

Recent work by Gal and Ghahramani, has presented dropout
as a Bayesian approximation of Gaussian processes. We refer
the reader to [12] for a derivation showing that the dropout
objective is mathematically equivalent to an approximation of
a probabilistic deep Gaussian process. The basic idea is that
both dropout and Gaussian processes place distributions over
random models or functions.

Model uncertainty can be obtained from any network ar-
chitecture that uses dropout. Following the results presented
in [12], our approximate predictive distribution is given for a
new input point x∗ by,

q(y∗|x∗) =
∫

p(y∗|x∗, ω)q(ω)dω

where y∗ ∈ RD, D is the number of classes, and ω = {Wi}Li=1

is the set of random variables in a network with L layers.

We can estimate the mean and variance of the approximate
predictive distribution empirically by performing T forward
passes through our model with dropout and collecting the set
of vectors created by the Bernoulli distribution introduced by
dropout, {zt1, ..., ztL}Tt=1, with zti = [zti,j ]

Ki
j=1, and Ki defining

the dimension of the weight matrix for a particular layer,
giving {Wt

i, ...,Wt
L}Tt=1.

The above procedure has been shown to provide a Monte
Carlo estimate of the predictive mean and predictive un-
certainty, and it is referred to as Monte Carlo dropout in
the original derivation. In practice, we perform T stochastic
forward passes through the model and calculate the mean and
variance of the output distribution to obtain an estimate of
uncertainty.

With this technique in hand and a network architecture that
is capable of processing the full spectral-spatial input from
high dimensional imagery, we can evaluate how the uncer-
tainty of deep neural networks depends on the information
contained in spectral channels, which to our knowledge, has
not been explored previously.

VI. EXPERIMENTS

We investigate how accuracy, convergence rate, and pre-
diction uncertainty change using RGB images vs. using
multi-spectral images. Additionally we evaluate how accuracy
changes with reductions in the size of the training set.

For all experiments, the networks with standard convo-
lutions were trained using stochastic gradient descent with
Nesterov momentum set to 0.9 and weight decay set to 5e−4.
When using depthwise separable convolutions, we did not use
weight decay due to the small number of parameters in the
network. The initial learning rate was set to 0.001 and was
reduced by 25% every 10 epochs. A batch size of 64 was used,
and all experiments were run on a Nvidia GTX 1080TI GPU.
All results presented are the result of 10 fold cross-validation
experiments.

A. Dataset

We conducted our experiments on the EuroSat land cover
classification dataset, which was compiled from Sentinel satel-
lite imagery [14]. This is one of the largest multi-spectral
datasets that has been created, consisting of 27,000 images
from 10 different land cover classes: annual crop, perma-
nent crop (e.g. fruit orchards, vineyards), forest, herbaceous
vegetation, highway, pasture, river, sea/lake, industrial, and
residential. Fig. 3 shows an example of imagery from a
Sentinel satellite.

The spatial resolution of the spectral bands is either 10
meters/pixel or 20 meters/pixel. Bands with a lower spatial
resolution were upsampled to 10 meters/pixel using cubic
spline interpolation. The Sentinel satellites acquire 13 spectral
bands, but only 10 are used in these experiments as 3 of
the bands are low resolution (60 meters/pixel) and used for
detecting things like aerosols or water vapor in the atmosphere.



TABLE I
THE SPECTRUMNET ARCHITECTURE.

Layer name/type Output size/filters Filter size/stride
(if not a spectral

module)

1× 1 Squeeze 1× 1 Expand 3× 3 Expand

Input 64× 64× 10
conv1 32× 32× 96 2× 2/1

spectral2 32× 32× 128 16 96 32
spectral3 32× 32× 128 16 96 32
spectral4 32× 32× 256 32 192 64
maxpool4 16× 16× 256 2× 2/2
spectral5 16× 16× 256 32 192 64
spectral6 16× 16× 384 48 288 96
spectral7 16× 16× 384 48 288 96
spectral8 16× 16× 512 64 385 128
maxpool8 8× 8× 512 2× 2/2
spectral9 8× 8× 512 64 385 128
conv10 8× 8× 10 1× 1/1

avgpool10 1× 1× 10 8× 8/1

TABLE II
NUMBER OF PARAMETERS AND MULTIPLY-ADD OPERATIONS IN

SPECTRUMNET, RESNET, AND DENSENET.

Network No. Parameters Million Mult-Adds
RGB/Multi-Spectral RGB/Multi-Spectral

SpectrumNet w/standard 727.59k / 730.28k 203.47 / 206.22
convolution

SpectrumNet w/depthwise 266.47k / 269.16k 75.59 / 78.34
separable convolution

ResNet-50 25.56M / NA 4120 / NA
DenseNet-161 28.68M / NA 7820 / NA

Fig. 3. A Sentinel image: RGB on the left and SWIR on the right.

B. Classification Performance

We evaluated both RGB images and 10 band multi-spectral
images. The multi-spectral bands consisted of the RGB bands
plus three red edge bands ranging from 705 nm to 783 nm,
two near infrared bands at 842 nm and 865 nm, and two short
wave infrared bands (SWIR) at 1610 nm and 2190 nm.

A network trained with multi-spectral imagery consistently
achieved statistically significant higher classification accuracy
compared to a network trained with RGB images (Table
III). We expected multi-spectral images to result in greater
classification accuracy in theory, given the additional infor-
mation that is present in the additional spectral bands that
increases separation between land cover classes. However, it
was not clear if a small network architecture could effectively
process such high-dimensional imagery. These experiments

TABLE III
CLASSIFICATION ACCURACY.

Network RGB Multi-Spectral
Accuracy Accuracy

SpectrumNet 92.1± 0.9% 96.6± 0.4%
w/standard convolution

SpectrumNet 87.6± 0.8% 95.2± 0.7%
w/depthwise separable convolution

show that it is possible to use small and efficient CNN
architectures to map and extract spectral-spatial features from
high dimensional imagery simultaneously. Complex schemes
built upon band separation, dimensionality reduction, etc. do
not appear to be needed for this type of task.

Incorporating depthwise separable convolutions into our
architecture resulted in slightly reduced accuracy compared
to using standard convolutions. However given the significant
reduction in computation requirements when using depthwise
separable convolutions this may be a worthwhile trade-off. The
solid performance of depthwise separable convolutions in this
domain of high dimensional imagery lends further credence to
the Xception hypothesis that spatial and spectral correlations
can be mapped separately [19].

C. Sample Efficiency

We found that having a small network capable of effectively
processing multi-spectral imagery resulted in faster conver-
gence rates, and greater sample efficiency during training. As
Fig. 4 shows, a network trained on multi-spectral imagery
reaches convergence in ≈ 4,000 to 5,000 fewer gradient
descent steps compared to using RGB images. This highlights
an interesting, and significant result. Not only does using
multi-spectral imagery result in greater classification accuracy,
a CNN that can work well with multi-spectral imagery is also
significantly more sample efficient.

As a further exploration of the sample efficiency of a
small CNN applied to high dimensional imagery, we evaluated
classification accuracy of our network trained on reduced



Fig. 4. Training profile for SpectrumNet with standard convolutions.

Fig. 5. Classification test set accuracy as the size of the training set is reduced.

datasets of both RGB and multi-spectral images. As the size
of the training set was reduced, our small CNN architecture
was able to maintain high accuracy (≈ 90%) when the training
set consisted of 2,500 images. When trained on RGB images,
the accuracy of the same network architecture experienced a
greater reduction in accuracy as the training set was reduced,
compared to the network trained on multi-spectral images. At
a training set size of 2,500 images, the multi-spectral network
experienced a 6.1% reduction in classification accuracy, while
the network trained on RGB images had experienced an 11.2%
reduction in classification accuracy. This gap widened as the
training set was reduced to 1,350 images, (Fig. 5).

While using depthwise separable convolutions resulted in
similar classification accuracy as standard convolutions, con-
vergence was appreciably slower (Fig. 6). This suggests that
decoupling cross-channel correlations and spatial correlations
makes it more difficult for the network to learn; although,

Fig. 6. Training profile using standard vs depthwise separable convolutions.

with sufficient training examples, comparable classification
accuracy to standard convolutions can be achieved.

D. Uncertainty Quantification

We assessed network uncertainty characteristics for RGB
images and multi-spectral images using Monte Carlo dropout,
with 50 stochastic forward passes of our network. On average
we observed much lower model uncertainty when using multi-
spectral images. Fig. 7 shows an example of the distributions
of the network outputs obtained for a single image using just
the RGB bands of the image, compared to using 10 spectral
bands from the image. In this case the image was correctly
classified both when using RGB bands and 10 spectral bands.
Although a correct classification was achieved using just
RGB bands in this particular case, the multi-spectral image
results in lower variance in network predictions, indicating
that the additional spectral bands reduce the uncertainty in
our network’s predictions.

It is also interesting to observe the case where an image is
incorrectly classified using RGB bands but correctly classified
when using the full multi-spectral image. Fig. 8 illustrates
this situation. In this case, class 0 was the correct class, and
class 3 was the incorrect class predicted using just the RGB
bands. When using the multi-spectral image, the separation
between classes is large, and the variance associated with each
class is small. In contrast, when using the RGB bands, the
variance associated with each class is wide, to the point that
the distributions of the network’s outputs are overlapping. This
reveals the high uncertainty associated with only using the
RGB bands to make a classification decision in this case. On
the rare occasions when an image class is predicted correctly
using RGB and predicted incorrectly with multi-spectral, high
variance is typically exhibited using both band combinations.

We also compiled class wide statistics on the distributions
of our network’s outputs for each land cover class, using RGB
images and multi-spectral images. Fig. 9 shows a kernel den-
sity estimate of these distributions. The classes, “residential”



Fig. 7. Network uncertainty for an image that was correctly classified both
when using RGB bands and multi-spectral bands.

Fig. 8. Network uncertainty for an image that was incorrectly classified using
RGB bands, but was correctly classified when using 10 multi-spectral bands.
In this case class 0 is the correct class, and class 3 is the incorrect class
predicted when using the RGB image.

and “industrial” are omitted, as both classes exhibited low
uncertainty when using both RGB and multi-spectral images.
Fig. 9 shows the substantial reduction in uncertainty that can
be obtained when we have a network that works well with
high dimensional imagery.

VII. CONCLUSION

Most previous approaches to dealing with high-dimensional
imagery, and the typically small datasets associated with this
type of imagery, have focused on transfer learning. These
approaches have not utilized the additional spectral infor-
mation offered by multi-spectral and hyper-spectral imagery
effectively. Other techniques have employed complex multi-
stage processes to separate and reduce the dimensionality
of the input. In contrast to previous work, we showed that

our CNN architectures, which have fewer than one million
parameters, can be applied effectively to high dimensional
imagery. We also demonstrated that our architecture works
well with a small training set, making it particularly useful in
working with the small datasets that are common when dealing
with multi-spectral imagery.

Depthwise separable convolutions reduced the computa-
tional requirements of our network significantly, and we ob-
served only small deterioration in classification accuracy due
to the decoupling between spectral and spatial correlations.
However, depthwise separable convolutions proved to be less
sample efficient than standard convolutions in our experiments,
suggesting that standard convolutions may be the preferred
choice when working with small datasets.

Beyond higher classification accuracy, a major benefit of a
CNN architecture that can process multi-spectral imagery is
the significantly reduced uncertainty exhibited by the model,
compared to a network that only uses RGB images. This is
a previously unreported result in the literature surrounding
remote sensing and deep learning and should further motivate
the development of CNN architectures, not just for RGB
images, but for high dimensional imagery as well.

Future work will be directed at confirming the results
presented here with additional datasets and classification tasks.
We are currently evaluating the effectiveness of our CNN
architectures in classifying the health of produce in grocery
stores using hyper- and multi-spectral imagery.
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