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Abstract Localized injections of hot anisotropic plasma sheet particles into the inner magnetosphere
can significantly deform the quiet time dipole-like magnetic field and thus disturb electron and ion's drift
paths and scattering rates. Although many details of magnetic field deformation can be inferred from
empirical models, roles of different characteristics of injected plasma on the structure of such deformation
require further investigation. In this study, we use the 2-D axisymmetric equilibrium model to calculate
self-consistent magnetic field in force balance with a Gaussian thermal pressure distribution characterized
by four input parameters: the ratio between plasma pressure and magnetic pressure (𝛽) at the pressure
peak 𝛽0, the radial location of the pressure peak L0, the width of the half peak pressure 𝜎0, and the
equatorial pressure anisotropy Ae. Using the modeled magnetic field, we find that the magnetic field
perturbation increases with increasing 𝛽0 and decreasing 𝜎0 while the magnetic curvature perturbation
increases with increasing Ae, 𝛽0, and 𝜎0 and decreasing L0. For energetic particles the change of magnetic
gradient drift motion is much greater than that of curvature drift motion. The magnetic dip structure
formation requires a critical 𝛽 value that increases with increasing 𝜎0 and decreasing L0. Despite the
unavailability of observations in the existing literatures to check the condition of magnetic dip formation,
such condition will be checked against observations as a future study. Finally, we also use 3-D ring
current-atmosphere interactions model with self-consistent magnetic field model to illustrate the effect of
azimuthal pressure distribution, which is relevant to asymmetric ring current.

1. Introduction
The partial ring current generated by the asymmetric azimuthal drift of energetic ions and electrons exhibits
diamagnetic effect on the Earth's magnetic field due to the force balance between thermal pressure of the
hot particles and the background magnetic pressure, especially in the magnetic storm time (Fukushima &
Kamide, 1973) when the ring current intensity increases and the plasma 𝛽 value can reach about ∼O(1).
Ukhorskiy et al. (2006) has reported the magnetic dip structure, which is caused by the diamagnetic effect
of the storm time partial ring current, as a local magnetic minimum followed by a magnetic island (local
maximum) at larger L shell region from the TS05 model (Tsyganenko & Sitnov, 2005). This magnetic dip
structure locates from midnight to post noon region in a few magnetic local time (MLT) hours and near
5–6 RE with a width of ∼2 RE in the radial direction. The depth of the dip (absolute value of difference
between the local minimum magnetic field and the quite time magnetic field) can reach about 50 nT.

The magnetic dip structure has been recently observed by the inner magnetosphere spacecraft. Xiong et al.
(2017) provided a single satellite observation of magnetic dip generated by the injection of energetic ions
during substorm by Van Allen Probes, with increased thermal pressure and decreased magnetic field. A
butterfly pitch angle distribution of energetic electrons was found and explained as the result of inward
transport of the relativistic electrons, which was caused by the magnetic gradient drift due to the magnetic
dip. He et al. (2017) reported another magnetic dip event during the substorm using multiple-satellite obser-
vations. In this event, the magnetic dip together with the energetic ions moves at a speed comparable to
the ion's drift velocity, which indicates that the magnetic dip structure is induced by the ring current ions.
Excitation of electromagnetic ion cyclotron (EMIC) waves were also observed accompany with magnetic dip
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structures (He et al., 2017; Remya et al., 2018). According to linear theory analysis, the magnetic dip accom-
panied with high ion 𝛽 and ion temperature anisotropy can provide a favorable condition for EMIC wave
generation. Moreover, the center region of magnetic dip is a kind of “minimum-B-pockets” in the equato-
rial plane, which can generate whistler mode waves (Santolík, 2008; Tsurutani et al., 2009; Tenerani et al.,
2013). Zhima et al. (2015) also observed whistler mode wave generating at the edges of magnetic dip, where
positive temperature anisotropy and pancake distribution existed to provide free energy for growth of the
whistler mode waves.

The magnetic field topology in the inner magnetosphere affects the drift motion of the energetic particles
significantly because of dominant magnetic gradient and curvature drifts. The magnetic dip structure, com-
paring with empirical or analytic dipole magnetic fields, exhibits two significantly different features. The
first one is the presence of an azimuthal magnetic field gradient, which causes radial drift. When eastward
drifting energetic electrons encounters the magnetic dip structure, the azimuthal gradient of the magnetic
dip causes the electrons to drift inward and results in the butterfly distribution as discussed in Xiong et al.
(2017). Another difference is the radial gradient of magnetic field becomes positive (always negative for
dipole field) at the radial outer edge of the magnetic dip. This inverse gradient may cause the inverse gra-
dient drift motion. Although ring current protons and radiation belt electrons do not interact directly, the
magnetic dip driven by the ring current provides an indirect way to affect the variability of radiation belt
electron populations. Learning about the formation condition of magnetic dip structure and its influence
to the energetic particles' drift motion can enhance our understanding of dynamic processes in the inner
magnetosphere.

Equilibrium magnetosphere models are widely used to calculated three-dimensional (3-D) self-consistent
magnetic field (SCB) that holds force balance with plasma pressure in the inner magnetosphere (Jordanova
et al., 2010; Yu et al., 2012; Zaharia et al., 2006) and in the plasma sheet (Yue et al., 2013, 2014, 2015). Both
spacecraft observations and inner magnetosphere models indicate that, as L shell increases, the thermal
pressure of ring current increases to a peak value and then decreases (Chen et al., 2010; De Michelis et al.,
1999; Godinez et al., 2016; Imajo et al., 2018). Thus, we can use a Gaussian distribution to approximate the
radial pressure distribution. Our previous work (Xia et al., 2017) used a 2-D axisymmetric equilibrium model
to calculate SCB under a radial Gaussian thermal pressure and investigated instability condition for field line
resonance, which favored more negative radial gradient of plasma pressure. It also showed that sufficiently
large plasma 𝛽 (ratio between plasma pressure and magnetic pressure) could result in the change of magnetic
field topology and even formation of the local magnetic minimum (magnetic dip). In this study, we system-
atically study the effects of the Gaussian thermal pressure distribution on the magnetic field configuration
(and magnetic dip formation) and the resulting changes in particle magnetic gradient and curvature drifts.
There are four parameters determining the pressure distribution: the location of the pressure peak L0, the 𝛽
value at the pressure peak 𝛽0, the width of half pressure peak 𝜎0, and the equatorial pressure anisotropy Ae.
In addition, we also use the 3-D ring current-atmosphere interactions model with SCB (RAM-SCB) model
(Jordanova et al., 2010) to study the influence of the azimuthal pressure distribution, which is characterized
by the four parameters above and another parameter, the MLT width of half pressure peak in the azimuthal
direction 𝜎MLT. The purpose of this study is to construct a comprehensive understanding of the relationship
between the configuration of Earth's magnetic field and the ring current plasma pressure, and to estimate
the relative perturbation of magnetic drift motions under this pressure and the critical condition to form the
magnetic dip structure.

2. Axisymmetric Equilibrium Model
2.1. Equilibrium Magnetic Field Model Description
The axisymmetric equilibrium model used in this study is the same as that in our previous work (Xia et al.,
2017), whose basic theory had been discussed in the work of Cheng (1992) and Zaharia et al. (2004). The
basic magnetohydrodynamics equations to be solved for the pressure equilibrium are

J × B = ∇ · P (1)

∇ × B = 𝜇0J (2)

∇ · B = 0, (3)
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where J is the current, B is the magnetic field,𝜇0 is the vacuum permeability, and P is the anisotropic thermal
pressure tensor that can be represented as P⟂I − (P⟂ − P||)b̂b̂, where I is the unit tensor, b̂ = B∕B is the unit
vector of the magnetic field, and P⟂ and P|| are the perpendicular and parallel pressure components. The
magnetic field B is divergence-free according to equation (3) and can be expressed in terms of two Euler
potential 𝜓 and 𝛼 as B = ∇𝜓 × ∇𝛼. Thus, B is perpendicular to both ∇𝜓 and ∇𝛼 and the intersections of
constant𝜓 and constant 𝛼 surfaces correspond to magnetic field lines. In our model, we choose the magnetic
flux as 𝜓 and the azimuthal angle as 𝛼 for the axisymmetric fields.

The computation coordinates are curvilinear flux coordinates corresponding to 𝜓 (radial direction), 𝛼
(azimuthal direction), and the length along field line (field line direction), which had been introduced in Xia
et al. (2017). Eventually, equation (1) can be reduced to the form to be solved for 𝜓 in the meridian (X − Z)
plane:

𝜇0J · ∇𝛼 = ∇ · [(∇𝛼 · ∇𝜓)∇𝛼 − (∇𝛼)2∇𝜓] = −B × ∇𝛼
𝜎PB2 ·

[
𝜇0∇P⟂ + (1 − 𝜎P)∇

(
B2

2

)]
, (4)

where 𝜎P = 1 + 𝜇0(P⟂ − P||)∕B2.

The pressure along the field line at an arbitrary location, including the perpendicular component P⟂ and
parallel component P||, can be obtained from the equatorial value of the anisotropic pressure through the
assumption of Maxwellian plasma distribution (Tsyganenko, 2000; Xiao & Feng, 2006):

P⟂ =
P⟂e

[1 + Ae(1 − S)]2 (5)

P|| =
P||e

1 + Ae(1 − S)
(6)

A = 1
1 + Ae(1 − S)

− 1, (7)

where S = Be∕B is the ratio between the magnitudes of the equatorial magnetic field Be and the magnetic
field at the location of interest B, A = P⟂∕P|| − 1 is the anisotropy, the subscript “e” denotes the value in
the equatorial plane. A Gaussian distribution Pe(x) = P0 exp[−(x − L0)2∕2𝜎2

0 ] is used to approximate the
thermal pressure of the symmetric ring current, where Pe = (2P⟂e + P||e)∕3 is the average pressure in the
equatorial plane, P0, L0, and 𝜎0 are the peak pressure, the location of the pressure peak, and the width of
the half pressure peak respectively. The value of P0 is set to be 𝛽0Pmag, where Pmag is the magnetic pressure
at L0, and 𝛽0 is the constant 𝛽 at L0. Thus, the equatorial distribution of plasma pressure in our model can
be determined by these four parameters: L0, 𝜎0, 𝛽0, and Ae. The case of 𝛽0 = 0 represents the cold plasma
case (the dipole field) and the Ae = 0 case represents the isotropic pressure case.

After iteratively solving equation (4) for the distribution of𝜓 and the corresponding B in the meridian plane,
we can finally reach a equilibrium state, which satisfies the convergence condition Δ = 𝛴i,j|[𝜓 i,j(n)−𝜓 i,j(n−
1)]∕𝜓 i,j(n−1)| < 2×10−5, where i and j are the grid indices for the radial and field line directions respectively,
n is the iteration number of the calculation, and Δ measures the relative difference between the current step
n and the previous step (n − 1). The domain of our equilibrium model is set to be [3RE, 9RE], which is large
enough to make sure the plasma pressures at the boundaries are nearly zero. The numbers of grids are 151
in the radial direction and 181 in the field line direction to ensure sufficient accuracy. The magnetic field for
the initial step of the iterative method and the boundary magnetic field at the inner, outer, north, and south
boundaries are set to be the Earth's dipole field. As the magnetic field is updated at each iteration step, the
value of P0 is also adjusted so that the value of 𝛽0 can keep constant.

2.2. Example of the SCB Model
Figure 1 shows an example of model result for the case with 𝛽0 = 0.8, 𝜎0 = 0.4 RE, L0 = 5, and Ae = 0.
Figure 1a shows the average pressure distribution in the meridional plane, and Figure 1b shows the corre-
sponding topology of equilibrium magnetic field lines (the red solid lines), with the dipole field lines (the
black dashed lines) also shown as a comparison. As the force equilibrium develops, the magnetic field lines
expand from the peak pressure location (L0 = 5) inward and outward due to the thermal pressure, leading to
weakened magnetic field strength there. In Figure 1c, the variations of 𝛽 (the black line) and of the normal-
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Figure 1. Model result for case with 𝛽0 = 0.8, 𝜎0 = 0.4 RE, L0 = 5 and Ae = 0. (a) The pressure distribution in the
meridional plane. (b) The topologies of the modeled magnetic field lines (red solid lines) and dipole field lines
(black dashed lines). (c) The variation of 𝛽 versus x in the equator (black line) and the variation of normalized pressure
versus x (blue line). (d) The variation of modeled magnetic field strength versus x in the equator (red solid line) and the
variation of dipole field strength versus x (black dashed line).

ized pressure (the blue line, normalized by the pressure peak) at the equator are shown as functions of x. The
peak of 𝛽 is slightly outside the peak of the normalized pressure at L0, because the magnetic field strength
decreases as x increases. In Figure 1d, the variations of modeled (the red solid line) and dipole (the black
dashed line) magnetic field strength at the equator are compared. Unlike monotonically decreasing dipole
magnetic field, the modeled magnetic field exhibits a local minimum at about x = 5.3RE (labeled by the
vertical dash-dotted lines in Figures 1c and 1d), outward of the peaks of plasma pressure and 𝛽 (Figure 1c).
The absolute value of difference between the modeled and dipole magnetic field strength |ΔB| at the local
minimum is about 50 nT, comparable to the Tsyganeko empirical model results noted by Ukhorskiy et al.
(2006).

3. Results of the SCB Model
3.1. Parametric Dependence of Magnetic Configuration
Here we study the effects of 𝛽0, L0, 𝜎0, and Ae on the magnetic field configuration, by changing one of the
four parameters at a time while keeping the rest three fixed as the nominal case shown in Figure 2. Figures 2a
and 2b show the variations of modeled equatorial magnetic field strength (B) versus x for cases with varying
𝜎0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE (Figure 2a) and for cases with varying L0 = 4.0, 4.5, 5.0, 5.5, 6.0 (Figure 2b).
Figures 2c and 2d show the corresponding normalized differences between modeled and dipole magnetic
fields (ΔB∕Bdipole, where ΔB = B − Bdipole and the subscript dipole represents the dipole field). One can see
that magnetic dip structure occurs for small values of 𝜎0 (0.2–0.4 RE) from Figure 2a, and for almost all cases
with different L0 values from Figure 2b. The detailed effects of 𝜎0 and L0 on the magnetic dip formation
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Figure 2. The variations of modeled magnetic field strength versus x in the equator for cases with (a) 𝛽0 = 0.8,
Ae = 0, L0 = 5, 𝜎0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE and (b) 𝛽0 = 0.8, Ae = 0, 𝜎0 = 0.2 RE , L0 = 4.0, 4.5, 5.0, 5.5, 6.0. (c and d)
The variations of the normalized difference between modeled and dipole magnetic fields ΔB∕Bdipole versus x for the
same cases in (a) and (b), respectively. (e and f) The variations of the normalized difference between the radius of
curvature of modeled and dipole magnetic field ΔRc∕Rc,dip versus x for the same cases in (a) and (b) respectively.

will be discussed in section 3.3 later. Figure 2c shows that for the same L0, a smaller value of 𝜎0 leads to
a narrower magnetic dip but with similar perturbation of ΔB∕Bdipole at the dip location. The effect of L0
on ΔB∕Bdipole is less significant (Figure 2d), and the minimum value of ΔB∕Bdipole remains nearly constant
except different dip locations. The dominant factor determining the minimum value of ΔB∕Bdipole should
be 𝛽 as noted in Xia et al. (2017).

Besides the magnetic field strength, the curvature of magnetic field line is also changed due to the presence
of thermal pressure. We plot normalized difference of the radius of curvatureΔRc∕Rc,dip = (Rc−Rc,dip)∕Rc,dip,
in Figures 2e and 2f. The value of Rc,dip equals to L∕3 for dipole field, where L is the L shell value. The value
of Rc can be calculated from the model results by Rc = 1∕|b · ∇b|, where b = B∕B is the magnetic field unit
vector. The results show that Rc decreases by up to about 20% at the region outside L0, and a larger value of
𝜎0 and a smaller value of L0 favor enlarging the perturbation of the curvature.

After learning the dependence on 𝜎0 and L0, we now focus on the role of the equatorial anisotropy Ae.
The variations of B, ΔB∕Bdipole, and ΔRc∕Rc,dip for varying Ae = −0.4, 0.0, 1.0, 2.0, 3.0, 4.0 are shown in
Figures 3a–3c, respectively. As Ae increases, the normalized magnetic perturbation (ΔB∕Bdipole) varies only
slightly. This can be explained by that the magnetic perturbation is mainly controlled by the gradient of the
perpendicular thermal pressure (P⟂) instead of the anisotropy (Xia et al., 2017). The effect of Ae on the field
line curvature, however, is much more significant. For a large value of Ae = 4.0, ΔRc∕Rc,dip can even change
its sign and reach a positive value up to about 0.3 inside the pressure peak. Outside the pressure peak, the
relative change in curvature radius becomes more negative as Ae increases.
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Figure 3. The variations of (a) B, (b) ΔB∕Bdipole, and (c) ΔRc∕Rc,dip versus x for cases with L0 = 5, 𝛽0 = 0.8,
𝜎0 = 0.4RE, and Ae = −0.4, 0.0, 1.0, 2.0, 3.0, 4.0.

For the effect of 𝛽 on the change of magnetic field strength and magnetic field line curvature, we make
model runs for 3,000 combinations of four parameters, 5 values of L0 ranging from 4 to 6, 24 values of 𝛽0
ranging from 0.01 to 1.0, 5 values of 𝜎0 ranging from 0.2 to 0.6 RE, and 5 values of Ae ranging from −0.4 to
0.4. For each run, we make scatter plots of minimum ΔB∕Bdipole versus peak 𝛽 value 𝛽peak and minimum
ΔRc∕Rc,dip versus 𝛽peak, shown by Figures 4a and 4b, respectively. The figures show that the magnitudes of
both minimum ΔB∕Bdipole and minimum ΔRc∕Rc,dip increase as 𝛽peak increases. For ΔB∕Bdipole, we make a
polynomial fit for all the points, which is (ΔB∕Bdipole)min = −0.339𝛽peak + 0.112𝛽2

peak and plotted as the solid
line in Figure 4a. For ΔRc∕Rc,dip, we also obtained a linear fitted line with slope of about −0.214 and plot it
as the solid line in Figure 4b.

3.2. The Effects of Magnetic Perturbation on Gradient and Curvature Drifts
At the presence of spatially varying magnetic field, charged particles experience magnetic gradient and cur-
vature drift across field lines, due to the gradient of magnetic field strength and the curvature of magnetic
field line, respectively. The drift velocities of gradient and curvature drifts for a relativistic particle can be
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Figure 4. Scatter plots of (a) minimum ΔB∕Bdip versus 𝛽peak and (b) minimum ΔRc∕Rc0 versus 𝛽peak. The dots in the
figure represent all the cases with L0 from 4 to 6, 𝛽0 from 0.01 to 1.0, 𝜎0 from 0.2 to 0.6 RE, and Ae from −0.4 to 0.4.

expressed, respectively, as

vg =
𝛾mv2

⟂

2qB
B × ∇B

B2 (8)

and

vc =
𝛾mv2||

qB
Rc × B

R2
c B

, (9)

where 𝛾 = (1 − v2∕c2)−(1/2) is the relativistic factor, v is the particle speed, and v⟂ and v|| are the speed com-
ponents perpendicular and parallel to the background magnetic field. The direction of Rc is opposite to the
direction of b · ∇b. The ring current thermal pressure leads to the change of the magnetic field configura-
tion and thus introduces additional gradient and curvature drift motions. From equations (8) and (9), for the
gradient drift and curvature drift velocities, particle-independent terms that are related to only the magnetic
field configuration are Dg = B × ∇B∕B3 and Dc = Rc × B∕(R2

c B2), respectively. The relative changes of the
two terms at the equator to those for the dipole field are shown by Figures 5a and 5b respectively, for cases
with 𝛽0 = 0.8, Ae = 0, L0 = 5, and varying 𝜎0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE. The largest ΔDc∕Dc,dip can be up to
0.5 for 𝜎0 = 0.2 RE case, while the variation of the gradient drift term is more significant. For the 𝜎0 = 0.2 RE
case as an example, the relative change of the gradient drift term varies from ∼ 2 inside the pressure peak
to ∼ −2 outside the pressure peak. The value less than −1 means the drift direction reverses.

We also evaluate the bounce-averaged magnetic gradient and curvature drift velocity, which depend on par-
ticle's equatorial pitch angle. Figure 5c shows the relative change of the bounce-averaged drift velocity to
the dipole case ΔDb∕Db,dip = (Db − Db,dip)∕Db,dip, where Db is the sum of the bounce-averaged gradient
and curvature drift velocities. The equatorial pitch angle 𝜃E is set to be 45◦. One can see that the change of
bounce-averaged total drift velocity is also significant, up to ∼1 inside the peak and ∼ −1 outside the peak.
The change of the bounce-averaged drift is less than the change of the gradient drift term shown in Figure 5a,
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Figure 5. (a) The variations of normalized difference of Dg ((Dg − Dg,dip)∕Dg,dip) versus x for cases with
𝛽0 = 0.8, Ae = 0, L0 = 5, and 𝜎0 = 0.2, 0.3, 0.4, 0.5, 0.6 RE; (b) the variations of normalized difference of Dc versus
x for the same cases. (c) The variations of normalized difference of bounce-averaged total drift velocity
ΔDb∕Db,dip = (Db − Db,dip)∕Db,dip versus x for the same cases. (d) The variations of bounce-averaged total drift velocity
ΔDb∕Db,dip versus x and equatorial pitch angle 𝜃E for case with 𝛽0 = 0.8, 𝜎0 = 0.4 RE , Ae = 0, L0 = 5.

because the magnetic perturbation induced by the plasma pressure occurs predominately near the equator.
Moreover, we also calculate the relative change of the bounce-averaged drift velocity for equatorial pitch
angles from 5◦ to 90◦ by using the self-consistent magnetic field with 𝜎0 = 0.4 RE, 𝛽0 = 0.8, Ae = 0 and
L0 = 5, which are shown by Figure 5d. The result shows that the change of the bounce-averaged drift is
more significant for higher equatorial pitch angles because of dominant gradient drift over curvature drift
and dominant magnetic perturbation near the equator over higher latitudes.

3.3. The Critical Condition for Magnetic Dip Formation
To examine the magnetic dip formation, we analyze the relationship between the normalized dip depth
(|ΔB∕Bdipole| at the dip), if magnetic dip exists, and 𝛽0 for cases with different L0 and 𝜎0 values. The modeled
results are shown in colored solid lines with dot symbols of Figure 6 for 𝜎0 = 0.2, 0.4, 0.6 RE, respectively.
One can see that when 𝛽0 is small, there is no magnetic dip, represented by zero values of the normalized
dip depth. When 𝛽0 increases to a critical value, the dip structure may form. For cases with same 𝜎0, the
critical value of 𝛽0 decreases and the normalized dip depth increases as L0 increases. Comparing among the
three panels of Figure 6, for the same L0 values, a smaller 𝜎0 results in a smaller critical 𝛽0, and a larger
normalized dip depth. When 𝛽0 is sufficiently large, the normalized dip depth becomes independent of L0.

The dependence of the critical 𝛽0 on 𝜎0 and L0 to form magnetic dips is also shown in Figure 7. As 𝜎0
increases or L0 decreases, the critical 𝛽0 tends to increase. The effect of 𝜎0 on the critical 𝛽0 can be explained
by comparing gradients of the background dipole field Bdipole and the perturbation magnetic field ΔB. If
the gradient of ΔB (positive) balances that of Bdipole (negative), then the gradient of total magnetic field
becomes 0, meaning the formation of magnetic dip. For the same L0, a smaller 𝜎0 results in a larger gradient
of ΔB (Figure 2c), which requires a smaller value of the critical 𝛽0. The effect of L0 on the critical 𝛽0 can
be understood as follows. Because ΔB∕Bdipole is independent of L0 (Figure 2d), and the gradient of Bdipole is
larger for smaller L0, zero gradient of the total magnetic field requires a larger value of critical 𝛽0 for smaller
L0. In summary, the model results indicate that the formation of magnetic dip needs a considerable pressure
gradient, which is controlled by both the pressure peak value (corresponding to 𝛽0) and the spatial scale of
the pressure distribution (corresponding to 𝜎0). For smaller L shell region (closer to the Earth), since the
gradient of background dipole field is larger, a larger thermal pressure gradient (corresponding to larger 𝛽0
and smaller 𝜎0) is needed to produce magnetic field reduction that is large enough to form the magnetic dip.

Because simultaneous changes in magnetic field strength and magnetic field line curvature occur on top of
dipolar fields, the solution to equation (4) of equilibrium magnetic field can only be obtained numerically.
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Figure 6. The relationship between the normalized dip depth (|ΔB∕Bdipole|) and 𝛽0 for cases with different L0 and 𝜎0
values. The x axis is 𝛽0 and the y axis is the normalized dip depth. Panels (a)–(c) stand for 𝜎0 = 0.2, 0.4, 0.6 RE,
respectively. The colored solid lines with circle symbols are model results. The black solid line is the analytical solution
for uniform magnetic field. The colored dashed lines are analytical solution for circle magnetic field. The colored
dash-dotted lines are analytical solution for dipole field with the assumption that the curvature keeps unchanged.

Assumptions can be made, however, to simplify the problem and to obtain approximate analytical solution to
make sense of the behavior of magnetic dip. We consider the following three situations. The first and the sim-
plest approximation to be considered is the presence of the localized plasma pressure in an initially uniform
magnetic field B0. In equilibrium, a magnetic dip forms whenever there is localized pressure distribution,
and the normalized dip depth |ΔB∕B0| increases with 𝛽0 according to |ΔB∕B0| = 1−

√
1∕(1 + 𝛽0) (Appendix

A1), which is overplotted as the black solid line in Figure 6. The critical 𝛽0 to form a dip is essentially zero.

The second approximation is circular and planar magnetic fields, which can be generated by
an infinitely long current wire. When embedded with radially Gaussian pressure distribution
P = P0 exp[−(r − L0)2∕(2𝜎2

0 )], the force balance equation yields an analytical solution (equation (A3) of
Appendix A2). The analytical solution can be used to obtain the normalized dip depth, when the dip exists,
as a function of 𝛽0, L0 and 𝜎0, which is overplotted as the colored dashed lines in Figures 6 and 7. Further
analysis in Appendix A2 demonstrates that the critical 𝛽0 for the dip formation scales as 𝜎0∕L0. Such
analytic results reveal similar behaviors of the modeled results of equation (4), including (1) the critical 𝛽0
increases with increasing 𝜎0 and decreasing L0 (comparing the threshold 𝛽0 values in Figure 7), (2) mag-
netic dip depth increases with decreasing 𝜎0, increasing L0, and increasing 𝛽0 (comparing the |ΔB∕Bdipole|
values in Figure 6), and (3) the magnetic dip tends to be independent of L0 for larger 𝛽0 (dashed lines with
different colors merge together when 𝛽0 is large in Figure 6).
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Figure 7. The critical 𝛽0 to form the magnetic dip for cases with different
L0 and 𝜎0 values. The solid lines with circle symbols are results of our
model. The dashed lines are results of analytic solution for circle magnetic
field and the dash-dotted lines are results of analytic solution for dipole
field with the assumption that the curvature keeps unchanged.

The third approximation is to ignore the change of the curvature of the
dipole field, for which an analytic solution of the magnetic field radial
profile can be obtained as shown in Appendix A3. The result using the
analytic solution (Appendix A3) is overplotted as the colored dash-dotted
lines in Figures 6 and 7. Similar behaviors of the magnetic dip are also
obtained when the curvature change is ignored. The approximation, how-
ever, yields a smaller magnetic dip depth, compared with the solution of
equation (4), which suggests the induced curvature change by the plasma
pressure enhances the dip structure.

3.4. Comparison With 3-D SCB Model
Our 2-D axisymmetric magnetic field results are compared
with 3-D RAM-SCB model (Jordanova et al., 2010) to study the
effect of the azimuthal pressure distribution. We introduce a
Gaussian distribution of the pressure in the azimuthal direc-
tion to represent the asymmetric ring current pressure. The
pressure distribution in the equatorial plane is expressed as
P = 𝛽0PB(L0) exp[−(x − L0)2∕(2𝜎2

0 )] exp[−(MLT − MLT0)2∕(2𝜎2
MLT)],

where 𝜎MLT (in unit of MLT hour) denotes the width of half pressure
peak in the azimuthal direction. The pressure peak is located at L0 in the

meridian plane corresponding to MLT0 (set to 0 without loss of generality) and decays in the azimuthal
direction with 𝜎MLT and in the radial direction with 𝜎0. Figure 8 shows the results of this 3-D model.
Figures 8a and 8b show the distributions of thermal pressure and the resulting ΔB in the equatorial plane
for the case with 𝛽0 = 0.65, L0 = 4, 𝜎0 = 0.4 RE, Ae = 0, and 𝜎MLT = 1.0. One can see that both the
thermal pressure and ΔB magnitude maximize in the MLT0 sector and decrease in the azimuthal direction,
as expected. Figure 8c shows the variations of B versus x in the equator in the MLT0 sector for cases with
varying 𝜎MLT values, including the case of infinite 𝜎MLT denoting the azimuthally symmetric magnetic field.
One can see that the magnetic field topology in the meridional plane at MLT0 is independent of the value
of 𝜎MLT, which is expected because partial derivative of the pressure with respect to MLT is zero there.
However, 𝜎MLT determines the azimuthal pressure distribution and thus the azimuthal magnetic field
variation. Smaller 𝜎MLT would result in larger azimuthal pressure and magnetic field gradient. The radial
drift motion of energetic particles (and therefore the formation of the butterfly distribution of energetic
electrons) is also affected by 𝜎MLT.

4. Conclusions and Discussion
In this study, we use axisymmetric equilibrium model to calculate SCB under a Gaussian thermal pressure
distribution with four parameters: the ratio between plasma pressure and magnetic pressure at the pressure
peak 𝛽0, the radial location of the pressure peak L0, the width of the half peak pressure 𝜎0 and the equatorial
pressure anisotropy Ae. Then we analyze the effects of these parameters on the change of magnetic field
configuration and the change of particle drifts. The main conclusions are summarized below:

• The magnetic field perturbation |ΔB∕Bdipole| increases with increasing 𝛽0 and decreasing 𝜎0 and is weakly
dependent of L0 and Ae. The magnetic curvature perturbation |ΔRc∕Rc,dip| increases with increasing Ae,
increasing 𝛽0, increasing 𝜎0, and decreasing L0.

• The thermal pressure induces a change of gradient and curvature drift velocities. The induced change in
the gradient drift is much greater than that in the curvature drift. The total drift change is more pronounced
for larger equatorial pitch angles.

• The magnetic dip structure forms when 𝛽 reaches a critical value (0.5–1). Such critical value tends to
increase with increasing 𝜎0 and decreasing L0 values. When the dip forms, the dip depth tends to increase
with decreasing 𝜎0, increasing 𝛽0 and increasing L0 values.

In this study, we use a symmetric Gaussian distribution to approximate the radial profile of the ring current
pressure distribution. The following five points are worth noting regarding the realism of the symmetric
Gaussian distribution used and the realistic pressure distribution profiles that may have different width at
the inner and outer edges. First, the formation of the magnetic dip (that is, the existence of a positive radial
slope of the equatorial magnetic field strength) requires a strong negative radial slope of plasma 𝛽 (as men-
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Figure 8. Three-dimensional ring current-atmosphere interactions model self-consistent magnetic field model results.
(a and b) The distributions of thermal pressure and magnetic perturbation in the equatorial plane for cases with
𝛽0 = 0.65, L0 = 4, 𝜎0 = 0.4 RE, and 𝜎MLT = 1.0 . (c) The variations of B versus x in the equator of MLT0 sector for cases
with different 𝜎MLT values.

tioned in section 3.3), and therefore depends on the plasma 𝛽 peak and the radial width of the outer edge
(instead of the inner edge). One can see from Figure 2a that the magnetic dip structure (the positive slope of
the magnetic field) becomes weaker as the outer width increases. The increasing inner edge width slightly
decreases the magnetic field inside the pressure peak but does not affect the magnetic field strength at the
pressure peak and beyond. The use of the symmetric Gaussian distribution is to help reduce the number of
free parameters in the pressure distribution, and the effect of the width parameter reflects the effect of the
outer edge when it comes to the formation of the magnetic dip. Second, ring current during quiet times and
even moderate storms may not be able to provide a sufficiently negative radial plasma 𝛽 slope and therefore
the magnetic dip structures are not common in the inner magnetosphere during those times. We checked a
statistical distribution of the proton pressure at midnight sector from De Michelis et al. (1999) under quiet
geomagnetic condition (the top left panel in their Figure 1), which has two different radial edges with the
outer edge width being slightly larger. Nonetheless the distribution near the pressure peak can be fairly well
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fitted by a Gaussian distribution of a radial width of ∼1.1 RE. The use of such profile in our SCB model yields
no magnetic dip, even when the pressure peak increases to a value so that 𝛽 = 1. This is because the statistical
pressure distribution smooths out any sharp edges in the plasma pressure and has a width too large to form
a dip in the magnetic field. No dip is available in the inner magnetosphere for empirical magnetic field mod-
els (except storm time magnetic field from the TS05 model as seen in Figure 1a of Ukhorskiy et al. (2006)).
Third, we also check a radial distribution of plasma pressure for a specific event observed by the Arase satel-
lite, which is shown by the black line in Figure 9e of Imajo et al. (2018). In this individual case, the Gaussian
fitting approximates the observed radial pressure distribution very well of a width of about 0.5 RE, which
is narrower than that for the statistical distribution above. The plasma 𝛽 for this event is also not sufficient
to produce a dip, which is consistent with no dip observation for this event. Fourth, the strong connection
between high plasma 𝛽 and the appearance of magnetic dip has been established based on Van Allen Probes
observation as shown by Figure 2 of Xiong et al. (2017) and Figure 2 of He et al. (2017). After examination of
these two events, the Van Allen Probes were moving mostly in the azimuthal direction unfortunately. There-
fore, the estimation of radial width of the outer edge is not available for simulating the equilibrium magnetic
field profile. Finally, the plasma pressure distribution observations in the existing literatures, unfortunately,
may not be ideal for checking the theoretical relation between magnetic dip and plasma pressure. One of the
reasons for such unfortunateness is that this theoretical relation was not revealed before. The establishment
of radial profiles of plasma pressure in the inner magnetosphere, especially for individual events, may be
resolved using the observation of THEMIS satellites, which can transverse the center of ring current radially.
Our theoretical relations between the radial profiles of the plasma pressure and the equilibrium magnetic
field can then be checked. We leave this effort as our future investigation.

Appendix A: Analytical Solutions for the Three Approximations
A1. Uniform Magnetic Fields
Consider the presence of localized plasma pressure in an initially uniform magnetic field B0. The analytic
solution of magnetic pressure equilibrium for a uniform background magnetic field can be derived directly
through the condition of uniform total pressure (that is, the sum of the magnetic pressure and the thermal
pressure), PB0 = P + PB, where PB0 is the magnetic pressure at the finite boundary (or the initial magnetic
field pressure), P and PB are the thermal pressure and magnetic pressure in equilibrium respectively. Thus,|ΔB∕B0| can be written as (B0 − B)∕B0 = 1 − B∕B0 = 1 −

√
PB∕PB0 = 1 −

√
PB∕(P + PB) = 1 −

√
1∕(𝛽 + 1),

where 𝛽 = P∕PB. In equilibrium, a magnetic dip forms whenever there is localized pressure distribution.
The critical 𝛽 to form a dip is essentially zero.

A2. Circular and Planar Magnetic Fields
An infinitely long straight line current can generate a circular and planar magnetic field surrounding the
line current. The magnetic field strength B0 decreases with r as

B0 =
𝜇0I
2𝜋r

, (A1)

where I is the current, r is the distance to the current, and 𝜇0 is the vacuum permeability.

Consider localized plasma pressure in such an initially circular and planar magnetic field. The localized
pressure is introduced as P = P0 exp[−(r − L0)2∕(2𝜎2

0 )], with pressure peak P0 at L0 and half pressure peak
width𝜎0. In equilibrium, the force balance equation can be expressed as a 1-D nonlinear ordinary differential
equation for B(r):

1
r
( d

dr
(rB))B = −𝜇0

dP
dr
. (A2)

The corresponding analytic solution is obtained as follows:

B2(r) = −2𝜇0P0 exp[
−(r − L0)2

(2𝜎2
0 )

] −
4𝜎2

0𝜇0P0 exp[ −(r−L0)2

(2𝜎2
0 )

]

r2 +
2L0𝜎0𝜇0P0

√
2𝜋Erf( r−L0√

2𝜎0
)

r2 +
C1

r2 , (A3)
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where C1 is a constant which controls the intensity of the background magnetic field. The term C1∕r2 is
the square of background magnetic field and the other terms are the perturbations caused by the thermal
pressure. The pressure peak P0 can be set as 𝛽0PB0(L0), where PB0(L0) is the background magnetic pressure
at L0 and equals to C1∕2𝜇0L2

0.

There are four terms on the right-hand side, and the second and the third terms can be neglected approxi-
mately due to small value of 𝜎0∕r and r > 1. The remaining two terms are the first term that is contributed
from thermal pressure and the last term that corresponds to the background circular magnetic field.

The condition for the existence of a magnetic dip is that there exists a local minimum, that is, dB
dr

= 0.
Considering only the first and last terms in equation (A3), the condition yields

𝛽∗ =
2𝜎2

0

rd(rd − L0)
=

2𝜎2
0

(L0 + ΔL)ΔL
, (A4)

where the rd denotes the location of the magnetic dip, ΔL = rd − L0 is the distance between the magnetic
dip and the pressure peak, and 𝛽∗ = 2𝜇0P0 exp[ −(rd−L0)2

(2𝜎2
0 )

]∕(C1∕r2
d) is the ratio between thermal pressure and

the initial magnetic pressure at the dip. The value of ΔL scales as 𝜎0. Considering L0 + ΔL ≈ L0 because
L0 ≫ ΔL, a simplified relation can be obtained as 𝛽* ∼ 𝜎0∕L0. In other words, the critical 𝛽 for the dip
formation in the background circular magnetic field tends to increase for larger 𝜎0 and smaller L0.

A3. Ignoring the Change of Magnetic Field Curvature
Consider the presence of isotropic thermal pressure in the background dipole field, the field line strength
and curvature change in equilibrium. The force balance equation can be rewritten as

−∇⟂PB + 2PBb̂ · ∇b̂ = ∇P, (A5)

where PB = B2

2𝜇0
is the magnetic pressure and b̂ is the unit magnetic field vector. Near the equatorial plane,

the curvature term b̂ · ∇b̂ can be express as − êr
Rc

and the perpendicular gradient ∇⟂ equals to 𝜕

𝜕r
êr , where Rc

is radius of the curvature and êr is the unit vector in the radial direction. For dipole field, Rc = r∕3. When
we assume that the curvature of the magnetic field line remains unchanged, the equilibrium equation at the
equator becomes

− 𝜕

𝜕r
PB −

6PB

r
= 𝜕

𝜕r
P. (A6)

For the case that P = 0, the solution of the equation is PB = B2

2𝜇0
= Cr−6, where C is a constant. Thus, we

have B = B0r−3, where B0 =
√

2𝜇0C, and this is the solution of the Earth's dipole field.

For the case of a radially Gaussian pressure distribution in the equator, P = P0 exp[−(r − L0)2∕(2𝜎2
0 )], with

pressure peak P0 at L0 and half pressure peak width 𝜎0, the analytical solution to equation (A6) is

PB =
C2

r6 −
P0

r6 exp[
−(r − L0)2

2𝜎2
0

]{48𝜎6
0 + r6 + 6𝜎4

0 (4r2 + 7r𝜎0 + 9𝜎2
0 ) + 6𝜎2

0 (r
4 + r3𝜎0 + r2𝜎2

0 + r𝜎3
0

+ 𝜎4
0 ) − 3𝜎0 exp[

(r − L0)2

2𝜎2
0

]
√

2𝜋L0(15𝜎4
0 + 10𝜎2

0 L2
0 + 𝜎

4
0 )Erf(

r − L0√
2𝜎0

)},
(A7)

where C2 is a constant that controls the intensity of the background magnetic pressure. The term C2∕r6 is the
background dipolar magnetic pressure and the other terms are the contributions of the thermal pressure to
the perturbation of magnetic pressure. The pressure peak P0 can be set as 𝛽0PB0(L0), where PB0(L0) = C2∕L6

0
is the background magnetic pressure at L0. The magnetic field strength can be obtained by B =

√
2𝜇0PB.
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