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4.1 Introduction

Energetic electrons in the radiation belts undergo three quasi-periodic motions:
gyration, bounce, and drift. The motions have distinct periods and each of them
corresponds to an adiabatic invariant, referred to as the first, second, and third invar-
iants, respectively (Schulz and Lanzerotti, 1974). The presence of plasma waves can
violate one or more of the three invariants through wave-particle resonant interac-
tions, leading to irreversible changes in electron phase space density (Thorne, 2010).
The process of wave-particle interaction plays an important role in the variability of
the radiation belt electrons. Much more attention has been paid to gyroresonance (see
review by Albert et al., 2013, and references therein) and drift resonance interaction
than bounce resonance, which can be responsible for the violation of the second
invariant. Violation of the third invariant through drift interaction with ultralow
frequency waves (e.g., Dai et al., 2013) can lead to radial diffusion, while violation of
the first invariant through gyoresonance interaction can lead to pitch angle and energy
scattering (e.g., Albert et al., 2013).

The investigation of bounce resonance started about five decades ago when Parker
(1961) and Roberts and Schulz (1968) suggested that electrons can be subject to
scattering by means of bounce resonance with hydrodynamic waves whose frequency
is equal to multiples of electron bounce frequency. More recently, the idea of bounce
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resonance has gained increasing attention, in an attempt to explain the observed global
coherent variability of the radiation belt electron fluxes (Kanekal et al., 2001; Shprits
et al., 2007). Specifically, during geomagnetic storms, the radiation belt electron fluxes
may vanish rapidly at all L-shells, indicating that electrons at all equatorial pitch angles
are effectively scattered by waves. This is also true for equatorially mirroring electrons
with equatorial pitch angles αeq5 90 degrees. However, those electrons are generally
immune to the gyroresonance interaction, which requires a finite electron velocity
component along the field line to satisfy the gyroresonance condition unless the
relativistic mass correction is sufficient to reduce the electron gyrofrequency to match
the wave frequency. However, when the relativistic correction factor is relatively
small, it appears that the electrons with αeq5 90 degrees cannot be scattered by the
waves with gyroresonance.

Among a variety of plasma waves in the magnetosphere, equatorial noise (Russell
et al., 1969) is a potential candidate for bounce resonance with energetic electrons.
Equatorial noise, also known as fast magnetosonic waves or ion Bernstein mode waves
(Gary et al., 2010), consist of electromagnetic emissions confined within a few degrees
of the equator (e.g., Santolík et al., 2004; Hrbáčková et al., 2015), occurring above
the proton gyrofrequency fcp and below the lower hybrid resonance frequency fLHR.
Magnetosonic wave frequencies typically range from a few Hz to B100 Hz, and the
low-frequency portion of the wave band is close to the bounce frequency of
energetic electrons above hundreds of keV Shprits (2009). The dominant component
of the magnetosonic wave’s magnetic field is along the background magnetic field,
leading to considerable magnetic mirror force along the electrons’ bounce motion.
The wave has average amplitudes of B50 pT (Ma et al., 2013), but much more
intense magnetosonic waves, with amplitudes up to B1 nT, have also been reported
(Tsurutani et al., 2014). Ring velocity distributions of the ring current energetic
protons can excite these waves with nearly perpendicular wave normal angles (and
hence near-perpendicular propagation directions) at multiples of the ion gyrofre-
quency (e.g., Perraut et al., 1982; Meredith et al., 2008; Chen et al., 2010, 2011).
Discrete and harmonic spectral structures of magnetosonic waves have been reported
during various satellite missions (e.g., Balikhin et al., 2015; Min et al., 2018).

These waves have also been shown to be effective for causing Landau resonance
interactions, which are responsible for electron acceleration (Horne et al., 2007) and
for inducing additional transit-time scattering (Bortnik and Thorne, 2010; Li et al.,
2014). Both bounce resonant and Landau resonant scattering by magnetosonic waves
have been proposed as mechanisms for the formation of butterfly distributions which
require a depletion in equatorial and near-equatorially mirroring electron fluxes and/
or enhancements of lower pitch angle electrons (Xiao et al., 2015; Li et al., 2016; Ma
et al., 2016). Albert et al. (2016) demonstrated that a minimum phase space density at
90 degrees pitch angle for the inner radiation belt electrons can be reproduced by

100 The Dynamic Loss of Earth’s Radiation Belts



the inclusion of cross pitch angle and energy diffusion without the presence of
magnetosonic waves. In addition to diffusive interactions with magnetosonic
waves, Maldonado et al. (2016) demonstrated that bounce resonance with coher-
ent magnetosonic waves can lead to the observed rapid formation of butterfly
distributions within seconds. In this chapter, we will cover recent developments in
bounce resonance theory. We start with a test-particle model for studying the
wave-particle interaction process, and then review Landau resonance, nonreso-
nance, and bounce resonance with magnetosonic waves. Special attention is paid
to the dynamics of equatorially mirroring electrons and coherent interactions over
timescales longer than the bounce period. Finally, quasi-linear diffusion theory is
reviewed, which accounts for the bounce resonance interactions with broadband
waves.

4.2 Mathematical model

The mathematical model of nonrelativistic electron motion due to wave-particle
gyroresonant interaction with oblique whistler waves was developed by Bell (1984),
based on averaging the Lorentz force equations over the fast varying gyrophases and
assuming a small wave magnetic amplitude as compared with the background
magnetic field. A relativistic model was later generalized by Tao and Bortnik (2010)
and Albert et al. (2013). Many various forms of the gyro-averaged equations have
been used to study wave-particle gyroresonant interactions and Landau resonance
(Bortnik and Thorne, 2010; Li et al., 2015; Hsieh and Omura, 2017). Such equations
are also applicable for studying bounce resonance interactions (Chen et al., 2015;
Maldonado et al., 2016; Li et al., 2015). Here we summarize the set of general gyro-
averaged equations for electrons or ions, near an arbitrary resonance n, in a
convention convenient for an arbitrary wave polarization and arbitrarily charged
particles (electrons or ions):
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Here a field-aligned coordinate system is used, where z is oriented with the
background magnetic field line B0 and x and y are two perpendicular directions. Our
background field B is assumed to be dipolar and z is the arc-distance along the field
line measured from the geomagnetic equator; m is the charged particle’s mass and q is
the charge (with sign); γ is the Lorentz factor, and pz(vz) and p\(v\) are the particle’s
parallel and perpendicular momentum (velocity) components, respectively. vd denotes
particle drift velocity, that is, the velocity of the guiding center across the field line.
The first terms on the right-hand side of Eqs. (4.1) and (4.2) represent the adiabatic
variation due to background magnetic field, while the terms associated with summa-
tion denote the changes due to multiple wave effects. The subscript j denotes jth wave
component with a corresponding frequency ωj, parallel and perpendicular wave
numbers, kz,j and k\,j. ~E and ~B denote wave electric and magnetic complex
amplitude, respectively. The wave components in a rotating coordinate system are
denoted as ~B6 ;j 5 ~Bx;j 6 i ~By;j

� �
=2; ~E6 ;j 5 ~Ex;j 6 i ~Ey;j

� �
=2. The ratios among wave

electric and magnetic complex amplitudes can be determined by the dispersion
relation corresponding to a given wave mode with ωj and kj and local plasma
parameters such as B0 and plasma density. The local dispersion relation is solved for a
plane wave of the form BeikjUr2iωj t. The c.c. terms represent the complex conjugate of
the wave force terms. The complex quantities are useful for implementing a general
dispersion relation, not limited to the cold plasma dispersion relation often used
previously. To be more general, the factor containing wave number azimuthal angle
ψj is also retained. ψj is defined as the azimuthal angle of the wave vector k\,j with
respect to the x axis.

The terms Jn(βj) are Bessel functions of the first kind with argument βj 5
k\jp\
qB0

.
The charged-particle gyrofrequency is Ω5 qB0/(γm). These Bessel terms arise
owing to the wave-phase variation along the gyromotion path, which is also
known as the finite Larmor radius effect. It should be pointed out that |J0(β)|, 1
and |J11(β)|,β/2, and therefore the Larmor radius effect produces a smaller
driving force than the typical guiding-center approximation, which ignores the
size of the Larmor radius. By letting β approach 0, Eqs. (4.1) and (4.2) can be
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reduced to the guiding center approximation (e.g., Li et al., 2015) and the conser-
vation of magnetic moment μ5 p2/(2mB0). The term φj,n in Eq. (4.3) is the differ-
ence between the jth wave phase as seen by the center of the particle
gyromotion and the nth multiple of the particle gyrophase. This difference
takes into account the Doppler shift due to both parallel motion along the field
line (kz,jvz) and the perpendicular drift motion (K>; j � vd),

The scale factor g(λ, t)5 gλ(λ)gt(t), where λ is the magnetic latitude,

gλ λð Þ5 exp 2 λ2

λ2
w

� �
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gλ is introduced to represent latitudinal variation of the wave power with a latitudinal
width of λw, which is relevant for equatorially confined magnetosonic waves. The
term gt is introduced to account for temporal amplitude variation when particles drift
through the wave fields over the localized azimuthal extent, that is, when particles
enter or leave the field lines of interest. The waves turns on at t5 t1 and turns off at
t5 t2. Launching test particles inside the wave field would induce unphysical scatter-
ing, in addition to the scattering due to the waves. Since we consider the interaction
only along a fixed field line, it is implicitly assumed that the timescale of the wave
existence τ5 t22 t1 is much less than drift period τd and is typically less than a few
bounce periods τb.

Often one deals with a single primary resonance at a time, that is, only one possible
solution for an integer n that is close to, if not equal to, the gyroresonance condition
nΩ2ω1 kzvz5 0. For magnetosonic waves, |2ω1 kzvz|, , |Ωe|. Therefore, it
is safe to consider n5 0 only and as a result, electron trajectories are independent of the
particle gyrophases, but the Larmor radius effect is still kept. For the case of n5 0, the
angle φj,n50 is simply the jth wave phase seen at the center of the gyration. The set of
test particle Eqs. (4.1�4.4) with n5 0 can be also used to investigate the bounce
resonance interaction between electrons and magnetosonic waves for τ on the order of
a few electron bounce periods. Here, we do not consider the effect of drift velocity vd
and consider only n5 0, for which φj,n50; thus, Eqs. (4.1�4.4) are independent of gyra-
tion phases. Therefore, a wave number azimuthal angle of ψj5 0 is adopted (meaning k
is on the plane containing x and z axes). It is worth noting that gyroresonant interac-
tions (i.e., n 6¼ 0) depend on the gyrophases, and the value of ψj does affect the initial
value of φj;n6¼0. As a consequence, particles’ response to the wave field depends on ψj.
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Before discussing bounce resonance due to waves, we cover adiabatic bounce
motion of electrons in the dipole magnetic field. The bounce motion is similar to
motion in a potential well associated with background magnetic mirror, given
by μB0(z)/γ

2. The periods of relativistic bounce motion can be approximated by
(e.g., Walt, 1994, Eq. 4.28)

τb in s½ �5 0:1173
Lv
c

1� 0:4635sin0:75αeq
� �

;

where v is the electron velocity, L is L-shell value, and c is the speed of light. Fig. 4.1
shows the electron bounce frequency, fb5 2π/τb, over a wide range of kinetic
energies E in the magnetosphere; fb ranges from a fraction of a Hz to 10 Hz and
becomes greater for lower L values, higher equatorial pitch angles αeq, and higher
electron energies E. For ring current and radiation belt electrons (E. keV,
3,L, 9), fb is on the order of several Hz. Note that there exists a bounce frequency
for exactly equatorially mirroring electrons (αeq5 90 degrees), although their trajecto-
ries remain on the equatorial plane. As noted in Chen et al. (2015), the behavior of
equatorially mirroring electrons is analogous to particles at the bottom of the potential.
Infinitesimal electric and magnetic perturbation, if any, will result in simple harmonic

2 3 4 5 6 7 8 9

L

10
2

10
3

10
4

10
5

10
6

10
7

E
 (

eV
)

0

1

2

3

4

5

6

7

8

9

10

20 40 60 80

αeq (degrees)

102

103

104

105

106

107

E
 (

eV
)

0

0.5

1

1.5

2

2.5

3
(A) (B)

ω/Ωb=1

ω/Ωb=2
ω/Ωb=3

ω/Ωb=4

λres =10 degrees

λres =0 degrees

Figure 4.1 (A) Bounce frequency (in Hz) of equatorially mirroring electrons in the dipole magnetic
field as a function of L-shell and kinetic energy. (B) Electron bounce frequency (in Hz) as a function
of equatorial pitch angle αeq and kinetic energy at L5 6.6. The solid lines denote the bounce reso-
nant condition ω5mbΩb, where Ωb is the angular frequency of electron bounce motion and m is
an integer, 1, 2, 3, and 4. ω is set to Ωb of electron with E5 300 keV and αeq5 90 degrees. The
dashed lines denote Landau resonance condition ω2 kzvz5 0 that takes place at magnetic latitude
λres5 0, 2, 4, 6, 8, and 10 degrees.
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oscillation for those equatorially mirroring electrons with angular bounce frequency
Ωb given by Ω2

b 5 μ=γ2me
� �

d2B0ðzÞ=dz2
� �jz50. For a dipole field, bounce frequency

for those electrons Ω2
b 5 μ=γ2me
� �

9B0ðz5 0Þ=ðLREÞ2
� �

, where RE is the Earth’s
radius.

4.3 Wave-particle interactions with magnetosonic waves—coherent

Here we deal with bounce resonant interactions between electrons and monochro-
matic magnetosonic wave fields. For a single wave, we simply remove the summa-
tion over j and suppress the subscript j in Eqs. (4.1�4.3). There are three possible
nonadiabatic effects due to interaction with magnetosonic waves—Landau reso-
nance, transit-time scattering, and bounce resonance. To illustrate these effects, we
set L5 6.6, equatorial plasma density 50 cm23, t15 0.4 s, δt15 0.1 s, t25N and
wave frequency ω5 11 rad/s with wave normal angle 89 degrees and latitudinal
width λw5 3 degrees. In Fig. 4.1B, the dashed black lines denote the electrons that
are in Landau resonance with the wave at various magnetic latitudes (ω2 kzvz05 0),
where vz0 is parallel velocity of the adiabatic motion, while solid black lines denotes
the conditions when ω5mΩb, where m is an integer. Fig. 4.2A and C show trajec-
tories of electrons with initial E5 354.8 keV and αeq5 69.1 degrees (marked by an
asterisk in Fig. 4.1B) and random initial values of φ0. They are in Landau resonance
at λres5 2 degrees but out of bounce resonance. Those electrons experience nonadi-
abatic changes in αeq and E when electrons go through the resonant latitude because
of slow variation of φ during Landau resonance (Eq. 4.3). These changes depend on
the value of φ0, which is initially a random number. If the wave coherence does not
hold longer than one bounce period (τc, τb), then the value of φ and thus the
changes in momentum are randomized during the subsequent bounce. That is,
the random change in momentum is independent of the random change during
previous bounces, and therefore one should expect diffusive processes due to the
Landau resonance.

Additional nonadiabatic changes occur because of equatorial confinement of
magnetosonic wave power even when electrons are out of Landau resonance. This
change is also known as transit-time scattering or nonresonance (Bortnik and Thorne,
2010). Fig. 4.2B and D shows the behavior of electrons with initial E and αeq marked
by the circle in Fig. 4.1B. There are net changes in αeq and E whenever electrons pass
through the equator. Such changes are induced when electrons rapidly pass through
the edge of spatially confined wave power. Bortnik et al. (2015) analyzed the transit-
time scattering in E and αeq with the aid of two assumptions. First, the adiabatic
variation of the particle velocity is ignored during equatorial crossing; that is, the zero-
order parallel velocity vz0 remains a constant when electrons pass through the wave
field (Bortnik et al., 2015, Eq. 21), Second, the mirror latitudes are larger than the
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extent of the wave. Linear changes of the electron equatorial pitch angle (or E) due to
a monochromatic wave follows

Δαeq or ΔEBτ tr sinφeqexp 2
ðω2kzvz0Þ2τ2tr

4

� �
; ð4:5Þ

where φeq is evaluated at the equator. The time to transit through the equatorial wave
region, τtr5 zw/vz0, where zw is the spatial width of wave power along the field line.
The change is randomized for a random φeq and also depends on the change in wave
phase during the passage Δφ� (2ω1 kzvz0)τtr through the exponential factor.
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Figure 4.2 Simulated trajectories of electrons in a monochromatic magnetosonic wave field for
electrons in Landau resonance with the magnetosonic wave but out of bounce resonance (left
column: A, C and E) and for electrons out of Landau resonance but in bounce resonance
(left column: B, D and E). Shown are electrons’ equatorial pitch angle (A, B) and kinetic energy (C, D)
as a function of time and pitch angle (E, F) for a longer time interval. The different colors represent
different choices of random initial wave phases, φ0.
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If |Δφ| is large, then the effect vanishes, and for small |Δφ| (,B2), the net change
occurs. The nonadiabatic effect favors the following two regimes: (1) for electrons
near Landau resonance (2ω1 kzvz0� 0) and (2) for electrons transiting through the
wave field rapidly (small τtr). For a large value of λw, only electrons near Landau
resonance are scattered. For a sufficiently small λw, electrons, including those not in
Landau resonance, can experience additional transit-time scattering. Such nonresonant
scattering tends to broaden the regime of Landau resonant scattering. For τc, τb, one
can expect transit time effects to induce diffusion in pitch angle and energy. The non-
resonant effect has been also demonstrated in the interaction between subrelativistic/
relativistic electrons and parallel electromagnetic ion cyclotron (EMIC) wave packets
(Chen et al., 2016), where the narrow spatial edge of the wave packet reduces the
effective electron minimum energy of pitch angle scattering owing to interaction with
gyromotion. For nonresonant interactions with EMIC wave packets, the nonresonant
scattering becomes effective for the small phase change |(2ω2 kzvz2Ωe)τtr|,B1,
where τtr is the time for electrons to pass through the spatial edge of the EMIC wave
packet. The nonresonance vanishes when the phase change is larger. Such nonresonant
effects associated with spatially confined wave packets broaden the interaction condi-
tion for gyroresonance and Landau resonance.

In addition to Landau resonance and transit-time effects, electrons can be in
bounce resonance with the magnetosonic waves. Fig. 4.2F illustrates what happens
during the bounce resonance over a few bounce periods. The electrons experience net
nonadiabatic changes in αeq and E due to nonresonant interactions. The net change
depends on φeq. When in bounce resonance with waves of coherence of a timescale τc
longer than τb, φeq remains unchanged during subsequent equatorial passage, and as a
result, the same amount of nonadiabatic change is gained. In other words, the change
Δαeq is proportional to τc when in bounce resonance (as seen in Fig. 4.2F). Over the
timescale comparable to τc, although particles having different bounce phases have a
different change in Δαeq, it is not a diffusive process. Fig. 4.3 shows the diffusive
change and the advective change in αeq and E as a function of time. During bounce
resonance, the advective change remains small while the diffusive change increases
linearly with time. If the wave phase is randomized after the coherent timescale τc,
then the effect of bounce resonance is randomized. As a result it becomes a random
walk motion with each step per τc with standard deviation proportional to τ2c . If the
timescale of interest is tcτc, then the process can be described as diffusive with
averaged diffusion coefficients proportional to τc. That is, the longer the coherence
timescale is for the bounce resonance, the stronger is the diffusion coefficient.

Now consider electrons that are in Landau resonance but not in bounce resonance
(Fig. 4.2A, D, and E) for the case of τccτb. Electrons experience a net change in
momentum via Landau resonance during a bounce. Because the electrons are out of
bounce resonance (ω 6¼ Ωb), one would expect that they experience different
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momentum changes for each bounce, and then return to nearly initial values after a
time period of B 2π=ðΩb 2ωÞ� 	

(as seen at tB3.5 seconds in Fig. 4.2E). Although the
substantial oscillation in αeq and E is induced by the Landau resonance, the change
essentially vanishes at tB3.5 seconds after several bounce motions. Therefore, one
would expect vanishing net effect for electrons not in bounce resonance when
τccτb.

4.4 Equatorially mirroring electrons

Equatorially and nearly equatorially mirroring electrons are generally immune to
gyroresonance and Landau resonances that require a finite value of parallel velocity.
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Those electrons also do not pass out of the wave-field region to experience
transit-time scattering. Note that the mirror latitude of 3 degrees corresponds to
αeq5 83.6 degrees. For these, vz,0 is small and the adiabatic variation of vz,0 cannot be
ignored. As noted before, those electrons, much like staying on the bottom of the
potential well, can exhibit bounce motion if perturbed by even infinitesimal electro-
magnetic fluctuations. One way to remove the electrons from the equatorial plane is
through bounce resonance. Fig. 4.4 shows the responses of equatorially mirroring
electrons (with initial conditions marked by the diamond in Fig. 4.1B) to the
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Figure 4.4 Illustration of equatorially mirroring electrons experiencing bounce resonance due to a
monochromatic magnetosonic wave. Shown are electrons’ equatorial pitch angles (A), kinetic
energy (B), and magnetic latitudes as a function of time (C). Different colors represent different
choices of random initial wave phases, φ0.
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monochromatic wave described above. The dependence of electron responses to the
initial phases φ0 vanishes and the advective changes in αeq (or E) dominate the
diffusive changes. Those initially equatorially mirroring electrons experience a negative
drift in αeq and a positive drift E during the bounce resonance. Correspondingly they
are removed from the equatorial plane with increasing mirror latitude (Fig. 4.4C). As
shown by Chen et al. (2015), the response is sensitive to the ratio of wave frequency
to electron bounce frequency. Fig. 4.5 demonstrates the bounce resonance that occurs
when ωBnΩb, where n is an integer. No significant bounce resonance for n$ 4 takes
place for the choice of wave setup. For such high harmonic bounce resonance to take
place, higher critical values of wave amplitude and wave number are required.

Eqs. (4.1�4.4) in Section 4.2 contain various physical components: relativistic
motion, adiabatic effect due to the background magnetic field, the finite Larmor radius
effects, transient scattering associated with latitudinal distribution g(λ), bounce
resonance, and Landau resonance (the ω2 kzvz term). To gain more physical insight,
a simplified nonlinear oscillation model in z for initially equatorially mirroring elec-
trons is proposed by Chen et al. (2015), where changes in μ and in γ are ignored.
Doing so allows the governing equations for the interaction between equatorially
mirroring electrons and a monochromatic magnetosonic wave to be expressed as a
nonlinear oscillation model, written as a second-order differential equation in a nondi-
mensional form as:

d2 ~z=d ~t 21 ~z1 39
18~z

35 2 ~A sin ~ω~t2 ~kz ~z1φ0

� �
gðλÞ ð4:6Þ

~zj~t505 d ~z=d~tj~t505 0 ð4:7Þ
where nondimensional quantities ~z5 z= LREð Þ, ~t5Ωbt, ~kz 5 kzLRE, ~ω5ω=Ωb, and

A
B

5
B
B
zkzLRE

9B0

2J1ðβÞ
β

1
E
B
zJ0ðβÞeγLRE

9μB0
: ð4:8Þ

Ωb is the bounce frequency for electrons at αeq5 90 degrees. The normalized
wave amplitude ~A contains the contribution from Bw

z and Ew
z . The ~A is equivalent

to Eq. (4.11) of Roberts and Schulz (1968) in the limit of β5 0 ( J0(β)5 1 and
2J1ðβÞ=β5 1) when the finite Larmor radius effect disappears. The ~Bz term, repre-
senting wave oscillatory magnetic mirror force, is generally much greater than the
~Ez term corresponding to the wave parallel electric force. The linear term and the
nonlinear cubic term on the left-hand side of Eq. 4.6 arise from adiabatic changes,
the first two terms on the left-hand side are responsible for harmonic bounce oscil-
lations, and the nonlinear sine term on the right-hand side is driven by the wave
with initial wave phase at the equator φ0 and normalized wave amplitude at the
equator.
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Figure 4.5 Local pitch angle as a function of time, normalized by bounce period τb, for electrons
launched at the equator at L5 6.6 with an initial pitch angle of 90 degrees and energy of 300 keV,
driven by a monotonic magnetosonic wave with varying wave frequency: (A) 1.0 fb, (B) 1.5 fb, (C)
2.0 fb, (D) 2.5 fb, (E) 3.0 fb, (F) 3.5 fb, and(G) 4.0 fb. Adapted from Fig. 4.2 of Chen, L., Maldonado, A.,
Bortnik, J., Thorne, R.M., Li, J., Dai, L., et al., 2015. Nonlinear bounce resonances between magnetosonic
waves and equatorially mirroring electrons. J. Geophys. Res.
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For ~kz ~z


 

, , 1, Eq. (4.6) can be linearized as

d2 ~z=d ~t21 ~z 12 ~A ~kz cos ~ω~t1φ0

� �� �
5 2 ~A sin ~ω~t1φ0

� �
: ð4:9Þ

This linear equation is a driven Mathieu equation, permitting unstable solutions
(i.e., bounce resonance solution) when ~ω is 2/q (where q is an integer). When bounce
resonance occurs, the ~z amplitude increases and then nonlinear terms cannot be
ignored and, therefore, this linear equation is not applicable.

For such coherent bounce interaction, equatorially mirroring electrons can
experience a net drift toward smaller equatorial pitch angles, leading to a reduction of
phase space density at αeq5 90 degrees. Maldonado et al. (2016) report a modulation
of electron butterfly distribution (with a minimum of phase space density at
αeq5 90 degrees) by varying the magnetosonic wave amplitude of a discrete spectrum.
When the wave amplitude rises rapidly, an electron butterfly distribution forms. When
the wave amplitude decays, the electron butterfly distribution vanishes. Such correla-
tions demonstrate the response of electrons to the discrete magnetosonic spectrum.
The direct test-particle simulation in the modeled single discrete frequency with a
small frequency spread not only reproduces a rapid formation of butterfly distribution
over the observed time scale of 10 seconds but also accounts for the energy range of
the butterfly pitch angle distribution.

4.5 Bounce resonance diffusion theory

The response of electrons due to bounce resonance can be described through quasi-
linear diffusion with the assumption of weak turbulence with a small amplitude, ran-
dom phase, and broadband spectrum. One can model the electron responses due to
the weak turbulence by first solving the system of ordinary differential equations
(Eqs. 4.1�4.4) with multiple waves. Unlike the coherent interactions discussed in
Section 4.3, which involves single monochromatic waves, interactions with weak
turbulence are realized by implementing multiple waves with a set of randomly
selected initial wave phases and for electrons that were initially distributed at different
bounce phases and then performing an ensemble average of the electron responses
over the wave phases and bounce phases. Li et al. (2015) demonstrated that for broad-
band magnetosonic waves, the electron response can be treated as a diffusive process.
Fig. 4.6A shows examples of electron trajectories with the same initial energy and
equatorial pitch angle for different sets of initial wave phases. The equatorial pitch
angle experiences random changes whenever there is bounce resonance with a
frequency component of the magnetosonic wave broadband spectrum. The deviation
of electron equatorial pitch angles from simulated responses over an ensemble of initial
wave phases increases linearly over time (Fig. 4.6B), corresponding to a diffusion
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process in equatorial pitch angle for the electron population. The slope of the devia-
tion with respect to time, representing diffusion coefficient, can be obtained from
numerical test-particle simulation.

Theoretical diffusion coefficients have been derived under different assumptions.
Roberts (1968) and Schulz and Lanzerotti (1974) assume a guiding-center approxima-
tion for electron motion (i.e., for small β and conservation of magnetic moment) and
a flat latitudinal distribution of magnetohydrodynamic wave power distribution. The
diffusion coefficient formula is applied to magnetosonic waves (Shprits, 2016) follow-
ing the same method. Li et al. (2015) extended the formula to a wave power distribu-
tion that exists and is flat only over a specified magnetic latitude range, taking into
account the equatorial confinement of magnetosonic wave power. Maldonado and
Chen (2018) further extend the bounce resonance diffusion formula to a more realistic
magnetosonic wave model, with the finite Larmor radius effect, a more realistic
Gaussian latitudinal distribution instead of the square distribution used in Li et al.
(2015), and potential violation of magnetic moment μ are included. The finite Larmor
radius effect takes place when the wavelength of those magnetosonic waves is
comparable to, and shorter than, the gyroradius of energetic electrons (i.e., the ratio of
electron gyroradius to perpendicular wavelength, ρgk\.B1). This is especially true
for the interaction between nearly perpendicularly propagating magnetosonic waves
and energetic radiation belt electrons. For ρgk\.B1, the first adiabatic invariant can
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Figure 4.6 (A) Changes in αeq of five randomly selected electrons with initial αeq5 60 degrees,
represented by different colors. (B) The evolution of corresponding , (Δαeq)

2. with time. The
blue line denotes the corresponding linear fitting. Adapted from Fig. 4.1 of Li, X., Tao, X., Lu, Q., Dai,
L., 2015. Bounce resonance diffusion coefficients for spatially confined waves. Geophys. Res. Lett. 42
(22), 9591�9599, doi:10.1002/2015GL066324.
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be violated, because electrons experience significant spatial variation of wave fields
over one gyration. One should use the set of Eqs. 4.1�4.4 for the electron responses,
instead of a simplified guiding center approximation. Furthermore, the observed
latitudinal wave power distribution shows a narrow peak near the equator instead of
being flat (Němec et al., 2005). These factors are valuable for quantifying the effects of
magnetosonic waves on electron scattering. Therefore, we review a general bounce
resonant diffusion theory with the above three factors included; a detailed derivation
can be found in Li et al. (2015) and Maldonado and Chen (2018).

Three assumptions are made to obtain the diffusion coefficients. (1) Assume unper-
turbed adiabatic motion, that is, z5 zm sin(Ωbt1 θ0) and thus vz5 zmΩb cos(Ωbt1 θ0),
where θ0 denotes the initial bounce phase of the electron motion. This assumption is
different from the assumption made in Bortnik and Thorne (2010) for evaluating
transit-time scattering, who assume no adiabatic variation when passing through the
wave field. Since the waves are confined near the equator, we assume that v\ and p\
of the wave terms in Eqs. (4.1) and (4.2) remain unchanged as the equatorial values of
the zero-order adiabatic motion. (2) Assume linear perturbation is much less than the
zero-order motion, that is, wave field is so weak that no significant change in αeq and
E occurs after a bounce cycle. This assumption may not be valid for equatorially
mirroring electrons, whose zero-order adiabatic motion is not well defined. (3)
Consider multiple wave components with a Gaussian latitudinal distribution of wave
power and adopt Eqs. (4.1) and (4.2) with finite Larmor radius effects included.

With those assumptions, one can integrate Eqs. (4.1) and (4.2) along the unper-
turbed bounce motion, to obtain αeq and E due to multiple magnetosonic waves over
time τ and obtain the change of αeq and E as a function of time τ,

ΔE5 τ
X

integer xj . 0

exp iφ0
j0

� �
~Bz;jXE 1 c:c: ð4:10Þ

and

Δαeq 5 τ
X

integer xj . 0

exp iφ0
j0

� �
~Bz;jXα 1 c:c: ð4:11Þ

where φ0
j05φj;01 xjθ0, xj5ωj/Ωb, Ωb is electron bounce frequency, and the two

complex numbers are given by

XE 5
X
k2

Ik2e2c0 1
4

X
l1 5 xj 6 2k2

2 iq
~Ey;j

~Bz;j
υ\0 J1 Jl1 1

1
8

X
l1 5 xj 6 2k2 6 1

zmΩbq
~Ez;j

~Bz;j
J0 Jl1

2
4

3
5

and
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Xα 5
X
k2

Ik2e
2c0 1

4

X
l1 5 xj 6 2k2

iq
~Ey;j

~Bz;j
J1 Jl1

2 pz0
p20

2
4 ð4:12Þ

1
1
8

X
l1 5 xj 6 2k2 6 1

2
zmΩbqυ\0

υ2pz0

~Ez;j

~Bz;j
J0Jl1 1

zmΩbiq
pz0

~Bx;j

~Bz;j
J1 Jl1 � ð4:13Þ

The argument of J0 and J1, k\p\;0=qB0, measures the ratio of gyromotion
radius and perpendicular wavelength. Similarly, the argument for Jl1 , kz,jzm,
measures the ratio of bounce amplitude and parallel wavelength. The argument
for Ik2 is c0 5λ2

m=2λ
2
w, measuring the ratio of bounce amplitude and the field-

aligned width of equatorially confined waves. λm is the electron mirror magnetic
latitude.

A few points are noted from Eqs. (4.10) and (4.11). First, the wave amplitudes
~B and ~E represent their equatorial values and can be normalized by any compo-
nent of the wave electromagnetic fields, ~Bz, in these two equations. The ratios
among the wave field components are obtained by local dispersion relation at the
equator. Second, ΔE and Δαeq are proportional to τ when electrons are subject
to bounce resonance, which requires integer values of xj (5ωj/Ωb). In other
words, only waves in bounce resonance lead to ΔE and Δαeq, while other waves
produce no net change. (3) ΔE and Δαeq are oscillatory because of the term
expðiφ0

j0Þ, where φ0
j0 is a linear combination of initial wave phase (φj0) and initial

bounce phase (θ0). The ensemble average of , (Δαeq) . over the two phases
vanishes while the ensemble average of , (Δαeq)

2 . is proportional to the wave
power.

Diffusion coefficients due to bounce resonance with broadband magnetosonic
waves can be obtained through

Dαα 5
Δαeq
� �

Δαeq
� �

2τ

� �
5 2

X
integer xj . 0

PBz f 5 xjfb
� �

ℜ XαX
�
α

� � ð4:14Þ

DαE 5
Δαeq
� �

ΔEð Þ
2τ

� �
5 2

X
integer xj . 0

PBz f 5 xjfb
� �

ℜ XαX
�
E

� � ð4:15Þ

DEE 5
ΔEð Þ ΔEð Þ

2τ

� �
5 2

X
integer xj . 0

PBz f 5 xjfb
� �

ℜ XEX
�
E

� � ð4:16Þ
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where the brackets represent the ensemble average, PBz represents the power spectrum
density of the wave magnetic parallel component, in units of T2/Hz, as a function of
wave frequency f, the subscript � denotes complex conjugate, and ℜ represents real part.

Fig. 4.7 shows a comparison among the three formulas as a function of electron
pitch angles developed by Roberts and Schulz (1968), Li et al. (2015), and Maldonado
and Chen (2018) for electrons at L5 4.5 with kinetic energy E5 1 MeV. The three
curves in Fig. 4.7 have the same plasma-frequency-to-electron-gyrofrequency ratio
fpe/fce5 3, and the same magnetosonic wave spectral parameters. The magnetosonic
wave parameters are adopted from Horne et al. (2007). The waves assume a root-
mean-squared amplitude 218 pT, a single wave normal angle of 89 degrees, and a
Gaussian frequency spectrum of B(ω) ~ exp(2 (ω2ωm)

2/δω2), where
ωm5 3.493 1023Ωe, and δω5 8.863 1024Ωe. The frequency range of the spectral
density distribution spans from the lower cutoff ωLC5 23 1023Ωe to the upper cutoff
ωUC5 53 1023Ωe. The RS1968 and Li2015 curves adopt guiding center approxima-
tion (with conservation of magnetic moment and zero Larmor radius) but assume
different latitudinal distributions of wave power, being flat throughout the field line
for the former while being flat over only a limited λ# 3 degrees for the latter. One
can see that compared with RS1968, the Li2015 curve expects less scattering over low
αeq, 67 degrees owing to the lack of wave power at high latitude (λ. 3 degrees) and
higher scattering for 67 degrees,αeq, 87 degrees because of additional scattering
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Figure 4.7 Comparison of (A) pitch angle and (B) energy diffusion coefficients among Roberts and
Schulz (1968) (green dashed line), Li et al. (2015) (black solid line), and Maldonado and Chen (2018)
(blue solid line). Also shown are the diffusion coefficients derived from the numerical test-particle
simulation (magenta circles). Adapted From Fig. 4.1 of Maldonado, A.A., Chen, L., 2018. On the
diffusion rates of electron bounce resonant scattering by magnetosonic waves. Geophys. Res. Lett., 45,
3328�3337. doi:10.1002/2017GL076560.
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when those electrons transit through the wave edge at λ5 3 degrees. The MC2018
formula adopts test-particle equations in Eqs. (4.1) and (4.2), which considers finite
Larmor radius and does not assume magnetic moment conservation, and a more realis-
tic Gaussian latitudinal distribution of wave power centered at the equator and latitu-
dinal width of 3 degrees. When comparing MC2018 with Li2015, one can notice two
discrepancies. First, MC2018 produces less scattering at 45 degrees,αeq, 85 degrees
due to the finite Larmor radius effect, which tends to be more significant for large αeq

and to weaken the wave force. Second, MC2018 enhances scattering at low
αeq, 45 degrees. The enhancement is attributed to the additional scattering caused by
the change in magnetic moment μ when electrons experience rapid spatial variation of
wave fields over gyration.

To verify the analytic diffusion coefficient, the test particle simulation using
Eqs. (4.1) and (4.2) is performed. For a given initial energy and pitch angle, the simu-
lation is performed for 100 randomly selected initial bounce phases and 101 sets of
randomly assigned initial wave phases. Ensemble average of this 1003 101 set of
simulation results is performed to obtain the numerical diffusion coefficients (shown
by magenta circles in Fig. 4.7). One can see that diffusion coefficients derived from
numerical test-particle simulation are in close agreement with the theoretical MC2018
curve. One discrepancy between the numerical coefficients and the analytic ones
occurs for αeq near 90 degrees, which may be due to the breakdown of the second
assumption and to the additional advective responses (see Section 4.4). Dependences
of the diffusion coefficients on various plasma and waves parameters are explored
systematically in Maldonado and Chen (2018).

Tao and Li (2016) further consider wave normal angle distribution to examine the
bounce resonant scattering and find that the inclusion of wave normal angle distribu-
tion favors pitch angle scattering for equatorially and nearly equatorially mirroring
electrons, which is later validated using guiding-center test-particle simulations (Li and
Tao, 2017). Bounce resonance diffusion theory has also been applied to other types of
plasma waves, for example, EMIC waves below ion gyrofrequency (Cao et al., 2017a)
and the low-frequency portion of plasmaspheric hiss waves (Cao et al., 2017b).

4.6 Summary

Bounce resonance interaction with magnetosonic waves has been developed both in
terms of coherent interaction and quasi-linear scattering. The bounce resonance diffu-
sion or advection by magnetosonic waves could be an important mechanism to
account for dynamics of equatorially and nearly equatorially mirroring electrons.
Those newly developed coefficients are expected to be incorporated into existing
Fokker�Planck framework for radiation belt modeling.
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