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Abstract: 
Selected solute atoms can strongly interact with and slow down the diffusion of point defects 

in alloy systems. While such additions can be beneficial, for instance to promote microstructural 
stability during thermal annealing or during irradiation by energetic particles, they create 
significant computational challenges when simulating these evolutions using atomistic techniques 
such as kinetic Monte Carlo (KMC) simulations. Point defect trapping in energy basins created by 
clusters of solute atoms leads to frequent re-visiting of states with short residence times, which 
dramatically reduces the efficiency of traditional KMC algorithms. We introduce here a hybrid 
algorithm that combines and expand on two prior KMC algorithms, the Chain KMC and the 
equilibrating basin KMC. This hybrid algorithm, referred to as the Equilibrating Chain algorithm, 
utilizes Chain KMC as previously reported, but leverages the data-handling framework to build an 
occupation distribution of the basin, allowing the equilibrating basin assumption to be statistically 
tested and applied. For a model A-B trapping alloy system on a face-centered cubic lattice, 
statistical comparisons of basin exit and cluster dissolution kinetics between traditional and 
accelerated KMC algorithms are presented to demonstrate the accuracy and the efficiency of the 
new algorithm. We also discuss our algorithm in the context of other accelerated KMC algorithms. 
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1. Introduction 
Atomistic simulations have become ubiquitous techniques for assessing the energetics and 

kinetics of alloys, leading to critical benefits for alloy design and for supporting the analysis of 
experimental results in complex alloy systems [1-5]. The temporal evolution of atomic 
configuration, which is the focus of the present study, is of particular importance for alloy systems 
that can undergo microstructure evolutions and phase transformations, for instance during 
isothermal annealing. While first principle methods and molecular dynamics simulations can 
provide very detailed and accurate information, they cannot reach timescale far in excess of that 
of atomic vibrations. For longer timescale, kinetic Monte Carlo (KMC) methods are widely used, 
provided that jump frequencies of all possible events are known or accessible. For thermally 
activated processes, for instance, these frequencies can be determined using transition state 
theory [6]. 

Algorithms used for equilibrium MC simulations, e.g., the Metropolis algorithm [7], are not well 
suited for KMC simulations owing to their high rejection rates. Bortz, Khalos and Lebowitz [8] 



introduced the so-called n-fold way algorithm, also known as the BKL algorithm or as the 
residence time algorithm (RTA). Two important advantages of this algorithm are that each KMC 
step results in a transition from one state to another, and that it provides the physical time taken 
by the system to perform this transition. This algorithm is particularly effective for defect-driven 
evolutions, because the set of possible transitions from one configuration to the next is small. The 
efficiency of the BKL algorithm, however, can be strongly affected by the specifics of point-defect-
atom interactions. In particular solute additions are sometimes used to slow down diffusion, and 
thus increase the stability of microstructures subjected to elevated temperature environments or 
to irradiation by energetic particles [9-13]. Strong vacancy-solute interactions, for instance, can 
lower the migration barriers for vacancy motion near solute atoms relative to the migration barriers 
for vacancies to move away from solute atoms, resulting in vacancy trapping. Pairs or clusters of 
vacancy-solute complexes may still migrate, and contribute significantly to the evolution of the 
system, but over a longer time scale. One issue observed in systems with bound vacancy-solute 
pairs is that of ‘flickering’, or immediate reversal to a previously explored state. The problem is 
exacerbated in the presence of clusters of solute, which can provide additional pathways for the 
vacancy to return to previous configurations. These repeatedly explored associated sites can be 
described as constituting energy basins where the system is trapped [14, 15], resulting in dramatic 
reduction in the BKL algorithm efficiency. 

Four main strategies have been developed to increase the efficiency in exploring the 
configuration space for alloys with traps. The first one relies on considering transitions that include 
multiple defect jumps so that rates of jump sequences, rather than single jumps, can be 
calculated, such as in the 2nd Order Residence Time Algorithm [16, 17]. Similarly, Chain KMC 
[18], the Mean Rate Method [14, 19], and Kinetic Path Sampling (KPS) [20] accumulate state 
information during the simulation and apply it to higher order calculations . First Passage Time 
Analysis (FPTA) [14, 21, 22], which solves the master equation for a small set of states rather 
than tracking a specific path, has also been applied. These methods add complexity and cost to 
the KMC calculations, but are analytically equivalent to traditional 1st Order RTA. The second 
strategy is to modify the basin, for instance by increasing energy barriers within the basin [23]. In 
this last case, the algorithm deviates from the 1st Order RTA, but the introduced error can be 
estimated and controlled. The third strategy is to apply additional processing power to these traps 
to speed up the overall simulation, such as in Parallel Replica Dynamics [24, 25]. The fourth 
strategy is to apply a simplifying assumption, such as in  the Quasi-Stationary [26] or Equilibrating 
Basin approaches [14, 15] both of which assume that the of long-term behavior of their respective 
forms will dominate exit modes. These methods can allow a vacancy to leave a trapping basin in 
a few KMC steps, but the validity of the assumptions vary from case to case, and conservative 
application of the assumptions will severely limit efficiency gains. In addition, the results are 
dependent on separate algorithms which define the energy basins, and therefore determine how 
the assumptions are applied. 

Here we introduce a hybrid algorithm that combines the Chain KMC method with the 
equilibrating basin method. We refer to this novel algorithm as the Equilibrating Chain algorithm. 
We show that on-the-fly identification of basins and statistical testing of the equilibration 
assumption make it possible to both quickly explore energy basins and accurately identify when 
it is acceptable to exit the basin. We show that the Equilibrating Chain algorithm is particularly 
effective for overcoming point defect trapping on small solute clusters, thus making it an attractive 



tool for studying kinetic evolutions in semi-dilute alloy systems undergoing clustering and 
precipitation during thermal annealing or during irradiation with energetic particles. In Section 2 
we introduce the alloy system selected for this study, and briefly recall other standard KMC 
algorithms that will be used as reference points. The Equilibrating Chain algorithm is then 
introduced in Section 3, and results are presented and discussed in Section 4. 

2. Method 

2.1. Model Alloy System 
We consider here the case of dilute A-B binary alloys, where B solute atoms provide effective 

trapping of vacancies. For simplicity, we restrict our work to alloys on a face centered cubic (FCC) 
lattice with atom interactions limited to first nearest neighbors (1st NN). This choice does not 
reduce the generality of the algorithm introduced in this work, see the discussion section, but 
greatly simplifies its implementation and its verification. Indeed, in the infinite dilution limit, there 
are only 5 independent jump frequencies, thus the so-called five-frequency model [27, 28]. These 
five frequencies, traditionally referred to wi (i = 0 to 4), correspond to a vacancy jump in the A 
matrix when the vacancy is not 1st NN of any B atom before or after the jump for i=0, a vacancy 
exchange with A atoms when the vacancy is 1st NN of one given B atom before and after the jump 
for i=1, a direct exchange between a vacancy and an isolated B atom for i=2, and vacancy 
exchange with A atoms that either destroy or create a solute- vacancy pair, respectively for i=3 
and i=4. An additional benefit of this simplified model is that extensive data is available for metallic 
alloy systems. In particular D. Morgan and collaborators have determined from first principles 
calculations the corresponding activation energies (i = 1 to 5) for over 40 solutes in each of 5 
different FCC matrices (Al, Cu, Ni, Pd, and Pt) [29] . Note that the mapping of these data into the 
five-frequency model assumes that vacancies do not interact with solute atoms beyond 1st NN 
distances. More detailed studies including longer interaction range are available for a few alloy 
systems, e.g. refs. [30-32], resulting in an increase in the number of independent jump 
frequencies that need to be considered. In infinitely dilute alloys, an additional benefit of a small 
number of independent frequencies is that it is possible to determine defect and solute 
microscopic transport coefficients directly from analytical methods [32-34]. Our work focuses on 
solutes that are strong trap for vacancies. A necessary condition is thus that the solute-vacancy 
binding energy exceeds ≈ 3kBT, where T is the temperature of interest. In a Cu-matrix, for 
instance, a solute such as Sb has a binding energy of about 0.33 eV, resulting in effective vacancy 
trapping up to ≈ 1000 K [35]. In dilute alloys, the effectiveness of the trapping can be directly 
assessed by calculating and comparing the transport coefficient of the bound vacancy to that of 
the free vacancy, see for instance Fig. 2 in ref. [32] for Sb in Cu. 

In the non-infinitely-dilute regime, which is the focus of the present work, the conditions 
required for solute trapping are more complex since trapping of vacancies may occur at clusters 
of various size and shape. Consequently, the number of independent jump frequencies to 
consider is much larger, making it difficult if not impossible to study this trapping by extending 
current analytical methods. In this work, we will instead use KMC simulations to study vacancy 
trapping by solute clusters, although trapping, by nature, creates challenges for reaching long 



physical time scales, as will be detailed in Sections 2.2 to 2.4. KMC algorithms require the 
determination of all independent jump frequencies, or, using the transition rate theory [6], the 
determination of all independent activation energies. We assume here for simplicity that the 
changes in the so-called attempt frequencies are small and thus can be ignored, as reported for 
dilute systems in ref. [36] . Since our objective is to compare the effectiveness and the consistency 
of several KMC algorithms, we use a broken-bond model [37, 38] to estimate these activation 
energies. This approach may break down when solute-defect and solute-solute interactions are 
large compared to solvent-solvent interactions. In order to avoid these effects, in this work we 
focus on the Cu-Ag alloy system, as the Ag-V binding energy is only 0.11 eV, and consider 
temperatures in the 175 K to 325 K range. The corresponding jump activation energies are given 
in Table 1, and are drawn from ref. [29]. Note that in addition to the 5 activation energies already 
mentioned, additional energies are required for parametrizing the broken bond model, namely the 
cohesive energy of the pure A and B elements, and the vacancy formation energy in the A matrix 
[39, 40]. Lastly, alloy systems such as Cu-Ag display a tendency toward phase separation. This 
tendency is quantified by the critical temperature of the corresponding miscibility gap, here 
assumed to be 600 K for simplicity. The actual estimation for in Cu-Ag is higher, ≈ 1200 K, but 
this would considerably reduce the B solubility at the temperatures considered here, and thus limit 
the interest of the present study as will be discussed later. These 9 input data, see Table 1, make 
it possible to calculate the 9 parameters of the kinetic model used in this study, consisting of 5 
pairwise interaction energies, and 4 saddle point energy contributions as detailed in Appendix A. 
These model parameters are listed in Table 2. 

 
Table 1 Physical parameters used for the fitting of the kinetic model for the Cu-Ag alloy. See Appendix A for 

definitions. 

𝐸"#$% (eV) 𝐸&'% (eV) 𝐸((eV) 𝐸)(eV) 𝐸*(eV) 𝐸+(eV) 𝐸,(eV) 𝐸"#$- (eV) 𝑇"(K) 

-3.49 1.28 0.7174 0.9040 0.5785 0.7047 0.5895 -3.174 600K 
 
Table 2 KMC simulation parameters corresponding to Table 1. The notation εAB refers to the pairwise interaction 

energy between A and B atom neighbors, while Si refers to the saddle-point of the i-type jump, with index i referring to 
the 5-frequency notation, see details in Appendix A. 

𝜀𝐴𝐴 𝜀𝐴𝑉 𝜀𝐴𝐵 𝜀𝐵𝐵 𝜀𝐵𝑉 𝑆( 𝑆) 𝑆* 𝑆+,, 

-0.582 -0.184 -0.545 -0.529 -0.263 -7.891 -7.746 -7.702 -7.982 

2.2. First Order Residence Time Algorithm 
In alloy systems where atomic diffusion is mediated by point defects, the most common KMC 

approach for generating system trajectories is based on the algorithm originally introduced by 
Bortz, Khalos, and Lebowitz [8]. This algorithm is often referred to as a residence time algorithm 
(RTA), as each KMC step consists in determining the residence time of the system in its current 
configuration and in selecting stochastically one exit path, i.e., one transition to a distinct state 
[16, 38, 41]. The standard implementation of this residence time algorithm considers transitions 



that correspond to a single defect jump, and this implementation is thus referred to a 1st Order 
RTA [16]. We recall briefly here some key definitions relevant to the present work, considering 
the case of a system with a single vacancy for simplicity. Readers are referred to refs. [41, 42] for 
additional details. A vacancy occupying a lattice site I defines a configuration state i. The transition 
state theory [6] is used to calculate the rate of the vacancy jumping from site I to neighboring site 
J, denoted as 𝑟:→< and defined as 𝑟:→< = 𝜈(exp	(−𝐸:→<C"D 𝑘-𝑇⁄ ), where 𝐸:→<C"D is the energy barrier for 
a transition from configuration i to configuration j. As noted earlier, without loss of generality, we 
use here a constant pre-factor 𝑣(. We set 𝑣( = 10),	𝑠K) , fitted to vacancy diffusion in Cu. A 
vacancy can jump to several 1st NN sites, twelve here for an FCC lattice, and the probability of 
the vacancy jumping from site I to a given neighboring site J is 𝑝:→< = 	𝑟:→< 𝑅:⁄ 	 with 𝑅: = ∑ 𝑟:→<<  . 
The residence time of the system in configuration i follows the exponential distribution	𝛥𝑡: =
𝑙𝑛(𝜁) 𝑅:⁄ , where 𝜁 is a random variable uniformly distributed over (0,1]. Since we are interested in 
sequences involving a large number of jumps, following the simplification used in refs. [43, 44] we 
use the ensemble average timestep, which is  𝛥𝑡: = 1 𝑅:⁄ . 

2.3. 2nd Order RTA and Chain KMC 
Alloy systems where point defects interact strongly with solute atoms pose a significant 

challenge for first order RTA. Indeed, strong interactions often result in a high jump rate of a 
vacancy to a neighboring trapping solute atom, 𝑟:→DTCU. After this first jump, there is a high 
probability for the next vacancy jump to bring the vacancy back to its previous site, resulting in 
what is referred to a reversal or a “flicker”. In alloys with strong trapping solutes, i.e. 𝑅: ≈ 𝑟:→DTCU, 
the system performs a large number of flicker sequences associated with short residence times, 
thus dramatically reducing the efficiency of the algorithm, as will be illustrated in Section 3 for the 
alloy system of interest here. 

Athenes et al. proposed a 2nd Order Residence Time Algorithm to eliminate these flickers [16, 
17]. The jump rates to vacancy neighbors are calculated as in the 1st Order RTA, but the jump 
rates of the vacancy from each of those neighboring sites are also calculated. This expanded 
exploration of the surrounding environment allows for the probability of flickering events to be 
determined analytically. Modified transition rates that include flickers can then be derived. The 
next vacancy jump is determined from these modified rates, excluding a direct return to the 
previous site. The 2nd Order RTA algorithm thus bypasses the flickers while including their 
contribution to the residence time and generating trajectories that are statistically equivalent to 
those of the 1st Order RTA. As a systematic extended exploration of transition rates after each 
vacancy jump is computationally demanding, Mason et al. modified this algorithm to take 
advantage of the fact that part of these transition rates may have been calculated in previous 
KMC steps [18]. Specifically, jump rates required for the 1st Order RTA are stored on the fly as 
the vacancy diffuses, allowing for the immediate calculation of second order jump probabilities to 
these previously visited sites. These sites form a subset of configurations that are connected by 
single vacancy jumps, and are referred to as a chain. In this so called Chain KMC, a direct reversal 
of the last vacancy jump may either be included or excluded from the next possible transitions, 
depending on whether the information to account for this reversal had been previously calculated 



or not. We recall the main steps involved in implementing this algorithm in Appendix B. We keep 
the notations introduced in ref. [18], and the reader is referred there for more detail. 

The Chain algorithm directly ensures that stored jump probabilities between states remain 
correct when the vacancy is swapping with a single atom type, such as when exploring a solute 
cluster. More careful bookkeeping is required whenever the vacancy swaps with an atom type 
different from the previous swaps, such as when a vacancy enters or leaves a solute cluster, and 
for that reason here we restrict the algorithm to store chain states corresponding to the solute-
vacancy exchanges only. Care must also be taken to account for configurational changes that 
occur due to other events in the simulation, for instance in systems containing multiple migrating 
defects. 

For strongly trapping alloy systems, Chain KMC can dramatically increase the effectiveness 
of the simulations for a modest increase in computational cost. In our implementation, each Chain 
KMC step is approximately 20% more computationally expensive than those for the 1st Order 
KMC. However, each Chain KMC step may effectively correspond to tens or hundreds of 1st 
Order KMC jumps, depending on the interactions and configuration. For example, with the alloy 
system selected here at 200 K, a vacancy interacting with a single solute performs an average of 
215.6 exchanges with the solute atom before exchanging with a matrix atom. Chain KMC 
identifies and bypasses these exchanges in a maximum of 3 steps, thus resulting in an average 
speed-up factor of at least 60. 

The Chain KMC method works exceptionally well when the vacancy is interacting with one 
single solute atom because any flickering events between transient sites, i.e., the vacancy-solute 
exchanges, are quickly accounted for without having to actually perform these jumps. This leaves 
only jumps away from or around the solute, corresponding to w3-type and w1-type jumps, 
respectively. Chain KMC however fails to efficiently manage larger clusters of solutes. As more 
solute atoms are added to the cluster, additional pathways connecting solute sites, such as loops, 
may become available. Loops allow the vacancy to remain trapped within the cluster without 
performing many, or perhaps any, direct reversals. As the probability of flickering is greatly 
reduced, the Chain KMC algorithm efficiency is reduced as well. We note that the possible 
formation of such loops is dependent upon the crystallographic lattice of the alloy as well as the 
jumps that a defect can perform. For instance, triangular and tetrahedral loops exist for a vacancy 
performing 1st NN jumps on an FCC lattice, but not on a BCC lattice, unless 1st  and 2nd NN jumps 
are considered. Even if no loops are present, navigating the branches of an extended cluster may 
be inefficient if the flicker probability is low. This type of trapping can be generally defined as 
trapping of the defect in a basin of connected low-energy configurations, and is detailed in the 
next section. 

2.4. Equilibrating Basins 
For the sake of simplicity, consider again a vacancy interacting with a single solute atom. 

There are two associated sites composing the energy basin, and these sites are termed ‘transient’ 
sites (e.g. refs. [14, 15]). As long as the vacancy stays trapped within these sites, the overall basin 
remains unchanged. When the vacancy jumps to a site distinct from transient sites, termed 
‘absorbing’ sites, the vacancy is said to have exited or ‘escaped’ the basin. These definitions are 
straightforwardly extended to clusters comprised of more than one solute atom. 



For deep energy basins, an equilibration assumption has been proposed [14, 15, 45, 46]. 
Assuming that the vacancy cannot exit the basin (a good approximation of very deep traps), the 
vacancy will perform a large number of jumps between the transient states and will reach a local 
equilibrium between those states. If local equilibrium is reached, the probability of occupying any 
transient state “i” is then given by a Boltzmann distribution for this set of sites. 

𝑃:(𝑡) = 𝑃: =
𝑒Y

KZ[
\]^

_

∑ 𝑒YK
Z[
\]^

_
:

		(1) 

Given this occupation distribution, the basin exit time and exit site can then be determined 
from the list of absorbing jump frequencies. Specifically, jump frequencies to absorbing states are 
weighted by the probability of occupying the associated transient state. The sum of these 
weighted exits rates, Q, becomes the scale parameter of the exponential distribution of basin exit 
time. As noted in ref. [15], the basin becomes analogous to a single site exited by a single KMC 
move. 

 

𝑄 =a𝑃: ∗ 𝑅:→<	
:,<

(2) 

𝛥𝑡de:D =
−𝑙𝑛(𝜁)
𝑄

	(3) 

The main challenge of the equilibrating basin approach is to decide for each basin, when the 
equilibration assumption has become acceptable. For instance, Puchala et al. [14] chose to apply 
the assumption only when transient jump rates are 107 times higher than any absorbing jump rate, 
which severely limits its use. In ref. [45] the authors do not consider when the assumption might 
fail, though they limit the application to relatively large clusters in a strongly-trapping system. In 
another study, the equilibrating basin assumption was shown to be valid for two selected one-
dimensional examples, but implementing the assumption more generally was not discussed [15]. 
If one were to inappropriately accept the equilibration assumption, the trajectories generated will 
not provide an accurate modeling of the system and, as reported by Van Siclen [46], the defect 
diffusion coefficient can be overestimated. A separate challenge in implementing an algorithm 
using the equilibrating basin approach is the need to identify and update these basins. 

3. Novel KMC Algorithm 
We demonstrate below that by combining Chain KMC with an equilibrating basin approach 

one can detect these basins on the fly, at very little computational cost. We then demonstrate that 
by using suitable statistical tests, once a vacancy starts being trapped in a solute cluster, it is 
possible to define quantitative criteria to decide when the equilibration approach should be used, 
in contrast to previous implementations. We are able to dynamically test when the running 
occupation distribution matches the equilibrium distribution, and only apply the assumption if the 
distributions statistically match. This prevents the introduction of uncontrolled errors in generating 
the system trajectory. 



3.1. Equilibrating Chain KMC 
This novel algorithm relies on the Chain KMC algorithm but monitors potential trapping. When 

trapping occurs the algorithm occasionally tests whether the basin has equilibrated, in which case 
we exit the basin by applying equations 1-3. . We thus refer to this algorithm as Equilibrating 
Chain KMC algorithm. It leverages the framework that Chain KMC provides for tracking site-
specific information as the simulation progresses. In addition to tracking jump rates and 
probabilities, we also track how often a site is visited, either explicitly or as part of a skipped flicker 
event. This is used to build a site occupation distribution. We define 𝑁"$C:h as the number of KMC 
steps made since the stored KMC chain was modified. The chain can be modified either by adding 
to it by visiting a new site, or deleting states that were changed as the simulation evolved. We 
recognize that when 𝑁"$C:h becomes large (see Appendix C), an energy basin has been found 
and is defined by the stored states. Because of how we choose to manage stored chain data (see 
Section 2.3), the basin corresponds to a vacancy trapped by a solute cluster. We choose to test 
for equilibration when  𝑁"$C:h ≥ 100 ∗ 𝑁j:Ddj , where 𝑁j:Ddj is the number of sites stored. The 
equilibrium occupation distribution is calculated from stored data by considering stored sites as 
transient, and all non-transient neighbors as absorbing sites. This implementation also simply 
handles sub-basins within solute clusters, as will be illustrated later. We then compare the 
expected equilibrium distribution with the observed occupation distribution using a G-test. 

The G-test is a log-likelihood ratio statistical test, which is similar to the chi-squared test. The 
G-test statistic is calculated as 𝐺 = 2∑ 𝑂: ∗ 𝑙𝑛(𝑂: 𝐸:⁄ ): , where 𝑂: is the observed count, and 𝐸: is 
the expected count in bin I (i.e. number of visits to the site I). We note that the observed count 
includes both explicit visits, and visits that were part of a skipped flicker event. The G-test statistic 
can be mapped to a p-value by the chi-squared distribution. As usually, the p-value refers to the 
probability of observing a test statistic that is equal or greater than the one calculated, assuming 
that the null hypothesis is true. A low observed p-value indicates high variance between the two 
distributions, meaning that the observed distribution is unlikely to have been sampled from the 
reference distribution. However a high observed p-value cannot be used to indicate a high 
probability of the observed distribution being sampled from the reference. 

In practice, the G-statistic is compared to a critical statistic value. This value corresponds to a 
critical p-value, and indicates a specific confidence level. We choose our critical p-value to be 0.1 
(see Appendix C). If the statistic is greater than the critical value, the null hypothesis (both samples 
drawn from the same distribution) is rejected. The simulation continues to evolve with Chain KMC 
only until equilibration is tested again. If the G-statistic is less than the critical value, the test fails 
to reject the null hypothesis and the equilibration assumption is applied. The G-test, like the chi-
squared test, is known to be less reliable when some bins have low frequency. An often quoted 
rule of thumb is to require each bin to have an expected count of at least 5 [47]. To be conservative 
we require each basin site to have 10 visits both observed and expected before the G-test result 
is used (see Appendix C). 

The time required to exit an equilibrated basin follows an exponential distribution, as given in 
Eq. (3). The time spent equilibrating in the basin does not affect the future exit time (see Appendix 
D). The full exit time distribution is composed of exits made using only Chain KMC moves and 
exits made after equilibration is reached and the equilibrating basin assumption is applied. Figure 
1 illustrates the contributions of Chain KMC only and equilibrated exits to the overall exit time 



distribution in an energy basin tested at two different temperatures. This figure illustrates that, as 
expected, the Equilibrating Chain algorithm applies the equilibration assumption more often at a 
lower temperature, where equilibration occurs more frequently before exiting. The details of this 
basin, which we refer to as the tetra-diamond basin, are described in section 3.2, and the 
quantitative assessment of the exit time will be discussed in section 4. 

 
Figure 1 Relative contributions of equilibrated and Chain KMC only exits to the Equilibrating Chain algorithm exit 

time distributions at a) 250 K and b) 300 K. 

It is possible that, due to large differences in occupation probability, a sub-basin is explored 
and reaches equilibration before all states that make up the larger basin are explored. The 
equilibrium assumption can still be applied because exit rates from the sub-basin to all absorbing 
sites are accurately calculated. If a new energy level of a larger basin is found through 
equilibration then the occupation distribution is reset. This is because an unknown number of 
visits in the sub-basin sites were skipped by applying the equilibration assumption. Before the 
assumption is applied to the full basin the occupation distribution must come to equilibrium again. 
Later equilibration testing is applied only to the larger basin. 

Care should be taken when the basin is modified by another KMC event before the vacancy 
exits. This might occur when multiple vacancies are considered, or an independent event occurs 
such as ballistic mixing or defect production for alloys subjected to irradiation [38]. Before the 
equilibration assumption is accepted, the trajectory of the vacancy is controlled by Chain KMC so 
there is no introduced error. If the equilibration assumption for a given basin has been applied but 
the defect has not exited that basin before it is modified by an independent event, then a new 
vacancy site is selected according to the Boltzmann energy distribution of the basin, given in Eq. 
(1). Any modified jump parameters are then deleted, and the vacancy begins to explore the 
modified basin again using Chain KMC. 

3.2. Evaluation Methods 
In order to evaluate the accuracy and efficiency of the Equilibrating Chain KMC algorithm, we 

first compare it to 1st Order KMC and Chain KMC algorithms for the case of a vacancy escaping 
from static energy basins a priori generated by considering three clusters of solute atoms. The 



simulation is initialized with the vacancy and the preset cluster embedded in a large box of matrix 
atoms. The simulation runs with the specified algorithm until the vacancy swaps with a matrix 
atom, when it is said to have escaped from the basin. The exit time, absorbing site, and number 
of KMC steps before exiting are recorded and the simulation is reset to the initial configuration. 
This is repeated 200,000 times for each set of parameters, which was found adequate here to 
sample the overall exit distributions. 

The smallest basin we consider is comprised of 3 solute atoms and one vacancy forming a 
regular tetrahedron of 1st NN sites, see Fig. 2(a). This configuration is symmetric as the four 
possible vacancy sites correspond to degenerate sites, but it has low flicker probability since the 
vacancy has an equal probability to jump to any of the other three basin sites. Because of 
symmetry, the initial vacancy site is irrelevant. The next larger configuration, which we term ‘tetra-
diamond’, consists of five sites, illustrated in see Fig. 2(b). It can be thought of as a four close-
packed sites forming a diamond shape, with an additional solute at a tetrahedral site. This 
configuration is asymmetric and results in the basin having three distinct energy levels. We chose 
to initialize the configuration with the vacancy at one of the deep energy-level sites. These clusters 
have been selected since the tetrahedral and tetra-diamond configurations are the most compact, 
low-energy, and therefore the most probable configurations with four and five sites respectively. 
In contrast to these we examine what we refer to as the ‘tetra-line’ configuration, which consists 
of as a tetrahedron, with three additional sites extending along one of its edges. The configuration 
has a deep sub-basin, but also an extended shallow segment. This results in significantly more 
absorbing sites and a reduced probability of equilibrating the full basin. The vacancy is introduced 
either at the tetrahedral end, see Fig. 2(c), which is the deep sub-basin, or at the tip of the 
extended line in the shallow section of the energy basin, see Fig. 2(d). The energy basins 
corresponding to these clusters are shown in Figure 3. These four configurations are tested at 
various temperatures to investigate the effects of the overall trapping strength of the basin, the 
expected transient site occupation, and absorbing site distributions. 



 
 
 
 
Figure 2 Images for the a) tetrahedral, b) tetra-diamond, and tetra-line c) deep and d) shallow configurations. Blue 

indicates a vacancy. Matrix atoms are not shown. 

 

Figure 3 Relative saddle point and state energies defining the energy basins of the a) tetrahedral, b) tetra-diamond, 
and c) tetra-line clusters. The x-coordinate axis corresponds to various vacancy positions in the transient (•) and 
absorbing (o) sites. The saddle points to the absorbing sites shown are the lowest from the corresponding transient 
site. The tetrahedral basin only has two non-degenerate exits, so both are shown on opposite sides of the basin. The 
lowest energy level of each basin is arbitrarily set to zero in the figure for clarity.  

These simulations on static clusters are used to determine whether the Equilibrating Chain 
algorithm introduced here reproduces both the exit time and exit site distributions of the 1st Order 
and Chain KMC algorithms. We compare the resultant distributions using the two-sample 



Kolmogorov-Smirnov (KS) test and the two-sample chi-squared goodness-of-fit (2S-CS GoF) test 
respectively [48], always referencing Chain KMC results for the sake of consistency. Each of 
these tests produces a p-value, which we compare to our pre-selected critical confidence level of 
0.05. We will also refer to a percent difference between the observed average exit time, and the 
equilibrated average exit time as calculated by Eq. 3. This is calculated as %𝐷𝑖𝑓𝑓 = 𝑎𝑏𝑠(100 ∗
(𝛥𝑡d̅uv:w. − 𝛥𝑡#̅yj.) 𝛥𝑡d̅uv:w.)⁄  . 

4. Results and Discussion 

4.1. Algorithm Equivalence and Speed-Up 
In order to compare the three algorithms explained above (1st Order, Chain, and Equilibrating 

Chain), we present the statistical results of a vacancy escaping from a single basin, calculated at 
two representative temperatures, 250 K (Table 3) and 300 K (Table 4). The average exit time and 
average number of KMC steps to exit are listed for direct comparison between algorithms. Also 
listed where applicable are the fraction of exits that the basin was found to have come to 
equilibration. The uncertainty listed in these measurements is one standard deviation, and is 
estimated through the bootstrapping method [49].  The last columns are the p-value results of the 
KS-test and 2S-CS GoF tests as described above. 

 
Table 3 Tetra-Diamond escape statistics at 200K. See text for column definitions. 

Algorithm 
Average Exit 
Time (s) 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time KS-
Test P-value 

Exit Site 2S-CS 
GoF P-value 

1st Order 1.344(3) x109 20220(50) NA 0.128 0.156 

Chain KMC 1.337(3) x109 9176(2) NA NA NA 

Equil. Chain 1.344(3) x109 512.2(4) 0.9439(5) 0.188 0.287 
 
Table 4 Tetra-Diamond escape statistics at 250K. See text for column definitions. 

Algorithm 
Average Exit 
Time (s) 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time KS-
Test P-value 

Exit Site 2S-CS 
GoF P-value 

1st Order 22220(50) 2831(6) NA 0.606 0.037 

Chain 22300(50) 1364(3) NA NA NA 

Equil. Chain 22190(50) 434.8(4) 0.682(1) 0.567 0.314 
 
The results presented in Tables 3 and 4 confirm that, as expected, the Chain algorithm 

represents a significant improvement over the 1st Order RTA algorithm, especially at low 
temperature, i.e., when reversals are more frequent. These results also demonstrate that the 
Equilibrating Chain algorithm is able to provide significant additional improvements, achieving 
comparable results with dramatically fewer KMC steps on average, especially at low temperature 



where the equilibration assumption is often employed. Importantly, these results are obtained 
without introducing statistically significant errors since the post-run statistical analysis of the 
results yield confidence values in excess of the minimum desired value of 0.05. As a side 
comment, we note that the 2S-CS GoF test for the exit sites between the 1st Order and Chain 
KMC results fails for T=250 K marked in red in Table 4, despite the fact that the exit time KS-test 
is passed. At this confidence level, however, there is still a 5% percent chance of falsely rejecting 
a sample from the same distribution. Given the number of unique tests performed, 40 in this study 
(See Tables 3-8), and the confidence level of 0.05, the probability of false rejections can be 
calculated using the binomial distribution. Even assuming all the algorithms are equivalent there 
would be an 87.1% probability of at least one false rejection, and a 60.1% probability of at least 
two. We conclude that this case is an example of a false rejection. This conclusion is also 
supported by the fact that when comparing the 1st Order results to the Equilibrating Chain results, 
both the exit time and exit site tests are passed with p-values of 0.757 and 0.404 respectively. 

4.2. Effect of Temperature 
In order to more fully explore the effect of temperature on efficiency, we next present results 

for a single configuration over a wide temperature range, see Table 5. While results for the 1st 
Order algorithm are included for two temperatures in Tables 3-4, we did not generate results for 
all basins and temperatures with the 1st Order algorithm due to prohibitively long computation 
time, and therefore they are not included in Table 5. As in the previous section, the statistical tests 
are performed using the Chain KMC algorithm results as reference, and the columns are the same 
as in Tables 3 and 4. 

 
Table 5 Tetra-Diamond escape statistics. See text for definitions. 

Algorithm 
Temperature 

(K) 
Average Exit 
Time (s) 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time KS-
Test P-value 

Exit Site 2S-CS 
GoF P-value 

Chain 175 3.456(8) x1012 36270(80) NA NA NA 

Equil. Chain 175 3.458(7) x1012 525.1(4) 0.9857(3) 0.300 0.517 

Chain 200 1.337(3) x109 9176(2) NA NA NA 

Equil. Chain 200 1.344(3) x109 512.2(4) 0.9439(5) 0.188 0.287 

Chain 250 22300(50) 1364(3) NA NA NA 

Equil. Chain 250 22190(50) 434.8(4) 0.682(1) 0.567 0.314 

Chain 300 14.42(3) 378.6(8) NA NA NA 

Equil. Chain 300 14.38(3) 283.0(4) 0.253(1) 0.329 0.283 

Chain 325 0.859(2) 232.3(5) NA NA NA 

Equil. Chain 325 0.857(2) 207.4(4) 0.1064(7) 0.830 0.100 
 
For each temperature, the average exit time has less than 1% difference between the Chain 

KMC and Equilibrating Chain algorithms. The Equilibrating Chain algorithm results also pass all 



the statistical tests. Because the basin contains five sites, at least 500 KMC steps are performed 
before equilibration is tested. If the basin exits in less than 500 steps, as it often does above 300K, 
the equilibration assumption is never tested as it was not necessary to efficiently exit the basin. 
Because of this, the equilibration fraction decreases as the temperature increases. The average 
exit time at each temperature and for both algorithms is less than 0.5% different from the average 
equilibrated exit time, indicating that this basin equilibrates well within this entire temperature 
range. Because the equilibration fraction decreases the efficiency gain is also reduced, although 
the Equilibrating Chain algorithm always has fewer average KMC steps. The average number of 
KMC steps for escaping the tetra-diamond basin increases approximately exponentially as 
temperature decreases for both 1st Order and Chain KMC algorithms, as seen in Fig. 3. In 
contrast, the Equilibrating Chain algorithm quickly levels off and increases only marginally as 
temperature decreases. This demonstrates that as the equilibration assumption becomes more 
clearly acceptable, the efficiency of the new algorithm increases. 

 
Figure 4  The average number of KMC algorithm steps to exit the tetra-diamond basin. 1st Order steps are 

calculated from the number of skipped flickers in the Chain KMC results. 

4.3. Configurations 
In order to test whether the Equilibrating Chain algorithm works well for a variety of basin 

shapes, we compare the results of the Chain and Equilibrating Chain algorithms for all of the 
basins described in Section 3.2, at the representative temperatures of 200 and 250 K. The same 
statistical tests are applied as described above. 

 
Table 6 Escape statistics for various configurations at 200K. See text for definitions. 

Configuration Algorithm 
Average Exit 
Time (s) 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time KS-
Test P-value 

Exit Site 2S-CS 
GoF P-value 

Tetrahedral Chain 1.704(4) x107 4730(10) NA NA NA 

Tetrahedral Equil. Chain 1.693(4) x107 391.0(2) 0.9172(6) 0.140 0.311 



Tetra- 
Diamond Chain 1.337(3) x109 9176(2) NA NA NA 

Tetra- 
Diamond Equil. Chain 1.344(3) x109 512.2(4) 0.9439(5) 0.188 0.287 

Tetra-Line 
Deep Chain 1.039(2) x109 7900(20) NA NA NA 

Tetra-Line 
Deep Equil. Chain 1.040(2) x109 2084(3) 0.746(1) 0.944 0.588 

Tetra-Line 
Shallow Chain 1.034(2) x109 7860(20) NA NA NA 

Tetra-Line 
Shallow Equil. Chain 1.035(2) x109 2011(3) 0.741(1) 0.464 0.359 
 
Table 7 Escape statistics for various configurations at 250K. See text for definitions. 

Configuration Algorithm 
Average Exit 
Time (s) 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time KS-
Test P-value 

Exit Site 2S-CS 
GoF P-value 

Tetrahedral Chain 775(2) 762(2) NA NA NA 

Tetrahedral Equil. Chain 775(2) 316.3(3) 0.587(1) 0.521 0.630 

Tetra- 
Diamond Chain 22300(50) 1364(3) NA NA NA 

Tetra- 
Diamond Equil. Chain 22190(50) 434.8(4) 0.682(1) 0.567 0.314 

Tetra-Line 
Deep Chain 15270(30) 1130(2) NA NA NA 

Tetra-Line 
Deep Equil. Chain 15240(30) 793(1) 0.300(1) 0.867 0.576 

Tetra-Line 
Shallow Chain 14920(30) 1101(3) NA NA NA 

Tetra-Line 
Shallow Equil. Chain 14890(30) 757(1) 0.306(1) 0.433 0.852 
 
The tetra-line configuration was selected to investigate a basin that traps but does not 

equilibrate well. We note that an even less-well equilibrating example is considered in Appendix 
C. At 250 K the observed average exit times when the vacancy begins in the deep part of the 
basin are 0.53% different or less from the equilibrated average exit time (15190.9 s). However, 
when the vacancy begins at the shallow part of the basin the average escape time for the Chain 
and Equilibrating Chain algorithms are 1.78% and 1.97% different from the equilibrated average, 



respectively. Despite the fact that this basin does not always equilibrate well, it equilibrates often 
enough that the Equilibrating Chain algorithm is still able to have a significant efficiency gain 
compared to the Chain algorithm. It is important to note that the Equilibrating Chain algorithm 
reproduces the slight difference in average exit time produced when the vacancy is initially located 
at different sites (shallow versus deep trapping sites) in the basin, with the Equilibrating Chain 
results differing from the Chain algorithm results by less than 0.5% in each case. The exit time 
and exit site distributions compared with the Chain KMC results all pass the respective statistical 
tests. 

As noted above, the tetra-line basin has a sub-basin that may equilibrate before the full basin 
is explored. When this happens, the vacancy may exit the sub-basin either to the shallow portion 
of the full basin, or directly exit to a matrix absorbing site. Both scenarios were observed when 
the vacancy began at the deep part of the basin. When the vacancy begins in the shallow portion 
of the basin, the shallow part is explored first, so the full basin must equilibrate before the 
assumption is applied. 

4.4. Cluster Dissolution Kinetics 
The previous sections considered escape from basins of fixed size and shape. In order to 

investigate the effectiveness of the Equilibrating Chain algorithm in more realistic situations, we 
next apply the algorithms to the dissolution of a cluster of solute, i.e., in a microstructure containing 
evolving traps. The simulation is initialized in a cluster of a single vacancy, with all twelve nearest 
neighbors as B atoms, in a box of 323 A atoms with periodic boundary conditions. At the 
temperatures of interest, here 275, 300, and 325 K, the resulting B concentration (0.37 at.%) is 
below the thermal solubility (increasing from 0.5 at.% to 1.1 at.% in this temperature range), and 
thus the cluster dissolves during the simulation. The criterion for dissolution is that each of the 
twelve B atoms and the vacancy are all at least three nearest neighbor distances from each other. 
The simulation time, KMC steps, and final solute distribution are recorded for analysis. Statistics 
are collected over 10,000 dissolutions. The dissolution time distributions are compared using the 
KS-test, as above. The final solute distributions are projected along the normal of the (yz), (zx), 
and (xy) planes of the rhombohedral simulation cell. The results are compared between 
algorithms using the 2S-CS GoF test. Note that in this more generalized example, we report the 
average number of times the equilibration assumption was applied, rather than the fraction of 
times it was applied. 

 
Table 8 Dissolution statistics for a 12-solute atom precipitate. See text for column definitions. 

Algorithm 
Temp. 
(K) 

Average Time 
(s) 

Average KMC 
Steps 

Average 
Equilibrated 
Basins 

Dissolution 
Time       
KS-Test  
P-value 

B Distribution P-Value 

 (YZ)  (ZX)  (XY) 

Chain 275 2.48(2) x1017 1.281(6) x107 NA NA NA NA NA 

Eq. Chain 275 2.52(2) x1017 4.40(2) x106 628(3) 0.050 0.958 0.656 0.317 



Chain 300 4.23(4) x1014 3.59(2) x106 NA NA NA NA NA 

Eq. Chain 300 4.30(4) x1014 1.605(8) x106 255(1) 0.329 0.680 0.838 0.728 

Chain 325 1.93(2) x1012 1.263(6) x106 NA NA NA NA NA 

Eq. Chain 325 1.95(2) x1012 7.17(4) x105 113.4(5) 0.709 0.434 0.617 0.728 

 
At lower temperatures, as expected, the gain from the Equilibrating Chain algorithm is larger, 

.e.g., requiring only ≈ 34% of the Chain algorithm steps at 275 K, owing to 628 equilibrated basins 
on average per dissolution. The distributions of dissolution times obtained from both algorithms 
are very similar, as illustrated in Fig. 5. The average dissolution times found with the Equilibrating 
Chain algorithm are less than 2% different than the Chain KMC results. We note that the exit time 
comparison at 275 K failed the KS-test at our confidence level. As explained in section 4.1, there 
was a significant probability of one or two false rejections when assuming that the algorithms are 
equivalent. The solute distributions all match and an example is shown in Fig. 6.  

 
Figure 5 Histogram of the 12B precipitate dissolution time for both the Chain and the Equilibrating Chain algorithms 

at 300 K. 

 
Figure 6 Histogram of the average dissolved solute distribution on the planes normal to (YZ) at 300 K. 



4.5. Discussion 
The results presented in sections 4.1-4 establish that, in the presence of traps, the 

Equilibrating Chain algorithm is always more efficient for than 1st Order or Chain RTA while 
maintaining statistical similar results. Specific efficiency gains will of course depend strongly on 
the system modeled, including atomic interactions, temperature, concentration, lattice structure 
and other possible events, e.g., in the case of alloys under irradiation. Therefore it is not possible 
to precisely quantify efficiency gains a priori. Nevertheless, it is clear that our algorithm provides 
larger gains in the case of microstructures containing strong traps, resulting in a frequent use of 
the equilibration approximation. An example system where we expect this algorithm to be highly 
effective is an irradiated alloy with strongly trapping but dilute nano-clusters, such as irradiated 
iron-copper [43].  

While the equilibrium occupation distribution used here is calculated by assuming that the 
vacancy cannot leave the basin, a more accurate approach is to calculate the quasi-stationary 
distribution, or QSD. The QSD is the asymptotic limit of the no-passage distribution, which is the 
occupation distribution assuming that the vacancy does not leave the basin but can. It is 
calculated as the normalized eigenvector corresponding to the smallest eigenvalue of the 
transition matrix of the basin [50]. In the case of weaker traps, the QSD may deviate significantly 
from the equilibrium distribution, but the distributions are very similar for deep traps. We also note 
that while the equilibrium distribution only takes into account the site energy, the QSD predicts 
occupation differences between sites with the same energy if the basin exit rates from each site 
are different. We compared the differences between the QSD and the equilibrium site visit 
distributions for the basins and temperatures examined in this work. We find that the largest 
probability differences for any given site are of the order 10-3 and are often much less. The QSD 
predicted exit time is slightly longer than the equilibrated exit times, but still half a percent 
difference or less. This close agreement between the distributions is in agreement with our 
findings that the equilibrium distribution is often an acceptable approximation of long-term 
behavior. Compact (more inter-connected) basins and lower temperatures lead to smaller 
differences between distributions. See the supplementary material for more detailed 
comparisons. The core benefit of using the equilibrium distribution rather than the QSD is that it 
is less computationally demanding to calculate site energies than the eigenpairs of a transition 
matrix, especially for larger basins. If the observed distribution does deviate significantly from the 
equilibrium distribution, e.g. when the QSD and the equilibrium distribution are different, then the 
G-test will reject the equilibrium assumption and the algorithm will continue to explore and exit 
the basin using only error-free Chain KMC. 

It is interesting to compare and contrast our algorithm with other accelerated KMC approaches 
that have been proposed, other than those used in the present study. Kinetic path sampling (KPS), 
proposed by Athenes and Bulatov [20], works in conjunction with standard 1st Order KMC by 
identifying a basin, sampling an exit from that basin, and then stochastically sampling a path to 
that exit in order to calculate an exit time. The KPS basin exit is statistically equivalent to 1st Order 
KMC and may be less computationally intensive than FPTA. However it cannot appropriately 
assign a position to a vacancy at a constrained time, which is required if the basin is modified by 
another event before exiting. This is important, for instance, for modeling the evolution of alloys 
under irradiation or plastic deformation. The authors are currently developing solutions to this 



issue [51]. At this time, the Equilibrating Chain algorithm therefore appears to be advantageous 
for systems where basins can be modified by an independent event. In addition, the present 
algorithm does not require any significant overhead for its implementation. In 2010, Chatterjee 
and Voter proposed an accelerated superbasin (AS-KMC) algorithm that has similarities to the 
algorithm presented here [23]. As in our approach, the AS-KMC algorithm tracks events within 
basins, but instead of tracking site occupation it tracks the occurrence of specific jumps. Instead 
of using equilibration, AS-KMC progressively raises the activation barriers within the basin to 
reduce trapping. That algorithm tests if events within the basin have occurred often enough to 
limit the introduced errors. By using this approach, these authors are able to provide an analytical 
bound for the introduced errors, and show that in practical cases errors are indeed bounded by, 
and often much smaller than this upper value. Chatterjee and Voter considered a variety of 
examples of application of their algorithm, including extended bulk basins with gradual changes 
in the migration barriers and nanowire shape transitions. Our Equilibrating Chain algorithm 
performs best in the presence of deep traps. In contrast, in these cases, AS-KMC may be less 
effective since the transient energy barriers will have to be raised multiple times, rather than 
directly exiting. We note also that it would be detrimental to use the AS-KMC in conjunction with 
Chain KMC, since new jump rates would need to be calculated and accumulated every time 
barriers were raised. It will be informative to perform quantitative comparisons of the respective 
merits of the Equilibrating Chain, the AS-KMC and the FPTA algorithms. This will require 
dedicated and extensive tests, which are kept for future work. 

Lastly we note that while our work has focused on the movement of vacancies near solute, 
the principles of the Equilibrating Chain KMC algorithm can be applied to any mobile object that 
experiences trapping. These include, but are not limited to, vacancies and vacancy clusters, direct 
interstitials, dumbbell interstitials and their clusters. 

5. Conclusion 
Standard KMC algorithms often become inefficient when applied to strongly trapping systems 

due to the long exploration of deep energy basins. We leverage the pre-existing data-tracking 
framework of Chain KMC to identify basins on the fly, to track the occupation of basin sites, and 
to evaluate if the mobile objects have reached equilibrium within the basin. This produces a 
flexible and robust algorithm that can safely apply the simplifying equilibrating basin assumption 
without a separate basin-finding algorithm and without a priori definition of basin characteristics. 
For selected basins, the Equilibrating Chain algorithm, tested here for a semi-dilute A-B FCC 
alloy, is found to generate escape time and site distributions in excellent agreement with the Chain 
KMC, used as a reference. In addition, excellent agreement is also obtained for the distribution of 
dissolution times of a small solute cluster. At the same time, the Equilibrating Chain algorithm can 
provide significant efficiency gains, particularly in simulation conditions where strong traps 
composed of several sites equilibrate. While this new algorithm is greatly accelerating, it should 
be less computationally intensive than other more exact algorithms, which makes it more suitable 
for systems where basins may be modified by independent events such as defect production in 
alloys under irradiation. 
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Appendix A 
We present a summary of the relationships between the setting parameters and those used 

in the KMC calculations. A broken bonds model is used, where the energy barrier for a mobile 
object, such as a vacancy, jumping to a new site is calculated as the saddle point, minus the 
energy of all bonds ‘broken’ by the jump. 

The S0 saddle point is used when a vacancy is moving in A, away from any B atoms. S1 is 
used when the vacancy swapping with an A atom but rotating around an associated B atom. S2 
is used for swapping with any B atom. S3,4 is used when either associating or dissociating from 
any B atom. The jumps are reversed from each other, so they have the same saddle point energy. 
When the 5 frequency model scenarios are considered in the broken bonds framework, these 
relationships follow: 

𝐸( = 𝑆( − 11𝜀𝐴𝐴 − 12𝜀𝐴𝑉 
𝐸) = 𝑆) − 10𝜀𝐴𝐴 − 11𝜀𝐴𝑉 − 𝜀𝐴𝐵 − 𝜀𝐵𝑉 

𝐸* = 𝑆* − 11𝜀𝐴𝑉 − 11𝜀𝐴𝐵 − 𝜀𝐵𝑉 
𝐸+ = 𝑆+,, − 11𝜀𝐴𝐴 − 11𝜀𝐴𝑉 − 𝜀𝐵𝑉 
𝐸, = 𝑆+,, − 10𝜀𝐴𝐴 − 12𝜀𝐴𝑉 − 𝜀𝐴𝐵 

 
Additional inputs include the cohesive energy of the A matrix, the cohesive energy of the B 

matrix, the formation energy of a vacancy in the matrix, and the critical temperature. The 
relationships between these parameters and the interaction energies are given below. 
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𝑍
2
∗ 𝜀𝐴𝐴 

𝐸"#$- =
𝑍
2
∗ 𝜀𝐵𝐵 = 𝐸"#$% ∗

𝑇{-

𝑇{%
 

𝐸&'% = 𝑍 ∗ 𝜀𝐴𝑉 −
𝑍
2
∗ 𝜀𝐴𝐴 
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𝑇" ∗ 𝑘- =
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𝐾" = 0.102069 
 
Kc includes a correction term between the Tc of the mean field regular solution model and the 

FCC lattice [52]. This system of equations is sufficient to define the all parameters based on the 
fitting parameters described in the text. 



Appendix B 
The probability that a flicker event will occur between two neighboring states j and k is defined 

as 𝛾<↔\ ≡ 𝑝<→\ ∗ 𝑝\→<.  A null state 0 is defined, such that 𝑟<→( = 0 for all j. The probability of a 

flicker event occurring between any neighbors of state j is 𝛾<(() ≡a 𝛾<↔\
\

, with j(0) indicating 

that a flicker to the null site is excluded, i.e. no neighbors are excluded. If a reversal to the previous 
state i is excluded, the probability becomes	𝛾<(:) ≡ (𝛾<(() − 𝛾<↔:) (1 − 𝑝<→:⁄ ) . 

An indirect move is defined as any move from state j to state k where the first two jumps after 
arriving in state j comprise a flicker, including moves with multiple flickers or flickers to multiple 
neighboring sites. A direct move is defined as any non-indirect move, and never includes any 
flickers. Excluding the reversal to state i, the probability of a direct move occurring from state j to 
state k is 

𝑝É:Td"D = ∑ (UÑ→ÖKUÑ→Ö([)∗UÖ→Ñ)∗()KÜÖ[)
)KUÑ→[\ = 1 − 𝛾<(:)	.	 (B.1) 

The Kronecker delta, 𝛿\:, evaluates as zero unless 𝑘 = 𝑖 when it evaluates as 1. It is used in 
B.1 to exclude the probability associated with the excluded reverse move. Again, excluding the 
immediate reversal to state i, the probability of an indirect move occurring becomes 

 
𝑝:hÉ:Td"D = ∑ àÑ([)∗(UÑ→ÖKUÑ→Ö([)∗UÖ→Ñ)

)KàÑ(â)\ = 𝛾<(:)	.		(B.2) 

Instead of calculating all of these probabilities, the algorithm first stochastically selects the 
number of flickers as 𝑓 = 𝑖𝑛𝑡(𝑙𝑛[𝜁/𝛾<(:)] 𝑙𝑛	𝛾<(()⁄ ) + 1 if 𝜁 ≤ 𝛾<(:) or 𝑓 = 0	if  𝜁 > 𝛾<(:). The next 
move is then selected, with the jump probabilities of that move based on whether the move is 
direct or indirect, i.e. 𝑓 = 0 or	𝑓 > 0. The sites involved in those flickers are selected stochastically 
based on the binomial distribution. The total timestep accounts for each jump made, including 
flickers, without explicitly performing these flickers in the KMC simulation. 

It is important to stress that, as demonstrated by Mason et al. [18], the Chain KMC algorithm 
is statistically equivalent to the 1st Order RTA. In particular, we note that in the Chain KMC 
algorithm, for any neighbor k that does not have the return probability 𝑝\→< stored, this probability 
is set to zero. Thus, if no neighbors have stored return jump probabilities, the first order jump 
probabilities are recovered. 

Appendix C 
The Equilibrating Chain algorithm has at least three input parameters that directly impact 

potential efficiency and accuracy as currently implemented. They are 1) the frequency of testing 
for equilibration, determined here by the number of in-basin KMC steps (Nchain), 2) the minimum 
number of visits and expected visits to each basin site before trusting the G-test, and 3) the critical 
p-value of the G-test to determine equilibration. 

In our implementation, we chose to test for equilibration after (100 ∗ 𝑁j:Ddj) steps without 
visiting a new site. We chose this value as it is a clear indication that the Chain KMC algorithm is 
becoming inefficient. The scalar could be reduced from 100, as is done below, or a different trigger 
could be used. Testing for equilibration more frequently has a complex effect on efficiency, as it 



will allow equilibrated basins to exit with fewer KMC steps, but may also result in more frequent 
rejected equilibrations, wasting the computation time spent testing. The ideal scenario is to test 
immediately after achieving equilibration. Unfortunately this is system specific and is unknown a 
priori. 

The minimum number of visits to each site, observed and expected, affects the reliability of 
the G-test. As noted in the text, a generally accepted guideline is 5 counts-per-bin (visits-per-site). 
We chose to require 10 visits-per-site in order to increase reliability. However, this reduces how 
often the basin is considered equilibrated, especially for larger basins that may have sites with 
very low occupation probability, such as in the tetra-line case. 

The last significant parameter is the critical p-value, or confidence level, of the G-test. As the 
critical p-value is increased, the probability of false passes, or Type II errors, decreases. However, 
the probability of Type I errors, or incorrectly rejecting equilibrated basins, increases. In other 
words, higher critical p-value results in greater confidence that the basin has indeed equilibrated, 
but at the expense of not accepting some basins that truly have equilibrated but with high 
variance. As with other parameter choices, the choice of critical p-value, p=0.1, was rooted in a 
desire to be conservative. 

Further analysis is complicated by the fact that these parameters are not independent. For 
example, by requiring a large number of basin KMC steps before testing for equilibration, the 
observed variance will often be far lower than the critical value, making the algorithm relatively 
insensitive to decreases in the p-value. 

To illustrate the trade-offs between accuracy and efficiency, we introduce a new basin. This 
basin is composed of two distantly connected trapping sub-basins, and does not equilibrate well 
at 300 K. Indeed the average escape time, when the vacancy begins as shown in the figure, has 
a 12% difference compared with the equilibrated average exit time of 5477.8 seconds. The results 
produced when one or two of the tuning parameters are relaxed are presented below. The first 
three columns refer to the tunable parameters described above. The exit time differences use the 
Chain KMC results as the reference. The other columns correlate to those shown above. 

 

 
Figure C1 A selected non-equilibrating basin. As above, the orange atoms are solute, and the blue is the initial 

vacancy position. Matrix atoms are not pictured. 

 
Table C1 Example non-equilibrating basin escape statistics at 300 K using the Equilibrating Chain algorithm with 

various tuning parameters. See text for column definitions. 

G-test 
P-value 

Nchain/
Nsites 

Min. 
Visits 

Average Exit 
Time (s) 

Exit Time     
% Diff 

Average KMC 
Steps to Exit 

Equilibration 
Fraction 

Exit Time 
KS-Test  
P-value 

Exit Site 
2S-CS GoF 
P-value 

NA NA NA 4820(10) NA 1299(3) NA NA NA 



0.1 100 10 4790(10) 0.6 1217(3) 0.0477(5) 0.353 0.689 

0.05 100 10 4800(10) 0.4 1215(3) 0.0522(5) 0.373 0.400 

0.01 100 10 4790(10) 0.6 1203(3) 0.0597(5) 0.471 0.447 

0.1 30 10 4770(10) 1.0 1174(3) 0.0834(6) 0.503 0.651 

0.1 5 10 4800(10) 0.4 1152(3) 0.1625(9) 0.848 0.768 

0.1 100 5 4790(10) 0.6 1165(3) 0.0849(6) 0.513 0.806 

0.1 100 1 4780(10) 0.8 1159(3) 0.0890(6) 0.670 0.458 

0.1 5 1 4870(10) 1.0 732(2) 0.929(2) 8.75E-25 0.038 

0.01 100 1 4750(10) 1.4 1121(2) 0.1127(7) 0.209 0.270 

0.01 5 10 4820(10) <0.1 1136(3) 0.1798(9) 0.478 0.371 

 
 
While these results are not a comprehensive study on the effect of the tuning parameters, 

they are instructive. For this example, the G-test p-value seems to be the weakest tuning 
parameter. Reducing the p-value alone only affects the average KMC steps slightly. In addition, 
the most inaccurate results were produced when the G-test p-value was the only strict parameter. 
While a minimum of 5 visits per site is recommended to provide proper sampling for the G-test 
[47], this had less effect than expected. This may be because the sites least often visited tend to 
have the least significant effect on the characteristics of the basin both before and after 
equilibration. 

In addition to these parameters, other details of the algorithm could be modified that could 
have an effect on efficiency. For example, saved chain data that is far away from the current 
position could be periodically deleted. Limiting the number of saved sites in this way would reduce 
data management requirements, and allow strongly equilibrating sub-basins, such as in the 
example above, to equilibrate more frequently. However, this would prevent larger but still 
equilibrating basins from being recognized. 

Another possible variation would be to apply the G-test to the distribution of occupation time, 
rather than the distribution of visits. The two distributions have an explicit relationship in our 
implementation, as each vacancy jump timestep is set to the average exit from that site. However, 
many KMC models draw the timestep from the exponential distribution rather than the average, 
which may lead to subtle differences for infrequently visited states. 

Appendix D 
Whenever the equilibration assumption is applied, the vacancy has already spent time 

exploring the basin and coming to equilibrium. Assume that this time, 𝑡yCj:h, is tracked and stored 



with the other Chain KMC data. The correct exit time distribution could be recovered by selecting 
an exit from the portion of the exponential distribution that has not yet been explored by Chain 
KMC. The total basin exit time would be calculated simply by re-scaling the limits of the random 
number 𝜁 from (0,1] to (0, 𝜙] in Eq. 3, where 𝜙 = 𝑒(KDëíì[î∗ï). This prevents an exit time that is 
less than the time already spent in the basin, while still following the exponential distribution of 
equilibrated exits. The exit timestep would then be the difference between the selected total basin 
exit time and the time spent equilibrating. 

The modified range random variable can be defined as 𝜁ñ = 𝜁 ∗ 	𝜙 . If we substitute 𝜁ñ into Eq. 
3, we find: 

 

𝛥𝑡de:D =
−𝑙𝑛(𝜁 ∗ 𝜙)

𝑄
=
−𝑙𝑛(𝜁 ∗ 𝑒(KDëíì[î∗ï))

𝑄
= 𝑡yCj:h −

ln(𝜁)
𝑄

		(𝐷. 1) 

Thus, the total basin exit time is just the sum of the time spent in the basin and an equilibrated 
exit step. Therefore, the total exit time can simply be selected through an equilibrated exit, and 
the time spent in the basin does not need to be taken into account. 

Data Availability 
The raw data required to reproduce these findings are available to download from 

http://dx.doi.org/10.17632/dbff6r2p88.1 . 
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