




Introduction
Biology departments are increasingly offering or considering 

course work that incorporates hands-on computation (Wilson 

Sayres et al., 2018). There are different rationales for courses 

that include computation. Perhaps the most obvious rationale is 

to teach computational biology, bioinformatics, and/or skills in 

working with large datasets. Bioinformatic skills are increasingly 

a core component of biology and biology education, and support 

students’ job and/or graduate school preparation (Wilson Sayres 

et al., 2018). The vast majority of researchers in biology either 

use large datasets or could do so with sufficient training, sug-

gesting that general training in effective use of large datasets 

is essential for students as well (Barone et al., 2017; Loman & 

Watson, 2013). However, even with small datasets, perform-

ing analyses reproducibly and having access to the wide range 

of statistical and analytical tools available in scientific comput-

ing languages improves the work of scientists. Thus, in course-

work involving computation, instructors teach particular skills 

or tools that are an integral part of the field. An alternate moti-

vation is to incorporate more data and analysis into course 

work. Integrating data into courses provides more opportunity 

for students to experience the research process, and the ability 

to incorporate active learning activities where students recog-

nize biological theories by drawing conclusions from their own 

results (Kjelvik & Schultheis, 2019). Another rationale for teach-

ing computational skills is to increase data literacy (Gibson & 

Mourad, 2018), which, in addition to enhancing learners’ prepa-

ration for future careers, also better prepares learners to think 

critically about societal issues relevant to science and policy 

(Cook et al., 2014).

However, there are significant barriers to teaching hands-on com-

putation in biology classrooms (Williams et al., 2017). While 

many biologists use computation in their research, relatively 

few have explicit training in this area. Fewer still have training 

in how to teach computation (Williams et al., 2017). Importantly, 

few biologists are housed in a department with the existing exper-

tise or infrastructure for teaching computation (Williams et al., 

2017); thus, there is often less familiarity with options for teaching 

computing or recent best practices. Cummings & Temple (2010) 

describe the challenges in teaching bioinformatics as “infrastruc-

ture and logistics; instructor knowledge of bioinformatics and 

continuing education; and the breadth of bioinformatics, and 

the diversity of students and educational objectives.” Williams 

et al. (2017) similarly cites faculty training, infrastructure, and 

student interest and preparation. Here our goal is to address 

issues of infrastructure and logistics, and make recommendations 

for faculty practice. We suggest that faculty seeking computa-

tional training consider programs such as Software and Data  

Carpentry workshops as well as opportunities offered by  

QUBES, NEON, and their own universities. Additionally, we sug-

gest that faculty separately seek training in teaching computa-

tion through programs such as the Software and Data Carpentry 

instructor training courses. This article explains options avail-

able for instructors to teach computational course content (col-

lectively referred to here as computing platforms), discusses how 

to choose the best computing platform for a course, and describes  

effective strategies for teaching coding and data analysis.

An important consideration is that whichever technology an 

educator uses to deliver their content supports the educator’s 

learning objectives and enhances students’ ability to learn. Every 

course has a unique set of learning objectives, and every group 

of learners poses a unique set of challenges. Such learning objec-

tives related to computing may range from engaging students in 

the value of basic coding skills to building advanced skills and 

the ability to self-teach and work independently. An example of 

the former might include a freshman introductory biology lab 

focusing on data analysis, where students focus on the results 

from the data analysis. In contrast, an upper-division course on 

research methods may focus more on preparing students for 

independent data analysis by emphasizing self-sufficiency in 

coding, reproducibility of the research, and software manage-

ment and installation. Additionally, the selected platform needs 

to support the type of work the students are doing. In the first 

example, students might need to learn to make appropriate plots 

to visualize biological data; thus, the platform students work with 

needs to have the capacity to display plots. On the other hand, 

if a course objective is for students to learn to manage genome-

scale data on a remote server, a platform using a command-line  

interface to access a computing cluster may be more appropriate.

Much as a biology laboratory course requires specific labora-

tory equipment, teaching computation requires learners to be 

able to access specific software and functions. This may range 

from one or a few pieces of software that can be downloaded 

from the internet to installation of a computing language and 

development environment. For simplicity, the interfaces used by 

learners and the instructor should be uniform, as different versions 

of software could have different interfaces or commands. Learn-

ers also need a way to compute outside of class — for example, 

to do the homework outside class hours. Finally, the computing 

platform should allow students to focus on the coursework and 
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instruction. The learning platform must not interfere with students’ 

focus on the learning objectives.

Another consideration is the consistency and scaffolding in 

selecting tools and/or the larger platform. Gibson & Mourad 

(2018) cites the need for “coordinated, sequential development 

of data literacy across the biology curriculum”, which suggests 

the value of a platform and tools on which students can scaffold 

their skills, rather than each course choosing its own tool. For 

example, students would likely find it challenging to use R in one 

class, Python in another, and a genomics platform such as Galaxy 

in another (Wu & Anderson, 1990). Furthermore, switching lan-

guages and platforms (i.e. learning a new skill set) can detract 

from time spent on other educational activities when the goal is 

not to explicitly teach the language or platform.

Every choice of computing platform comes with costs and ben-

efits. In this article, we will discuss tools and techniques to 

facilitate teaching computation in courses with some degree of 

programming or data analysis. We explain different comput-

ing platforms with a special eye towards serving diverse sets 

of learners, in terms of their motivations, life experiences, and 

access to technology. In particular, we will focus on program-

ming languages that are common in biology: R and Python. Lastly, 

we review effective pedagogical techniques for helping learners 

thrive in a computational classroom.

Choice of computing language
One of the first choices an instructor needs to make when they 

plan coursework is what computing language to use. In biology, 

R and Python are common languages. Bash, a type of UNIX 

command-line language, is commonly used to run software and 

automate tasks. There are multiple considerations to take into 

account for this choice, including consistency, current status of 

research tools, and comfort. Consistency refers to consistency 

of the language’s use throughout the curriculum. Switching lan-

guages can be associated with learning loss in novices (Wu & 

Anderson, 1990). Therefore, in order to deepen and strengthen 

learners’ command of languages, integrating the same language 

consistently throughout the curriculum may be helpful. For 

example, if an instructor is integrating a computational com-

ponent into a genetics lab, they might check with a colleague 

teaching biostatistics or bioinformatics to see what language 

they are using.

The current status of research tools is also worth considering. 

If the goal of a course is for learners to understand both biology 

and computation, the instructor will want to choose a language 

with active development of tools for research in that field. For 

example, many genomics and phylogenetics tools are written in 

Python. On the other hand, more ecological and comparative biol-

ogy tools are written in R. Therefore, the choice of language will 

inform the subset of tools available to the instructor and 

the learners.

Finally, instructors should consider their own comfort. Teaching 

requires fluent and comfortable discussion of concepts and tools. 

Instructor knowledge must factor into this. Additionally, commu-

nity resources exist for some languages. For example, QUBES 

is a National Science Foundation-sponsored (NSF) project that 

publishes lessons and sponsors instructor mentoring groups 

in various scientific disciplines. An instructor may feel more 

empowered to teach well if there is a strong sense of community 

in their language, with pathways to ask for help and access 

resources.

It is also worth noting that not all tasks that are computational 

necessitate the addition of programming into the curriculum. 

For example, tools such as the NSF-sponsored Galaxy project 

allow instructors to help learners run bioinformatics and genom-

ics software via a point-and-click internet interface. If the goal 

of a course is to demonstrate answering a particular question, 

but not to dig too deep into the methodology of how that is done, 

this type of interface may be sufficient. Teaching with these 

resources is beyond the scope of this article, as the Galaxy web-

site provides extensive resources for teaching, and trainers provide 

regular workshops on this tool.

The R language allows inexperienced learners to immediately 

work with rectangular (i.e. spreadsheet-style) data in a way 

that is engaging. For example, a learner can load data and plot 

results within an hour of first opening RStudio. This engagement 

is important for learners who are more interested in effectively 

working with data than learning to code. We suggest that the  

R language immediately supports coding-to-learn with minimal 

learning-to-code. In particular, the tidyverse set of packages pro-

vided by RStudio provides convenient, well-supported, and intui-

tive functions for plotting and manipulating data. Bioconductor 

(Huber et al., 2015) has a wide variety of packages related to 

genomic data, as well as tutorials for this use, while other pack-

ages such as ape (Paradis & Schliep, 2018) provide resources for 

specific tasks such as reading and viewing phylogenies, and many 

other packages are available with easy-to-follow vignettes.

Python is a general purpose programming language used in 

a wide variety of industries and can be adapted to many pur-

poses. For example, the popular data science library Pandas 

(McKinney, 2010) can be used to teach foundational data skills 

such as managing rectangular data. Python also has a variety 

of resources for teaching work with non-spreadsheet data. 

BioPython is a library for working with general sequence  

datasets at a variety of scales (Cock et al., 2009). More  

specialized libraries, such as Poretools (Loman & Quinlan,  

2014) (for Nanopore data) or Dendropy (Sukumaran & 

Holder, 2010) and ETE3 (Huerta-Cepas et al., 2016) (for  

phylogenetic trees), are also available for work in subdisciplines  

of biology and bioinformatics.

Depending on the aims of the class, it may be necessary to 

choose a supporting language, as well. For example, in contrast 

to a coding-to-learn course in which biology students practice 

drawing conclusions from data, a course on genomics might 

require students to interact with large datasets on a remote server. 

Many such servers require a UNIX command line to access. 

While this article will focus on R and Python, some instructors 

may find that they need additional languages to support student 

learning, particularly in advanced disciplines. Furthermore, 

while we suggest focusing on a single language for pedagogical 

reasons, and highlight R and Python, our goals in choos-

ing a language are (1) to select one that is widely used with  



available tools, and (2) has straightforward syntax for novices 

(Stefik & Siebert, 2013). We support the philosophy taken by 

the Software Carpentry organization of using any language 

that meets these goals and provides a platform for learning the 

fundamental process of automating data analysis.

Local computing platforms
Local installs on personal computers
Perhaps the most basic computing platform setup is to have  

learners install languages and software locally on their own  

computers. Local installs may work best in small classes that 

focus on the basics of coding, where the goal is for learners 

with no prior experience to leave the course self-sufficient to do  

computational work. R is easily downloaded and installed from 

the R-Project website. RStudio provides a commonly-used inte-

grated development environment (IDE) that allows management 

of additional packages and visualization of data and figures. 

The Anaconda installation of Python provides the programming  

language, as well as the Jupyter notebook environment for 

simultaneously viewing code and output, and the ability to run 

code in blocks. The Anaconda installation also provides the  

conda package manager for installation of additional packages.

Advantages of local installs. Local installs allow learners to 

immediately be able to apply their new knowledge of code out-

side the class without additional support. For learners who 

are already familiar with their own computers and operating 

systems, having students use local installs can bypass some of 

the learning curve associated with learning a completely dif-

ferent platform; this also applies for instructors, who often have 

limited time to devote to learning a new platform exclusively for 

the purpose of teaching a course.

If the software used in class does not require a paid license 

or subscription, learners will continue to have access to the  

specific tools used in class after the course ends. Teaching learn-

ers with tools that they know they will be able to take away 

with them and apply in the future increases learner motiva-

tion to learn these tools, and increases the chance that they  

will actually use them in future work (Kember et al., 2008).

Local installs are a solution in particular for smaller institu-

tions that do not have access to remote computing platforms. In 

some cases, though setting up a computing platform may be 

theoretically possible, it may not be feasible within the con-

straints of resources, time, and IT personnel. Local installs offer 

an alternative system that does not typically require extensive 

coordination with IT personnel at an institution. Additionally, 

local installations avoid the challenges presented by a poor  

internet connection and dependency on a single outside  

computing platform.

Challenges of local installs and how to overcome them. While 

using local installs can minimize time spent learning new plat-

forms, it may also extend the initial time spent setting up 

learners’ computers for the course – namely, with language 

and software installation. The feasibility of using local installs 

may thus be limited in many cases by class size. This up-front 

time can be minimized by having learners complete as much 

installation as possible before the course begins using detailed 

instructions or videos available on the software developers’ 

websites or provided by the instructor. For example, Data Car-

pentry provides installation instructions as part of its workshops 

and the University of British Columbia provides installation 

information to support its Data Science courses. However, some 

guidance may be necessary either during class or individually. 

In addition, troubleshooting installs on various platforms can be 

challenging, especially with a larger class working on a wider 

variety of computers. In some cases, software may not be avail-

able for a particular platform (e.g. RStudio on Chromebooks). 

Further, if learners have previously installed a particular lan-

guage, IDE, or package, they may have a different version than 

that used in class, which may complicate analyses later. This 

issue would present less of a problem in classes that primarily 

cover the foundations of coding, and/or with learners who have 

little to no prior experience.

In classes that have learners do analytical work requiring  

substantial computational power, learners may not have comput-

ers that are able to do that work. Some learners may not have 

computers at all. For these reasons, local installs may not be the 

best option for a required course (i.e., if a learner must take the 

course regardless of whether or not they have a computer they 

can bring to class) or for a course where a substantial amount 

of time is spent on computationally intensive work. For elec-

tive courses, the instructor may choose to list a computer as 

required material for the course and make that information avail-

able to students during the class registration period. However, 

this requirement limits the learners who are able to take the class 

to those who have a computer to bring. With small classes, it may 

be possible to provide a computer to a learner who does not have 

their own, and the instructor should also ensure that the learner has 

access to a computer outside the classroom with necessary soft-

ware for homework. An alternative solution may be to hold the 

class in a computer lab, but installation of software in computer 

labs may require IT support, depending on the institution.

Single-board computers (SBCs)
Single-board computers (SBCs) are minimalist, complete com-

puters built on a single circuit board. There are a number of  

organizations in the single-board computer market, but they 

were first popularized by the Raspberry Pi Foundation. 

The most basic SBC models cost as little as $10 and offer WiFi, 

Bluetooth, and quite high-performance computing. Generally, a 

Linux distribution, such as Raspbian, is installed on a microSD  

card and run on these machines.

An SBC is not immediately useful on its own, because it does not 

have a monitor or input devices. However, these machines can 

be used (1) as a server, by logging in “remotely” from another 

machine via WiFi or wired connection — for example, using 

secure shell (SSH) protocol — or (2) as a standard Linux PC, by 

booting into the desktop environment and using attached input 

and output devices (e.g., monitor, keyboard, and mouse). Having 

learners use SBCs shares some similarities to using local installs, 

in the sense that the learners can run software installed on their 

own local machine. However, SBCs would ensure that all learn-

ers are using the same computing environment and have the 

same capabilities. Furthermore, SBCs can be used together with 

all the other computing platforms we discuss here.



Advantages of SBCs. Teaching with SBCs can be particu-

larly effective at an institution with limited IT support. Even in 

a classroom without reliable internet, the instructor can set up 

an SBC as a local network for sharing code and data among the 

learners. Thus, they can also be used in teaching environments 

not traditionally thought of as computing-friendly, such as in 

the field.

SBCs can be particularly good tools for teaching learners how 

to use remote Linux servers and HPC resources. Remote com-

puting can be an abstract concept for students with limited com-

putational background. Showing students how to “remotely” 

login from another computer to their SBC they have in-hand 

can make the idea of remote computing much more tangible. 

Furthermore, SBCs offer a way of teaching high-performance 

computing when such resources are not available. Even insti-

tutions with HPC facilities often do not support the use of these 

resources for teaching. On a very modest budget, an instructor 

can set up a shared, “mini” computing cluster to teach funda-

mental principles of HPC, such parallelization, message passing, 

and scalability.

One particularly exciting pedagogical opportunity presented 

by SBCs is the integration of tech and computation to  

create biology curricula needed by students in the 21st century 

(see Box 1). Imagine a scenario where all learners entering a 

program would receive an SBC along with some basic train-

ing on how to use it. Because SBCs allow direct access to 

the computing board and associated headers and ports, they 

are extremely modular, and can be coupled with many inex-

pensive accessories for collecting data. For example, for as  

little as $40, one can purchase an add-on board that includes a 

variety of sensors, including a gyroscope, accelerometer, mag-

netometer, temperature, barometric pressure, and humidity. 

Learners using these devices could collect observational or 

experimental data in the lab of their introductory biology class-

room. Then, in a lecture or discussion session, they could learn 

to use basic scripting to process, visualize, “clean,” and ana-

lyze those data. If an undergraduate or graduate curriculum was 

designed for the students to continue using their SBC, data, and 

scripts throughout their coursework, this could be a powerful 

approach to training the next-generation of computationally 

competent biologists. The development of such a curriculum 

goes far beyond the scope of what a typical teacher needs from 

a computing platform. Nonetheless, this aspirational idea is worth 

highlighting when discussing SBCs, because they can be used 

jointly with all the other computing platforms discussed in this 

paper.

Box 1. Diversity and Inclusion Callout Box 1

The low cost of high-performance, single-board computers 
(SBCs) can make the classroom more equitable. With a cost 
as low as $10 per computer, it requires minimal investment 
from learners, or, more ideally, increases the likelihood that an 
institution or funding agency can cover this cost. Using SBCs 
also ensures that all learners experience the same computing 
environment and capabilities. Furthermore, the low cost can 
allow the learners to keep the computer after the course is over. 
This can enable life-long learners across all socioeconomic 
backgrounds.

Disadvantages of SBCs. The initial setup of an SBC requires 

time and effort to install the Linux distribution on the microSD 

card. If the primary goal of the course is to use technology 

to teach biology, this work should be done by the instruc-

tor prior to the class. If the class is large, this would most likely 

require IT support to pre-install the operating system on many 

microSD cards. However, if any of the learning objectives 

of the course involve a better understanding of operating sys-

tems or computer hardware, turning the initial setup into an 

active-learning exercise done at the beginning of the class could 

be a very informative learning experience for the students.

Even after the initial setup, SBCs are not immediately useful 

on their own. Learners require either another computer to login 

to the SBC via SSH, or peripherals (e.g., monitor, keyboard, 

and mouse) to use the SBC as a PC. By the time these periph-

erals are factored in, the total cost could become similar to 

an entry level laptop. However, the learners can benefit from 

the modularity of the SBC system. The peripherals can be 

re-used, and the students could keep the SBC itself. This is not 

possible with laptops.

When not used as a PC (i.e., without peripherals), using an 

SBC can be quite unintuitive for learners not familiar with 

the Linux command line. For example, it would be counter- 

productive to take the time necessary out of an introductory biol-

ogy class to teach learners to become proficient in using an SBC 

from the command line. While this weakness can be overcome 

by using the SBC as a PC, this option does require additional 

investment and logistics to provide the learners access to 

keyboards, mice, and monitor.

Remote computing platforms
A number of platforms for serving course materials via the 

internet have become available. Because these technologies 

share many similarities, we will first discuss these computing 

platforms generally, then discuss teaching with R (such as with 

RStudio server, per RStudio Team (2015)) and Python (such as 

with JupyterHub, per Kluyver et al. (2016)) in the cloud. 

Remote computing platforms may be used by purchasing time 

on a commercial server (often colloquially called “the cloud”),  

or can be deployed on machines owned by the instructor or 

the university (such as a server or high-performance cluster  

computing unit).

Advantages of remote computing platforms
Remote systems typically provide a web interface to a central-

ized version of an IDE. This allows the instructor to set up a 

uniform instance for all learners, avoiding time spent sorting 

out problems, such as learners having different versions of lan-

guages or software installed. Learners can then focus on learning 

biology and/or working with data, rather than on managing 

technical details.

Remote computing platforms also ensure that learners are not 

limited by their hardware or software. The instructor sets up 

the class software on a server, rather than the learners install-

ing software on their own personal machines, thereby avoid-

ing problems such as learners not having computers powerful 

enough to run exercises, or computers without the ability to do 



language installs (such as NetBooks). This can be especially 

important for serving students who have difficulty purchasing 

a personal laptop to bring to class (see Box 2).

Box 2. Diversity and Inclusion Callout Box 2

A local RStudio Server or JupyterHub reduces barriers to the 
use of R or Python and support underprivileged students by 
removing the requirement to have a laptop (a Chromebook or 
tablet is sufficient) and minimizes the frustration associated 
with installation and different operating systems. Students can 
access the server from any location via a web browser using any 
machine while experiencing a consistent interface and access to 
their code and data.

Many remote computing platforms are agnostic to the type of 

machine on which they are run. For example, JupyterHub and 

RStudio Server can be deployed on any machine with Unix or 

Linux supported (RStudio Team, 2019). This machine can be 

owned by an instructor, a high-performance cluster (HPC) com-

puter operated by a university, or cloud computing resources 

rented by the instructor. The main considerations for choosing 

what type of machine to run a remote computing platform are 

memory, storage, and access. For courses with low-memory 

tasks, such as data processing on small datasets, a single 

machine may be sufficient, even with large numbers of users. 

For high-memory tasks (such as genome assembly), or tasks 

that with long runtimes (such as phylogenetic estimation), cloud 

compute resources that can be resized from week to week 

may be more suitable. For example, platforms such as Dig-

ital Ocean and Amazon Web Services, allow users to pay for 

more memory only when needed. The computing instance can 

be resized between class periods to allow more memory to be 

available to learners. This flexibility can allow an instructor to 

run a course on the resources they have available to them, based  

on their available infrastructure and funds.

If faculty are deploying the course on a local server, such as 

a personal server or a university-owned HPC unit, they may 

require IT support to set up the server, especially if the course 

is large. However, in our experience once setup is complete,  

maintenance requires minimal time and having IT handle 

upgrades and additional users relieves faculty of some work. 

The size of the server required for even large numbers of stu-

dents to do analyses can be quite minimal (e.g. just 4 cores for  

hundreds of students), provided they are conducting analyses  

of relatively small datasets (e.g. hundreds of samples).

Disadvantages of remote computing platforms
While the remote computing platforms are a flexible 

tool for teaching, there are some downsides. Because students 

typically interact with the server via a web-based login, if uni-

versity resources are to be used, instructional technology (IT) 

staff will typically want to be involved. Some universities do 

not allow public-facing servers to be operated by non-IT staff, 

which can limit instructors from using computers they have on 

hand to serve their coursework. Likewise, due to security con-

cerns, it may not be possible to operate a server on a university 

HPC. In this case, the instructor will likely have to turn to cloud 

compute providers. Many of these providers are affordable 

for small classes or low-memory tasks, but costs will scale with 

users, storage, and memory requirements.

These technologies do interact with the internet. Therefore, 

when problems arise in the classroom, the instructor must dis-

tinguish between problems with the server itself, with a learner’s 

computer, and with other classroom technology, such as  

wireless internet. While internet-based technologies can increase 

for equity and inclusion by allowing learners to interact with 

the course materials no matter how old their computer is, or 

if learners have unreliable computer access, they increase the 

complexity of diagnosing performance problems. Unstable inter-

net connections can cause many, if not all, members of the class 

to lose connection to the materials during class. Learners with 

individual computer problems, such as malfunctioning wireless 

cards, may need to borrow a computer to access materials. If the 

instructor is teaching without IT support, they may need to halt 

class and fix problems if the server itself is malfunctioning.

Additionally, because a server facilitates learners focusing on 

the data and analyses, rather than installation and troubleshoot-

ing, learners may leave class without the ability to work inde-

pendently outside the classroom. They have not learned how 

to install the programming language or IDE, and these are 

not installed on their personal computer. Additionally, they 

do not have or know how to install supporting packages. If the 

goal is for students to be equipped for independent work, the 

instructor should be sure to introduce these skills explicitly during 

the semester.

RStudio server
RStudio Server (RStudio Team, 2019) provides a web interface 

to a centralized version of the RStudio IDE for working with R 

code. By using RStudio learners are able to simultaneously view 

their script, environment variables, file structure, plots, installed 

packages, etc. The Server format allows the administrator to 

maintain a consistent version of R, RStudio, and installed pack-

ages. This approach allows beginning coders to focus on data 

and results, rather than worrying about installation and versions. 

It allows an instructor to be sure that learners can focus on their 

code without being limited by their hardware or software.

Some advantages of RStudio Server are that learners’ data and 

code are stored (and backed up) on the server. Instructors can 

also access a student’s code from anywhere to help students 

solve problems remotely. RStudio Server is free for teaching 

purposes upon submission of a syllabus to the RStudio  

Company. Additionally, for smaller scale teaching an instruc-

tor may use RStudio Cloud, which provides a free ready-to-go  

web-based version of RStudio.

It should be noted that RStudio can accommodate other lan-

guages, mostly through the use of external packages. For exam-

ple, the R package Reticulate provides support for Python (Ushey 

et al., 2020), and the package Knitr (Xie, 2014; Xie, 2015;  

Xie, 2020) allows the use of various scientific computing  

languages. Furthermore, other remote computing platforms, like  

Jupyter, support the R language.



JupyterHub
Project Jupyter is a non-profit organization that creates open-

source tools for computation. One of their most famous prod-

ucts is the Jupyter Notebook, which allows researchers to 

create interactive code documents. These documents can have 

text, images, and code cells that run and render output for 

inspection. The Jupyter Notebook was originally developed as 

the iPython notebook, but has since expanded to include lan-

guage support for other popular languages such as R and Julia.  

A JupyterHub is a server on which an instructor can deliver  

lessons via Jupyter Notebooks to a full classroom of students 

using a standardized server environment. In most cases, the 

server will be accessed via the internet. The first and fore-

most reason to use a JupyterHub is that you want to teach 

with the Jupyter ecosystem of tools. The Jupyter Notebook is 

commonly used in education in the sciences. It allows the 

instructor to develop a set of instructional materials that include 

text, code, and images. In this way, detailed notes can be pro-

vided from the instructor to the learner, and the learner can aug-

ment these lessons with their own notes, annotations, and code. 

Though originally invented for use with Python, Jupyter Note-

books are compatible with a number of languages. Multiple 

languages can even be used in one notebook, making them 

ideal for use with multi-language pipelines. The JupyterHub 

also has a command-line terminal and the Git version control 

system installed, for more advanced courses.

Jupyter supports the R language, and using Jupyter Notebooks 

with R can be a powerful teaching tool. However, JuptyerHub 

does not support popular integrated development environ-

ments (IDEs), such as RStudio or Python’s Spyder. While 

there is a text editor for preparing scripts, and a command line  

to run scripts, the JupyterHub is really designed to serve Jupyter 

Notebooks, and the interface caters to this technology.

HPC and cloud
RStudio Server and JupyterHub will typically require that 

instances are hosted somewhere. This refers to having the com-

pute platform installed in a central location, at which it can 

be accessed by all students. It may be possible for an instructor 

to host their course platform on a computer or server they per-

sonally own. However, in the experience of the authors, many 

universities prohibit faculty from hosting servers on-campus that 

will be available off-campus due to security concerns with allow-

ing off-campus computers to access on-campus resources. This 

means that you may be able to host a server via the intranet, but 

if students go home for the weekend, or live off-campus, they’ll 

need to come back on to campus to do their homework.

These limitations cause many instructors to look for alterna-

tive ways to provide their course platforms to students. One 

common way is by working with a local high-performance  

cluster compute facility. A high-performance cluster computer 

is a set of computers that are networked. This allows research-

ers to harness the power of several computers at once. These 

facilities often also service educators. A benefit to serving course  

content via high-performance cluster computing is that these 

resources are often free for educators at the university where the  

computer resides. Because these services are often in-house, the  

administrators of them are able to handle any specialized  

security concerns with the course platform. National level 

high-performance cluster computers, such as CIPRES (Miller  

et al., 2010), JetStream (Stewart et al., 2015; Towns et al., 

2014) and CyVerse (Goff et al., 2011; Merchant et al., 2016) 

also offer resources for US institutions. For campuses with limi-

tations on HPC use, IT may be able to set up an independent  

virtual machine on other existing university servers.

However, not every university has a high-performance clus-

ter computer that is set up to host coursework. In this case, 

an instructor may want to consider a remote solution. 

The concept of a remote solution is similar to using high- 

performance cluster computing. An educator can rent one or 

more computers to serve their coursework. Cloud comput-

ing can take several forms. In some cases, the instructor explic-

itly rents computers in sizes that are appropriate for their course. 

These types of services often charge by the number of comput-

ers, the size of the hard drive rented, the amount of memory on 

the computer, and the amount of time for which they will run. 

Examples of this type of service include Digital Ocean, Cloud 

Flare, Google Cloud, and Amazon Web Services. However, it 

is important to note that if you are signing a contract for cloud 

services, it is prudent to check with your IT, legal, and pur-

chasing departments. Departments may have rules in place for  

student privacy and data security, as well as for contract  

bids between providers.

Recently, educational cloud service providers have entered the 

market. Examples of these services include RStudio Cloud 

and Python Anywhere. These types of products are oriented 

towards providing an environment that is oriented towards a 

specific language or course platform. For example, RStudio 

Cloud hosts RStudio instances, and Python Anywhere hosts 

a variety of Python environments, including Jupyter notebooks. 

Like an regular cloud provider, these services typically charge 

based on the size of the amount of memory and storage capac-

ity of the computer needed. Being oriented towards educa-

tion, some of these providers also offer accounts for free, with 

paid accounts available for users who need more memory or 

computer power.

Bridging the gap between local and remote approaches
Container software, such as Docker, Singularity, or Podman, 

offer a way to teach with the simplicity of local installs while 

utilizing the consistency of remote computing platforms. 

Containers allow the instructor to create a standard comput-

ing environment that each student can work in on their own 

computer. Instead of having to install multiple tools that will 

be used in the course, the students would only have to install 

the container software (e.g., Docker, which is cross-platform), 

and then they can download and run the environment created 

by the instructor. The functionality is very similar to a virtual 

machine, but lighter-weight and more efficient. Containers can 

be easily updated and distributed with remote services like  

DockerHub. This allows the instructor to update the students’ 

computing environment in real-time. Of course, this still has 

the same disadvantages discussed above of having students run 

analyses on their own computer.



Teaching methods
Designing an effective biology course that incorporates comput-

ing requires more than choosing the best computing platform 

for your needs. Skills-based courses such as coding necessi-

tate a unique approach to teaching that can differ in some ways 

from more commonly used pedagogy in content-based courses. 

For many learners, a biology course that involves hands-on 

computing may be their first classroom experience that heavily 

involves learning increasingly complex skills that build off of 

each other, rather than primarily learning content. And simi-

larly, instructors whose research and teaching expertise is in a 

field that is not strictly computational — which likely includes 

most instructors of biology — may benefit from guidance on 

best practices for delivering content effectively and addressing 

the unique challenges that arise. As a skills-based discipline, 

computation necessarily requires some level of active in-class 

interaction from learners (with the instructor or peers, or with 

the material itself). Thoughtful implementation of appro-

priate active learning strategies has been shown to increase 

both mastery of content and development of general skills 

such as critical thinking and collaboration (Faust & Paulson, 

1998). Below, we describe several strategies for teaching cod-

ing, and address challenges that instructors may face in teaching 

a course that is perhaps more similar methodologically to 

math and foreign language than to other biology courses. We 

acknowledge that each section summarizes and simplifies a 

significant body of literature and encourage readers to pursue 

a deeper understanding of pedagogy elsewhere. For exam-

ple, the recent book “Teaching Tech Together” (Wilson, 2018),  

offers a concise overview of many of these issues.

Example-based learning
Example-based learning has a long history in teaching cod-

ing, and consists of the instructor providing examples of how 

to solve a given problem using code. Sometimes, these exam-

ples are static and provided in a textbook or on slides. Other 

forms of example-based learning require the learners to actively 

engage with the code. An especially effective way to teach 

computational biology is to combine multiple forms of example- 

based learning (Renkl, 2014a). For example, an instructor 

might use all three methods detailed below: first show learners  

some written examples, perhaps in pre-reading for a class, 

then use live coding during class and have the learners  

follow along, and subsequently have learners complete a series of 

examples with increasing amounts of code that learners 

need to fill in during in-class problem sets or in homework 

assignments.

Written examples. Written examples are often a good start-

ing point to introduce learners to the concepts and structure of 

solutions. Written tutorials allow learners to go at their own 

pace. This ensures learners take the time they need. However, 

learners frequently skim over static written examples or skip 

formative assessment questions, confident that they understand 

what the code is doing. Students may need to be required to 

critically evaluate the code to truly ensuring their understand-

ing. For this reason, written examples are most effective when 

integrated with other example-based learning methods (Renkl, 

2014a).

Live coding. Live coding is a form of example-based learn-

ing in which learners watch the instructor solve problems and 

in most cases the learners follow along. The act of typing along 

forces learners to actively enter code, which is a hands-on ver-

sion of a worked example. This means the instructor must pro-

ceed at a reasonable pace that learners can follow. The instructor 

can stop and ask learners challenge questions as forma-

tive assessment to ensure that learners apply their knowledge 

immediately and question their own understanding. The instruc-

tor can also set up a problem, and pause to have learners figure 

out the rest of the exercise. This live coding approach has been 

popularized by Data and Software Carpentry and similar cod-

ing workshops. Live coding can help teach aspects of program-

ming that are not easily taught by viewing static code, such as 

incremental coding (writing a few lines and testing them) and 

debugging. From the perspective of the learners, live coding 

is generally preferable to viewing static code, especially when  

learners are able to code along with instructors (Raj et al., 2018).

A disadvantage of live coding is that everyone goes at the 

same pace. This may be too fast for some and too slow for  

others. One possibility to alleviate this disadvantage is to flip the 

classroom and provide learners with pre-recorded live-coding 

experiences. The learners then come to class where they 

complete an exercise or a series of faded examples.

Faded examples. Faded examples are a form of example-based 

learning that can be more effective than static worked exam-

ples (Schwonke et al., 2009). Faded examples include sets 

of worked examples, beginning with a complete example. 

With each subsequent example, key problem solving steps are 

removed and learners must insert the steps themselves (Renkl, 

2014b). Faded examples have been demonstrated to require 

less learning time with potentially better learning outcomes 

(Schwonke et al., 2009).

In the context of teaching computation to biologists, faded  

examples are particularly facilitated by servers. For example, a 

Jupyter notebook containing faded examples may be made avail-

able to learners on the server. If learners successfully complete 

the code they will produce an expected outcome, thus allowing 

for the learner to self-correct their work. Fillable Jupyter 

notebooks using the faded examples technique force learners 

to engage with the material and actively problem-solve. Fill-

able notebooks are particularly useful because they run the code 

and allow the learner to immediately discover if they produced 

the right answer. This type of immediate feedback allows the 

learner to work towards the correct answer, rather than turning in 

work that they believe to be correct and receiving a low grade on 

something they put time and effort into. An important 

component is providing learners with a solution set after they 

have had the opportunity to solve the faded examples so that they 

can see where they went wrong if they are unsuccessful.

Additional example-based exercises. A variety of exercises 

are frequently used in testing and reinforcing learning of com-

putational concepts that do not require learners to create new 

code. For example, learners could be presented with code that 

contains a bug and be tasked with providing the Minimal Fix 



that would allow the code to run. Alternatively, the learners 

could be presented with a series of lines of code and be asked 

to rearrange them such that they successfully complete a task  

(“Parsons Problems”; Parsons & Haden, 2006), or to trace the 

order in which code is executed (for instance, within a series of 

nested loops or if statements). See the section “Exercise Types” in  

Wilson (2018) for more detail and exercises of this variety.

Focusing on coding as problem-solving
One of the main skills underlying learning to code is learn-

ing how to solve problems. Writing code can be viewed as a 

method of communicating to the computer the precise steps of 

the analysis. In fact, code serves as a written record of the ana-

lytical steps, and is one that is instantly reproducible. When the 

learning outcomes are not necessarily tied to learners having full 

mastery of a specific language’s syntax, shorthand notation can 

be used to outline the steps the learner would take to get to the 

end result, removing the added layer of correct syntax and high-

lighting the importance of the problem-solving elements. This 

method, called pseudocode, can help learners logically scaf-

fold their thought process, and therefore their code, regard-

less of which language they will be coding in. Learners can be 

required to write the solution to their problem in pseudocode to 

demonstrate their thought process, and then use that pseudocode 

to write their code (e.g., Olsen, 2005). Courses may rely on 

pseudocode during timed exams to relieve exam stress. Note, 

however, that if learners are expected to interpret or elabo-

rate on pseudocode — especially in an exam setting — that the 

meaning behind each pseudocode term is clearly and 

unambiguously defined (Cutts et al., 2014).

Cooperative learning
Working in groups or pairs can result in numerous positive  

outcomes in the biological sciences, including enhancing  

scientific thinking and attitudes about biology, aiding in the 

instruction and evaluation of course material, providing a bet-

ter understanding of practical skills and their applicability in 

real-world environments, improving reading, writing, and social 

skills, and supporting learning for a broader array of learn-

ers (reviewed in Lord, 2001). In the context of teaching 

computational biology, group projects and other forms of  

cooperative learning have frequently been used to facilitate 

example-based learning (e.g., Emery & Morgan, 2017; Fuselier 

et al., 2011; Korcsmaros et al., 2013). One cooperative learn-

ing teaching tool for computational biology is pairing learners 

up and having one student be the ‘driver’, who types in the code, 

and one be the ‘navigator’, who has to tell the driver what to 

type. This exercise forces learners to think carefully about the 

process of creating code. Even if learners are not expected to 

work through examples or produce a project in pairs or groups, 

cooperative learning can still be implemented by facilitat-

ing discussion and collaboration among learners. This can be 

done in class (e.g., through think-pair-share exercises, in which 

learners are encouraged to think about a problem individually, 

then discuss in pairs or small groups) or outside of class through 

discussion forums. For instance, learners could be encouraged 

or required to participate in discussions on the course website 

(e.g., Blackboard/Moodle) or a Slack workspace created for the 

class, or to do peer review of other learners’ projects. Learning 

from each other can be a powerful way to get learners engaged 

with the course work, and can solidify their understanding 

by having them teach each other (Treisman, 1992).

However, as most students and instructors know, group work 

can create problems and strife. Interpersonal issues within pairs 

or groups can hinder the learning process. Sometimes groups 

or pairs are unbalanced with regard to prior knowledge, speed 

of learning, or effort contributed to the project. Additionally, 

group size or composition can lead to an entire group struggling 

to succeed (e.g., Compeau, 2019). Therefore, although group 

projects are frequently used in computational biology and can 

be a useful tool, relying only on group-based projects for critical 

assessments in a course may not be the best solution.

Other challenges and tools
Incorporating computational biology into the classroom comes 

with additional challenges that may not be present in other 

biology courses. Many learners will have some prior biologi-

cal knowledge but have no experience with computer coding. 

This creates a situation where learners have many ques-

tions but often feel out of their comfort zone, or are simply 

uninterested in the computational components of the course mate-

rial. These factors combine result in a number of different chal-

lenges for instructors to help learners successfully navigate 

the computational side of a biology course.

Demonstrating value. The unfamiliarity of coding can some-

times lead learners to push back against the idea of learning to 

code. In our experience, demonstrating how coding can be a use-

ful tool for doing the same analysis multiple times (e.g., gener-

ate the same type of plot for different datasets) helps learners 

see the value in learning to code. This demonstration is espe-

cially powerful when the learners are enabled to discover the 

utility of coding on their own. For example, an instructor could 

provide students with a large dataset and encourage the learners 

to try basic analyses (e.g., producing summary statistics or 

basic plots) in both R and Excel. Particularly when learners 

have not opted into learning computational skills — for exam-

ple, when computational skills are incorporated into required 

biology classes — showing learners the value of saving future 

time and effort is very important.

Teaching how to ask for help. Not all learners will automati-

cally ask for help (see Box 3). As instructors, we need to encour-

age learners to seek our help when they are struggling. One 

method we have found successful is to provide learners with 

rewards for asking for help, such as an automatic extension on 

deadlines if learners attend office hours. Having knowledge-

able teaching assistants or support staff to circulate the class-

room and check on learner progress during in-class exercises is 

also helpful (see Box 3 for further notes on asking for help). In 

these cases, instructing the teaching support staff to first approach 

learners who do not have their hands raised will provide help to 

a larger proportion of the class, especially many learn-

ers who need the most help. To help learners signal that they 

need help, instructors can use a system that does not force  

students to stand out by raising their hands. For instance, Data 

and Software Carpentry use post-it notes to discreetly signal 



to instructors when learners need assistance. Incorporating live  

coding into lectures is another way to normalize asking for 

help; while live coding, instructors can demonstrate that errors 

are a natural part of coding, how to effectively search for  

solutions to problems, and how to look up syntax details.

Box 3. Diversity and Inclusion Callout Box 3

Asking for help is critical for learners to be able to overcome 
confusion, solidify their skills, and deepen their knowledge and 
understanding. However, cultural differences exist that may 
prevent learners from seeking help, even when they need it 
most. Universities in particular have the unspoken expectation 
that undergraduates will seek help when they need it, but 
people from some backgrounds will not necessarily know this, 
or may feel uncomfortable approaching their teachers, who 
are in positions of authority (Jack, 2016). Different cultures 
may perceive asking questions in class in different ways; some 
cultures view questions as a way to gain recognition, whereas 
others view questions as a demonstration of ignorance. The 
latter group are less likely to ask questions in class and thus 
do not receive either needed help or engagement with the 
instructor.

Large class sizes. For instructors who are looking to incor-

porate computational biology into large classes, such as in an 

introductory biology course, the prospect of testing and grad-

ing code turned in as assignments may be daunting. We have 

found that relying on knowledgeable TAs, support staff, and 

demonstrators is the best way to ensure that all learners receive 

the help that they need. Placing learners in pairs or small 

working groups (see the section on Cooperative Learning above) 

can also provide learners with support and feedback that will 

facilitate their learning, without placing the entire burden on 

instructors and TAs. Additionally, relying on IT support to help 

manage the computing platforms can reduce the workload for 

the instructors. Furthermore, using assignments that can be auto-

matically graded (e.g., mimir classroom, nbgrader in Jupyter,  

or OK) will help reduce the time teachers must spend grad-

ing. An added benefit of such autograding technologies is that 

they can provide students with immediate feedback on their  

performance and understanding of the computational materials.

Plagiarism. Writing code is more similar to math than to writ-

ing, as there is a correct answer (or perhaps several correct 

answers), and it can be difficult to detect whether learners  

arrived at that answer independently or through copy-

ing someone else’s solution. Plagiarism can be exacerbated 

by the common phenomenon of searching for solutions to 

a given problem online and copying or adapting posted solu-

tions without attributing proper credit (Gaspar & Langevin, 

2007). Some of the programs that grade code include plagiarism 

detection components (Pears et al., 2007), which can help 

instructors identify when plagiarism has occurred. One approach 

to ensure learners understand code is to require commented 

explanation of each component of their code, and ensure these 

comments are different for each learner. Requiring unique 

comments from learners has the advantage that it allows 

learners to be able to search for the functions and arguments to 

functions that are needed to implement their analytical work, 

which is common practice when writing code. Another approach 

is to allow learners to work on assessments as a group, but 

have each learners write out their own pseudocode explana-

tions of the code. Instructors are encouraged to discuss issues 

surrounding intellectual property and plagiarism and reinforce the 

importance of citing sources.

Conclusions
Computing is increasingly being incorporated into coursework 

at all levels in biology. Computing is both a key skill for learners 

and supports additional learning by enabling the incorpora-

tion of data and analysis into classrooms. Instructors have a 

range of choices to deliver computational lessons. From the 

computing platform to how the instructor delivers the lesson, 

every aspect of a computational classroom can shape learners’ 

knowledge and confidence. In this paper, we have outlined the 

costs and benefits of several popular computing platforms. 

Given the variety of options, instructors should be able to find 

a platform that best fits their course learning objectives, avail-

able resources, class size, and learner backgrounds. One impor-

tant consideration in this decision is how the platform of choice 

affects learner access to course content. Many of these computing 

platforms can support inclusion in the classroom (and thus, 

ultimately, in fields and careers that incorporate computa-

tion) by providing access to the same technologies to all 

learners. We have also discussed several teaching strategies 

for computational biology and other courses with computa-

tion, with the goal of improving student engagement, learning, 

and retention.
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