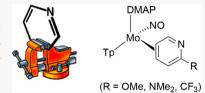
ORGANOMETALLICS

pubs.acs.org/Organometallics Article

Molybdenum-Promoted Dearomatization of Pyridines

Justin H. Wilde, Jeffery T. Myers, Diane A. Dickie, and W. Dean Harman*

Cite This: Organometallics 2020, 39, 1288-1298


ACCESS I

III Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: A second-row transition metal complex $\{MoTp(NO)(DMAP)\}\$ (DMAP = 4-(dimethylamino)pyridine; Tp = tris(pyrazolyl)borate) is shown to form dihapto-coordinate complexes with a range of substituted pyridines bearing both electron-withdrawing and electron-donating substituents. Subsequent reactivity of the pyridine ligand is demonstrated by protonation and nucleophilic addition reactions.

■ INTRODUCTION

The coordination of benzene by a transition metal across two carbons (η^2) profoundly affects the chemical reactivity of the aromatic ligand. Such action provides access to a wide range of novel organic transformations for the bound aromatic. ¹⁻⁴ The present study originated from an interest to develop a similar synthetic methodology for η^2 -pyridine species. Nitrogen-bound pyridine complexes are ubiquitous in the literature, but other coordination modes are far less common. ⁵⁻¹⁴ Especially unusual are dihapto-coordinate pyridine complexes, although several examples are known for heavy metals. ⁸⁻¹⁵ In particular, the tungsten complex [WTp(NO)(PMe₃)(η^2 -N-acetylpyridinium)] has been shown to undergo an extensive array of pyridine-based reactions leading to tetrahydropyridines. Limited chemistry with η^2 -pyridines bearing electron-donating substituents has also been reported. ¹⁶⁻²²

Known second-row η^2 -pyridine complexes have tended to involve nitrogen $(C_1N-\eta^2)$. ^{23,24} However, given the chemical similarities of the {WTp(NO)(PMe₃)} and {MoTp(NO)-(DMAP)} systems (DMAP = 4-(dimethylamino)pyridine; Tp = tris(pyrazolyl)borate), 25 we anticipated that C,C- η^2 bound pyridine complexes might be accessible for the latter system. This publication details the syntheses and a preliminary survey of ligand-centered reactivity for pyridine complexes of the form $MoTp(NO)(DMAP)(C_1C_2\eta^2$ -pyridine). The ultimate goal of this study is to develop new synthetic routes from pyridines to functionalized tetrahydropyridines (THPs) via a sequence of molybdenum-directed addition reactions (Scheme 1). These THPs could serve as useful precursors for novel piperidinebased drug candidates. 20,21 However, given that MoTp(NO)-(DMAP)(η^2 -benzene) is substantially less stable ($t_{1/2} \sim 30$ s in solution at 25 °C) than the analogous tungsten complex ($t_{1/2}$ $\sim 1 \text{ h}$), it was uncertain whether such dihapto-coordinate molybdenum pyridine complexes, with this or any other second-row metal, would be amenable to isolation and subsequent organic transformations.

Scheme 1. Synthesis of Tetrahydropyridines from Pyridine via Metal-Promoted Dearomatization

RESULTS

Since nitrogen coordination could preempt the desired dihapto-coordination, various pyridines, in which either the 2-position or nitrogen was substituted, were tested as possible ligands for $\{MoTp(NO)(DMAP)\}$ (Figure 1). Owing to the ability of sodium to reduce organic pyridines, Mo(0) pyridine

Received: January 23, 2020 Published: March 27, 2020

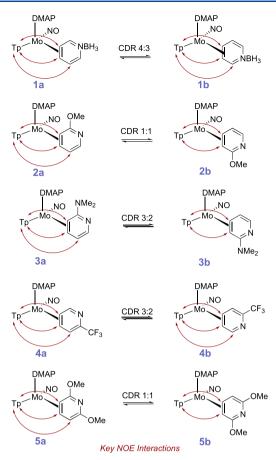
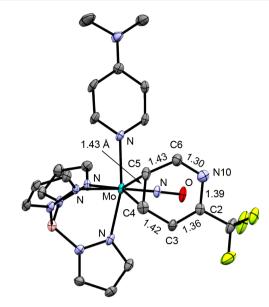



Figure 1. η^2 -Molybdenum pyridine complexes in equilibrium coordination diastereomer ratio (cdr) and assignment of stereochemistry via NOE interactions.

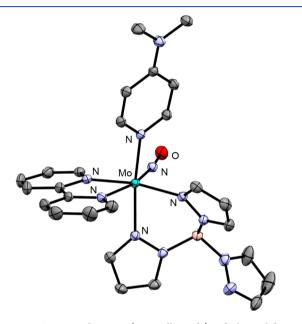
complexes cannot be formed cleanly via direct reduction of MoTp(NO)(DMAP)I in a pyridine solution. Instead, the precursor complex $MoTp(NO)(DMAP)(\eta^2-PhCF_3)$ was first prepared²⁵ (30 g scale) and then allowed to undergo ligand exchange in a THF solution of pyridine borane (1a/1b), 2methoxypyridine (2a/2b), 2-(dimethylamino)pyridine (3a/ 3b), 2-(trifluoromethyl)pyridine (4a/4b), or 2,6-dimethoxypyridine (5a/5b). Complexes 1-5 are all formed as a thermodynamic mixture of coordination diastereomers (Figure 1), differing by which face of the prochiral ligand is coordinated. All compounds were prepared cleanly with coordination diastereomer ratios (cdr) ranging from 1:1 to 3:2, with the exception of the pyridine-borane complex.²⁶ Coordination stereo- and regiochemistry was determined by 1D and 2D ¹H NMR techniques. The protons attached to the metal-bound carbons are significantly more shielded than those in the free ligand due to the influence of the metal. Protons H4 and H5 in complex 4a, for example, have upfield signals at 3.68 and 3.11 ppm, respectively. Furthermore, these protons have characteristic NOE correlations with a proton of the Tp pyrazole ring trans to the NO. A third NOE correlation is also sometimes present with the "allylic" pyridine proton, away from the DMAP ligand, and a pyrazole ring proton trans to the DMAP (complexes 1a-5a; 1b, 4b). These NOESY data, in conjunction with COSY correlations, allowed unambiguous assignment of relative stereochemistries for 1-5.15

An ORTEP diagram is provided for the SC-XRD for complex 4a (Figure 2), which confirms coordination across C4

Figure 2. ORTEP of the solid-state structure for the trifluoropicoline complex **4a**, showing significant dearomatization. Only one of the two chemically equivalent but crystallographically distinct units are shown. Hydrogen atoms omitted for clarity.

and C5. The C4–C5 bond length has been increased to an average of 1.43 Å (cf. 1.40 (CC), 1.34 (CN) free ligand, Å). Further, expanded C3–C4 (1.42 Å) and C2–N (1.39 Å) bonds and contracted C2–C3 (1.36 Å) and N–C6 (1.30 Å) bonds indicate significant dearomatization.

Cyclic voltammograms of complexes 1–5 revealed $E_{\rm p,a}$ values in the range of +0.08 V to -0.45 V (Table 1). As


Table 1. Cyclic Voltammetry and IR Data for Neutral Molybdenum Pyridine Complexes^a

compound	$E_{\rm p,a}$ (V)	$ u_{ m NO}~({ m cm}^{-1})$
5	-0.38	1567
3	-0.45	1573
2	-0.27	1577
4	+0.08	1584
1	+0.05	1607
6	+0.53	1601
7	+0.44	1591
8	+0.83	1623
a V, NHE @ 100 mV/s in CH ₃ CN.		

anticipated, complexes with more electron-rich pyridine ligands (e.g., 2, 3, 5) have lower $E_{\rm p,a}$ values and are more readily oxidized. Conversely, the NO stretching frequencies are higher for the more electron-deficient pyridine complexes (e.g., 1, 4), indicating these ligands are more π -acidic. In cases where comparative data are available, each of these $E_{\rm p,a}$'s was found to be several hundred millivolts more negative than for the analogous tungsten complexes, 16,27 which indicates that the molybdenum complexes are significantly more sensitive to oxidation. This observation is consistent with the trend noted previously with the related η^2 -PhCF₃ and η^2 -napthalene complexes of these metals. 15,25,28

Several other pyridines were also screened, including unsubstituted pyridine, 2-picoline, 3-picoline, 4-picoline, 2-ethylpyridine, and 2-isopropylpyridine, all of which coordinated through nitrogen, as evidenced by a chemically reversible

couple around $E_{1/2} = -0.9 \text{ V.}^{27}$ Of note, the reaction of bipy (2,2'-bipyridine) and MoTp(NO)(DMAP)($\eta^2\text{-PhCF}_3$) produces a complex (28) that differs significantly in appearance (deep magenta) from the other pyridine complexes (1–5, yellow-orange). Electrochemical data indicate a complex that is more reducing ($E_{\rm p,a} = -0.42 \text{ V}$, NHE), and H NMR data fail to show any upfield ring-protons. These data suggest a complex in which both the bipy and the Tp are bound $\kappa^2\text{-N,N}$. This structure was confirmed by SC-XRD (28; Figure 3). Inspection of the unit cell packing for 28 does not reveal any H-bonding or π stacking interactions that could stabilize the uncoordinated pyrazole ring.

Figure 3. ORTEP diagram (50% ellipsoids) of the solid state structure determination of $Mo(\kappa^2\text{-Tp})(NO)(\kappa^2\text{-bpy})$ (28). Solvent molecules, H atoms, and noncoordinating bpy omitted for clarity.

Attempted exchanges of MoTp(NO)(DMAP)(η^2 -PhCF₃) with pyridinium triflate and methylpyridinum triflate were unsuccessful, leading only to oxidation. 2-Chloropyridine, 2-fluoropyridine, and 2-hydroxypyridine also resulted in apparent oxidation of the molybdenum, as evidenced by lack of 1 H NMR signals, as well as cyclic voltammetric data inconsistent with either η^2 or κ N coordination.

Initial investigations of the reactivity of the dihaptocoordinate pyridine complexes focused on protonation. These molybdenum complexes are highly susceptible to acid oxidation, 29 and thus strong acid and low temperatures are required to ensure complete and irreversible protonation at nitrogen. Once protonated in this manner, the Mo(I)/Mo(0) reduction potential is shifted dramatically positive (vide infra), minimizing the chance of metal oxidation. Thus, the complexes of 2-methoxypyridine, 2-(dimethylamino)pyridine, 2-(trifluoromethyl)pyridine, and 2,6-dimethoxypyridine protonate at nitrogen using 0.25 M HOTf in MeCN at −30 °C, as shown in Scheme 2 to yield 6, 7, 8, and 9N, respectively. Attempts to protonate at ambient temperature resulted in immediate oxidation of the metal. Cyclic voltammetry of these N-protonated complexes revealed $E_{\rm p,a}$ values shifted significantly positive (~800 mV) from those of the neutral precursors (see Table 1). In addition to protonation at nitrogen (9N), the 2,6-dimethoxypyridine complex was found

Scheme 2. Nitrogen and Carbon Protonation of Pyridine Complexes

to protonate at carbon to produce complex 9C, analogous to the chemistry of the related tungsten system. 27 A set of diastereotopic methylene protons with a coupling constant of 22.5 Hz was evident in the ¹H NMR spectrum of 9C. The ratio of carbon protonation to nitrogen protonation in the precipitated solid was 3:1. Significantly, all of the protonated complexes (6-9) could be isolated as single coordination diastereomers, and recovered in moderate yield (30-50%) through selective precipitation. To the extent that this selectivity involves isomerization, 30 we believe the process likely occurs through the action of an undefined base, which yields the deprotonated form of the η^2 -pyridinium complex (Scheme 3), where backbonding interactions are weaker. Whether the face-flip occurs through a sigma complex or oxidative addition intermediate, weaker backbonding in the neutral complex is expected to facilitate this isomerization.³¹ Subsequent reactions of these protonated complexes with nucleophiles (e.g., NaCN, MeMgBr, lithium dimethylmalonate) returned only starting material or deprotonated product.

Complexes 2–4 could also be methylated using MeOTf in MeCN (complex 5 was oxidized under these conditions), but once in their methylated forms, interconversion of diastereomers was not thermally accessible, owing to the significantly enhanced backbonding interaction between the molybdenum and η^2 -pyridinium ligand (Scheme 3). Further, separation by chromatography or solubility differences was unsuccessful, making these derivatives impractical for organic modifications.

Fortuitously, it was discovered that stirring the *neutral* 2-(trifluoromethyl)pyridine complex 4 in MeCN for 2 h permits facile isolation of a single coordination diastereomer (4a) in 70% percent yield. In this case, the driving force for the isomerization is the lower solubility of 4a compared to 4b in acetonitrile. Once 4a is isolated in solid form (SICKUS

Scheme 3. Intramolecular Face-Flip Isomerization for η^2 -Pyridinium Complexes^a

 $^{a}6-8$; R = H; R' = OMe, NMe₂, CF₃.

method),³² it is reintroduced into solution containing methyl triflate. Methylation occurs rapidly, pre-empting the reformation of the 4a/4b equilibrium. The electron-withdrawing trifluoromethyl substituent also appeared to make the complex more resistant to oxidation than the analogues bearing electron-donating groups. Thus, this complex was selected as a model for more thorough exploration of organic reactivity (Scheme 4). Treatment of solid 4a with MeOTf predissolved

Scheme 4. Synthesis of a Single Coordination Diastereomer via Solid-State Induced Control of Kinetically Unstable Isomer (SICKUS) Method³²

in MeCN results in quantitative *N*-methylation to form complex **10**. Once methylated, isomerization is no longer an issue on the time scale of organic reactions, with no change in the coordination diastereomer ratio observed by ¹H NMR after 24 h at 25 °C in MeCN.

Complex 10 was then subjected to a range of nucleophiles to effect the formation of dihydropyridine complexes (Scheme 5). The reactions were conducted at room temperature using hydride, organomagnesium, and organozinc reagents, among others. In every case, addition was found to take place stereoselectively *anti* to the metal at C6. The details of some of these organic reactions have been disclosed separately. Remarkably, these include cases of amine and alkoxy additions to C6 of pyridine. ORTEP diagrams of the solid-state structures for 20 and 21 are provided in Figure 4, showing the addition *anti* to metal coordination.

Scheme 5. Nucleophilic Additions to the Methylpyridinium $Complex^a$

"(a) KBH₄, MeOH (11); (b) BrCH₂CHCH₂, Zn, THF (12); (c) BrCH₂CO₂Et, Zn, THF (13); (d) MeMgBr, THF (14); (e) PhMgBr, THF (15); (f) 3,4-(methylenedioxy)PhMgBr, THF (16); (g) BnMgBr, THF (17, 18); (h) NaCN, MeCN (19); (i) NBu₄OH, MeOH (20); (j) piperidine (21) (yields average ~60%; see ref 33).

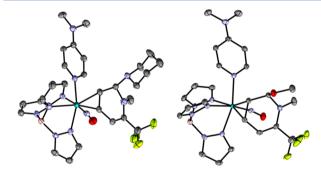


Figure 4. ORTEP diagrams of methoxy (20) and piperidine (21) additions to pyridinium complex 10. Hydrogen atoms are omitted for clarity, as is a noncoordinating piperidine molecule in 21.

Subsequently, the hydride addition product 11 was carried on to further reactions in hopes of finding conditions to perform addition across the remaining uncoordinated double bond (Scheme 1). Treatment of the η^2 -dienamine 11 with 0.25 M HOTf in MeCN resulted in oxidation of the metal, even at −40 °C. Attempted protonation with 0.25 M HOTf in MeOH gave an unexpected product, which was ultimately determined to be the ring-opened cation 22A, which isomerizes over a period of hours to 22B (Scheme 6). A single crystal of 22B was analyzed by XRD, and the solid-state structure is shown in Figure 5. C2-C3, C3-C4, and C4-C5 bond lengths of the azatriene ligand are all close to 1.4 Å, indicating significant delocalization (cf. for benzene 1.39 Å), which could be attributed to significant π backbonding of the molybdenum into the iminium group. Compound 22B can be deprotonated with NEt₃ to yield the neutral complex 23B. Alternatively, 22A can immediately be deprotonated to form 23A. All attempts to convert 11 into a tetrahydropyridine product via protonation were ultimately preempted by either oxidation of the Mo(0) or the ring-opening of 11H to form 22B (Scheme 6).

We questioned whether the CF₃ group played an important role in the ring-opening of the methylated dihydropyridinium

Scheme 6. Ring-Opening of a Dihydropyridine Complex^a

^aTriflate anions omitted.

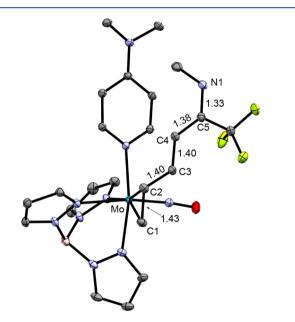


Figure 5. ORTEP of ring-opened-complex 22B. The solvent, triflate anion, and H atoms have been omitted for clarity.

ligand of 11H. To get at this issue, the 2-methoxypyridine complex 2b was first methylated to form the pyridinium salt 24, then this complex was reduced with LAH in DME. Gratifyingly, reduction of the oxonium was immediately followed by elimination of methanol and a further reduction to the parent methyldihydropyridine complex 25. Parenthetically, 24 can also be hydrolyzed to the 1-methyl-2-pyridone complex 29. Complex 25 was found to be extraordinarily susceptible to oxidation at the metal as the π -donation from the nitrogen into the diene is expected to shift the Mo(I)/ Mo(0) reduction potential negative ($E_{p,a} = -0.23 \text{ V}$). In contrast to the nitrogen protonation observed for 11, protonation of 25 is driven by the π -donation from the ringnitrogen into the C5=C6 bond (i.e., an enamine; Scheme 7). This reaction provides a rare example of a dihapto-coordinated 2,5-dihydropyridinium complex 26.

Scheme 7. Preparation of the 1-Methyldihydropyridine Complex 25 and Its Nitrogen-Directed Protonation to Make an η^2 -2,5-Dihydropyridinium Complex $(26)^a$

^aORTEP diagrams rendered at 50% probability.

Finally, efforts were made to separate a dihydropyridine from the metal center. It was found that the free organics could be obtained in good yield (70–90%) via oxidative decomplexation by treating the dihydropyridine complexes with $FeCp_2PF_6$ or I_2 in acetone. To demonstrate the utility of these molecules in organic synthesis, several were allowed to undergo a Diels–Alder reaction with various dienophiles. The details for the syntheses of these molecules have been published previously.³⁴

DISCUSSION

In contrast to the tungsten analogue, $\{TpW(NO)(PMe_3)\}$, the molybdenum core is less π -basic, resulting in substantial chemical differences. Molybdenum η^2 complexes undergo exchange and isomerization much more readily; for example, while $TpW(NO)(PMe_3)(3,4-\eta^2$ -pyridine) converts to its κN isomer with a half-life of 78 min at 22 °C, 27 the corresponding molybdenum complex completely isomerizes within seconds at the same temperature, as determined by cyclic voltammetry. The $E_{\rm p,a}$ values for molybdenum η^2 -pyridine and arene complexes are consistently about 0.4 V more negative than those of tungsten, 16,27 signaling increased susceptibility to oxidation. Though such differences give rise to distinct challenges in the molybdenum system, there are several advantages as well. The oxidative decomplexation of the final organic products proceeds under milder conditions (O2 or I₂), resulting in increased functional group tolerance (functional groups susceptible to oxidants) and higher yields. Processes that rely upon isomerization, such as conversion to a

single coordination diastereomer, proceed more quickly, as exploited in the synthesis of the 2-(trifluoromethyl)pyridine complex (4).

Synthesizing complexes of η^2 -azatrienes such as 22 or 23 directly from the conjugated ligand would be difficult, given the many potential binding sites and stereochemistries. The pyridine ring-opening encountered is reminiscent of the Zincke–König reaction, in which highly activated pyridinium salts react with secondary amines to produce, after hydrolysis, 5-amino-2,4-pentadienals. So called "Zincke aldehydes" have been widely used in organic synthesis and their literature has been reviewed. Whereas in the Zincke–König reaction, the amine plays a key role as a π -donor (Figure 6),

Figure 6. Comparison of molybdenum ring-opening to the Zincke-König reaction and a related tungsten reaction.

in the case of the conversion of 11 to 22B, the molybdenum itself plays this key role. Thus, an azatriene is formed, lacking the more traditional "push-pull" architecture. In this regard, the mechanism of pyridine ring scission (Scheme 6) is relevant to the hydrodenitrogenation process, which often involves molybdenum on a solid support. 40,41 Wolczanski et al. have reported the ring scission of dihapto-coordinated pyridines forming a binuclear niobium complex, 41,42 and more recently, a report from our own group demonstrated the formation of η^2 cyanine and η^2 -merocyanine complexes by treatment of WTp(NO)(PMe₃)(η^2 -N-acetylpyridinium) with certain nucleophiles. 19 Here it appears that both the O donor and the tungsten are needed to effect ring-cleavage. Returning to molybdenum, the trifluoromethyl substituent on pyridine appears to play a key role in the ring-opening reaction as well. The parent methyldihydropyridine complex was prepared as a control and subjected to HOTf/MeOH, but in this case, without an EWG on either the nitrogen or adjacent ringcarbon, ring scission is not facilitated and only a 2,5dihydropyridinium complex resulted (26). Unfortunately, when ring-opening does occur, it is irreversible and precludes further modification of the dihapto-coordinate ligand, as treatment with nucleophiles (MeMgBr, NaCN, NaBH3CN) only results in deprotonation.

CONCLUSION

Molybdenum can successfully form a range of dihapto-coordinate pyridine complexes, which are stable enough to isolate and utilize for subsequent organic reactions. Although the tetrahydropyridines initially sought were inaccessible with the system that was probed, molybdenum-promoted dearomatization was successful in selectively yielding functionalized 1,2-dihydropyridines, which are useful for an array of organic transformations, as exemplified by the synthesis of isoquinuclidines via Diels—Alder chemistry (vide supra). It has also been demonstrated that a single enantiomer of the 2-(trifluoromethyl)pyridine complex may be synthesized, ultimately resulting in enantiopure organic products. Thus, dihapto-coordinate molybdenum chemistry presents a novel way of preparing compounds with potential applications in medicinal chemistry.³³

EXPERIMENTAL SECTION

General Methods. NMR spectra were obtained on a 600 or 800 MHz spectrometer (22-25 °C). All chemical shifts are reported in ppm, and proton and carbon shifts are referenced to tetramethylsilane (TMS) utilizing residual ¹H or ¹³C signals of the deuterated solvents as an internal standard. Coupling constants (J) are reported in hertz (Hz). Infrared spectra (IR) were recorded as a glaze on a spectrometer fitted with a horizontal attenuated total reflectance (HATR) accessory or on a diamond anvil ATR assembly. Electrochemical experiments were performed under a nitrogen atmosphere. Cyclic voltammetry data were taken at ambient temperature (22-25 °C) at 100 mV/s in a standard three-electrode cell with a glassy carbon working electrode, N,N-dimethylacetamide (DMA) or acetonitrile (MeCN) solvent, and tetrabutylammonium hexafluorophosphate (TBAH) electrolyte (approximately 0.5 M). All potentials are reported versus NHE (normal hydrogen electrode) using cobaltocenium hexafluorophosphate ($E_{1/2} = -0.78$ V), ferrocene $(E_{1/2} = +0.55 \text{ V})$, or decamethylferrocene $(E_{1/2} = +0.04 \text{ V})$ as an internal standard. The peak-to-peak separation was less than 100 mV for all reversible couples. Unless otherwise noted, all synthetic reactions were performed in a glovebox under a dry nitrogen atmosphere. Deuterated solvents were used as received. Pyrazole (Pz) protons of the (trispyrazolyl)borate (Tp) ligand were uniquely assigned (e.g., "Pz3B") using a combination of two-dimensional NMR data and 4-(dimethylamino)pyridine-proton NOE interactions. When unambiguous assignments were not possible, Tp protons were labeled as "Pz3/5 or Pz4". All J values for Pz protons are 2 (±0.2) Hz. BH ¹H NMR peaks (around 4-5 ppm) are not identified due to their quadrupole broadening; IR data are used to confirm the presence of a BH group (around 2500 cm⁻¹). Compounds 4 and 10-18 have previously been reported.3-

Synthesis of MoTp(NO)(DMAP)(4,5- η^2 -pyridine-borane) (1). To a 50 mL round-bottom flask charged with a stir egg was added $MoTp(NO)(DMAP)(\eta^2-PhCF_3)$ (2.04 g, 3.36 mmol), followed by pyridine-borane complex (3.10 g, 33.4 mmol) and THF (6.0 mL). This orange mixture was stirred for 3.25 h. The resulting violet solution was added slowly to stirring Et₂O (150 mL). The resulting precipitate was then isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (3 × 25 mL), and desiccated to yield an orange solid, 1 (1.32 g, 58.9%). CV (DMAc) $E_{\rm p,a}$ = +0.05 V (NHE). IR: $\nu_{\rm NO}$ = 1607 cm^{-1} . Two coordination diastereomers. A:B = 4:3 ¹H NMR (acetone- d_6 , δ): A 8.30 (broad, 1H, H2), 8.06 (d, 1H, PzC5), 8.02 (d, 1H, PzA3), 7.96 (d, 1H, PzA5), 7.90 (d, 1H, PzB5), 7.80 (broad s, 2H, DMAP A), 7.62 (d, 1H, PzC3), 7.02 (d, 1H, PzB3), 6.87 (t, J = 6.3 Hz, 1H, H5), 6.77 (d, J = 7.1 Hz, 1H, H6), 6.72 (broad s, 2H, DMAP B), 6.40 (t, 1H, PzC4), 6.38 (t, 1H, PzA4), 6.15 (t, 1H, PzB4), 3.63 (dd, $J_{H4} = 6.3$ Hz, $J_{H2} = 7.1$ Hz, 1H, H3), 3.27 (t, J = 6.3, 1H, H4) 3.10 (s, 6H, DMAP Me). B 8.54 (broad d, 1H, H2), 8.08 (d, 1H, PzC5), 7.98 (d, 1H, PzA5), 7.91 (d, 1H, PzB5), 7.83 (d, 1H, PzA3), 7.80 (broad s, 2H, DMAP A), 7.54 (d, 1H, PzC3), 6.94 (d,

1H, PzB3), 6.75 (d, J = 7.1 Hz, 1H, H6), 6.72 (broad s, 2H, DMAP B), 6.50 (dd, J = 7.1 Hz, 6.3 Hz, 1H, H5), 6.44 (t, 1H, PzA4), 6.41 (t, 1H, PzC4), 6.15 (t, 1H, PzB4), 3.80 (t, J = 6.3, 1H, H4), 3.10 (s, 6H, DMAP Me), 3.06 (dd, J = 6.3 Hz, 6.0 Hz, 1H, H3). ¹³C NMR (acetone- d_6 , δ): A 166.6 (C2), 155.1 (DMAP C), 150.4 (DMAP A), 142.3 (Pz3), 141.6 (Pz3), 141.4 (Pz3), 137.2 (Pz5), 136.7 (Pz5), 135.9 (Pz5), 127.7 (C5), 127.0 (C6), 108.4 (DMAP B), 106.8 (Pz4), 106.5 (Pz4), 106.2 (Pz4), 74.3 (C4), 72.7 (C3), 38.9 (DMAP Me). B 167.7 (C2), 155.1 (DMAP C), 150.4 (DMAP A), 144.2 (PzA3), 142.4 (PzB3), 141.0 (PzC3), 137.8 (PzC5), 136.6 (PzA5), 135.2 (PzB5), 127.9 (C5), 127.4 (C6), 108.1 (DMAP B), 106.3 (PzC4), 106.2 (PzA4), 106.1 (PzB4), 77.0 (C4), 70.4 (C3), 38.9 (DMAP Me) Calculated for C₂₁H₂₈B₂MoN₁₀O: C, 45.52; H, 5.09; N, 25.28. Found: C, 45.17; H, 5.13; N, 24.59.

Synthesis of MoTp(NO)(DMAP)(3,4- η^2 -2-methoxypyridine) (2). To a 50 mL round-bottom flask charged with a stir egg was added $MoTp(NO)(DMAP)(\eta^2-PhCF_3)$ (4.03 g, 6.64 mmol), followed by 2methoxypyridine (8.30 g, 76.1 mmol) and THF (36.0 mL). This orange mixture was stirred for 4 h. The resulting heterogeneous golden brown mixture was added slowly to stirring Et₂O (300 mL). The resulting precipitate was then isolated on a 60 mL fine porosity fritted disc, washed with Et₂O (4 \times 30 mL), and desiccated to yield a yellow solid, 2 (3.00 g, 79.2%). CV (DMAc) $E_{p,a} = -0.27 \text{ V (NHE)}$. IR: $\nu_{\rm NO} = 1577~{\rm cm}^{-1}$. Two coordination diastereomers. A:B = 4:3 $^{1}{\rm H}$ NMR (acetone- d_6 , δ): 8.03 (d, 1H, Pz3/5), 8.00 (d, 1H, Pz3/5), 7.92 (d, 1H, Pz3/5), 7.87 (d, 1H, Pz3/5), 7.85 (d, 1H, Pz3/5), 7.75 (bs, 4H, DMAP A A/B), 7.51 (d, 1H, Pz3/5), 7.50 (d, 1H, Pz3/5), 6.97 (d, 1H, Pz3/5), 6.95 (d, 1H, Pz3/5), 6.67 (bd, 2H, DMAP B A/B), 6.61 (bd, 2H, DMAP B' A/B), 6.58 (d, J = 6.4 Hz, 1H, H6A), 6.56 (d, I = 6.4 Hz, 1H, H6B), 6.37 (m, 2H, Pz4), 6.33 (t, 1H, Pz4), 6.26(t, 1H, Pz4), 6.24 (m, 1H, H5A), 6.13 (t, 1H, Pz4), 6.12 (t, 1H, Pz4), 5.85 (m, 1H, H5B), 3.79 (s, 3H, H7B), 3.65 (dd, J = 8.8 Hz, 5.5 Hz, 1H, H4B), 3.62 (s, 3H, H7A), 3.28 (d, J = 8.8 Hz, 1H, H3A), 3.23(dd, J = 8.8 Hz, 5.5 Hz, 1H, H4A), 3.08 (s, 6H, DMAP Me B), 3.07(s, 6H, DMAP Me A), 2.96 (d, J = 8.8 Hz, 1H, H3B). ¹³C NMR $(CDCl_3, \delta)$: 171.4 (C2B), 170.7 (C2A), 153.9 $(DMAP \ C \ B)$, 153.8 (DMAP C A), 150.7 (broad, DMAP A A), 150.1 (DMAP A B), 144.0 (Pz3/5), 142.2 (Pz3/5), 142.1 (Pz3/5), 141.9 (Pz3/5), 140.2 (Pz3/ 5), 139.9 (Pz3/5), 138.7 (Pz3/5), 136.4 (Pz3/5), 136.3 (Pz3/5), 136.0 (Pz3/5), 135.9 (Pz3/5), 134.7 (Pz3/5), 128.4 (C6A), 128.0 (C6B), 118.2 (C5A), 117.3 (C5B), 107.4 (DMAP B B), 107.4 (DMAP B A), 105.9 (Pz4), 105.8 (Pz4), 105.6 (Pz4), 105.5 (Pz4), 105.4 (Pz4), 105.2 (Pz4), 77.2 (C4B), 75.4 (C4A), 65.0 (C3A), 62.4 (C3B), 52.4 (C7A), 52.1 (C7B), 39.3 (DMAP Me). Calculated for C₂₂H₂₇BMoN₁₀O₂: C, 46.33; H, 4.77; N, 24.56. Found: C, 46.23; H, 4.93; N, 24.27. HRMS: $C_{22}H_{27}N_{10}O_2BMo + H^+ obsd$ (%), calcd (%), ppm: 567.1613 (45), 567.1556 (54), 10.0; 569.1550 (66), 569.1553 (49), -0.5; 570.1533 (88), 570.1552 (81), -3.4; 571.1549 (100), 571.1547 (86), 0.4; 572.1552 (87), 572.1560 (74), -1.3; 573.1544 (92), 573.1546 (100), -0.4; 574.1537 (40), 574.1575 (34), -6.6; 575.1546 (30), 575.1566 (39), -3.4.

Synthesis of MoTp(NO)(DMAP)(3,4- η^2 -2-(dimethylamino)pyridine) (3). To a 4-dram vial charged with a stir pea was added MoTp(NO)(DMAP)(η^2 -PhCF₃) (2.14 g, 3.52 mmol), followed by 2-(dimethylamino)pyridine (3.10 g, 25.4 mmol) and THF (10.0 mL). This orange mixture was stirred for 16 h. The resulting heterogeneous mixture was filtered through a 30 mL fine porosity fritted disc. The isolated solid was washed with Et₂O (4 \times 15 mL) and desiccated to yield a yellow solid, 3 (1.58 g, 76.9%). CV (MeCN) $E_{\rm p,a}=-0.45$ V (NHE). IR: $\nu_{\rm NO}=1573$ cm $^{-1}$. Two coordination diastereomers. **A:B** = 3:2 ¹H NMR (acetone- d_6 , δ , + 5 °C): A 8.18 (d, 1H, PzC5), 8.15 (d, J = 6.7 Hz, 1H, DMAP A), 8.02 (d, 1H, PzA5), 7.92 (d, 1H, PzA5)PzA3), 7.84 (d, 1H, PzB5), 7.63 (d, 1H, PzC3), 7.09 (d, J = 6.7 Hz, 1H, DMAP A'), 6.81 (d, 1H, PzB3), 6.75 (dd, J = 6.7 Hz, 2.7 Hz, 1H, DMAP B), 6.67 (d, J = 6.4 Hz, 1H, H6), 6.43 (dd, J = 6.7 Hz, 2.7 Hz, 1H, DMAP B'), 6.37 (t, 1H, PzC4), 6.33 (t, 1H, PzA4), 6.09 (t, 1H, PzB4), 5.99 (dd, J = 6.4 Hz, 5.3 Hz, 1H, H5), 3.55 (d, J = 9.2 Hz, 1H, H3), 3.34 (dd, J = 9.2 Hz, 5.3 Hz, 1H, H4), 3.07 (s, 6H, DMAP Me), 2.61 (broad s, 6H, H7). B 8.02 (d, 1H, Pz3/5), 7.93 (d, 1H, Pz3/5), 7.90 (broad s, 2H, DMAP A), 7.82 (d, 1H, Pz3/5), 7.63 (d, 1H, Pz3/

5), 7.45 (d, 1H, Pz3/5), 6.87 (d, 1H, Pz3/5), 6.68 (broad s, 2H, DMAP B), 6.66 (d, J = 6.4 Hz, 1H, H6), 6.38 (t, 1H, Pz4), 6.26 (t, 1H, Pz4), 6.08 (t, 1H, Pz4), 5.63 (dd, J = 6.4 Hz, 5.3 Hz, 1H, H5), 3.67 (dd, *J* = 9.2 Hz, 5.3 Hz, 1H, H4), 3.08 (s, 6H, DMAP Me), 2.97 (d, J = 9.2 Hz, 1H, H3), 2.88 (s, 6H, H7). ¹³C NMR (DCM- d_2 , δ , 0 °C): A 166.5 (C2), 154.3 (DMAP C), 151.6 (DMAP A), 149.9 (DMAP A'), 142.2 (Pz3/5), 142.0 (Pz3/5), 141.0 (Pz3/5), 137.0 (Pz3/5), 136.4 (Pz3/5), 135.1 (Pz3/5), 131.4 (C6), 111.3 (C5), 107.5 (DMAP B'), 106.8 (DMAP B), 106.1 (Pz4), 105.9 (Pz4), 105.8 (Pz4), 75.8 (C4), 62.3 (C3), 39.5 (DMAP Me), 36.8 (broad, C7). B 167.2 (C2), 154.3 (DMAP C), 150.0 (broad, DMAP A), 143.0 (Pz3/ 5), 142.0 (Pz3/5), 140.4 (Pz3/5), 136.7 (Pz3/5), 136.6 (Pz3/5), 135.3 (Pz3/5), 130.1 (C6), 110.2 (C5), 107.7 (DMAP B), 106.4 (Pz4), 106.0 (Pz4), 105.7 (Pz4), 77.8 (C4), 60.7 (C3), 39.5 (DMAP Me), 37.4 (C7). Calculated for C₂₃H₃₀BMoN₁₁O·1/4 C₄H₁₀O: C, 47.89; H, 5.44; N, 25.60. Found: C, 47.36; H, 5.19; N, 25.24.

Synthesis of MoTp(NO)(DMAP)(3,4- η^2 -2,6-dimethoxypyridine) (5). To a 4-dram vial charged with a stir pea was added $MoTp(NO)(DMAP)(\eta^2-PhCF_3)$ (1.01 g, 1.66 mmol), followed by 2,6-dimethoxypyridine (2.04 g, 14.66 mmol) and THF (10.0 mL). This heterogeneous mixture was stirred for 3.5 h. The resulting brown heterogeneous mixture was added slowly to stirring Et₂O (100 mL). The resulting precipitate was isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (4×20 mL), and desiccated to yield a yellow solid, **5** (0.784 g, 78.6%). CV (MeCN) $E_{\rm p,a} = -0.38$ V (NHE). IR: $\nu_{\rm NO} = 1567$ cm⁻¹. Two coordination diastereomers. **A:B** = 1:1 1 H NMR (DCM- d_2 , δ_1 + 5 °C): A 8.10 (d, 1H, PzA3), 7.83 (d, 1H, PzA5), 7.82 (d, 1H, PzC5), 7.73 (bs, 2H, DMAP A), 7.69 (d, 1H, PzB5), 7.33 (d, 1H, PzC3), 6.95 (d, 1H, PzB3), 6.48 (bs, 2H, DMAP B), 6.32 (t, 1H, PzA4), 6.26 (t, 1H, PzC4), 6.05 (t, 1H, PzB4), 5.46 (d, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, 1H, H5), 3.75 (s, 3H, H7), 3.74 (s, 3H, H8), 3.42 (dd, J = 5.8 Hz, H8), 3.42 (dd, JJ = 8.8 Hz, 5.8 Hz, 1H, H4), 3.16 (d, J = 8.8 Hz, 1H, H3), 3.01 (s,6H, DMAP Me). B 7.81 (d, 1H, PzC5), 7.80 (d, 1H, PzA3), 7.78 (d, 1H, PzA5), 7.73 (bs, 2H, DMAP A), 7.70 (d, 1H, PzB5), 7.29 (d, 1H, PzC3), 6.95 (d, 1H, PzB3), 6.41 (d, J = 5.9 Hz, 2H, DMAP B), 6.27 (t, 1H, PzC4), 6.26 (t, 1H, PzA4), 6.05 (t, 1H, PzB4), 5.09 (d, J = 5.7)Hz, 1H, H5), 3.89 (s, 3H, H7), 3.73 (s, 3H, H8), 3.71 (dd, J = 8.8 Hz, 5.7 Hz, 1H, H4), 3.01 (s, 6H, DMAP Me), 2.93 (d, J = 8.8 Hz, 1H, H3). ¹³C NMR (DCM- d_2 , δ , + 5 °C): A 172.0 (C2), 154.4 (DMAP C), 154.2 (C6), 150.0 (DMAP A), 142.2 (PzB3), 141.1 (PzA3), 140.8 (PzC3), 136.8 (PzA5), 136.4 (PzC5), 135.2 (PzB5), 107.9 (DMAP B), 106.3 (PzA4), 105.9 (PzC4), 105.8 (PzB4), 89.2 (C5), 77.7 (C4), 62.0 (C3), 54.9 (C7), 52.5 (C8), 39.5 (DMAP Me). B 172.4 (C2), 154.7 (DMAP C), 154.0 (C6), 150.8 (DMAP A), 145.5 (PzA3), 142.1 (PzB3), 140.7 (PzC3), 136.8 (PzA5), 136.4 (PzC5), 135.3 (PzB5), 107.1 (DMAP B), 106.3 (PzA4), 105.8 (PzC4), 105.4 (PzB4), 89.0 (C5), 81.0 (C4), 59.2 (C3), 52.9 (C7), 55.0 (C8), 39.5 (DMAP Me). Calculated for C₂₃H₂₉BMoN₁₀O₃: C, 46.02; H, 4.87; N, 23.33. Found: C, 46.28; H, 5.03; N, 23.04.

Synthesis of $[MoTp(NO)(DMAP)(3,4-\eta^2-2-methoxypyridi$ nium)]+ (OTf) (6). To a 4-dram vial charged with a stir pea was added 2 (508 mg, 0.891 mmol), followed by MeCN (5.0 mL). This mixture was cooled at -30 °C for 15 min. Next, a 1 M solution of HOTf/MeCN (1.8 mL, 1.8 mmol) at -30 °C was added to the reaction mixture with stirring, and the resulting yellow mixture was allowed to sit at -30 °C for 15 min. After 15 min, the resulting yellow solution was added slowly to stirring Et₂O (200 mL). The resulting precipitate was isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (4 \times 10 mL), and desiccated to yield a yellow solid, 6 (600 mg, 93.5%). CV (MeCN) $E_{\rm p,a} = +0.53$ V (NHE). IR: $\nu_{\rm NO} = 1601$ cm⁻¹. ¹H NMR (acetone- $d_{\rm e}$, δ): 11.10 (bs, 1H, H1), 8.15 (d, 1H, PzC5), 8.10 (d, 1H, PzA5), 7.94 (d, 1H, PzB5), 7.80 (bs, 2H, DMAP A), 7.77 (d, 1H, PzC3), 7.62 (d, 1H, PzA3), 7.03 (d, 1H, PzB3), 6.75 (bs, 2H, DMAP B), 6.50 (t, 1H, PzC4), 6.45 (t, 1H, PzA4), 6.42 (m, 1H, H6), 6.31 (m, 1H, H5), 6.18 (t, 1H, PzB4), 4.17 (dd, J = 8.5 Hz, 4.5 Hz, 1H, H4), 3.80 (s, 3H, H7), 3.14 (s, 6H, DMAP Me), 2.92 (d, J=8.5 Hz, 1H, H3). ¹³C NMR (acetone- d_6 , δ): 175.9 (C2), 155.6 (DMAP C), 150.4 (DMAP A), 143.8 (PzA3), 143.2 (PzB3), 142.0 (PzC3), 138.6 (PzC5), 138.5 (PzA5), 136.8 (PzB5), 120.8 (C6), 114.2 (C5), 108.9 (DMAP B), 107.8 (PzC4), 107.5 (PzA4), 106.9

(PzB4), 78.2 (C4), 57.9 (C7), 56.1 (C3), 39.2 (DMAP Me). Calculated for $C_{23}H_{28}BF_3MoN_{10}O_5S$: C, 38.35; H, 3.92; N, 19.44. Found: C, 38.62; H, 4.02; N, 19.52. HRMS: $C_{22}H_{28}N_{10}O_2BMo^+$ obsd (%), calcd (%), ppm: 567.1544 (40), 567.1556 (54), -2.2; 569.1545 (64), 569.1553 (49), -1.4; 570.1541 (96),570.1552 (81), -2.0; 571.1561 (89), 571.1547 (86), 2.5; 572.1544 (100), 572.1560 (74), -2.7; 573.1549 (77), 573.1546 (100), 0.5; 574.1586 (40), 574.1575 (34), 2.0; 575.1566(31), 575.1566 (39), 0.0.

Synthesis of [MoTp(NO)(DMAP)(3,4- η^2 -2-(dimethylamino)pyridinium)]+ (OTf) (7). To a 4-dram vial charged with a stir pea was added 3 (500 mg, 0.857 mmol), followed by MeCN (1.2 mL). This mixture was cooled at -30 °C for 15 min. Next, a 1 M solution of HOTf/MeCN (1.4 mL, 1.4 mmol) at -30 °C was added to the reaction mixture with stirring, and the resulting yellow mixture was allowed to sit at -30 °C for 5 min. After 5 min, the resulting yellow solution was added dropwise to stirring Et₂O (175 mL). The resulting precipitate was isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (4 \times 20 mL), and desiccated to yield a yellow solid, 7 (577 mg, 91.8%). CV (MeCN) $E_{\rm p,a}$ = +0.44 V (NHE). IR: $\nu_{\rm NO}$ = 1591 cm⁻¹. ¹H NMR (acetone- d_6 , δ): 9.61 (s, 1H, H1), 8.14 (d, 1H, DMAP A), 8.11 (d, 1H, PzC5), 8.00 (d, 1H, PzA3), 7.98 (d, 1H, PzA5), 7.89 (d, 1H, PzB5), 7.84 (d, 1H, PzC3), 7.16 (d, 1H, DMAP A'), 7.02 (d, 1H, PzB3), 7.01 (dd, 1H, DMAP B), 6.53 (dd, 1H, DMAP B'), 6.45 (t, 1H, PzC4), 6.38 (t, 1H, PzA4), 6.30 (t, 1H, H5), 6.28 (t, 1H, H6), 6.16 (t, 1H, PzB4), 3.40 (d, 1H, H3), 3.30 (s, 3H, H8), 3.23 (dd, 1H, H4), 3.11 (s, 6H, DMAP Me), 2.61 (s, 3H, H7). ¹³C NMR (acetone- d_6 , δ): 164.8 (C2), 155.8 (DMAP C), 151.1 (DMAP A), 150.4 (DMAP A'), 143.0 (PzA3), 142.8 (PzB3), 142.2 (PzC3), 138.3 (PzC5), 137.6 (PzA5), 136.3 (PzB5),115.5 (C5), 115.4 (C6), 109.1 (DMAP B), 108.9 (DMAP B'), 107.5 (PzC4), 106.9 (PzA4), 106.8 (PzB4), 71.8 (C4), 57.2 (C3), 39.3 (DMAP Me), 38.9 (C8), 38.7 (C7). Calculated for C₂₄H₃₁BF₃MoN₁₁O₄S: C, 39.30; H, 4.26; N, 21.01. Found: C, 38.88; H, 4.33; N, 20.59.

Synthesis of [MoTp(NO)(DMAP)(4,5-\eta^2-2-(trifluoromethyl)-pyridinium)]⁺ (**OTf) (8).** To a 4-dram vial charged with a stir pea was added 4A (500 mg, 0.822 mmol), followed a 0.25 M solution of HOTf/MeCN (8.0 mL, 2.0 mmol) at -30 °C. The resulting mixture was stirred briefly and then allowed to sit at -30 °C for 5 min. After 5 min, the resulting solution was added dropwise to stirring Et₂O (175 mL). The resulting precipitate was isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (4 × 20 mL), and desiccated to yield a magenta solid, 8 (540 mg, 86.6%). CV (MeCN) $E_{\rm p,a}$ = +0.83 V (NHE). IR: $\nu_{\rm NO}$ = 1623 cm⁻¹. ¹H NMR (acetone- d_6 , δ): 8.40 (d, 1H, H6), 8.04 (d, 1H, PzC5), 7.96 (d, 1H, PzA5), 7.86 (d, 1H, PzB5), 7.68 (broad s, 2H, DMAP A), 7.67 (d, 1H, PzA3), 7.54 (d, 1H, PzC3), 7.43 (d, 1H, H3), 7.10 (d, 1H, PzB3), 6.61 (d, 2H, DMAP B), 6.44 (t, 1H, PzC4), 6.40 (t, 1H, PzA4), 6.16 (t, 1H, PzB4), 3.90 (t, 1H, H5), 3.43 (t, 1H, H4), 3.03 (s, 6H, DMAP Me). Efforts to purify compound resulted in deprotonation.

Synthesis of [MoTp(NO)(DMAP)(3,4- η^2 -2,6-dimethoxypyridinium)] $^+$ (OTf) (9N and 9C). To a -30 °C solution of 5 (100 mg, 0.17 mmol) and MeCN (2.0 mL) was added a -30 °C, 1 M solution of HOTf/MeCN (0.7 mL, 0.7 mmol). The resulting orange solution was left at $-30~^{\circ}\text{C}$ for 15 min, and subsequently added dropwise to stirring Et₂O (100 mL), yielding a bright orange precipitate. The precipitate was isolated on a 15 mL fine porosity fritted disc, washed with Et₂O (3 × 15 mL), and desiccated to yield 9 (40 mg, 32%). CV (DMAc) $E_{\rm p,a}$ = +0.98 V (NHE). IR: $\nu_{\rm NO}$ = 1615 cm⁻¹. ¹H NMR (acetone- d_6 , δ): CV (DMAc) $E_{\rm p,a}$ = +0.98 V (NHE). IR: ν (C-H) = 2954 cm⁻¹, ν (B-H) = 2511 cm⁻¹, ν (NO) = 1615 cm⁻¹. ¹H NMR (acetone- d_6 , δ): 9.93 (1H, bs, N-H 9N), 8.01 (1H, d, Pz3/5 9N), 7.99 (1H, d, Pz3/5 9N), 7.98 (1H, d, Pz5A 9C), 7.93 (1H, d, Pz5C 9C), 7.82 (1H, d, Pz5B 9C), 7.74 (1H, d, Pz3C 9C), 7.73 (2H, buried bs, DMAP-A 9C and 9N), 7.58 (1H, d, Pz3/5 9N), 7.57 (1H, d, Pz3/5 9N), 7.35 (1H, d, Pz3A 9C), 7.15 (1H, d, Pz3B 9C), 6.98 (1H, d, Pz3/5 9N), 6.83 (2H, m, DMAPB 9N), 6.66 (2H, bs, DMAP-B 9C), 6.44 (1H, t, Pz4C 9C), 6.41 (1H, t, Pz4A 9C), 6.17 (1H, t, Pz4B 9C), 6.13 (1H, t, Pz4 9N), 5.34 (1H, d, J = 5.8, H5 9N), 4.22 (3H, s, OMe 9C), 4.20 (3H, s, OMe 9C), 4.11 (1H, t, J = 6.8, H4 9N), 4.04 (1H, dd, J = 22.5, 8.4, H5' 9C), 3.84 (3H, s, OMe 9N),

3.73 (1H t, J = 7.9, H4 9C), 3.49 (3H, s, OMe 9N), 3.47 (1H, dt, J = 22.5, 1.3, H5 9C), 3.03 (6H, s, NMe 9N), 3.02 (6H, s, NMe 9C), 2.94 (1H, dd, J = 7.9, 1.3, H3 9C) 2.81 (1H, d, J = 8.3, H3 9N). ¹³C NMR (acetone- d_6 , δ): 191.9 (CO), 186.7 (CO), 155.6 (DMAP-C), 149.9 (2C, DMAP-A), 144.8 (Pz3A), 143.1 (Pz3B), 141.9 (Pz3C), 138.7 (Pz5A/5C), 138.3 (Pz5A/5C), 137.4 (Pz5B), 109.5 (2C, DMAP-B), 107.9 (Pz4A/4C), 107.6 (Pz4A/4C), 107.3 (Pz4B), 71.3 (C4), 58.8 (OMe), 58.4 (OMe), 57.0 (C3), 39.4 (DMAPMe), 33.4 (C5). HRMS: C23H30N10O3BMo⁺ obsd (%), calcd (%), ppm: 597.1692 (50), 597.1662 (54), 5.0; 599.1664 (55), 599.1659 (49), 0.8; 600.1662 (88), 600.1658 (81), 0.6; 601.1654 (93), 601.1653 (86), 0.2; 602.1664 (87), 602.1666 (75), -0.3; 603.1664 (100), 603.1652 (100), 1.9; 604.1700 (41), 604.1681 (35), 3.2; 605.1690 (41), 605.1672 (39), 3.0.

Synthesis of MoTp(NO)(DMAP)(4,5- η^2 -2-(trifluoromethyl)-6cyano-N-methyldihydropyridine) (19). Compound 10 (375 mg, 0.486 mmol) and MeOH (2.0 mL) were combined in a 4 dram vial containing a stir pea. NaCN (83 mg, 1.69 mmol) was added to the resulting solution, and the reaction mixture was stirred for 30 min, during which time solid precipitated. The solid was isolated on a 15 mL fine porosity fritted funnel, and washed with H₂O (3 mL) followed by MeOH (3 × 1.0 mL). The solid was desiccated to yield **19** as a pale orange solid (181 mg, 57%). $E_{\rm p,a}$ = +0.34 V (NHE). IR: $\nu_{\rm NO}$ = 1579 cm⁻¹. ¹H NMR (acetonitrile- d_3 , δ): 7.88 (d, 1H, PzC5), 7.84 (d, 1H, PzA5), 7.83 (broad s/buried, 2H, DMAP A), 7.83 (d, 1H, PzA3), 7.76 (d, 1H, PzB5), 7.63 (d, 1H, PzC3), 7.15 (d, 1H, PzB3), 6.64 (d, 2H, DMAP B), 6.34 (d, I = 6.7 Hz, 1H, H3), 6.33 (t, 1H, PzC4), 6.30 (t, 1H, PzA4), 6.14 (t, 1H, PzB4), 4.06 (d, J = 1.5Hz, 1H, H6), 3.05 (s, 3H, H7), 3.02 (s, 6H, DMAP Me), 3.01 (dd, J =8.7 Hz, 1.5 Hz, 1H, H5), 2.41 (dd, J = 8.7 Hz, 6.7 Hz, 1H, H4). ¹³C NMR (acetonitrile- d_3 , δ): 155.4 (DMAP C), 150.6 (DMAP A), 144.5 (PzA3), 142.6 (PzB3), 142.2 (PzC3), 138.0 (PzC5), 137.1 (PzA5), 136.4 (PzB5), 123.7 (q, J = 270 Hz, CF3), 123.0 (q, J = 29.6 Hz, C2), 121.7 (CN), 115.0 (q, J = 6.6 Hz, C3), 109.2 (DMAP B), 107.1 (PzC4), 106.9 (PzA4), 106.9 (PzB4), 76.7 (C5), 56.6 (C6), 54.7 (C4), 39.4 (DMAP Me), 38.4 (C7). Efforts to purify compound resulted in decomposition 10. SC-XRD was carried out for this compound (SI).

Synthesis of MoTp(NO)(DMAP)(4,5- η^2 -2-(trifluoromethyl)-6methoxy-N-methyldihydropyridine) (20). Compound 10 (372 mg, 0.482 mmol) was dissolved in MeOH (0.5 mL) in a 4 dram vial. A 1.0 M solution of NEt₄OH in MeOH (0.5 mL) was added to the resulting solution. The reaction mixture was allowed to sit for 30 min, resulting in the precipitation of yellow crystals. The crystals were isolated on a 15 mL fine porosity fritted funnel, rinsed with Et₂O (5 mL) and desiccated to yield 20 as a yellow solid (142 mg, 22%). $E_{\rm p,a}$ = +0.13 V (NHE). IR: $\nu_{NO} = 1577 \text{ cm}^{-1}$. ¹H NMR (acetonitrile- d_3 , δ): 7.99 (broad s, 2H, DMAP A), 7.87 (d, 1H, PzC5), 7.86 (d, 1H, PzA3), 7.82 (d, 1H, PzA5), 7.76 (d, 1H, PzB5), 7.57 (d, 1H, PzC3), 7.20 (d, 1H, PzB3), 6.64 (d, 2H, DMAP B), 6.32 (t, 1H, PzC4), 6.28 (t, 1H, PzA4), 6.17 (d, J = 6.4 Hz, 1H, H3), 6.14 (t, 1H, PzB4), 4.46(d, J = 1.5 Hz, 1H, H6), 3.26 (s, 3H, H7), 3.17 (s, 3H, H8), 3.01 (s, H8)6H, DMAP Me), 2.94 (dd, *J* = 9.2 Hz, 1.5 Hz, 1H, H5), 2.48 (dd, *J* = 9.2 Hz, 6.4 Hz, 1H, H4). 13 C NMR (acetonitrile- d_3 , δ): 155.0 (DMAP C), 151.1 (DMAP A), 144.0 (PzA3), 142.3 (PzB3), 141.7 (PzC3), 137.8 (PzC5), 136.9 (PzA5), 136.2 (PzB5), 124.3 (CF3, J_{CF} = 270.1 Hz), 123.8 (C2, J_{CF} = 28.5 Hz), 113.0 (C3, J_{CF} = 6.3 Hz), 109.0 (DMAP B), 107.1 (PzC4), 106.7 (PzA4), 106.7 (PzB4), 95.6 (C6), 77.1 (C5), 59.3 (C4), 52.7 (C8), 39.6 (C7), 39.4 (DMAP Me). Efforts to purify compound resulted in elimination to reform 10. Single crystal grown and analyzed by XRD.

Synthesis of MoTp(NO)(DMAP)(3,4- η^2 -2-(trifluoromethyl)-6-(piperidin-1-yl)-N-methyldihydropyridine) (21). Compound 10 (102 mg, 0.132 mmol) and piperidine (110 mg, 1.29 mmol) were added to a 4 dram vial. Within minutes, yellow crystals began to precipitate from solution. After 30 min, added a 1.0 M solution of potassium t-butoxide in 2-propanol (0.14 mL). Isolated the crystals on a 15 mL fine porosity fritted funnel. Desiccated the collected material to yield 21 as a yellow solid (93 mg, 41%). $E_{\rm p,a} = +0.12$ V (NHE). IR: $\nu_{\rm NO} = 1576$ cm⁻¹. ¹H NMR (acetonitrile- d_3 , δ): 8.03

(broad s, 2H, DMAP A), 7.87 (d, 1H, PzC5), 7.86 (d, 1H, PzA3), 7.81 (d, 1H, PzA5), 7.76 (d, 1H, PzB5), 7.54 (d, 1H, PzC3), 7.20 (d, 1H, PzB3), 6.63 (d, 2H, DMAP B), 6.34 (t, 1H, PzC4), 6.27 (t, 1H, PzA4), 6.13 (t, 1H, PzB4), 5.89 (d, J = 6.4 Hz, 1H, H3), 4.04 (d, J = 1.0 Hz, 1H, H6), 3.16 (s, 3H, H7), 3.00 (s, 6H, DMAP Me), 2.76 (broad t, 2H, H8), 2.74 (dd, J = 9.6 Hz, 1.0 Hz, 1H, H5), 2.47 (dd, J = 9.6 Hz, 6.4 Hz, 1H, H4), 2.41 (broad t, 2H, H8'), 1.44 (m, 4H, H9), 1.39 (m, 2H, H10). ¹³C NMR (acetonitrile- d_3 , δ): 155.1 (DMAP C), 151.0 (DMAP A), 143.7 (PzA3), 142.4 (PzB3), 141.6 (PzC3), 137.8 (PzC5), 137.0 (PzA5), 136.4 (PzB5), 126.6 (q, J = 29.7 Hz, C2), 124.2 (q, J = 270 Hz, CF3), 110.6 (q, J = 6.5 Hz, C3), 108.9 (DMAP B), 83.8 (C6), 74.1 (C5), 60.3 (C4), 49.6 (C8), 40.4 (C7), 39.4 (DMAP Me), 27.3 (C9), 26.0 (C10). Efforts to purify compound resulted in elimination to reform 10. SC-XRD was carried out for this compound (SI).

Synthesis of Ring-Opened Compound 22B. To a 4-dram vial charged with a stir pea, added 11 (114 mg, 0.183 mmol) followed by a 0.25 M solution of HOTf/MeOH (0.90 mL, 0.22 mmol), resulting in an immediate color change from yellow to vibrant orange. The resulting solution was allowed to stir 5 min, and subsequently added dropwise to stirring Et₂O (50 mL). The precipitate was isolated on a 15 mL fine porosity fritted disc, washed with Et₂O (3 × 5 mL), and desiccated to yield a vermilion solid, 22, as a mixture of isomers (56 mg, 38.3%). Nearly exclusively the "B" isomer can be isolated by letting the reaction mixture stir for 24 h before precipitation. CV (DMAc) $E_{\rm p,a} = +0.70 \text{ V}$ (NHE). IR: $\nu_{\rm NO} = 1627 \text{ cm}^{-1}$. ¹H NMR (MeOD- d_4 , δ): A 8.06 (d, 1H, PzC5), 8.02 (d, 1H, PzA5), 8.00 (very broad s, 2H, DMAP A), 7.96 (d, 1H, PzC3), 7.87 (d, 1H, PzB5), 7.47 (d, 1H, PzA3), 7.24 (t, 1H, H4), 7.10 (d, 1H, PzB3), 6.61 (broad s, 2H, DMAP B), 6.51 (t, 1H, PzC4), 6.41 (t, 1H, PzA4), 6.20 (t, 1H, PzB4), 5.28 (d, 1H, H3), 4.35 (ddd, 1H, H5), 3.81 (dd, 1H, H6a), 3.53 (dd, 1H, H6b), 3.05 (broad s, 6H, DMAP Me), 2.83 (s, 3H, H7). B 8.10 (d, 1H, PzC3), 8.00 (d, 1H, PzC5), 7.89 (broad s, 2H, DMAP A), 7.86 (d, 1H, PzA5), 7.81 (d, 1H, PzB5), 7.81 (d, 1H, PzA3), 7.53 (d, 1H, PzB3), 7.28 (t, 1H, H4), 6.70 (d, 2H, DMAP B), 6.47 (t, 1H, PzC4), 6.35 (t, 1H, PzA4), 6.19 (t, 1H, PzB4), 5.09 (d, 1H, H3), 4.98 (ddd, 1H, H5), 3.39 (dd, 1H, H6b), 3.07 (s, 6H, DMAP Me), 2.96 (dd, 1H, H6a), 2.59 (s, 3H, H7). ¹³C NMR (MeOD- d_4 , δ): A 162.7 (C4), 155.9 (DMAP C), 150.8 (broad, DMAP A), 149.4 (q, J = 32.0 Hz, C2), 145.3 (PzA3), 144.0 (PzB3), 142.5 (PzC3), 139.6 (PzC5), 138.6 (PzA5), 137.3 (PzB5), 121.8 (q, J = 270 Hz, CF3), 109.0 (DMAP A), 108.2 (PzC4), 108.7 (PzA4), 107.3 (PzB4), 101.7 (C3), 95.0 (C5), 75.4 (C6), 39.3 (DMAP Me), 30.8 (C7). B 161.0 (C4), 155.5 (DMAP C), 151.0 (broad, DMAP A), 148.7 (q, J = 32.4 Hz, C2), 144.5 (PzA3), 143.5 (PzB3), 143.5 (PzC3), 138.7 (PzC5), 137.5 (PzA5), 137.2 (PzB5), 121.0 (q, J = 275) Hz, CF3), 109.1 (DMAP A), 107.8 (PzC4), 107.7 (PzA4), 107.5 (PzB4), 99.1 (C3), 94.8 (C5), 73.4 (C6), 39.3 (DMAP Me), 30.8 (C7). SC-XRD was carried out for this compound (SI).

Synthesis of Ring-Opened Compound 23A. To a 4-dram vial charged with a stir pea, added 11 (114 mg, 0.183 mmol) followed by a 0.25 M solution of HOTf/MeOH (0.90 mL, 0.22 mmol), resulting in an immediate color change from yellow to vibrant orange. The resulting solution was allowed to stir 5 min, and then triethylamine (50.6 mg, 0.50 mmol) was added. The reaction mixture was stirred for 1 min, and subsequently evaporated. The residue was dissolved in minimal DCM and added dropwise to stirring Et₂O (25 mL). The precipitate was isolated on a 15 mL fine porosity fritted disc, washed with Et₂O (3 \times 5 mL), and desiccated to yield an orange solid, 23A, (35 mg, 31%). $E_{\rm p,a} = +0.42$ V (NHE). ¹H NMR (acetonitrile- d_3 , δ): 7.91 (d, 1H, PzC5), 7.88 (d, 1H, PzA5), 7.81 (d, 1H, PzB5), 7.61 (d, 1H, PzA3), 7.59 (broad s, 2H, DMAP A), 7.58 (d, 1H, PzC3), 7.09 (d, 1H, PzB3), 6.86 (m, 1H, H4), 6.51 (d, 2H, DMAP B), 6.34 (t, 1H, PzC4), 6.27 (t, 1H, PzA4), 6.15 (t, 1H, PzB4), 5.48 (d, 1H, H3), 3.16 (s, 3H, H7), 2.98 (s, 6H, DMAP Me), 2.89 (dd, 1H, H5), 2.69 (dd, 1H, H6a), 2.69 (dd, 1H, H6b). ¹³C NMR (acetonitrile- d_3 , δ): 157.1 (C4), 155.3 (C2, $J_{CF} = 30.1 \text{ Hz}$), 155.2 (DMAP C), 151.3 (DMAP A), 143.7 (PzA3), 143.1 (PzB3), 141.7 (PzC3), 138.0 (PzA5), 137.8 (PzC5), 136.7 (PzB5), 122.0 (CF₃, $J_{CF} = 278$ Hz) 108.5 (DMAP B), 107.3 (PzC4), 107.1 (PzB4), 106.9 (PzA4), 106.6

(C3), 73.3 (C5), 66.2 (C6), 39.5 (DMAP Me), 38.1 (C7). Attempts to purify by column chromatography were unsuccessful.

Synthesis of [MoTp(NO)(DMAP)(3,4- η^2 -2-methoxy-N-methylpyridinium)]⁺ (OTf) (24). To a 4-dram vial was added 2 (1.0 g, 1.7 mmol), CH₃CN (5 mL), and MeOTf (400 mg, 2.44 mmol). This orange mixture was left sitting at room temperature for 10 min, yielding a dark red solution. This solution was added to stirring Et₂O (100 mL) to yield a red precipitate, which was then isolated on a 30 mL fine porosity fritted disc, washed with Et₂O (3 × 30 mL), and desiccated to yield the dark orange product 24 (1.72 g, 89% yield). CV (DMAc) $E_{\rm p,a} = +0.79$ V (NHE). IR: $\nu({\rm C-H}) = 3105$ cm⁻¹, $\nu({\rm B-H}) = 2484$ cm⁻¹, $\nu({\rm NO}) = 1596$ cm⁻¹. Product isolated as a 3:1 A:B ratio. ¹H NMR (acetone- d_6 , δ): 8.27 (1H, d, J = 7.3, DMAP-A B), 8.16 (1H, d, Pz5C A), 8.15 (1H, d, Pz5A A), 8.13 (1H, d, Pz3/5 B), 8.20 (1H, d, Pz3/5 B), 7.96 (1H, d, Pz3/5 B), 7.94 (1H, d, Pz3/5 B), 7.93 (1H, d, Pz5B A), 7.79 (2H, bs, DMAP-B A), 7.74 (1H, d, Pz3C A), 7.65 (1H, d, Pz3A A), 7.28 (1H, d, J = 7.3, DMAP A B), 7.09 (1H, d, Pz3B B), 7.02 (1H, bs, DMAP-B B), 7.00 (1H, d, Pz3B A), 6.75 (2H, bs, DMAP-B A), 6.61 (1H, bs, DMAP-B B), 6.51 (1H, t, Pz4C A), 6.49 (1H, t, Pz4A A), 6.48 (1H, t, Pz4 B), 6.43 (1H, d, J = 7.2, H6 A), 6.34 (1H, t, I = 6.3, H5 A), 6.39 (1H, t, Pz4 B), 6.18 (1H, t, Pz4 B), 6.17 (1H, t, Pz4B A), 4.21 (1H, dd, *J* = 8.6, 6.3, H4 A), 3.75 (3H, s, NMe A), 3.69 (1H, d, J = 8.6, H3 B), 3.54 (1H, dd, J = 8.6, 5.8, H4 B), 3.50 (3H, s, OMe A), 3.12 (6H, s, NMe A), 3.00 (1H, d, J = 8.6, H3 A). ¹³C NMR (acetone- d_6 , δ) A: 175.7 (OMe), 155.89 (DMAP-C), 150.5 (2C, DMAP-A), 143.9 (Pz3A), 143.2(Pz3B), 142.1 (Pz3C), 138.9 (Pz5A/5C), 138.6 (Pz5A/5C), 136.9 (Pz5B), 120.9 (C5/C6),120.8 (C5/C6), 109.1 (2C, DMAP-B), 108.1 (Pz4A/ 4C), 107.9 (Pz4A/4C), 106.9 (Pz4B),78.1 (C4), 58.5 (OMe), 55.9 (C3), 39.3 (DMAP-Me), 37.3 (NMe). B (signals are too small for unambiguous assignment): 175.6, 155.9, 150.2, 143.0, 142.5, 138.5, 137.8, 136.5, 121.5, 121.2, 108.9, 107.7, 107.0, 106.9, 76.7, 66.1, 58.3, 56.4, 39.3, 29.8, 15.6. HRMS: $C_{23}H_{30}N_{10}O_2BMo^+$ obsd (%), calcd (%), ppm: 581.1728 (49), 581.1713 (54), 2.6; 583.1713 (48), 583.1710 (49), 0.6; 584.1723 (75), 584.1709 (81), 2.4; 585.1716 (85), 585.1704 (86), 2.1; 586.1716 (73), 586.1716 (74), -0.1; 587.1721 (100), 587.1703 (100), 3.0; 588.1724 (32), 588.1731 (34), -1.3; 589.1738 (39), 589.1723 (39), 2.6.

Synthesis of MoTp(NO)(DMAP)(3,4- η^2 -N-methyldihydropyridine) (25). To a solution of 24 (500 mg, 0.679 mmol) and dimethoxyethane (5 mL) was added lithium aluminum hydride (LAH) (75 mg, 1.97 mmol). The resulting dark red solution was then stirred at room temperature for 5 min. This solution was then added to stirring H₂O (30 mL) in a 50 mL round-bottom flask, yielding a green precipitate. This mixture was stirred at room temperature for 20 h. The resulting yellow precipitate was isolated on a 30 mL medium porosity fritted disc, washed with H_2O (3 × 20 mL) and hexanes (3 × 20 mL) (Note: do not stir the precipitate with washing solvent, just wash through), and dried in vacuo 1 h. This precipitate was then triturated in stirring hexanes (20 mL) for 20 h, and the resulting precipitate was isolated on a 15 mL fine porosity fritted disc, washed with hexanes (3 x10 mL), and desiccated to yield 26 (360 mg, 95% mass recovery). CV (DMAc) $E_{\rm p,a}=-0.23$ V (NHE). IR: $\nu({\rm C-H})=2922~{\rm cm^{-1}},~\nu({\rm B-H})=2468~{\rm cm^{-1}},~\nu({\rm NO})=1566~{\rm cm^{-1}}.$ Product isolated as a 4:1 A:B ratio. ¹H NMR (acetone- d_6 , δ): 7.95 (1H, d, Pz3A A), 7.90 (1H, d, Pz5A/C A), 7.88 (2H, buried bs, DMAP-A A), 7.85 (1H, d, Pz5A/C A), 7.77 (1H, d, Pz5B A), 7.49 (1H, d, Pz3C A), 7.04 (1H, d, Pz3B A), 6.66 (2H, m, DMAP-B B), 6.58 (2H, m, DMAP-B A), 6.30 (2H, t, Pz4A and C A), 6.28 (1H, t, Pz4 B), 6.24 (1H, t, Pz4 B), 6.12 (1H, t, Pz4 B), 6.11 (1H, t, Pz4B A), 5.50 (1H, d, J = 7.4, H6 A), 5.44 (1H, d, J = 7.4, H6 B), 5.06 (1H, ddd, J = 7.4, 4.6, and 0.9, H5 B), 4.75 (1H, ddd, J = 7.4, 4.6, and 0.9, H5 A), 3.81 (1H dd, J = 10.9 and 2.8, H2 A), 3.61 (1H, dd, J = 10.9 and 5.0, H2' A), 3.05 (6H, s, N-Me A), 2.62 (3H, s, N-Me A), 2.59 (1H, m, H4 A), 2.03 (1H, m, H3 A). ¹³C NMR (acetone- d_6 , δ): A 155.0 (DMAP-C), 151.1 (2C, DMAP-A), 143.5 (Pz3A), 142.0 (Pz3B), 141.3 (Pz3C), 137.1 (Pz5A/C), 136.7 (Pz5A/C), 135.5 (Pz5B), 131.6 (C6), 107.9 (DMAP-B), 106.5 (Pz4A/C), 106.2 (Pz4A/C), 106.1 (Pz4B), 103.6 (C5), 63.5 (C4), 61.7 (C3), 53.9 (C2), 43.2 (NMe), 39.1 (DMAP-Me). HRMS: C₂₂H₂₉N₁₀OBMo+H⁺ obsd (%), calcd

(%), ppm: 553.1769 (36), 553.1764 (54), 1.0; 555.1762 (65), 555.1760 (49), 0.3; 556.1734 (77), 556.1760 (82), -4.6; 557.1730 (92), 557.1754 (86), -4.3; 558.1783 (80), 558.1767 (74), 2.9; 559.1740 (100), 559.1754 (100), 2.4; 560.1814 (46), 560.1782 (34), 5.7; 561.1866 (44), 561.1773 (39), 16.6.

Synthesis of [MoTp(NO)(DMAP)(3,4- η^2 -N-methyldihydropyridinium]⁺ (OTf) (26). 25 (28 mg, 0.050 mmol) and a 0.167 M solution of HOTf in MeOH (0.6 mL) were combined in a 4 dram vial containing a stir pea. The reaction mixture was stirred for 5 min and then added to stirring Et₂O (15 mL). The suspension was stirred for 45 min, and then the suspended solid was isolated on a 15 mL fine porosity fritted funnel. The solid was washed with Et₂O (2 \times 3 mL) and desiccated under a vacuum to yield 27 as a pale yellow solid (33 mg, 93%). CV (MeCN) $E_{\rm p,a}$ = +0.39 V (NHE). IR: $\nu_{\rm NO}$ = 1623 cm⁻¹. ¹H NMR (acetone- d_6 , δ): 8.97 (bs, 1H, H6), 8.00 (d, 1H, Pz3/5), 7.99 (d, 1H, Pz3/5), 7.97 (d, 1H, Pz3/5), 7.95 (bs, 2H, DMAP A), 7.83 (d, 1H, Pz3/5), 7.72 (d, 1H, Pz3/5), 7.25 (d, 1H, Pz3/5), 6.70 (d, 2H, DMAP B), 6.41 (t, 1H, Pz4), 6.38 (t, 1H, Pz4), 6.16 (t, 1H, Pz4), 4.94 (d, J = 17.5 Hz, 1H, H2), 4.67 (d, J = 17.5 Hz, 1H, H2'), 3.97 (s, 3H, H7), 3.92 (bd, J = 22.6 Hz, 1H, H5), 3.45 (bd, J = 22.6Hz, 1H, H5'), 3.06 (s, 3H, H7), 2.55 (dd, J = 10.6 Hz, 6.1 Hz, 1H, H4), 2.14 (dd, J = 10.6 Hz, 4.9 Hz, 1H, H3). ¹³C NMR (acetone- d_{6}) δ): 178.6 (C6), 155.3 (DMAP C), 150.6 (DMAP A), 143.6 (Pz3), 142.3 (Pz3), 141.6 (Pz3), 138.9 (Pz5), 137.7 (Pz5), 136.3 (Pz5), 109.0 (DMAP B), 107.2 (Pz4), 107.1 (Pz4), 106.5 (Pz4), 55.6 (C3), 55.3 (C2), 54.2 (C4), 39.2 (DMAP Me), 33.6 (C5). Attempts to purify by column chromatography were unsuccessful. SC-XRD was carried out for this compound (SI).

Synthesis of $Mo(\kappa^2-Tp)(NO)(\kappa^2-bpy)$ (28). MoTp(NO)- $(DMAP)(\eta^2-PhCF_3)$ (720 mg, 1.18 mmol) and THF (7.0 mL) were combined in a 4 dram vial with stir pea. 2,2'-bipyridyl (2.0 g, 12.8 mmol) was added to the resulting solution. The reaction mixture was allowed to stir for 3 h, becoming vivid magenta in color. The reaction mixture was added dropwise to stirring pentane (50 mL). The precipitated solid was collected on a 15 mL fine porosity fritted funnel, washed with Et₂O (4 \times 10 mL), and desiccated to yield 28 as a magenta solid (709 mg, 89% after accounting for 1/3 equiv bipy impurity). CV (MeCN) $E_{\rm p,a} = -0.42$ V (NHE). ¹H NMR (acetonitrile- d_3 , δ): 8.89 (broad s, 1H), 8.11 (broad, 1H), 7.95 (d, 1H, Pz3/5), 7.91 (m, 1H), 7.79 (d, 1H, Pz3/5), 7.49 (ddd, J = 8.5Hz, 6.9 Hz, 1.5 Hz, 1H), 7.41 (bs, 2H, DMAP A), 7.24 (m, 1H), 7.23 (d, 1H, Pz3/5), 7.02 (d, 1H, Pz3/5), 6.98 (d, 1H, Pz3/5), 6.57 (ddd, J = 6.9 Hz, 6.0 Hz, 1.1 Hz, 1H), 6.47 (d, 2H, DMAP B), 6.39 (m, 2H,Pz4 and Pz3/5), 6.31 (t, 1H, Pz4), 6.11 (m, 2H), 5.93 (t, 1H, Pz4), 2.94 (s, 6H, DMAP Me). Single crystal grown and analyzed by XRD. Highly air-sensitive nature of 28 made bulk purification difficult.

Synthesis of TpMo(NO)(DMAP)(3,4- η^2 -N-methylpyridin-**2(1H)-one)** (29). Compound 24 (1.0 g, 0.0013 mol), DCM (5 mL), and propylamine (1.2 g, 0.020 mol) were added to a 4 dram vial containing a stir pea. This solution was stirred overnight at room temperature (20 h). The resulting green solution was washed with saturated aqueous NaHCO3 (10 mL), and the aqueous layer was back-extracted with DCM (3 × 5 mL). The organic layers were combined and subsequently dried with MgSO₄. The MgSO₄ was removed on a 15 mL medium porosity fritted disc, washed with DCM $(3 \times 5 \text{ mL})$, and the resulting filtrate was evaporated in vacuo to an oil. This oil was then dissolved in DCM (15 mL), and the resulting solution was added to stirring pentane (200 mL), yielding a pale green precipitate. This precipitate was isolated on a 30 mL fine porosity fritted disc, washed with pentane (3 × 10 mL) and desiccated to yield 29 as a pale green solid (728 mg, 98% yield). CV (DMAc) $E_{\rm p,a}$ = +0.08 V (NHE). IR: ν (C-H) = 2927 cm⁻¹, ν (B-H) = 2481 cm⁻¹, $\nu(CO) = 1615 \text{ cm}^{-1}, \nu(NO) = 1579 \text{ cm}^{-1}.$ H NMR (acetone- d_6 , δ): 8.44 (1H, d, Pz5A A), 8.01 (1H, d, Pz3/5 B), 7.99 (1H, d, Pz3/5 B), 7.98 (1H, d, Pz5C A), 7.91 (1H, d, Pz3/5 B), 7.84 (1H, d, Pz5B A), 7.83 (1H, d, Pz3A A), 7.78 (2H, bs, DMAP-A A), 7.71 (3H, d, Pz3/5 and DMAP-A B), 7.60 (1H, d, Pz3C A), 7.51 (1H, d, Pz3/5 B), 7.03 (1H, d, Pz3B A), 7.00 (1H, d, Pz3/5 B), 6.63 (2H, bd, DMAP-B A), 6.51 (2H, bd, DMAP-B B), 6.37 (1H, t, Pz4 B), 6.35 (1H, t, Pz4C A), 6.30 (1H, t, Pz4 B), 6.21 (1H, t, Pz4A A), 6.12 (1H, t, Pz4B A), 6.11

(1H, t, Pz4 B), 6.08 (1H, d, J = 7.5, H6 B), 6.07 (1H, d, J = 7.5, H6 A), 5.73 (1H, t, J = 7.4, H5 B), 5.33 (1H, dd, J = 7.5, 5.4, H5 A), 3.48 (1H, dd, J = 8.6, 5.4, H4 A), 3.29 (3H, s, NMe A), 3.28 (3H, s, NMe B), 3.07 (6H, s, NMe A), 3.05 (6H, s, NMe A), 3.00 (1H, m, H3 B), 2.69 (1H, d, J = 8.6, H3 A), 1.69 (1H, m, H4 B). ¹³C NMR (acetone- d_6 , δ): 173.6 (CO), 155.2 (DMAP-C), 150.5 (DMAP-A), 146.7 (Pz5A), 142.5 (Pz3B), 141.6 (Pz3C), 137.7 (Pz5C), 136.7 (Pz3A/SB), 135.8 (Pz3A/SB), 123.4 (C6), 109.8 (C5), 108.3 (DMAP-B), 106.9 (Pz4C), 106.4 (Pz4B), 105.7 (Pz4A), 75.3 (C4), 62.8 (C3), 39.1 (DMAP-Me), 34.6 (NMe). Highly air-sensitive nature of 29 made purification difficult.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.0c00047.

¹H and ¹³C NMR of all new compounds (PDF)

Accession Codes

CCDC 1975738–1975748 and 1978999 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

W. Dean Harman — Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States; orcid.org/0000-0003-0939-6980; Email: wdh5z@virginia.edu

Authors

Justin H. Wilde — Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States

Jeffery T. Myers — Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States

Diane A. Dickie — Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States;

orcid.org/0000-0003-0939-3309

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.0c00047

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Acknowledgement is made to Dr. Michal Sabat for SC-XRD data collection and also to the National Science Foundation (CHE-1800051) for supporting this work.

REFERENCES

- (1) Liebov, B. K.; Harman, W. D. Group 6 Dihapto-Coordinate Dearomatization Agents for Organic Synthesis. *Chem. Rev.* **2017**, *117*, 13721–13755.
- (2) Wilson, K. B.; Smith, J. A.; Nedzbala, H. S.; Pert, E. K.; Dakermanji, S. J.; Dickie, D. A.; Harman, W. D. Highly Functionalized Cyclohexenes Derived from Benzene: Sequential Tandem Addition Reactions Promoted by Tungsten. *J. Org. Chem.* **2019**, *84*, 6094–6116
- (3) Ding, F.; Harman, W. D. Stereoselective Tandem 1,4-Addition Reactions for Benzenes: A Comparison of Os(II), Re(I), and W(0) Systems. J. Am. Chem. Soc. 2004, 126, 13752–13756.

- (4) Keane, J. M.; Harman, W. D. A New Generation of Pi-Basic Dearomatization Agents. *Organometallics* **2005**, *24*, 1786–1798.
- (5) Goti, A.; Semmelhack, M. F. Direct synthesis of (η 6-arene)-tricarbonylchromium complexes by arene displacement from tricarbonyl(η 5-1-methylpyrrole)chromium(0). *J. Organomet. Chem.* **1994**, 470, C4-C7.
- (6) Davies, S. G.; Shipton, M. R. J. Chem. Soc., Chem. Commun. 1989, 0, 995.
- (7) Davies, S. G.; Shipton, M. R. Preparation of tricarbonyl(η6-pyridine)chromium(0) complexes. *J. Chem. Soc., Perkin Trans.* 1 1991, 1, 501–507.
- (8) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. Pyridine CN Bond Cleavage Mediated by (silox)3Nb (silox = tBu3SiO). *J. Am. Chem. Soc.* 1997, 119, 247–248.
- (9) Cordone, R.; Taube, H. J. Am. Chem. Soc. 1987, 109, 8101.
- (10) Cordone, R.; Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1989, 111, 2896.
- (11) Meiere, S. H.; Brooks, B. C.; Gunnoe, T. B.; Sabat, M.; Harman, W. D. A Promising New Dearomatization Agent: Crystal Structure, Synthesis, and Exchange Reactions of the Versatile Complex TpRe(CO)(1-methylimidazole)(η^2 -benzene) (Tp = Hydridotris(pyrazolyl)borate). Organometallics **2001**, 20, 1038–1040.
- (12) Bonanno, J. B.; Viege, A. S.; Wolczanski, P. T.; Lobkovsky, E. B. *Inorg. Chim. Acta* **2003**, 345, 173.
- (13) Covert, K. J.; Neithamer, D. R.; Zonnevylle, M. C.; LaPointe, R. E.; Schaller, C. P.; Wolczanski, P. T. *Inorg. Chem.* **1991**, *30*, 2493.
- (14) Neithamer, D. R.; Parkanyi, L.; Mitchell, J. F.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 4421.
- (15) Welch, K. D.; Harrison, D. P.; Lis, E. C., Jr.; Liu, W.; Salomon, R. J.; Harman, W. D.; Myers, W. H. Large-Scale Syntheses of Several Synthons to the Dearomatization Agent {TpW(NO)(PMe3)} and Convenient Spectroscopic Tools for Product Analysis. *Organometallics* **2007**, *26*, 2791–2794.
- (16) Harrison, D. P.; Welch, K. D.; Nichols-Nielander, A. C.; Sabat, M.; Myers, W. H.; Harman, W. D. Efficient Synthesis of an η2-Pyridine Complex and a Preliminary Investigation of the Bound Heterocycle's Reactivity. *J. Am. Chem. Soc.* **2008**, *130*, 16844–16845.
- (17) Kosturko, G. W.; Harrison, D. P.; Sabat, M.; Myers, W. H.; Harman, W. D. Selectfluor-Mediated Dialkoxylation of Tungsten η 2-Pyridinium Complexes. *Organometallics* **2009**, *28*, 387–389.
- (18) Harrison, D. P.; Zottig, V. E.; Kosturko, G. W.; Welch, K. D.; Sabat, M.; Myers, W. H.; Harman, W. D. Stereo- and Regioselective Nucleophilic Addition to Dihapto-Coordinated Pyridine Complexes. *Organometallics* **2009**, *28*, 5682–5690.
- (19) Harrison, D. P.; Kosturko, G. W.; Ramdeen, V. M.; Nichols-Nielander, A. C.; Payne, S. J.; Sabat, M.; Myers, W. H.; Harman, W. D. Tungsten-Promoted Pyridine Ring Scission: The Selective Formation of η^2 -Cyanine and η^2 -Merocyanine Complexes and Their Derivatives. *Organometallics* **2010**, *29*, 1909–1915.
- (20) Harrison, D. P.; Sabat, M.; Myers, W. H.; Harman, W. D. Polarization of the Pyridine Ring: Highly Functionalized Piperidines from Tungsten-Pyridine Complex. *J. Am. Chem. Soc.* **2010**, *132*, 17282–17295.
- (21) Harrison, D. P.; Iovan, D. A.; Myers, W. H.; Sabat, M.; Wang, S.; Zottig, V. E.; Harman, W. D. [4+2] Cyclocondensation Reactions of Tungsten—Dihydropyridine Complexes and the Generation of Triand Tetrasubstituted Piperidines. *J. Am. Chem. Soc.* **2011**, *133*, 18378—18387.
- (22) Pienkos, J. A.; Zottig, V. E.; Iovan, D. A.; Li, M.; Harrison, D. P.; Sabat, M.; Salomon, R. J.; Strausberg, L.; Teran, V. A.; Myers, W. H.; Harman, W. D. Friedel-Crafts Ring-Coupling Reactions Promoted by Tungsten Dearomatization Agent. *Organometallics* **2013**, 32, 691–703.
- (23) Zhu, G.; Tanski, J. M.; Churchill, D. G.; Janak, K. E.; Parkin, G. The Reactivity of Mo(PMe₃)₆ towards Heterocyclic Nitrogen Compounds: Transformations Relevant to Hydrodenitrogenation. *J. Am. Chem. Soc.* **2002**, 124, 13658–13659.
- (24) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. M.; Neithamer, D. R.; Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V.

- (Silox)3Nb(η^2 -N,C-4-picoline) as a source of (silox)3Nb: structure of [(silox)3Nb]2(μ - η^2 , η^2 -C₆H₆) (silox = tBu3SiO). *J. Organomet. Chem.* **1999**, 591, 194–203.
- (25) Myers, J. T.; Smith, J. A.; Dakermanji, S. J.; Wilde, J. H.; Wilson, K. B.; Shivokevich, P. J.; Harman, W. D. Molybdenum(0) Dihapto-Coordination of Benzene and Trifluorotoluene: The Stabilizing and Chemo-Directing Influence of a CF3 Group. *J. Am. Chem. Soc.* **2017**, *139*, 11392–11400.
- (26) Spectroscopic evidence for the formation of dihaptocoordinated pyridine-borane was obtained, but this compound could not be cleanly isolated owing to the thermal instability of the complex.
- (27) Delafuente, D. A.; Kosturko, G. W.; Graham, P. M.; Harman, W. H.; Myers, W. H.; Surendranath, Y.; Klet, R. C.; Welch, K. D.; Trindle, C. O.; Sabat, M.; Harman, W. D. Isomerization Dynamics and Control of the η^2/N Equilibrium for Pyridine Complexes. *J. Am. Chem. Soc.* **2007**, 129, 406–416.
- (28) Myers, J. T.; Shivokevich, P. J.; Pienkos, J. A.; Sabat, M.; Myers, W. H.; Harman, W. D. Synthesis of 2-Substituted 1,2-Dihydronaphthalenes and 1,2-Dihydroanthracenes Using a Recyclable Molybdenum Dearomatization Agent. *Organometallics* **2015**, 34, 3648–3657.
- (29) Myers, J. T.; Dakermanji, S. J.; Chastanet, T. R.; Shivokevich, P. J.; Strausberg, L. J.; Sabat, M.; Myers, W. H.; Harman, W. D. 4-(Dimethylamino)pyridine (DMAP) as an Acid-Modulated Donor Ligand for PAH Dearomatization. *Organometallics* **2017**, *36*, 543–555.
- (30) The thermodynamic ratio of complex **6** was determined to be 4:1 (dominant isomer shown).
- (31) Brooks, B. C.; Meiere, S. H.; Friedman, L. A.; Carrig, E. H.; Gunnoe, T. B.; Harman, W. D. Interfacial and Intrafacial Linkage Isomerizations of Rhenium Complexes with Aromatic Molecules. *J. Am. Chem. Soc.* **2001**, *123*, 3541–3550.
- (32) Keane, J. M.; Ding, F.; Sabat, M.; Harman, W. D. Solid-State Induced Control of Kinetically Unstable Stereoisomers. *J. Am. Chem. Soc.* **2004**, *126*, 785–789.
- (33) Wilde, J. H.; Smith, J. A.; Dickie, D. A.; Harman, W. D. Molybdenum-Promoted Synthesis of Isoquinuclidines with Bridgehead CF3 Groups. *J. Am. Chem. Soc.* **2019**, *141*, 18890.
- (34) Wilde, J. H.; Smith, J. A.; Dickie, D. A.; Harman, W. D. Molybdenum-Promoted Synthesis of Isoquinuclidines with Bridgehead CF3 Groups. *J. Am. Chem. Soc.* **2019**, *141*, 18890–18899.
- (35) Zincke, T. Ann. Chim. 1903, 330, 361.
- (36) König, W. J. Prakt. Chem. 1904, 69, 105.
- (37) Pham, H. V.; Martin, D. B. C.; Vanderwal, C. D.; Houk, K. N. The intramolecular Diels—Alder reaction of tryptamine-derived Zincke aldehydes is a stepwise process. *Chemical Science* **2012**, 3, 1650–1655.
- (38) Cheng, W.-C.; Kurth, M. The Zincke reaction. A review. Org. Prep. Proced. Int. 2002, 34, 585-608.
- (39) Vanderwal, C. D. Reactivity and Synthesis Inspired by the Zincke Ring-Opening of Pyridines. *J. Org. Chem.* **2011**, *76*, 9555–9567.
- (40) McIlvried, H. G. Kinetics of the Hydrodenitrification of Pyridine. *Ind. Eng. Chem. Process Dev.* **1971**, *10*, 125–130.
- (41) Smegal, J. A. H. Hydrodenitrification process. US5116484A, 1992.
- (42) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. Pyridine C = N Bond Cleavage Mediated by (silox)₃Nb. *J. Am. Chem. Soc.* **1997**, *119*, 247.