

Introduction
Biology departments are increasingly offering or considering

course work that incorporates hands-on computation (Wilson

Sayres et al., 2018). There are different rationales for courses

that include computation. Perhaps the most obvious rationale is

to teach computational biology, bioinformatics, and/or skills in

working with large datasets. Bioinformatic skills are increasingly

a core component of biology and biology education, and support

students’ job and/or graduate school preparation (Wilson Sayres

et al., 2018). The vast majority of researchers in biology either

use large datasets or could do so with sufficient training, sug-

gesting that general training in effective use of large datasets

is essential for students as well (Barone et al., 2017; Loman &

Watson, 2013). However, even with small datasets, perform-

ing analyses reproducibly and having access to the wide range

of statistical and analytical tools available in scientific comput-

ing languages improves the work of scientists. Thus, in course-

work involving computation, instructors teach particular skills

or tools that are an integral part of the field. An alternate moti-

vation is to incorporate more data and analysis into course

work. Integrating data into courses provides more opportunity

for students to experience the research process, and the ability

to incorporate active learning activities where students recog-

nize biological theories by drawing conclusions from their own

results (Kjelvik & Schultheis, 2019). Another rationale for teach-

ing computational skills is to increase data literacy (Gibson &

Mourad, 2018), which, in addition to enhancing learners’ prepa-

ration for future careers, also better prepares learners to think

critically about societal issues relevant to science and policy

(Cook et al., 2014).

However, there are significant barriers to teaching hands-on com-

putation in biology classrooms (Williams et al., 2017). While

many biologists use computation in their research, relatively

few have explicit training in this area. Fewer still have training

in how to teach computation (Williams et al., 2017). Importantly,

few biologists are housed in a department with the existing exper-

tise or infrastructure for teaching computation (Williams et al.,

2017); thus, there is often less familiarity with options for teaching

computing or recent best practices. Cummings & Temple (2010)

describe the challenges in teaching bioinformatics as “infrastruc-

ture and logistics; instructor knowledge of bioinformatics and

continuing education; and the breadth of bioinformatics, and

the diversity of students and educational objectives.” Williams

et al. (2017) similarly cites faculty training, infrastructure, and

student interest and preparation. Here our goal is to address

issues of infrastructure and logistics, and make recommendations

for faculty practice. We suggest that faculty seeking computa-

tional training consider programs such as Software and Data

Carpentry workshops as well as opportunities offered by

QUBES, NEON, and their own universities. Additionally, we sug-

gest that faculty separately seek training in teaching computa-

tion through programs such as the Software and Data Carpentry

instructor training courses. This article explains options avail-

able for instructors to teach computational course content (col-

lectively referred to here as computing platforms), discusses how

to choose the best computing platform for a course, and describes

effective strategies for teaching coding and data analysis.

An important consideration is that whichever technology an

educator uses to deliver their content supports the educator’s

learning objectives and enhances students’ ability to learn. Every

course has a unique set of learning objectives, and every group

of learners poses a unique set of challenges. Such learning objec-

tives related to computing may range from engaging students in

the value of basic coding skills to building advanced skills and

the ability to self-teach and work independently. An example of

the former might include a freshman introductory biology lab

focusing on data analysis, where students focus on the results

from the data analysis. In contrast, an upper-division course on

research methods may focus more on preparing students for

independent data analysis by emphasizing self-sufficiency in

coding, reproducibility of the research, and software manage-

ment and installation. Additionally, the selected platform needs

to support the type of work the students are doing. In the first

example, students might need to learn to make appropriate plots

to visualize biological data; thus, the platform students work with

needs to have the capacity to display plots. On the other hand,

if a course objective is for students to learn to manage genome-

scale data on a remote server, a platform using a command-line

interface to access a computing cluster may be more appropriate.

Much as a biology laboratory course requires specific labora-

tory equipment, teaching computation requires learners to be

able to access specific software and functions. This may range

from one or a few pieces of software that can be downloaded

from the internet to installation of a computing language and

development environment. For simplicity, the interfaces used by

learners and the instructor should be uniform, as different versions

of software could have different interfaces or commands. Learn-

ers also need a way to compute outside of class — for example,

to do the homework outside class hours. Finally, the computing

platform should allow students to focus on the coursework and

 Amendments from Version 1

We would first like to thank both reviewers for their excellent
suggestions for improvements to our paper. Both reviewers
pointed out the usefulness of nbgrader, and we have added both
nbgrader and OK as examples when we discuss the advantages
of automated grading (in the “Large class sizes” sub-section). In
response to their comments, we have also rephrased and clarified
our discussion of ‘cloud-based’ servers and ‘remote’ servers, so
that those sections can be relevant to teachers who are using any
type of non-local installation, whether it is a local server (such as
university HPC) or a cloud-based server. We also now do a better
job pointing out the overlap between RStudio and JupyterHub.
We have improved our description of how R can be incorporated
into Jupyter notebooks and mentioned that Python and other
languages can be used in RStudio.

In response to comments from Reviewer 1, we have added a
paragraph highlighting some additional example-based exercises
that can be used to reinforce computational concepts and skills.
These exercises could be useful as homework exercises as well
as quiz and test questions. We only highlighted a small number
of useful types of exercises, but we point readers to “Teaching
Tech Together” for a more comprehensive coverage of various
computational exercises.

Overall, the two reviewers’ suggestions will improve the
usefulness of this paper to our readers.

Any further responses from the reviewers can be found at the

end of the article

REVISED

instruction. The learning platform must not interfere with students’

focus on the learning objectives.

Another consideration is the consistency and scaffolding in

selecting tools and/or the larger platform. Gibson & Mourad

(2018) cites the need for “coordinated, sequential development

of data literacy across the biology curriculum”, which suggests

the value of a platform and tools on which students can scaffold

their skills, rather than each course choosing its own tool. For

example, students would likely find it challenging to use R in one

class, Python in another, and a genomics platform such as Galaxy

in another (Wu & Anderson, 1990). Furthermore, switching lan-

guages and platforms (i.e. learning a new skill set) can detract

from time spent on other educational activities when the goal is

not to explicitly teach the language or platform.

Every choice of computing platform comes with costs and ben-

efits. In this article, we will discuss tools and techniques to

facilitate teaching computation in courses with some degree of

programming or data analysis. We explain different comput-

ing platforms with a special eye towards serving diverse sets

of learners, in terms of their motivations, life experiences, and

access to technology. In particular, we will focus on program-

ming languages that are common in biology: R and Python. Lastly,

we review effective pedagogical techniques for helping learners

thrive in a computational classroom.

Choice of computing language
One of the first choices an instructor needs to make when they

plan coursework is what computing language to use. In biology,

R and Python are common languages. Bash, a type of UNIX

command-line language, is commonly used to run software and

automate tasks. There are multiple considerations to take into

account for this choice, including consistency, current status of

research tools, and comfort. Consistency refers to consistency

of the language’s use throughout the curriculum. Switching lan-

guages can be associated with learning loss in novices (Wu &

Anderson, 1990). Therefore, in order to deepen and strengthen

learners’ command of languages, integrating the same language

consistently throughout the curriculum may be helpful. For

example, if an instructor is integrating a computational com-

ponent into a genetics lab, they might check with a colleague

teaching biostatistics or bioinformatics to see what language

they are using.

The current status of research tools is also worth considering.

If the goal of a course is for learners to understand both biology

and computation, the instructor will want to choose a language

with active development of tools for research in that field. For

example, many genomics and phylogenetics tools are written in

Python. On the other hand, more ecological and comparative biol-

ogy tools are written in R. Therefore, the choice of language will

inform the subset of tools available to the instructor and

the learners.

Finally, instructors should consider their own comfort. Teaching

requires fluent and comfortable discussion of concepts and tools.

Instructor knowledge must factor into this. Additionally, commu-

nity resources exist for some languages. For example, QUBES

is a National Science Foundation-sponsored (NSF) project that

publishes lessons and sponsors instructor mentoring groups

in various scientific disciplines. An instructor may feel more

empowered to teach well if there is a strong sense of community

in their language, with pathways to ask for help and access

resources.

It is also worth noting that not all tasks that are computational

necessitate the addition of programming into the curriculum.

For example, tools such as the NSF-sponsored Galaxy project

allow instructors to help learners run bioinformatics and genom-

ics software via a point-and-click internet interface. If the goal

of a course is to demonstrate answering a particular question,

but not to dig too deep into the methodology of how that is done,

this type of interface may be sufficient. Teaching with these

resources is beyond the scope of this article, as the Galaxy web-

site provides extensive resources for teaching, and trainers provide

regular workshops on this tool.

The R language allows inexperienced learners to immediately

work with rectangular (i.e. spreadsheet-style) data in a way

that is engaging. For example, a learner can load data and plot

results within an hour of first opening RStudio. This engagement

is important for learners who are more interested in effectively

working with data than learning to code. We suggest that the

R language immediately supports coding-to-learn with minimal

learning-to-code. In particular, the tidyverse set of packages pro-

vided by RStudio provides convenient, well-supported, and intui-

tive functions for plotting and manipulating data. Bioconductor

(Huber et al., 2015) has a wide variety of packages related to

genomic data, as well as tutorials for this use, while other pack-

ages such as ape (Paradis & Schliep, 2018) provide resources for

specific tasks such as reading and viewing phylogenies, and many

other packages are available with easy-to-follow vignettes.

Python is a general purpose programming language used in

a wide variety of industries and can be adapted to many pur-

poses. For example, the popular data science library Pandas

(McKinney, 2010) can be used to teach foundational data skills

such as managing rectangular data. Python also has a variety

of resources for teaching work with non-spreadsheet data.

BioPython is a library for working with general sequence

datasets at a variety of scales (Cock et al., 2009). More

specialized libraries, such as Poretools (Loman & Quinlan,

2014) (for Nanopore data) or Dendropy (Sukumaran &

Holder, 2010) and ETE3 (Huerta-Cepas et al., 2016) (for

phylogenetic trees), are also available for work in subdisciplines

of biology and bioinformatics.

Depending on the aims of the class, it may be necessary to

choose a supporting language, as well. For example, in contrast

to a coding-to-learn course in which biology students practice

drawing conclusions from data, a course on genomics might

require students to interact with large datasets on a remote server.

Many such servers require a UNIX command line to access.

While this article will focus on R and Python, some instructors

may find that they need additional languages to support student

learning, particularly in advanced disciplines. Furthermore,

while we suggest focusing on a single language for pedagogical

reasons, and highlight R and Python, our goals in choos-

ing a language are (1) to select one that is widely used with

available tools, and (2) has straightforward syntax for novices

(Stefik & Siebert, 2013). We support the philosophy taken by

the Software Carpentry organization of using any language

that meets these goals and provides a platform for learning the

fundamental process of automating data analysis.

Local computing platforms
Local installs on personal computers
Perhaps the most basic computing platform setup is to have

learners install languages and software locally on their own

computers. Local installs may work best in small classes that

focus on the basics of coding, where the goal is for learners

with no prior experience to leave the course self-sufficient to do

computational work. R is easily downloaded and installed from

the R-Project website. RStudio provides a commonly-used inte-

grated development environment (IDE) that allows management

of additional packages and visualization of data and figures.

The Anaconda installation of Python provides the programming

language, as well as the Jupyter notebook environment for

simultaneously viewing code and output, and the ability to run

code in blocks. The Anaconda installation also provides the

conda package manager for installation of additional packages.

Advantages of local installs. Local installs allow learners to

immediately be able to apply their new knowledge of code out-

side the class without additional support. For learners who

are already familiar with their own computers and operating

systems, having students use local installs can bypass some of

the learning curve associated with learning a completely dif-

ferent platform; this also applies for instructors, who often have

limited time to devote to learning a new platform exclusively for

the purpose of teaching a course.

If the software used in class does not require a paid license

or subscription, learners will continue to have access to the

specific tools used in class after the course ends. Teaching learn-

ers with tools that they know they will be able to take away

with them and apply in the future increases learner motiva-

tion to learn these tools, and increases the chance that they

will actually use them in future work (Kember et al., 2008).

Local installs are a solution in particular for smaller institu-

tions that do not have access to remote computing platforms. In

some cases, though setting up a computing platform may be

theoretically possible, it may not be feasible within the con-

straints of resources, time, and IT personnel. Local installs offer

an alternative system that does not typically require extensive

coordination with IT personnel at an institution. Additionally,

local installations avoid the challenges presented by a poor

internet connection and dependency on a single outside

computing platform.

Challenges of local installs and how to overcome them. While

using local installs can minimize time spent learning new plat-

forms, it may also extend the initial time spent setting up

learners’ computers for the course – namely, with language

and software installation. The feasibility of using local installs

may thus be limited in many cases by class size. This up-front

time can be minimized by having learners complete as much

installation as possible before the course begins using detailed

instructions or videos available on the software developers’

websites or provided by the instructor. For example, Data Car-

pentry provides installation instructions as part of its workshops

and the University of British Columbia provides installation

information to support its Data Science courses. However, some

guidance may be necessary either during class or individually.

In addition, troubleshooting installs on various platforms can be

challenging, especially with a larger class working on a wider

variety of computers. In some cases, software may not be avail-

able for a particular platform (e.g. RStudio on Chromebooks).

Further, if learners have previously installed a particular lan-

guage, IDE, or package, they may have a different version than

that used in class, which may complicate analyses later. This

issue would present less of a problem in classes that primarily

cover the foundations of coding, and/or with learners who have

little to no prior experience.

In classes that have learners do analytical work requiring

substantial computational power, learners may not have comput-

ers that are able to do that work. Some learners may not have

computers at all. For these reasons, local installs may not be the

best option for a required course (i.e., if a learner must take the

course regardless of whether or not they have a computer they

can bring to class) or for a course where a substantial amount

of time is spent on computationally intensive work. For elec-

tive courses, the instructor may choose to list a computer as

required material for the course and make that information avail-

able to students during the class registration period. However,

this requirement limits the learners who are able to take the class

to those who have a computer to bring. With small classes, it may

be possible to provide a computer to a learner who does not have

their own, and the instructor should also ensure that the learner has

access to a computer outside the classroom with necessary soft-

ware for homework. An alternative solution may be to hold the

class in a computer lab, but installation of software in computer

labs may require IT support, depending on the institution.

Single-board computers (SBCs)
Single-board computers (SBCs) are minimalist, complete com-

puters built on a single circuit board. There are a number of

organizations in the single-board computer market, but they

were first popularized by the Raspberry Pi Foundation.

The most basic SBC models cost as little as $10 and offer WiFi,

Bluetooth, and quite high-performance computing. Generally, a

Linux distribution, such as Raspbian, is installed on a microSD

card and run on these machines.

An SBC is not immediately useful on its own, because it does not

have a monitor or input devices. However, these machines can

be used (1) as a server, by logging in “remotely” from another

machine via WiFi or wired connection — for example, using

secure shell (SSH) protocol — or (2) as a standard Linux PC, by

booting into the desktop environment and using attached input

and output devices (e.g., monitor, keyboard, and mouse). Having

learners use SBCs shares some similarities to using local installs,

in the sense that the learners can run software installed on their

own local machine. However, SBCs would ensure that all learn-

ers are using the same computing environment and have the

same capabilities. Furthermore, SBCs can be used together with

all the other computing platforms we discuss here.

Advantages of SBCs. Teaching with SBCs can be particu-

larly effective at an institution with limited IT support. Even in

a classroom without reliable internet, the instructor can set up

an SBC as a local network for sharing code and data among the

learners. Thus, they can also be used in teaching environments

not traditionally thought of as computing-friendly, such as in

the field.

SBCs can be particularly good tools for teaching learners how

to use remote Linux servers and HPC resources. Remote com-

puting can be an abstract concept for students with limited com-

putational background. Showing students how to “remotely”

login from another computer to their SBC they have in-hand

can make the idea of remote computing much more tangible.

Furthermore, SBCs offer a way of teaching high-performance

computing when such resources are not available. Even insti-

tutions with HPC facilities often do not support the use of these

resources for teaching. On a very modest budget, an instructor

can set up a shared, “mini” computing cluster to teach funda-

mental principles of HPC, such parallelization, message passing,

and scalability.

One particularly exciting pedagogical opportunity presented

by SBCs is the integration of tech and computation to

create biology curricula needed by students in the 21st century

(see Box 1). Imagine a scenario where all learners entering a

program would receive an SBC along with some basic train-

ing on how to use it. Because SBCs allow direct access to

the computing board and associated headers and ports, they

are extremely modular, and can be coupled with many inex-

pensive accessories for collecting data. For example, for as

little as $40, one can purchase an add-on board that includes a

variety of sensors, including a gyroscope, accelerometer, mag-

netometer, temperature, barometric pressure, and humidity.

Learners using these devices could collect observational or

experimental data in the lab of their introductory biology class-

room. Then, in a lecture or discussion session, they could learn

to use basic scripting to process, visualize, “clean,” and ana-

lyze those data. If an undergraduate or graduate curriculum was

designed for the students to continue using their SBC, data, and

scripts throughout their coursework, this could be a powerful

approach to training the next-generation of computationally

competent biologists. The development of such a curriculum

goes far beyond the scope of what a typical teacher needs from

a computing platform. Nonetheless, this aspirational idea is worth

highlighting when discussing SBCs, because they can be used

jointly with all the other computing platforms discussed in this

paper.

Box 1. Diversity and Inclusion Callout Box 1

The low cost of high-performance, single-board computers
(SBCs) can make the classroom more equitable. With a cost
as low as $10 per computer, it requires minimal investment
from learners, or, more ideally, increases the likelihood that an
institution or funding agency can cover this cost. Using SBCs
also ensures that all learners experience the same computing
environment and capabilities. Furthermore, the low cost can
allow the learners to keep the computer after the course is over.
This can enable life-long learners across all socioeconomic
backgrounds.

Disadvantages of SBCs. The initial setup of an SBC requires

time and effort to install the Linux distribution on the microSD

card. If the primary goal of the course is to use technology

to teach biology, this work should be done by the instruc-

tor prior to the class. If the class is large, this would most likely

require IT support to pre-install the operating system on many

microSD cards. However, if any of the learning objectives

of the course involve a better understanding of operating sys-

tems or computer hardware, turning the initial setup into an

active-learning exercise done at the beginning of the class could

be a very informative learning experience for the students.

Even after the initial setup, SBCs are not immediately useful

on their own. Learners require either another computer to login

to the SBC via SSH, or peripherals (e.g., monitor, keyboard,

and mouse) to use the SBC as a PC. By the time these periph-

erals are factored in, the total cost could become similar to

an entry level laptop. However, the learners can benefit from

the modularity of the SBC system. The peripherals can be

re-used, and the students could keep the SBC itself. This is not

possible with laptops.

When not used as a PC (i.e., without peripherals), using an

SBC can be quite unintuitive for learners not familiar with

the Linux command line. For example, it would be counter-

productive to take the time necessary out of an introductory biol-

ogy class to teach learners to become proficient in using an SBC

from the command line. While this weakness can be overcome

by using the SBC as a PC, this option does require additional

investment and logistics to provide the learners access to

keyboards, mice, and monitor.

Remote computing platforms
A number of platforms for serving course materials via the

internet have become available. Because these technologies

share many similarities, we will first discuss these computing

platforms generally, then discuss teaching with R (such as with

RStudio server, per RStudio Team (2015)) and Python (such as

with JupyterHub, per Kluyver et al. (2016)) in the cloud.

Remote computing platforms may be used by purchasing time

on a commercial server (often colloquially called “the cloud”),

or can be deployed on machines owned by the instructor or

the university (such as a server or high-performance cluster

computing unit).

Advantages of remote computing platforms
Remote systems typically provide a web interface to a central-

ized version of an IDE. This allows the instructor to set up a

uniform instance for all learners, avoiding time spent sorting

out problems, such as learners having different versions of lan-

guages or software installed. Learners can then focus on learning

biology and/or working with data, rather than on managing

technical details.

Remote computing platforms also ensure that learners are not

limited by their hardware or software. The instructor sets up

the class software on a server, rather than the learners install-

ing software on their own personal machines, thereby avoid-

ing problems such as learners not having computers powerful

enough to run exercises, or computers without the ability to do

language installs (such as NetBooks). This can be especially

important for serving students who have difficulty purchasing

a personal laptop to bring to class (see Box 2).

Box 2. Diversity and Inclusion Callout Box 2

A local RStudio Server or JupyterHub reduces barriers to the
use of R or Python and support underprivileged students by
removing the requirement to have a laptop (a Chromebook or
tablet is sufficient) and minimizes the frustration associated
with installation and different operating systems. Students can
access the server from any location via a web browser using any
machine while experiencing a consistent interface and access to
their code and data.

Many remote computing platforms are agnostic to the type of

machine on which they are run. For example, JupyterHub and

RStudio Server can be deployed on any machine with Unix or

Linux supported (RStudio Team, 2019). This machine can be

owned by an instructor, a high-performance cluster (HPC) com-

puter operated by a university, or cloud computing resources

rented by the instructor. The main considerations for choosing

what type of machine to run a remote computing platform are

memory, storage, and access. For courses with low-memory

tasks, such as data processing on small datasets, a single

machine may be sufficient, even with large numbers of users.

For high-memory tasks (such as genome assembly), or tasks

that with long runtimes (such as phylogenetic estimation), cloud

compute resources that can be resized from week to week

may be more suitable. For example, platforms such as Dig-

ital Ocean and Amazon Web Services, allow users to pay for

more memory only when needed. The computing instance can

be resized between class periods to allow more memory to be

available to learners. This flexibility can allow an instructor to

run a course on the resources they have available to them, based

on their available infrastructure and funds.

If faculty are deploying the course on a local server, such as

a personal server or a university-owned HPC unit, they may

require IT support to set up the server, especially if the course

is large. However, in our experience once setup is complete,

maintenance requires minimal time and having IT handle

upgrades and additional users relieves faculty of some work.

The size of the server required for even large numbers of stu-

dents to do analyses can be quite minimal (e.g. just 4 cores for

hundreds of students), provided they are conducting analyses

of relatively small datasets (e.g. hundreds of samples).

Disadvantages of remote computing platforms
While the remote computing platforms are a flexible

tool for teaching, there are some downsides. Because students

typically interact with the server via a web-based login, if uni-

versity resources are to be used, instructional technology (IT)

staff will typically want to be involved. Some universities do

not allow public-facing servers to be operated by non-IT staff,

which can limit instructors from using computers they have on

hand to serve their coursework. Likewise, due to security con-

cerns, it may not be possible to operate a server on a university

HPC. In this case, the instructor will likely have to turn to cloud

compute providers. Many of these providers are affordable

for small classes or low-memory tasks, but costs will scale with

users, storage, and memory requirements.

These technologies do interact with the internet. Therefore,

when problems arise in the classroom, the instructor must dis-

tinguish between problems with the server itself, with a learner’s

computer, and with other classroom technology, such as

wireless internet. While internet-based technologies can increase

for equity and inclusion by allowing learners to interact with

the course materials no matter how old their computer is, or

if learners have unreliable computer access, they increase the

complexity of diagnosing performance problems. Unstable inter-

net connections can cause many, if not all, members of the class

to lose connection to the materials during class. Learners with

individual computer problems, such as malfunctioning wireless

cards, may need to borrow a computer to access materials. If the

instructor is teaching without IT support, they may need to halt

class and fix problems if the server itself is malfunctioning.

Additionally, because a server facilitates learners focusing on

the data and analyses, rather than installation and troubleshoot-

ing, learners may leave class without the ability to work inde-

pendently outside the classroom. They have not learned how

to install the programming language or IDE, and these are

not installed on their personal computer. Additionally, they

do not have or know how to install supporting packages. If the

goal is for students to be equipped for independent work, the

instructor should be sure to introduce these skills explicitly during

the semester.

RStudio server
RStudio Server (RStudio Team, 2019) provides a web interface

to a centralized version of the RStudio IDE for working with R

code. By using RStudio learners are able to simultaneously view

their script, environment variables, file structure, plots, installed

packages, etc. The Server format allows the administrator to

maintain a consistent version of R, RStudio, and installed pack-

ages. This approach allows beginning coders to focus on data

and results, rather than worrying about installation and versions.

It allows an instructor to be sure that learners can focus on their

code without being limited by their hardware or software.

Some advantages of RStudio Server are that learners’ data and

code are stored (and backed up) on the server. Instructors can

also access a student’s code from anywhere to help students

solve problems remotely. RStudio Server is free for teaching

purposes upon submission of a syllabus to the RStudio

Company. Additionally, for smaller scale teaching an instruc-

tor may use RStudio Cloud, which provides a free ready-to-go

web-based version of RStudio.

It should be noted that RStudio can accommodate other lan-

guages, mostly through the use of external packages. For exam-

ple, the R package Reticulate provides support for Python (Ushey

et al., 2020), and the package Knitr (Xie, 2014; Xie, 2015;

Xie, 2020) allows the use of various scientific computing

languages. Furthermore, other remote computing platforms, like

Jupyter, support the R language.

JupyterHub
Project Jupyter is a non-profit organization that creates open-

source tools for computation. One of their most famous prod-

ucts is the Jupyter Notebook, which allows researchers to

create interactive code documents. These documents can have

text, images, and code cells that run and render output for

inspection. The Jupyter Notebook was originally developed as

the iPython notebook, but has since expanded to include lan-

guage support for other popular languages such as R and Julia.

A JupyterHub is a server on which an instructor can deliver

lessons via Jupyter Notebooks to a full classroom of students

using a standardized server environment. In most cases, the

server will be accessed via the internet. The first and fore-

most reason to use a JupyterHub is that you want to teach

with the Jupyter ecosystem of tools. The Jupyter Notebook is

commonly used in education in the sciences. It allows the

instructor to develop a set of instructional materials that include

text, code, and images. In this way, detailed notes can be pro-

vided from the instructor to the learner, and the learner can aug-

ment these lessons with their own notes, annotations, and code.

Though originally invented for use with Python, Jupyter Note-

books are compatible with a number of languages. Multiple

languages can even be used in one notebook, making them

ideal for use with multi-language pipelines. The JupyterHub

also has a command-line terminal and the Git version control

system installed, for more advanced courses.

Jupyter supports the R language, and using Jupyter Notebooks

with R can be a powerful teaching tool. However, JuptyerHub

does not support popular integrated development environ-

ments (IDEs), such as RStudio or Python’s Spyder. While

there is a text editor for preparing scripts, and a command line

to run scripts, the JupyterHub is really designed to serve Jupyter

Notebooks, and the interface caters to this technology.

HPC and cloud
RStudio Server and JupyterHub will typically require that

instances are hosted somewhere. This refers to having the com-

pute platform installed in a central location, at which it can

be accessed by all students. It may be possible for an instructor

to host their course platform on a computer or server they per-

sonally own. However, in the experience of the authors, many

universities prohibit faculty from hosting servers on-campus that

will be available off-campus due to security concerns with allow-

ing off-campus computers to access on-campus resources. This

means that you may be able to host a server via the intranet, but

if students go home for the weekend, or live off-campus, they’ll

need to come back on to campus to do their homework.

These limitations cause many instructors to look for alterna-

tive ways to provide their course platforms to students. One

common way is by working with a local high-performance

cluster compute facility. A high-performance cluster computer

is a set of computers that are networked. This allows research-

ers to harness the power of several computers at once. These

facilities often also service educators. A benefit to serving course

content via high-performance cluster computing is that these

resources are often free for educators at the university where the

computer resides. Because these services are often in-house, the

administrators of them are able to handle any specialized

security concerns with the course platform. National level

high-performance cluster computers, such as CIPRES (Miller

et al., 2010), JetStream (Stewart et al., 2015; Towns et al.,

2014) and CyVerse (Goff et al., 2011; Merchant et al., 2016)

also offer resources for US institutions. For campuses with limi-

tations on HPC use, IT may be able to set up an independent

virtual machine on other existing university servers.

However, not every university has a high-performance clus-

ter computer that is set up to host coursework. In this case,

an instructor may want to consider a remote solution.

The concept of a remote solution is similar to using high-

performance cluster computing. An educator can rent one or

more computers to serve their coursework. Cloud comput-

ing can take several forms. In some cases, the instructor explic-

itly rents computers in sizes that are appropriate for their course.

These types of services often charge by the number of comput-

ers, the size of the hard drive rented, the amount of memory on

the computer, and the amount of time for which they will run.

Examples of this type of service include Digital Ocean, Cloud

Flare, Google Cloud, and Amazon Web Services. However, it

is important to note that if you are signing a contract for cloud

services, it is prudent to check with your IT, legal, and pur-

chasing departments. Departments may have rules in place for

student privacy and data security, as well as for contract

bids between providers.

Recently, educational cloud service providers have entered the

market. Examples of these services include RStudio Cloud

and Python Anywhere. These types of products are oriented

towards providing an environment that is oriented towards a

specific language or course platform. For example, RStudio

Cloud hosts RStudio instances, and Python Anywhere hosts

a variety of Python environments, including Jupyter notebooks.

Like an regular cloud provider, these services typically charge

based on the size of the amount of memory and storage capac-

ity of the computer needed. Being oriented towards educa-

tion, some of these providers also offer accounts for free, with

paid accounts available for users who need more memory or

computer power.

Bridging the gap between local and remote approaches
Container software, such as Docker, Singularity, or Podman,

offer a way to teach with the simplicity of local installs while

utilizing the consistency of remote computing platforms.

Containers allow the instructor to create a standard comput-

ing environment that each student can work in on their own

computer. Instead of having to install multiple tools that will

be used in the course, the students would only have to install

the container software (e.g., Docker, which is cross-platform),

and then they can download and run the environment created

by the instructor. The functionality is very similar to a virtual

machine, but lighter-weight and more efficient. Containers can

be easily updated and distributed with remote services like

DockerHub. This allows the instructor to update the students’

computing environment in real-time. Of course, this still has

the same disadvantages discussed above of having students run

analyses on their own computer.

Teaching methods
Designing an effective biology course that incorporates comput-

ing requires more than choosing the best computing platform

for your needs. Skills-based courses such as coding necessi-

tate a unique approach to teaching that can differ in some ways

from more commonly used pedagogy in content-based courses.

For many learners, a biology course that involves hands-on

computing may be their first classroom experience that heavily

involves learning increasingly complex skills that build off of

each other, rather than primarily learning content. And simi-

larly, instructors whose research and teaching expertise is in a

field that is not strictly computational — which likely includes

most instructors of biology — may benefit from guidance on

best practices for delivering content effectively and addressing

the unique challenges that arise. As a skills-based discipline,

computation necessarily requires some level of active in-class

interaction from learners (with the instructor or peers, or with

the material itself). Thoughtful implementation of appro-

priate active learning strategies has been shown to increase

both mastery of content and development of general skills

such as critical thinking and collaboration (Faust & Paulson,

1998). Below, we describe several strategies for teaching cod-

ing, and address challenges that instructors may face in teaching

a course that is perhaps more similar methodologically to

math and foreign language than to other biology courses. We

acknowledge that each section summarizes and simplifies a

significant body of literature and encourage readers to pursue

a deeper understanding of pedagogy elsewhere. For exam-

ple, the recent book “Teaching Tech Together” (Wilson, 2018),

offers a concise overview of many of these issues.

Example-based learning
Example-based learning has a long history in teaching cod-

ing, and consists of the instructor providing examples of how

to solve a given problem using code. Sometimes, these exam-

ples are static and provided in a textbook or on slides. Other

forms of example-based learning require the learners to actively

engage with the code. An especially effective way to teach

computational biology is to combine multiple forms of example-

based learning (Renkl, 2014a). For example, an instructor

might use all three methods detailed below: first show learners

some written examples, perhaps in pre-reading for a class,

then use live coding during class and have the learners

follow along, and subsequently have learners complete a series of

examples with increasing amounts of code that learners

need to fill in during in-class problem sets or in homework

assignments.

Written examples. Written examples are often a good start-

ing point to introduce learners to the concepts and structure of

solutions. Written tutorials allow learners to go at their own

pace. This ensures learners take the time they need. However,

learners frequently skim over static written examples or skip

formative assessment questions, confident that they understand

what the code is doing. Students may need to be required to

critically evaluate the code to truly ensuring their understand-

ing. For this reason, written examples are most effective when

integrated with other example-based learning methods (Renkl,

2014a).

Live coding. Live coding is a form of example-based learn-

ing in which learners watch the instructor solve problems and

in most cases the learners follow along. The act of typing along

forces learners to actively enter code, which is a hands-on ver-

sion of a worked example. This means the instructor must pro-

ceed at a reasonable pace that learners can follow. The instructor

can stop and ask learners challenge questions as forma-

tive assessment to ensure that learners apply their knowledge

immediately and question their own understanding. The instruc-

tor can also set up a problem, and pause to have learners figure

out the rest of the exercise. This live coding approach has been

popularized by Data and Software Carpentry and similar cod-

ing workshops. Live coding can help teach aspects of program-

ming that are not easily taught by viewing static code, such as

incremental coding (writing a few lines and testing them) and

debugging. From the perspective of the learners, live coding

is generally preferable to viewing static code, especially when

learners are able to code along with instructors (Raj et al., 2018).

A disadvantage of live coding is that everyone goes at the

same pace. This may be too fast for some and too slow for

others. One possibility to alleviate this disadvantage is to flip the

classroom and provide learners with pre-recorded live-coding

experiences. The learners then come to class where they

complete an exercise or a series of faded examples.

Faded examples. Faded examples are a form of example-based

learning that can be more effective than static worked exam-

ples (Schwonke et al., 2009). Faded examples include sets

of worked examples, beginning with a complete example.

With each subsequent example, key problem solving steps are

removed and learners must insert the steps themselves (Renkl,

2014b). Faded examples have been demonstrated to require

less learning time with potentially better learning outcomes

(Schwonke et al., 2009).

In the context of teaching computation to biologists, faded

examples are particularly facilitated by servers. For example, a

Jupyter notebook containing faded examples may be made avail-

able to learners on the server. If learners successfully complete

the code they will produce an expected outcome, thus allowing

for the learner to self-correct their work. Fillable Jupyter

notebooks using the faded examples technique force learners

to engage with the material and actively problem-solve. Fill-

able notebooks are particularly useful because they run the code

and allow the learner to immediately discover if they produced

the right answer. This type of immediate feedback allows the

learner to work towards the correct answer, rather than turning in

work that they believe to be correct and receiving a low grade on

something they put time and effort into. An important

component is providing learners with a solution set after they

have had the opportunity to solve the faded examples so that they

can see where they went wrong if they are unsuccessful.

Additional example-based exercises. A variety of exercises

are frequently used in testing and reinforcing learning of com-

putational concepts that do not require learners to create new

code. For example, learners could be presented with code that

contains a bug and be tasked with providing the Minimal Fix

that would allow the code to run. Alternatively, the learners

could be presented with a series of lines of code and be asked

to rearrange them such that they successfully complete a task

(“Parsons Problems”; Parsons & Haden, 2006), or to trace the

order in which code is executed (for instance, within a series of

nested loops or if statements). See the section “Exercise Types” in

Wilson (2018) for more detail and exercises of this variety.

Focusing on coding as problem-solving
One of the main skills underlying learning to code is learn-

ing how to solve problems. Writing code can be viewed as a

method of communicating to the computer the precise steps of

the analysis. In fact, code serves as a written record of the ana-

lytical steps, and is one that is instantly reproducible. When the

learning outcomes are not necessarily tied to learners having full

mastery of a specific language’s syntax, shorthand notation can

be used to outline the steps the learner would take to get to the

end result, removing the added layer of correct syntax and high-

lighting the importance of the problem-solving elements. This

method, called pseudocode, can help learners logically scaf-

fold their thought process, and therefore their code, regard-

less of which language they will be coding in. Learners can be

required to write the solution to their problem in pseudocode to

demonstrate their thought process, and then use that pseudocode

to write their code (e.g., Olsen, 2005). Courses may rely on

pseudocode during timed exams to relieve exam stress. Note,

however, that if learners are expected to interpret or elabo-

rate on pseudocode — especially in an exam setting — that the

meaning behind each pseudocode term is clearly and

unambiguously defined (Cutts et al., 2014).

Cooperative learning
Working in groups or pairs can result in numerous positive

outcomes in the biological sciences, including enhancing

scientific thinking and attitudes about biology, aiding in the

instruction and evaluation of course material, providing a bet-

ter understanding of practical skills and their applicability in

real-world environments, improving reading, writing, and social

skills, and supporting learning for a broader array of learn-

ers (reviewed in Lord, 2001). In the context of teaching

computational biology, group projects and other forms of

cooperative learning have frequently been used to facilitate

example-based learning (e.g., Emery & Morgan, 2017; Fuselier

et al., 2011; Korcsmaros et al., 2013). One cooperative learn-

ing teaching tool for computational biology is pairing learners

up and having one student be the ‘driver’, who types in the code,

and one be the ‘navigator’, who has to tell the driver what to

type. This exercise forces learners to think carefully about the

process of creating code. Even if learners are not expected to

work through examples or produce a project in pairs or groups,

cooperative learning can still be implemented by facilitat-

ing discussion and collaboration among learners. This can be

done in class (e.g., through think-pair-share exercises, in which

learners are encouraged to think about a problem individually,

then discuss in pairs or small groups) or outside of class through

discussion forums. For instance, learners could be encouraged

or required to participate in discussions on the course website

(e.g., Blackboard/Moodle) or a Slack workspace created for the

class, or to do peer review of other learners’ projects. Learning

from each other can be a powerful way to get learners engaged

with the course work, and can solidify their understanding

by having them teach each other (Treisman, 1992).

However, as most students and instructors know, group work

can create problems and strife. Interpersonal issues within pairs

or groups can hinder the learning process. Sometimes groups

or pairs are unbalanced with regard to prior knowledge, speed

of learning, or effort contributed to the project. Additionally,

group size or composition can lead to an entire group struggling

to succeed (e.g., Compeau, 2019). Therefore, although group

projects are frequently used in computational biology and can

be a useful tool, relying only on group-based projects for critical

assessments in a course may not be the best solution.

Other challenges and tools
Incorporating computational biology into the classroom comes

with additional challenges that may not be present in other

biology courses. Many learners will have some prior biologi-

cal knowledge but have no experience with computer coding.

This creates a situation where learners have many ques-

tions but often feel out of their comfort zone, or are simply

uninterested in the computational components of the course mate-

rial. These factors combine result in a number of different chal-

lenges for instructors to help learners successfully navigate

the computational side of a biology course.

Demonstrating value. The unfamiliarity of coding can some-

times lead learners to push back against the idea of learning to

code. In our experience, demonstrating how coding can be a use-

ful tool for doing the same analysis multiple times (e.g., gener-

ate the same type of plot for different datasets) helps learners

see the value in learning to code. This demonstration is espe-

cially powerful when the learners are enabled to discover the

utility of coding on their own. For example, an instructor could

provide students with a large dataset and encourage the learners

to try basic analyses (e.g., producing summary statistics or

basic plots) in both R and Excel. Particularly when learners

have not opted into learning computational skills — for exam-

ple, when computational skills are incorporated into required

biology classes — showing learners the value of saving future

time and effort is very important.

Teaching how to ask for help. Not all learners will automati-

cally ask for help (see Box 3). As instructors, we need to encour-

age learners to seek our help when they are struggling. One

method we have found successful is to provide learners with

rewards for asking for help, such as an automatic extension on

deadlines if learners attend office hours. Having knowledge-

able teaching assistants or support staff to circulate the class-

room and check on learner progress during in-class exercises is

also helpful (see Box 3 for further notes on asking for help). In

these cases, instructing the teaching support staff to first approach

learners who do not have their hands raised will provide help to

a larger proportion of the class, especially many learn-

ers who need the most help. To help learners signal that they

need help, instructors can use a system that does not force

students to stand out by raising their hands. For instance, Data

and Software Carpentry use post-it notes to discreetly signal

to instructors when learners need assistance. Incorporating live

coding into lectures is another way to normalize asking for

help; while live coding, instructors can demonstrate that errors

are a natural part of coding, how to effectively search for

solutions to problems, and how to look up syntax details.

Box 3. Diversity and Inclusion Callout Box 3

Asking for help is critical for learners to be able to overcome
confusion, solidify their skills, and deepen their knowledge and
understanding. However, cultural differences exist that may
prevent learners from seeking help, even when they need it
most. Universities in particular have the unspoken expectation
that undergraduates will seek help when they need it, but
people from some backgrounds will not necessarily know this,
or may feel uncomfortable approaching their teachers, who
are in positions of authority (Jack, 2016). Different cultures
may perceive asking questions in class in different ways; some
cultures view questions as a way to gain recognition, whereas
others view questions as a demonstration of ignorance. The
latter group are less likely to ask questions in class and thus
do not receive either needed help or engagement with the
instructor.

Large class sizes. For instructors who are looking to incor-

porate computational biology into large classes, such as in an

introductory biology course, the prospect of testing and grad-

ing code turned in as assignments may be daunting. We have

found that relying on knowledgeable TAs, support staff, and

demonstrators is the best way to ensure that all learners receive

the help that they need. Placing learners in pairs or small

working groups (see the section on Cooperative Learning above)

can also provide learners with support and feedback that will

facilitate their learning, without placing the entire burden on

instructors and TAs. Additionally, relying on IT support to help

manage the computing platforms can reduce the workload for

the instructors. Furthermore, using assignments that can be auto-

matically graded (e.g., mimir classroom, nbgrader in Jupyter,

or OK) will help reduce the time teachers must spend grad-

ing. An added benefit of such autograding technologies is that

they can provide students with immediate feedback on their

performance and understanding of the computational materials.

Plagiarism. Writing code is more similar to math than to writ-

ing, as there is a correct answer (or perhaps several correct

answers), and it can be difficult to detect whether learners

arrived at that answer independently or through copy-

ing someone else’s solution. Plagiarism can be exacerbated

by the common phenomenon of searching for solutions to

a given problem online and copying or adapting posted solu-

tions without attributing proper credit (Gaspar & Langevin,

2007). Some of the programs that grade code include plagiarism

detection components (Pears et al., 2007), which can help

instructors identify when plagiarism has occurred. One approach

to ensure learners understand code is to require commented

explanation of each component of their code, and ensure these

comments are different for each learner. Requiring unique

comments from learners has the advantage that it allows

learners to be able to search for the functions and arguments to

functions that are needed to implement their analytical work,

which is common practice when writing code. Another approach

is to allow learners to work on assessments as a group, but

have each learners write out their own pseudocode explana-

tions of the code. Instructors are encouraged to discuss issues

surrounding intellectual property and plagiarism and reinforce the

importance of citing sources.

Conclusions
Computing is increasingly being incorporated into coursework

at all levels in biology. Computing is both a key skill for learners

and supports additional learning by enabling the incorpora-

tion of data and analysis into classrooms. Instructors have a

range of choices to deliver computational lessons. From the

computing platform to how the instructor delivers the lesson,

every aspect of a computational classroom can shape learners’

knowledge and confidence. In this paper, we have outlined the

costs and benefits of several popular computing platforms.

Given the variety of options, instructors should be able to find

a platform that best fits their course learning objectives, avail-

able resources, class size, and learner backgrounds. One impor-

tant consideration in this decision is how the platform of choice

affects learner access to course content. Many of these computing

platforms can support inclusion in the classroom (and thus,

ultimately, in fields and careers that incorporate computa-

tion) by providing access to the same technologies to all

learners. We have also discussed several teaching strategies

for computational biology and other courses with computa-

tion, with the goal of improving student engagement, learning,

and retention.

Data availability
Underlying data
There are no data associated with this article

Acknowledgments
Linda Forrester contributed significant time to implement-

ing labs using R in URI’s Introductory Biology labs, and Chi

Shen provided support for URI’s R Studio Server, on which

some of this work is based. This manuscript is a product of

discussions from iEvoBio’s 2019 annual meeting.

References

 Barone L, Williams J, Micklos D: Unmet needs for analyzing biological big data:

A survey of 704 NSF principal investigators. PLoS Comput Biol. 2017; 13(10):

e1005755.

PubMed Abstract | Publisher Full Text | Free Full Text

 Cock PJ, Antao T, Chang JT, et al.: Biopython: freely available Python tools

for computational molecular biology and bioinformatics. Bioinformatics. 2009;

25(11): 1422–1423.

PubMed Abstract | Publisher Full Text | Free Full Text

 Compeau P: Establishing a computational biology flipped classroom. PLoS

Comput Biol. 2019; 15(5): e1006764.

PubMed Abstract | Publisher Full Text | Free Full Text

 Cook J, Bedford D, Mandia S: Raising climate literacy through addressing

misinformation: Case studies in agnotology-based learning. Journal of

Geoscience Education. 2014; 62(3): 296–306.

Publisher Full Text

 Cummings MP, Temple GG: Broader incorporation of bioinformatics in

education: opportunities and challenges. Brief Bioinform. 2010; 11(6): 537–43.

PubMed Abstract | Publisher Full Text

 Cutts Q, Connor R, Michaelson G, et al.: Code or (not code): Separating formal

and natural language in CS education. In: Proceedings of the 9th Workshop in

Primary and Secondary Computing Education WiPSCE ’ 14, ACM Berlin, Germany.

2014; 20–28.

Publisher Full Text

 Emery LR, Morgan SL: The application of project-based learning in

bioinformatics training. PLoS Comput Biol. 2017; 13(8): e1005620.

PubMed Abstract | Publisher Full Text | Free Full Text

 Faust JL, Paulson DR: Active learning in the college classroom. J Excell Coll

Teach. 1998; 9(2): 3–24.

Reference Source

 Fuselier L, Bougary A, Malott M: From trace evidence to bioinformatics: putting

bryophytes into molecular biology education. Biochem Mol Biol Educ. 2011;

39(1): 38–46.

PubMed Abstract | Publisher Full Text

 Gaspar A, Langevin S: Restoring “coding with intention” in introductory

programming courses. In: Proceedings of the 8th ACM SIGITE Conference on

Information Technology Education SIGITE ’ 07 ACM Destin, Florida, USA. 2007;

91–98.

Publisher Full Text

 Gibson JP, Mourad T: The growing importance of data literacy in life science

education. Am J Bot. 2018; 105(12): 1953–1956.

PubMed Abstract | Publisher Full Text

 Goff SA, Vaughn M, McKay S, et al.: The iPlant Collaborative:

Cyberinfrastructure for Plant Biology. Front Plant Sci. 2011; 2: 34.

PubMed Abstract | Publisher Full Text | Free Full Text

 Huber W, Carey VJ, Gentleman R, et al.: Orchestrating high-throughput genomic

analysis with Bioconductor. Nat Methods. 2015; 12(2): 115–121.

PubMed Abstract | Publisher Full Text | Free Full Text

 Huerta-Cepas J, Serra F, Bork P: ETE 3: Reconstruction, Analysis, and

Visualization of Phylogenomic Data. Mol Biol Evol. 2016; 33(6): 1635–1638.

PubMed Abstract | Publisher Full Text | Free Full Text

 Jack AA: (No) harm in asking: Class, acquired cultural capital, and academic

engagement at an elite university. Sociol Educ. 2016; 89(1): 1–19.

Publisher Full Text

 Kember D, Ho A, Hong C: The importance of establishing relevance in motivating

student learning. Act Learn High Educ. 2008; 9(3): 249–263.

Publisher Full Text

 Kjelvik MK, Schultheis EH: Getting Messy with Authentic Data: Exploring the

Potential of Using Data from Scientific Research to Support Student Data

Literacy. CBE Life Sci Educ. 2019; 18(2): es2.

PubMed Abstract | Publisher Full Text

 Kluyver T, Ragan-Kelley B, Pérez F, et al.: Jupyter notebooks – a publishing

format for reproducible computational workflows. In: Positioning and Power in

Academic Publishing: Players, Agents and Agendas. (F. Loizides and B. Schmidt,

eds.). IOS Press. 2016; 87–90.

Publisher Full Text

 Korcsmaros T, Dunai ZA, Vellai T, et al.: Teaching the bioinformatics of signaling

networks: an integrated approach to facilitate multi-disciplinary learning. Brief

Bioinform. 2013; 14(5): 618–632.

PubMed Abstract | Publisher Full Text

 Loman NJ, Quinlan AR: Poretools: a toolkit for analyzing nanopore sequence

data. Bioinformatics. 2014; 30(23): 3399–3401.

PubMed Abstract | Publisher Full Text | Free Full Text

 Loman N, Watson M: So you want to be a computational biologist? Nat

Biotechnol. 2013; 31(11): 996–998.

PubMed Abstract | Publisher Full Text

 Lord TR: 101 reasons for using cooperative learning in biology teaching. Am

Biol Teach. 2001; 63(1): 30–38.

Publisher Full Text

 McKinney W: Data structures for statistical computing in python.

In: Proceedings of the 9th Python in Science Conference. (S. van der Walt and

J. Millman, eds.). 2010; 51–56.

Reference Source

 Merchant N, Lyons E, Goff S, et al.: The iPlant Collaborative: Cyberinfrastructure for

Enabling Data to Discovery for the Life Sciences. PLoS Biol. 2016; 14(1): e1002342.

PubMed Abstract | Publisher Full Text | Free Full Text

 Miller MA, Pfeiffer W, Schwartz T: Creating the cipres science gateway for

inference of large phylogenetic trees. In: 2010 gateway computing environments

workshop (GCE) Ieee. 2010; 1–8.

Publisher Full Text

 Olsen AL: Using pseudocode to teach problem solving. Journal of Computing

Sciences in Colleges. 2005; 21(2): 231–236.

Reference Source

 Paradis E, Schliep K: ape 5.0: an environment for modern phylogenetics and

evolutionary analyses in R. Bioinformatics. 2018; 35(3): 526–528.

PubMed Abstract | Publisher Full Text

 Parsons D, Haden P: Parson’s Programming Puzzles: A Fun and Effective

Learning Tool for First Programming Courses. In: 2006 Australasian Conference

on Computing Education (ACE’ 06). Australian Computer Society. 2006; 157–63.

Reference Source

 Pears A, Seidman S, Malmi L, et al.: A survey of literature on the teaching of

introductory programming. In: Working Group Reports on ITiCSE on Innovation

and Technology in Computer Science Education ITiCSE-WGR ’ 07 ACM Dundee,

Scotland. 2007; 204–223.

Publisher Full Text

 Raj AGS, Patel JM, Halverson R, et al.: Role of live-coding in learning

introductory programming. In: Proceedings of the 18th Koli Calling International

Conference on Computing Education Research ACM. 2018; 13.

Publisher Full Text

 Renkl A: Learning from worked examples: how to prepare students for

meaningful problem solving. In: Applying Science of Learning in Education:

Infusing Psychological Science into the Curriculum. (V. A. Benassi, C. E. Overson,

and C. M. Hakala, eds.). Society for the Teaching of Psychology. 2014a; 118–130.

Reference Source

 Renkl A: Toward an instructionally oriented theory of example-based learning.

Cogn Sci. 2014b; 38(1): 1–37.

PubMed Abstract | Publisher Full Text

 RStudio Team: RStudio: Integrated Development Environment for R. RStudio,

Inc. Boston, MA. 2015.

 RStudio Team: RStudio Server Professional Edition 1.2.5001-3. RStudio, Inc.

Boston, MA. 2019.

Reference Source

 Schwonke R, Renkl A, Krieg C, et al.: The worked-example effect: Not an artefact

of lousy control conditions. Comput Human Behav. 2009; 25(2): 258–266.

Publisher Full Text

 Stefik A, Siebert S: An empirical investigation into programming language

syntax. ACM T Comput Educ. 2013; 13(4): 19.

Publisher Full Text

 Stewart CA, Cockerill TM, Foster I, et al.: Jetstream: a self-provisioned, scalable

science and engineering cloud environment. In: Proceedings of the 2015 XSEDE

Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure

ACM. 2015; 29.

Publisher Full Text

 Sukumaran J, Holder MT: DendroPy: a Python library for phylogenetic

computing. Bioinformatics. 2010; 26(12): 1569–1571.

PubMed Abstract | Publisher Full Text

 Towns J, Cockerill T, Dahan M, et al.: Xsede: accelerating scientific discovery.

Comput Sci Eng. 2014; 16(5): 62–74.

Publisher Full Text

 Treisman U: Studying students studying calculus: A look at the lives of

minority mathematics students in college. Coll Math J. 1992; 23(5): 362–372.

Publisher Full Text

 Ushey K, Allaire JJ, R Studio Team: reticulate: Interface to ‘Python’. R package

version 1.14. 2020.

Reference Source

 Williams J, Drew J, Galindo-Gonzalez S, et al.: Barriers to integration of

bioinformatics into undergraduate life sciences education. BioRxiv. [Preprint].

2017. 204420.

Publisher Full Text

 Wilson GV: Teaching Tech Together: How to Make Your Lessons Work and Build

a Teaching Community around Them. Chapman Hall/CRC Press, Boca Raton,

Florida. ISBN 978-0367352974. 2018.

Reference Source

 Wilson Sayres MA, Hauser C, Sierk M, et al.: Bioinformatics core competencies

for undergraduate life sciences education. PLoS One. 2018; 13(6): e0196878.

PubMed Abstract | Publisher Full Text | Free Full Text

 Wu Q, Anderson JR: Problem-solving transfer among programming languages.

Tech Rep. Carnegie-Mellon University Pittsburgh PA Artificial Intelligence And

Psychology. 1990.

Reference Source

 Xie Y: knitr: A Comprehensive Tool for Reproducible Research in R.

In: Stodden V, Leisch F,Peng RD (eds.), Implementing Reproducible

Computational Research. Chapman and Hall/CRC. ISBN 9781466561595. 2014.

Reference Source

 Xie Y: Dynamic Documents with R and knitr, 2nd edition. Chapman and

Hall/CRC, Boca Raton, Florida. ISBN 978-1498716963. 2015.

Publisher Full Text

 Xie Y: knitr: A General-Purpose Package for Dynamic Report Generation in R.

R package version 1.27. 2020.

Reference Source

