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;57573 Amendments from Version 1

We would first like to thank both reviewers for their excellent
suggestions for improvements to our paper. Both reviewers
pointed out the usefulness of nbgrader, and we have added both
nbgrader and OK as examples when we discuss the advantages
of automated grading (in the “Large class sizes” sub-section). In
response to their comments, we have also rephrased and clarified
our discussion of ‘cloud-based’ servers and ‘remote’ servers, so
that those sections can be relevant to teachers who are using any
type of non-local installation, whether it is a local server (such as
university HPC) or a cloud-based server. We also now do a better
job pointing out the overlap between RStudio and JupyterHub.
We have improved our description of how R can be incorporated
into Jupyter notebooks and mentioned that Python and other
languages can be used in RStudio.

In response to comments from Reviewer 1, we have added a
paragraph highlighting some additional example-based exercises
that can be used to reinforce computational concepts and skills.
These exercises could be useful as homework exercises as well
as quiz and test questions. We only highlighted a small number
of useful types of exercises, but we point readers to “Teaching
Tech Together” for a more comprehensive coverage of various
computational exercises.

Overall, the two reviewers’ suggestions will improve the
usefulness of this paper to our readers.

Any further responses from the reviewers can be found at the
end of the article

Introduction

Biology departments are increasingly offering or considering
course work that incorporates hands-on computation (Wilson
Sayres er al., 2018). There are different rationales for courses
that include computation. Perhaps the most obvious rationale is
to teach computational biology, bioinformatics, and/or skills in
working with large datasets. Bioinformatic skills are increasingly
a core component of biology and biology education, and support
students’ job and/or graduate school preparation (Wilson Sayres
et al., 2018). The vast majority of researchers in biology either
use large datasets or could do so with sufficient training, sug-
gesting that general training in effective use of large datasets
is essential for students as well (Barone er al., 2017; Loman &
Watson, 2013). However, even with small datasets, perform-
ing analyses reproducibly and having access to the wide range
of statistical and analytical tools available in scientific comput-
ing languages improves the work of scientists. Thus, in course-
work involving computation, instructors teach particular skills
or tools that are an integral part of the field. An alternate moti-
vation is to incorporate more data and analysis into course
work. Integrating data into courses provides more opportunity
for students to experience the research process, and the ability
to incorporate active learning activities where students recog-
nize biological theories by drawing conclusions from their own
results (Kjelvik & Schultheis, 2019). Another rationale for teach-
ing computational skills is to increase data literacy (Gibson &
Mourad, 2018), which, in addition to enhancing learners’ prepa-
ration for future careers, also better prepares learners to think
critically about societal issues relevant to science and policy
(Cook et al., 2014).

However, there are significant barriers to teaching hands-on com-
putation in biology classrooms (Williams er al., 2017). While
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many biologists use computation in their research, relatively
few have explicit training in this area. Fewer still have training
in how to teach computation (Williams ez al., 2017). Importantly,
few biologists are housed in a department with the existing exper-
tise or infrastructure for teaching computation (Williams er al.,
2017); thus, there is often less familiarity with options for teaching
computing or recent best practices. Cummings & Temple (2010)
describe the challenges in teaching bioinformatics as “infrastruc-
ture and logistics; instructor knowledge of bioinformatics and
continuing education; and the breadth of bioinformatics, and
the diversity of students and educational objectives.” Williams
et al. (2017) similarly cites faculty training, infrastructure, and
student interest and preparation. Here our goal is to address
issues of infrastructure and logistics, and make recommendations
for faculty practice. We suggest that faculty seeking computa-
tional training consider programs such as Software and Data
Carpentry workshops as well as opportunities offered by
QUBES, NEON, and their own universities. Additionally, we sug-
gest that faculty separately seek training in teaching computa-
tion through programs such as the Software and Data Carpentry
instructor training courses. This article explains options avail-
able for instructors to teach computational course content (col-
lectively referred to here as computing platforms), discusses how
to choose the best computing platform for a course, and describes
effective strategies for teaching coding and data analysis.

An important consideration is that whichever technology an
educator uses to deliver their content supports the educator’s
learning objectives and enhances students’ ability to learn. Every
course has a unique set of learning objectives, and every group
of learners poses a unique set of challenges. Such learning objec-
tives related to computing may range from engaging students in
the value of basic coding skills to building advanced skills and
the ability to self-teach and work independently. An example of
the former might include a freshman introductory biology lab
focusing on data analysis, where students focus on the results
from the data analysis. In contrast, an upper-division course on
research methods may focus more on preparing students for
independent data analysis by emphasizing self-sufficiency in
coding, reproducibility of the research, and software manage-
ment and installation. Additionally, the selected platform needs
to support the type of work the students are doing. In the first
example, students might need to learn to make appropriate plots
to visualize biological data; thus, the platform students work with
needs to have the capacity to display plots. On the other hand,
if a course objective is for students to learn to manage genome-
scale data on a remote server, a platform using a command-line
interface to access a computing cluster may be more appropriate.

Much as a biology laboratory course requires specific labora-
tory equipment, teaching computation requires learners to be
able to access specific software and functions. This may range
from one or a few pieces of software that can be downloaded
from the internet to installation of a computing language and
development environment. For simplicity, the interfaces used by
learners and the instructor should be uniform, as different versions
of software could have different interfaces or commands. Learn-
ers also need a way to compute outside of class — for example,
to do the homework outside class hours. Finally, the computing
platform should allow students to focus on the coursework and
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instruction. The learning platform must not interfere with students’
focus on the learning objectives.

Another consideration is the consistency and scaffolding in
selecting tools and/or the larger platform. Gibson & Mourad
(2018) cites the need for “coordinated, sequential development
of data literacy across the biology curriculum”, which suggests
the value of a platform and tools on which students can scaffold
their skills, rather than each course choosing its own tool. For
example, students would likely find it challenging to use R in one
class, Python in another, and a genomics platform such as Galaxy
in another (Wu & Anderson, 1990). Furthermore, switching lan-
guages and platforms (i.e. learning a new skill set) can detract
from time spent on other educational activities when the goal is
not to explicitly teach the language or platform.

Every choice of computing platform comes with costs and ben-
efits. In this article, we will discuss tools and techniques to
facilitate teaching computation in courses with some degree of
programming or data analysis. We explain different comput-
ing platforms with a special eye towards serving diverse sets
of learners, in terms of their motivations, life experiences, and
access to technology. In particular, we will focus on program-
ming languages that are common in biology: R and Python. Lastly,
we review effective pedagogical techniques for helping learners
thrive in a computational classroom.

Choice of computing language

One of the first choices an instructor needs to make when they
plan coursework is what computing language to use. In biology,
R and Python are common languages. Bash, a type of UNIX
command-line language, is commonly used to run software and
automate tasks. There are multiple considerations to take into
account for this choice, including consistency, current status of
research tools, and comfort. Consistency refers to consistency
of the language’s use throughout the curriculum. Switching lan-
guages can be associated with learning loss in novices (Wu &
Anderson, 1990). Therefore, in order to deepen and strengthen
learners’ command of languages, integrating the same language
consistently throughout the curricullum may be helpful. For
example, if an instructor is integrating a computational com-
ponent into a genetics lab, they might check with a colleague
teaching biostatistics or bioinformatics to see what language
they are using.

The current status of research tools is also worth considering.
If the goal of a course is for learners to understand both biology
and computation, the instructor will want to choose a language
with active development of tools for research in that field. For
example, many genomics and phylogenetics tools are written in
Python. On the other hand, more ecological and comparative biol-
ogy tools are written in R. Therefore, the choice of language will
inform the subset of tools available to the instructor and
the learners.

Finally, instructors should consider their own comfort. Teaching
requires fluent and comfortable discussion of concepts and tools.
Instructor knowledge must factor into this. Additionally, commu-
nity resources exist for some languages. For example, QUBES
is a National Science Foundation-sponsored (NSF) project that
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publishes lessons and sponsors instructor mentoring groups
in various scientific disciplines. An instructor may feel more
empowered to teach well if there is a strong sense of community
in their language, with pathways to ask for help and access
resources.

It is also worth noting that not all tasks that are computational
necessitate the addition of programming into the curriculum.
For example, tools such as the NSF-sponsored Galaxy project
allow instructors to help learners run bioinformatics and genom-
ics software via a point-and-click internet interface. If the goal
of a course is to demonstrate answering a particular question,
but not to dig too deep into the methodology of how that is done,
this type of interface may be sufficient. Teaching with these
resources is beyond the scope of this article, as the Galaxy web-
site provides extensive resources for teaching, and trainers provide
regular workshops on this tool.

The R language allows inexperienced learners to immediately
work with rectangular (i.e. spreadsheet-style) data in a way
that is engaging. For example, a learner can load data and plot
results within an hour of first opening RStudio. This engagement
is important for learners who are more interested in effectively
working with data than learning to code. We suggest that the
R language immediately supports coding-to-learn with minimal
learning-to-code. In particular, the tidyverse set of packages pro-
vided by RStudio provides convenient, well-supported, and intui-
tive functions for plotting and manipulating data. Bioconductor
(Huber er al., 2015) has a wide variety of packages related to
genomic data, as well as tutorials for this use, while other pack-
ages such as ape (Paradis & Schliep, 2018) provide resources for
specific tasks such as reading and viewing phylogenies, and many
other packages are available with easy-to-follow vignettes.

Python is a general purpose programming language used in
a wide variety of industries and can be adapted to many pur-
poses. For example, the popular data science library Pandas
(McKinney, 2010) can be used to teach foundational data skills
such as managing rectangular data. Python also has a variety
of resources for teaching work with non-spreadsheet data.
BioPython is a library for working with general sequence
datasets at a variety of scales (Cock er al, 2009). More
specialized libraries, such as Poretools (Loman & Quinlan,
2014) (for Nanopore data) or Dendropy (Sukumaran &
Holder, 2010) and ETE3 (Huerta-Cepas er al, 2016) (for
phylogenetic trees), are also available for work in subdisciplines
of biology and bioinformatics.

Depending on the aims of the class, it may be necessary to
choose a supporting language, as well. For example, in contrast
to a coding-to-learn course in which biology students practice
drawing conclusions from data, a course on genomics might
require students to interact with large datasets on a remote server.
Many such servers require a UNIX command line to access.
While this article will focus on R and Python, some instructors
may find that they need additional languages to support student
learning, particularly in advanced disciplines. Furthermore,
while we suggest focusing on a single language for pedagogical
reasons, and highlight R and Python, our goals in choos-
ing a language are (1) to select one that is widely used with
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available tools, and (2) has straightforward syntax for novices
(Stefik & Siebert, 2013). We support the philosophy taken by
the Software Carpentry organization of using any language
that meets these goals and provides a platform for learning the
fundamental process of automating data analysis.

Local computing platforms

Local installs on personal computers

Perhaps the most basic computing platform setup is to have
learners install languages and software locally on their own
computers. Local installs may work best in small classes that
focus on the basics of coding, where the goal is for learners
with no prior experience to leave the course self-sufficient to do
computational work. R is easily downloaded and installed from
the R-Project website. RStudio provides a commonly-used inte-
grated development environment (IDE) that allows management
of additional packages and visualization of data and figures.
The Anaconda installation of Python provides the programming
language, as well as the Jupyter notebook environment for
simultaneously viewing code and output, and the ability to run
code in blocks. The Anaconda installation also provides the
conda package manager for installation of additional packages.

Advantages of local installs. Local installs allow learners to
immediately be able to apply their new knowledge of code out-
side the class without additional support. For learners who
are already familiar with their own computers and operating
systems, having students use local installs can bypass some of
the learning curve associated with learning a completely dif-
ferent platform; this also applies for instructors, who often have
limited time to devote to learning a new platform exclusively for
the purpose of teaching a course.

If the software used in class does not require a paid license
or subscription, learners will continue to have access to the
specific tools used in class after the course ends. Teaching learn-
ers with tools that they know they will be able to take away
with them and apply in the future increases learner motiva-
tion to learn these tools, and increases the chance that they
will actually use them in future work (Kember er al., 2008).

Local installs are a solution in particular for smaller institu-
tions that do not have access to remote computing platforms. In
some cases, though setting up a computing platform may be
theoretically possible, it may not be feasible within the con-
straints of resources, time, and IT personnel. Local installs offer
an alternative system that does not typically require extensive
coordination with IT personnel at an institution. Additionally,
local installations avoid the challenges presented by a poor
internet connection and dependency on a single outside
computing platform.

Challenges of local installs and how to overcome them. While
using local installs can minimize time spent learning new plat-
forms, it may also extend the initial time spent setting up
learners’ computers for the course — namely, with language
and software installation. The feasibility of using local installs
may thus be limited in many cases by class size. This up-front
time can be minimized by having learners complete as much
installation as possible before the course begins using detailed
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instructions or videos available on the software developers’
websites or provided by the instructor. For example, Data Car-
pentry provides installation instructions as part of its workshops
and the University of British Columbia provides installation
information to support its Data Science courses. However, some
guidance may be necessary either during class or individually.
In addition, troubleshooting installs on various platforms can be
challenging, especially with a larger class working on a wider
variety of computers. In some cases, software may not be avail-
able for a particular platform (e.g. RStudio on Chromebooks).
Further, if learners have previously installed a particular lan-
guage, IDE, or package, they may have a different version than
that used in class, which may complicate analyses later. This
issue would present less of a problem in classes that primarily
cover the foundations of coding, and/or with learners who have
little to no prior experience.

In classes that have learners do analytical work requiring
substantial computational power, learners may not have comput-
ers that are able to do that work. Some learners may not have
computers at all. For these reasons, local installs may not be the
best option for a required course (i.e., if a learner must take the
course regardless of whether or not they have a computer they
can bring to class) or for a course where a substantial amount
of time is spent on computationally intensive work. For elec-
tive courses, the instructor may choose to list a computer as
required material for the course and make that information avail-
able to students during the class registration period. However,
this requirement limits the learners who are able to take the class
to those who have a computer to bring. With small classes, it may
be possible to provide a computer to a learner who does not have
their own, and the instructor should also ensure that the learner has
access to a computer outside the classroom with necessary soft-
ware for homework. An alternative solution may be to hold the
class in a computer lab, but installation of software in computer
labs may require IT support, depending on the institution.

Single-board computers (SBCs)

Single-board computers (SBCs) are minimalist, complete com-
puters built on a single circuit board. There are a number of
organizations in the single-board computer market, but they
were first popularized by the Raspberry Pi Foundation.
The most basic SBC models cost as little as $10 and offer WiFi,
Bluetooth, and quite high-performance computing. Generally, a
Linux distribution, such as Raspbian, is installed on a microSD
card and run on these machines.

An SBC is not immediately useful on its own, because it does not
have a monitor or input devices. However, these machines can
be used (1) as a server, by logging in “remotely” from another
machine via WiFi or wired connection — for example, using
secure shell (SSH) protocol — or (2) as a standard Linux PC, by
booting into the desktop environment and using attached input
and output devices (e.g., monitor, keyboard, and mouse). Having
learners use SBCs shares some similarities to using local installs,
in the sense that the learners can run software installed on their
own local machine. However, SBCs would ensure that all learn-
ers are using the same computing environment and have the
same capabilities. Furthermore, SBCs can be used together with
all the other computing platforms we discuss here.
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Advantages of SBCs. Teaching with SBCs can be particu-
larly effective at an institution with limited IT support. Even in
a classroom without reliable internet, the instructor can set up
an SBC as a local network for sharing code and data among the
learners. Thus, they can also be used in teaching environments
not traditionally thought of as computing-friendly, such as in
the field.

SBCs can be particularly good tools for teaching learners how
to use remote Linux servers and HPC resources. Remote com-
puting can be an abstract concept for students with limited com-
putational background. Showing students how to ‘“remotely”
login from another computer to their SBC they have in-hand
can make the idea of remote computing much more tangible.
Furthermore, SBCs offer a way of teaching high-performance
computing when such resources are not available. Even insti-
tutions with HPC facilities often do not support the use of these
resources for teaching. On a very modest budget, an instructor
can set up a shared, “mini” computing cluster to teach funda-
mental principles of HPC, such parallelization, message passing,
and scalability.

One particularly exciting pedagogical opportunity presented
by SBCs is the integration of tech and computation to
create biology curricula needed by students in the 21st century
(see Box 1). Imagine a scenario where all learners entering a
program would receive an SBC along with some basic train-
ing on how to use it. Because SBCs allow direct access to
the computing board and associated headers and ports, they
are extremely modular, and can be coupled with many inex-
pensive accessories for collecting data. For example, for as
little as $40, one can purchase an add-on board that includes a
variety of sensors, including a gyroscope, accelerometer, mag-
netometer, temperature, barometric pressure, and humidity.
Learners using these devices could collect observational or
experimental data in the lab of their introductory biology class-
room. Then, in a lecture or discussion session, they could learn
to use basic scripting to process, visualize, “clean,” and ana-
lyze those data. If an undergraduate or graduate curriculum was
designed for the students to continue using their SBC, data, and
scripts throughout their coursework, this could be a powerful
approach to training the next-generation of computationally
competent biologists. The development of such a curriculum
goes far beyond the scope of what a typical teacher needs from
a computing platform. Nonetheless, this aspirational idea is worth
highlighting when discussing SBCs, because they can be used
jointly with all the other computing platforms discussed in this

paper.

Box 1. Diversity and Inclusion Callout Box 1

The low cost of high-performance, single-board computers
(SBCs) can make the classroom more equitable. With a cost

as low as $10 per computer, it requires minimal investment
from learners, or, more ideally, increases the likelihood that an
institution or funding agency can cover this cost. Using SBCs
also ensures that all learners experience the same computing
environment and capabilities. Furthermore, the low cost can
allow the learners to keep the computer after the course is over.
This can enable life-long learners across all socioeconomic
backgrounds.
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Disadvantages of SBCs. The initial setup of an SBC requires
time and effort to install the Linux distribution on the microSD
card. If the primary goal of the course is to use technology
to teach biology, this work should be done by the instruc-
tor prior to the class. If the class is large, this would most likely
require IT support to pre-install the operating system on many
microSD cards. However, if any of the learning objectives
of the course involve a better understanding of operating sys-
tems or computer hardware, turning the initial setup into an
active-learning exercise done at the beginning of the class could
be a very informative learning experience for the students.

Even after the initial setup, SBCs are not immediately useful
on their own. Learners require either another computer to login
to the SBC via SSH, or peripherals (e.g., monitor, keyboard,
and mouse) to use the SBC as a PC. By the time these periph-
erals are factored in, the total cost could become similar to
an entry level laptop. However, the learners can benefit from
the modularity of the SBC system. The peripherals can be
re-used, and the students could keep the SBC itself. This is not
possible with laptops.

When not used as a PC (i.e., without peripherals), using an
SBC can be quite unintuitive for learners not familiar with
the Linux command line. For example, it would be counter-
productive to take the time necessary out of an introductory biol-
ogy class to teach learners to become proficient in using an SBC
from the command line. While this weakness can be overcome
by using the SBC as a PC, this option does require additional
investment and logistics to provide the learners access to
keyboards, mice, and monitor.

Remote computing platforms

A number of platforms for serving course materials via the
internet have become available. Because these technologies
share many similarities, we will first discuss these computing
platforms generally, then discuss teaching with R (such as with
RStudio server, per RStudio Team (2015)) and Python (such as
with JupyterHub, per Kluyver er al. (2016)) in the cloud.
Remote computing platforms may be used by purchasing time
on a commercial server (often colloquially called “the cloud”),
or can be deployed on machines owned by the instructor or
the university (such as a server or high-performance cluster
computing unit).

Advantages of remote computing platforms

Remote systems typically provide a web interface to a central-
ized version of an IDE. This allows the instructor to set up a
uniform instance for all learners, avoiding time spent sorting
out problems, such as learners having different versions of lan-
guages or software installed. Learners can then focus on learning
biology and/or working with data, rather than on managing
technical details.

Remote computing platforms also ensure that learners are not
limited by their hardware or software. The instructor sets up
the class software on a server, rather than the learners install-
ing software on their own personal machines, thereby avoid-
ing problems such as learners not having computers powerful
enough to run exercises, or computers without the ability to do
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language installs (such as NetBooks). This can be especially
important for serving students who have difficulty purchasing
a personal laptop to bring to class (see Box 2).

Box 2. Diversity and Inclusion Callout Box 2

A local RStudio Server or JupyterHub reduces barriers to the
use of R or Python and support underprivileged students by
removing the requirement to have a laptop (a Chromebook or
tablet is sufficient) and minimizes the frustration associated

with installation and different operating systems. Students can
access the server from any location via a web browser using any
machine while experiencing a consistent interface and access to
their code and data.

Many remote computing platforms are agnostic to the type of
machine on which they are run. For example, JupyterHub and
RStudio Server can be deployed on any machine with Unix or
Linux supported (RStudio Team, 2019). This machine can be
owned by an instructor, a high-performance cluster (HPC) com-
puter operated by a university, or cloud computing resources
rented by the instructor. The main considerations for choosing
what type of machine to run a remote computing platform are
memory, storage, and access. For courses with low-memory
tasks, such as data processing on small datasets, a single
machine may be sufficient, even with large numbers of users.
For high-memory tasks (such as genome assembly), or tasks
that with long runtimes (such as phylogenetic estimation), cloud
compute resources that can be resized from week to week
may be more suitable. For example, platforms such as Dig-
ital Ocean and Amazon Web Services, allow users to pay for
more memory only when needed. The computing instance can
be resized between class periods to allow more memory to be
available to learners. This flexibility can allow an instructor to
run a course on the resources they have available to them, based
on their available infrastructure and funds.

If faculty are deploying the course on a local server, such as
a personal server or a university-owned HPC unit, they may
require IT support to set up the server, especially if the course
is large. However, in our experience once setup is complete,
maintenance requires minimal time and having IT handle
upgrades and additional users relieves faculty of some work.
The size of the server required for even large numbers of stu-
dents to do analyses can be quite minimal (e.g. just 4 cores for
hundreds of students), provided they are conducting analyses
of relatively small datasets (e.g. hundreds of samples).

Disadvantages of remote computing platforms

While the remote computing platforms are a flexible
tool for teaching, there are some downsides. Because students
typically interact with the server via a web-based login, if uni-
versity resources are to be used, instructional technology (IT)
staff will typically want to be involved. Some universities do
not allow public-facing servers to be operated by non-IT staff,
which can limit instructors from using computers they have on
hand to serve their coursework. Likewise, due to security con-
cerns, it may not be possible to operate a server on a university
HPC. In this case, the instructor will likely have to turn to cloud
compute providers. Many of these providers are affordable
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for small classes or low-memory tasks, but costs will scale with
users, storage, and memory requirements.

These technologies do interact with the internet. Therefore,
when problems arise in the classroom, the instructor must dis-
tinguish between problems with the server itself, with a learner’s
computer, and with other classroom technology, such as
wireless internet. While internet-based technologies can increase
for equity and inclusion by allowing learners to interact with
the course materials no matter how old their computer is, or
if learners have unreliable computer access, they increase the
complexity of diagnosing performance problems. Unstable inter-
net connections can cause many, if not all, members of the class
to lose connection to the materials during class. Learners with
individual computer problems, such as malfunctioning wireless
cards, may need to borrow a computer to access materials. If the
instructor is teaching without IT support, they may need to halt
class and fix problems if the server itself is malfunctioning.

Additionally, because a server facilitates learners focusing on
the data and analyses, rather than installation and troubleshoot-
ing, learners may leave class without the ability to work inde-
pendently outside the classroom. They have not learned how
to install the programming language or IDE, and these are
not installed on their personal computer. Additionally, they
do not have or know how to install supporting packages. If the
goal is for students to be equipped for independent work, the
instructor should be sure to introduce these skills explicitly during
the semester.

RStudio server

RStudio Server (RStudio Team, 2019) provides a web interface
to a centralized version of the RStudio IDE for working with R
code. By using RStudio learners are able to simultaneously view
their script, environment variables, file structure, plots, installed
packages, etc. The Server format allows the administrator to
maintain a consistent version of R, RStudio, and installed pack-
ages. This approach allows beginning coders to focus on data
and results, rather than worrying about installation and versions.
It allows an instructor to be sure that learners can focus on their
code without being limited by their hardware or software.

Some advantages of RStudio Server are that learners’ data and
code are stored (and backed up) on the server. Instructors can
also access a student’s code from anywhere to help students
solve problems remotely. RStudio Server is free for teaching
purposes upon submission of a syllabus to the RStudio
Company. Additionally, for smaller scale teaching an instruc-
tor may use RStudio Cloud, which provides a free ready-to-go
web-based version of RStudio.

It should be noted that RStudio can accommodate other lan-
guages, mostly through the use of external packages. For exam-
ple, the R package Reticulate provides support for Python (Ushey
et al., 2020), and the package Knitr (Xie, 2014; Xie, 2015;
Xie, 2020) allows the use of various scientific computing
languages. Furthermore, other remote computing platforms, like
Jupyter, support the R language.
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JupyterHub

Project Jupyter is a non-profit organization that creates open-
source tools for computation. One of their most famous prod-
ucts is the Jupyter Notebook, which allows researchers to
create interactive code documents. These documents can have
text, images, and code cells that run and render output for
inspection. The Jupyter Notebook was originally developed as
the iPython notebook, but has since expanded to include lan-
guage support for other popular languages such as R and Julia.
A JupyterHub is a server on which an instructor can deliver
lessons via Jupyter Notebooks to a full classroom of students
using a standardized server environment. In most cases, the
server will be accessed via the internet. The first and fore-
most reason to use a JupyterHub is that you want to teach
with the Jupyter ecosystem of tools. The Jupyter Notebook is
commonly used in education in the sciences. It allows the
instructor to develop a set of instructional materials that include
text, code, and images. In this way, detailed notes can be pro-
vided from the instructor to the learner, and the learner can aug-
ment these lessons with their own notes, annotations, and code.
Though originally invented for use with Python, Jupyter Note-
books are compatible with a number of languages. Multiple
languages can even be used in one notebook, making them
ideal for use with multi-language pipelines. The JupyterHub
also has a command-line terminal and the Git version control
system installed, for more advanced courses.

Jupyter supports the R language, and using Jupyter Notebooks
with R can be a powerful teaching tool. However, JuptyerHub
does not support popular integrated development environ-
ments (IDEs), such as RStudio or Python’s Spyder. While
there is a text editor for preparing scripts, and a command line
to run scripts, the JupyterHub is really designed to serve Jupyter
Notebooks, and the interface caters to this technology.

HPC and cloud

RStudio Server and JupyterHub will typically require that
instances are hosted somewhere. This refers to having the com-
pute platform installed in a central location, at which it can
be accessed by all students. It may be possible for an instructor
to host their course platform on a computer or server they per-
sonally own. However, in the experience of the authors, many
universities prohibit faculty from hosting servers on-campus that
will be available off-campus due to security concerns with allow-
ing off-campus computers to access on-campus resources. This
means that you may be able to host a server via the intranet, but
if students go home for the weekend, or live off-campus, they’ll
need to come back on to campus to do their homework.

These limitations cause many instructors to look for alterna-
tive ways to provide their course platforms to students. One
common way is by working with a local high-performance
cluster compute facility. A high-performance cluster computer
is a set of computers that are networked. This allows research-
ers to harness the power of several computers at once. These
facilities often also service educators. A benefit to serving course
content via high-performance cluster computing is that these
resources are often free for educators at the university where the
computer resides. Because these services are often in-house, the

F1000Research 2020, 8:1854 Last updated: 02 MAR 2020

administrators of them are able to handle any specialized
security concerns with the course platform. National level
high-performance cluster computers, such as CIPRES (Miller
et al, 2010), JetStream (Stewart er al, 2015; Towns et al.,
2014) and CyVerse (Goff er al., 2011; Merchant et al., 2016)
also offer resources for US institutions. For campuses with limi-
tations on HPC use, IT may be able to set up an independent
virtual machine on other existing university servers.

However, not every university has a high-performance clus-
ter computer that is set up to host coursework. In this case,
an instructor may want to consider a remote solution.
The concept of a remote solution is similar to using high-
performance cluster computing. An educator can rent one or
more computers to serve their coursework. Cloud comput-
ing can take several forms. In some cases, the instructor explic-
itly rents computers in sizes that are appropriate for their course.
These types of services often charge by the number of comput-
ers, the size of the hard drive rented, the amount of memory on
the computer, and the amount of time for which they will run.
Examples of this type of service include Digital Ocean, Cloud
Flare, Google Cloud, and Amazon Web Services. However, it
is important to note that if you are signing a contract for cloud
services, it is prudent to check with your IT, legal, and pur-
chasing departments. Departments may have rules in place for
student privacy and data security, as well as for contract
bids between providers.

Recently, educational cloud service providers have entered the
market. Examples of these services include RStudio Cloud
and Python Anywhere. These types of products are oriented
towards providing an environment that is oriented towards a
specific language or course platform. For example, RStudio
Cloud hosts RStudio instances, and Python Anywhere hosts
a variety of Python environments, including Jupyter notebooks.
Like an regular cloud provider, these services typically charge
based on the size of the amount of memory and storage capac-
ity of the computer needed. Being oriented towards educa-
tion, some of these providers also offer accounts for free, with
paid accounts available for users who need more memory or
computer power.

Bridging the gap between local and remote approaches
Container software, such as Docker, Singularity, or Podman,
offer a way to teach with the simplicity of local installs while
utilizing the consistency of remote computing platforms.
Containers allow the instructor to create a standard comput-
ing environment that each student can work in on their own
computer. Instead of having to install multiple tools that will
be used in the course, the students would only have to install
the container software (e.g., Docker, which is cross-platform),
and then they can download and run the environment created
by the instructor. The functionality is very similar to a virtual
machine, but lighter-weight and more efficient. Containers can
be easily updated and distributed with remote services like
DockerHub. This allows the instructor to update the students’
computing environment in real-time. Of course, this still has
the same disadvantages discussed above of having students run
analyses on their own computer.
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Teaching methods

Designing an effective biology course that incorporates comput-
ing requires more than choosing the best computing platform
for your needs. Skills-based courses such as coding necessi-
tate a unique approach to teaching that can differ in some ways
from more commonly used pedagogy in content-based courses.
For many learners, a biology course that involves hands-on
computing may be their first classroom experience that heavily
involves learning increasingly complex skills that build off of
each other, rather than primarily learning content. And simi-
larly, instructors whose research and teaching expertise is in a
field that is not strictly computational — which likely includes
most instructors of biology — may benefit from guidance on
best practices for delivering content effectively and addressing
the unique challenges that arise. As a skills-based discipline,
computation necessarily requires some level of active in-class
interaction from learners (with the instructor or peers, or with
the material itself). Thoughtful implementation of appro-
priate active learning strategies has been shown to increase
both mastery of content and development of general skills
such as critical thinking and collaboration (Faust & Paulson,
1998). Below, we describe several strategies for teaching cod-
ing, and address challenges that instructors may face in teaching
a course that is perhaps more similar methodologically to
math and foreign language than to other biology courses. We
acknowledge that each section summarizes and simplifies a
significant body of literature and encourage readers to pursue
a deeper understanding of pedagogy elsewhere. For exam-
ple, the recent book “Teaching Tech Together” (Wilson, 2018),
offers a concise overview of many of these issues.

Example-based learning

Example-based learning has a long history in teaching cod-
ing, and consists of the instructor providing examples of how
to solve a given problem using code. Sometimes, these exam-
ples are static and provided in a textbook or on slides. Other
forms of example-based learning require the learners to actively
engage with the code. An especially effective way to teach
computational biology is to combine multiple forms of example-
based learning (Renkl, 2014a). For example, an instructor
might use all three methods detailed below: first show learners
some written examples, perhaps in pre-reading for a class,
then use live coding during class and have the learners
follow along, and subsequently have learners complete a series of
examples with increasing amounts of code that learners
need to fill in during in-class problem sets or in homework
assignments.

Written examples. Written examples are often a good start-
ing point to introduce learners to the concepts and structure of
solutions. Written tutorials allow learners to go at their own
pace. This ensures learners take the time they need. However,
learners frequently skim over static written examples or skip
formative assessment questions, confident that they understand
what the code is doing. Students may need to be required to
critically evaluate the code to truly ensuring their understand-
ing. For this reason, written examples are most effective when
integrated with other example-based learning methods (Renkl,
2014a).
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Live coding. Live coding is a form of example-based learn-
ing in which learners watch the instructor solve problems and
in most cases the learners follow along. The act of typing along
forces learners to actively enter code, which is a hands-on ver-
sion of a worked example. This means the instructor must pro-
ceed at a reasonable pace that learners can follow. The instructor
can stop and ask learners challenge questions as forma-
tive assessment to ensure that learners apply their knowledge
immediately and question their own understanding. The instruc-
tor can also set up a problem, and pause to have learners figure
out the rest of the exercise. This live coding approach has been
popularized by Data and Software Carpentry and similar cod-
ing workshops. Live coding can help teach aspects of program-
ming that are not easily taught by viewing static code, such as
incremental coding (writing a few lines and testing them) and
debugging. From the perspective of the learners, live coding
is generally preferable to viewing static code, especially when
learners are able to code along with instructors (Raj ef al., 2018).

A disadvantage of live coding is that everyone goes at the
same pace. This may be too fast for some and too slow for
others. One possibility to alleviate this disadvantage is to flip the
classroom and provide learners with pre-recorded live-coding
experiences. The learners then come to class where they
complete an exercise or a series of faded examples.

Faded examples. Faded examples are a form of example-based
learning that can be more effective than static worked exam-
ples (Schwonke er al., 2009). Faded examples include sets
of worked examples, beginning with a complete example.
With each subsequent example, key problem solving steps are
removed and learners must insert the steps themselves (Renkl,
2014b). Faded examples have been demonstrated to require
less learning time with potentially better learning outcomes
(Schwonke et al., 2009).

In the context of teaching computation to biologists, faded
examples are particularly facilitated by servers. For example, a
Jupyter notebook containing faded examples may be made avail-
able to learners on the server. If learners successfully complete
the code they will produce an expected outcome, thus allowing
for the learner to self-correct their work. Fillable Jupyter
notebooks using the faded examples technique force learners
to engage with the material and actively problem-solve. Fill-
able notebooks are particularly useful because they run the code
and allow the learner to immediately discover if they produced
the right answer. This type of immediate feedback allows the
learner to work towards the correct answer, rather than turning in
work that they believe to be correct and receiving a low grade on
something they put time and effort into. An important
component is providing learners with a solution set after they
have had the opportunity to solve the faded examples so that they
can see where they went wrong if they are unsuccessful.

Additional example-based exercises. A variety of exercises
are frequently used in testing and reinforcing learning of com-
putational concepts that do not require learners to create new
code. For example, learners could be presented with code that
contains a bug and be tasked with providing the Minimal Fix
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that would allow the code to run. Alternatively, the learners
could be presented with a series of lines of code and be asked
to rearrange them such that they successfully complete a task
(“Parsons Problems”; Parsons & Haden, 2006), or to trace the
order in which code is executed (for instance, within a series of
nested loops or if statements). See the section “Exercise Types” in
Wilson (2018) for more detail and exercises of this variety.

Focusing on coding as problem-solving

One of the main skills underlying learning to code is learn-
ing how to solve problems. Writing code can be viewed as a
method of communicating to the computer the precise steps of
the analysis. In fact, code serves as a written record of the ana-
Iytical steps, and is one that is instantly reproducible. When the
learning outcomes are not necessarily tied to learners having full
mastery of a specific language’s syntax, shorthand notation can
be used to outline the steps the learner would take to get to the
end result, removing the added layer of correct syntax and high-
lighting the importance of the problem-solving elements. This
method, called pseudocode, can help learners logically scaf-
fold their thought process, and therefore their code, regard-
less of which language they will be coding in. Learners can be
required to write the solution to their problem in pseudocode to
demonstrate their thought process, and then use that pseudocode
to write their code (e.g., Olsen, 2005). Courses may rely on
pseudocode during timed exams to relieve exam stress. Note,
however, that if learners are expected to interpret or elabo-
rate on pseudocode — especially in an exam setting — that the
meaning behind each pseudocode term is clearly and
unambiguously defined (Cutts er al., 2014).

Cooperative learning

Working in groups or pairs can result in numerous positive
outcomes in the biological sciences, including enhancing
scientific thinking and attitudes about biology, aiding in the
instruction and evaluation of course material, providing a bet-
ter understanding of practical skills and their applicability in
real-world environments, improving reading, writing, and social
skills, and supporting learning for a broader array of learn-
ers (reviewed in Lord, 2001). In the context of teaching
computational biology, group projects and other forms of
cooperative learning have frequently been used to facilitate
example-based learning (e.g., Emery & Morgan, 2017; Fuselier
et al, 2011; Korcsmaros et al., 2013). One cooperative learn-
ing teaching tool for computational biology is pairing learners
up and having one student be the ‘driver’, who types in the code,
and one be the ‘navigator’, who has to tell the driver what to
type. This exercise forces learners to think carefully about the
process of creating code. Even if learners are not expected to
work through examples or produce a project in pairs or groups,
cooperative learning can still be implemented by facilitat-
ing discussion and collaboration among learners. This can be
done in class (e.g., through think-pair-share exercises, in which
learners are encouraged to think about a problem individually,
then discuss in pairs or small groups) or outside of class through
discussion forums. For instance, learners could be encouraged
or required to participate in discussions on the course website
(e.g., Blackboard/Moodle) or a Slack workspace created for the
class, or to do peer review of other learners’ projects. Learning
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from each other can be a powerful way to get learners engaged
with the course work, and can solidify their understanding
by having them teach each other (Treisman, 1992).

However, as most students and instructors know, group work
can create problems and strife. Interpersonal issues within pairs
or groups can hinder the learning process. Sometimes groups
or pairs are unbalanced with regard to prior knowledge, speed
of learning, or effort contributed to the project. Additionally,
group size or composition can lead to an entire group struggling
to succeed (e.g., Compeau, 2019). Therefore, although group
projects are frequently used in computational biology and can
be a useful tool, relying only on group-based projects for critical
assessments in a course may not be the best solution.

Other challenges and tools

Incorporating computational biology into the classroom comes
with additional challenges that may not be present in other
biology courses. Many learners will have some prior biologi-
cal knowledge but have no experience with computer coding.
This creates a situation where learners have many ques-
tions but often feel out of their comfort zone, or are simply
uninterested in the computational components of the course mate-
rial. These factors combine result in a number of different chal-
lenges for instructors to help learners successfully navigate
the computational side of a biology course.

Demonstrating value. The unfamiliarity of coding can some-
times lead learners to push back against the idea of learning to
code. In our experience, demonstrating how coding can be a use-
ful tool for doing the same analysis multiple times (e.g., gener-
ate the same type of plot for different datasets) helps learners
see the value in learning to code. This demonstration is espe-
cially powerful when the learners are enabled to discover the
utility of coding on their own. For example, an instructor could
provide students with a large dataset and encourage the learners
to try basic analyses (e.g., producing summary statistics or
basic plots) in both R and Excel. Particularly when learners
have not opted into learning computational skills — for exam-
ple, when computational skills are incorporated into required
biology classes — showing learners the value of saving future
time and effort is very important.

Teaching how to ask for help. Not all learners will automati-
cally ask for help (see Box 3). As instructors, we need to encour-
age learners to seek our help when they are struggling. One
method we have found successful is to provide learners with
rewards for asking for help, such as an automatic extension on
deadlines if learners attend office hours. Having knowledge-
able teaching assistants or support staff to circulate the class-
room and check on learner progress during in-class exercises is
also helpful (see Box 3 for further notes on asking for help). In
these cases, instructing the teaching support staff to first approach
learners who do not have their hands raised will provide help to
a larger proportion of the class, especially many learn-
ers who need the most help. To help learners signal that they
need help, instructors can use a system that does not force
students to stand out by raising their hands. For instance, Data
and Software Carpentry use post-it notes to discreetly signal
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to instructors when learners need assistance. Incorporating live
coding into lectures is another way to normalize asking for
help; while live coding, instructors can demonstrate that errors
are a natural part of coding, how to effectively search for
solutions to problems, and how to look up syntax details.

Box 3. Diversity and Inclusion Callout Box 3

Asking for help is critical for learners to be able to overcome
confusion, solidify their skills, and deepen their knowledge and
understanding. However, cultural differences exist that may
prevent learners from seeking help, even when they need it
most. Universities in particular have the unspoken expectation
that undergraduates will seek help when they need it, but
people from some backgrounds will not necessarily know this,
or may feel uncomfortable approaching their teachers, who
are in positions of authority (Jack, 2016). Different cultures
may perceive asking questions in class in different ways; some
cultures view questions as a way to gain recognition, whereas
others view questions as a demonstration of ignorance. The
latter group are less likely to ask questions in class and thus
do not receive either needed help or engagement with the
instructor.

Large class sizes. For instructors who are looking to incor-
porate computational biology into large classes, such as in an
introductory biology course, the prospect of testing and grad-
ing code turned in as assignments may be daunting. We have
found that relying on knowledgeable TAs, support staff, and
demonstrators is the best way to ensure that all learners receive
the help that they need. Placing learners in pairs or small
working groups (see the section on Cooperative Learning above)
can also provide learners with support and feedback that will
facilitate their learning, without placing the entire burden on
instructors and TAs. Additionally, relying on IT support to help
manage the computing platforms can reduce the workload for
the instructors. Furthermore, using assignments that can be auto-
matically graded (e.g., mimir classroom, nbgrader in Jupyter,
or OK) will help reduce the time teachers must spend grad-
ing. An added benefit of such autograding technologies is that
they can provide students with immediate feedback on their
performance and understanding of the computational materials.

Plagiarism. Writing code is more similar to math than to writ-
ing, as there is a correct answer (or perhaps several correct
answers), and it can be difficult to detect whether learners
arrived at that answer independently or through copy-
ing someone else’s solution. Plagiarism can be exacerbated
by the common phenomenon of searching for solutions to
a given problem online and copying or adapting posted solu-
tions without attributing proper credit (Gaspar & Langevin,
2007). Some of the programs that grade code include plagiarism
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detection components (Pears er «al, 2007), which can help
instructors identify when plagiarism has occurred. One approach
to ensure learners understand code is to require commented
explanation of each component of their code, and ensure these
comments are different for each learner. Requiring unique
comments from learners has the advantage that it allows
learners to be able to search for the functions and arguments to
functions that are needed to implement their analytical work,
which is common practice when writing code. Another approach
is to allow learners to work on assessments as a group, but
have each learners write out their own pseudocode explana-
tions of the code. Instructors are encouraged to discuss issues
surrounding intellectual property and plagiarism and reinforce the
importance of citing sources.

Conclusions

Computing is increasingly being incorporated into coursework
at all levels in biology. Computing is both a key skill for learners
and supports additional learning by enabling the incorpora-
tion of data and analysis into classrooms. Instructors have a
range of choices to deliver computational lessons. From the
computing platform to how the instructor delivers the lesson,
every aspect of a computational classroom can shape learners’
knowledge and confidence. In this paper, we have outlined the
costs and benefits of several popular computing platforms.
Given the variety of options, instructors should be able to find
a platform that best fits their course learning objectives, avail-
able resources, class size, and learner backgrounds. One impor-
tant consideration in this decision is how the platform of choice
affects learner access to course content. Many of these computing
platforms can support inclusion in the classroom (and thus,
ultimately, in fields and careers that incorporate computa-
tion) by providing access to the same technologies to all
learners. We have also discussed several teaching strategies
for computational biology and other courses with computa-
tion, with the goal of improving student engagement, learning,
and retention.
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The article gives an overview of different available options and considerations for adding a programming
component to a university-level biology syllabus. The authors don't give a one-size-fits-all answer,
choosing quite reasonably to highlight where different tools make most sense. | appreciated the callouts
highlighting issues that could affect some students more than others.

In the context of teaching with Jupyter notebooks, | would mention nbgrader, an open source tool which
works with JupyterHub to support assighments in hotebooks, with semi-automated grading.

| think the article could be made clearer by using the word ‘cloud' more carefully. Admittedly marketing
has made the term extremely nebulous in general, but it's used here with two distinct meanings: first for
providing software on a central server or cluster, and then more specifically for commercial services which
rent computing resources.
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The authors provide a nice introductory overview of teaching computational biology. They cover several
key practical and pedagogical aspects one needs to consider when designing and teaching a
computational biology course. These include choice of programming language, choice of computing
platform, and best practices for teaching computational materials. This review will serve as a good
overview of the field at the present time for newcomers.

Below | suggest some things that could improve the manuscript:

In the introduction, where the rationale for teaching computation in biology classes is explained. | suggest
adding an additional rationale: to give students the tools, skills and motivation to create analyses that are
reproducible and transparent, regardless of the size of the data set ("it's worth it even for small data sets).

| agree that Software and Data Carpentry workshops are great places to start to get computational skills,
however to learn the skills to teach computation to others, faculty will need additional training. For
example the Software and Data Carpentry Instructor training courses (perhaps this is what you were
referring to?). Another resource that is aligned with this is "Teaching Tech Together" by Greg Wilson.

In the "Choice of computing language" section, the two paragraphs comparing R and Python could be
improved. For example, both R and Python now have easy to use tools for working with rectangular data,
but that is not made clear in the Python paragraph. The authors do write that "Pandas can be used for
teaching foundational data skills", but someone unfamiliar with Pandas will not likely make the leap that
manipulating rectangular data is what is meant here. Essentially, for simple, rectangular data tasks, that
do not involve complex statistics, both R and Python are excellent language choices. And one should pick
the one that their colleagues and collaborators use. However, when analysis tasks get more specific, then
one might have to use the language where the package exists with specific tools they need.

In the first paragraph of the "Cloud-based computing platforms" section, | think it is important to
communicate that R (and other languages) can be used with Jupyter. This is stated later, but R readers
might skip the Jupyter section later on if this is not communicated earlier. Also, | would remove the
sentence "Jupyter supports the R language. However, the interface for R in Jupyter is different than
RStudio, a dominant way to interact with R". Jupyter is getting better and better at working with R, and
thus if only a notebook is needed, there is no reason not to use Jupyter with R. However, if your code
project is more complex and needs/benefits from a real IDE, then of course RStudio should be used (and
the same argument goes for Python).
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In the "Teaching methods" section attribution is given to Data Carpentry for popularizing the live coding
approach of teaching coding. However, Software Carpentry proceeded this. This also happens again later
in the manuscript when the post-it note system is discussed. In earlier parts of this manuscript, Software
Carpentry is referred to alone. Perhaps it would be better to refer to these two organizations together
consistently throughout the manuscript as the "Software and Data Carpentry organizations" (or something
like that).

There are several other great coding exercise strategies that would be great to point out in this article
(Parson's problems, tracing (execution and values), minimal fix, refactoring, etc). These are described
quite well in "Teaching Tech Together" by Greg Wilson.

One last addition | might add to the platform and/or teaching method section is the potential for the use of
autograding and/or automated feedback using tests in computational biclogy. When giving students a
computing challenge, tests can also be provided to see if the student's code creates an object or function
with the desired properties or functionality. In Jupyter notebooks, these tests can be paired with tools
such as nbgrader or OK for autograding. This is being used in several undergraduate Data Science
courses at several universities (e.g., Berkley & the University of British Columbia, etc).
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