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Abstract

There is compelling evidence that the human cerebellum is engaged in a wide array of motor and cognitive
tasks. A fundamental question centers on whether the cerebellum is organized into distinct functional sub-
regions. To address this question, we employed a rich task battery, designed to tap into a broad range of
cognitive processes. During four functional magnetic resonance imaging (fMRI) sessions, participants
performed a battery of 26 diverse tasks comprising 47 unique conditions. Using the data from this multi-
domain task battery (MDTB), we derived a comprehensive functional parcellation of the cerebellar cortex
and evaluated it by predicting functional boundaries in a novel set of tasks. The new parcellation
successfully identified distinct functional sub-regions, providing significant improvements over existing
parcellations derived from task-free data. Lobular boundaries, commonly used to summarize functional
data, did not coincide with functional subdivisions. The new parcellation provides a functional atlas to

guide future neuroimaging studies.

Introduction

Converging lines of research provide compelling evidence that the cerebellum is engaged in a broad range
of cognitive functions, well beyond its historical association with sensorimotor control'. Anatomical
tracing studies in nonhuman primates have revealed reciprocal connections with parietal and prefrontal
association cortices’. Individuals with lesions to the cerebellum exhibit behavioral impairments on tasks
designed to assess non-motor processes such as duration discrimination, attentional control, spatial
cognition, emotion perception, and executive and language function. Perhaps most intriguing,
neuroimaging studies consistently reveal activations of the cerebellar cortex during a diverse set of motor,

cognitive, and social/affective tasks:.

This raises the question of whether the cerebellum can be meaningfully subdivided into a discrete
set of regions, reflecting distinct functional contributions across diverse task domains. In contrast to the
cerebral cortex, the cytoarchitectonic organization is remarkably uniform across the entire cerebellar
cortex. Due to this homogeneity, neuroimaging and neuropsychological studies have mostly relied on the
macroanatomical folding of the cerebellum along the superior to inferior axis into 10 lobules (numbered
I-X):. More recently, functional parcellations based on task-free fMRI data have been proposed:.
However, the degree to which these proposed boundaries correspond to functional divisions remains
unclear. Task-based studies have been limited by the lack of a comprehensive neuroimaging data set. A

few studies have employed data sets involving multiple tasks™, but the small number of task conditions



(<7) and the lack of a common measurement baseline have made it difficult to derive and evaluate task-
based functional parcellations. The functional heterogeneity of the cerebellum has also been explored
using meta-analytic approaches’, which have the disadvantage that data for different tasks come from

different groups of participants.

In the present study, we aimed to fully characterize the functional organization of the cerebellar
cortex by employing a large and diverse task battery comprising 47 unique conditions, designed to engage
a broad range of sensorimotor, cognitive, and social/affective processes. Using a block design, activation
for each task was measured over four fMRI scanning sessions against a common baseline. Our task set
was successful in eliciting activation across the entirety of the cerebellar cortex, allowing us to derive a
novel parcellation that characterizes the functional profile of cerebellar sub-regions in unprecedented
detail. The breadth of the task sets also enabled us to summarize the functional specialization of each

region in terms of the underlying latent motor, cognitive, and social/affective features.

We developed a novel metric to evaluate the strength of the proposed functional boundaries. This
allowed us to address the fundamental question of whether there are distinct functional regions in the
cerebellum, or whether the functional specialization is better described in terms of continuous gradients’.
The approach is predicated on the idea that, if a boundary between two regions divides functionally
heterogeneous regions, then the activation pattern for two voxels that lie within the same region should be
more correlated than voxel pairs that span a boundary. Critically, a meaningful functional parcellation
needs to be predictive of boundaries for the activation patterns elicited by a different set of tasks. Using
this approach, we demonstrate that the cerebellum has discrete functional regions, and that our MDTB
parcellation is superior to alternatives in predicting functional boundaries. The new functional parcellation
of the cerebellar cortex provides an important step towards understanding the role of the cerebellum across

diverse functional domains.

Results

To obtain a comprehensive functional parcellation of the cerebellar cortex, we developed a multi-domain
task battery (MDTB) of 26 tasks comprising 47 unique task conditions (Fig 1a; Supplementary Table 1),
selected to encompass a wide range of processes required for motor, cognitive, and affective/social
function. To avoid strong learning-related changes, 24 healthy individuals were trained on the task
protocol (~14 h) before scanning. During scanning, each task was performed once per imaging run for a

35 second block (Fig 1b). This ensured that all tasks were measured against a common baseline, allowing



for any between-task comparison. To make this approach feasible, the tasks were split into two sets (Fig
la), and each task set was tested in two separate fMRI scanning sessions, resulting in a total of ~5.5 hours

of functional data per participant.
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Figure 1. Multi-domain task battery (MDTB). (a) Experimental Design. A total of 4 fMRI scanning

sessions were collected on the same set of participants, using 2 tasks sets. Each set consisted of 17 tasks,
with 8 tasks in common. The tasks were modeled as 29 task conditions in set A, and as 32 in set B, with
14 task conditions common across both task sets. (b) Timing of each task: 5 s instruction period followed
by 30 s of task execution. Tasks consisted of a different number of task conditions (gray bars, range 1-3).
(c) Unthresholded, group-averaged motor feature maps, displayed on a surface-based representation of
the cerebellar cortex». (d) Across-session reliability (r) of activation patterns for each voxel. (e) Group-
averaged activation maps for selected tasks, corrected for motor features. Red-to-yellow colors indicate
increases and blue colors denote decreases in activation, relative to the mean activation across all

conditions. Activity is normalized by the root-mean-square-error of the time-series fit for each voxel.

Identification of motor features from the multi-domain task battery

As a first step, we sought to identify cerebellar regions in which the hemodynamic response was closely
tied to motor function, specifically hand and eye movements. Our experimental design did not include
specific contrasts that isolated each motor component. Instead, we varied the motor demands across task
conditions; for example, the finger sequencing task involved ~40 left and right finger responses, the theory

of mind tasks two left hand responses, and the movie tasks no responses. We then generated a motor



feature model, which included the number of left and right hand responses and the number of saccadic
eye movements made per task (see methods). Using regularized regression, we could then estimate the

activation across tasks attributable to motor involvement.

Left and right hand movements were associated with activation increases in the two hand motor
areas of the cerebellum (Fig 1c), the anterior hand region located on the boundary of lobules V and VI,
and the inferior region in lobules VIIIbr. Saccadic eye movements elicited activation in vermis VI,
consistent with the location of the oculomotor vermis in the macaque monkey". Compared to previous
contrast-based human fMRI studies?, which have yielded relatively inconsistent results, our feature-based
mapping approach resulted in an extraordinarily clear localization of eye-movement activation to the
oculomotor vermis. While these results mainly confirm the well-known functional localization within the
cerebellum for movement, they demonstrate that a broad task-based approach without tightly matched

control conditions provides a powerful means of revealing functional organization.

Multi-domain task battery elicits varied activation patterns across the cerebellum

We then characterized the task-related activation patterns that could not be explained by basic motor
features. Overall, we were able to elicit strong and distinguishable patterns of activation (Fig le, Fig S1)
across the cerebellar cortex. To determine the reliability of the activation patterns, we calculated the
correlation of the individual, unsmoothed task-activation profiles for each voxel across the two sessions
of each set. On average, these task activation profiles were reliable (set A: r=.43, CI: .39-.46; set B: r=42,
CI: 37-.46; see Fig S2 for individual participants). The resulting voxel-wise reliability map (Fig 1d)
confirmed that this was the case for the entire cerebellar cortex, with the exception of lobules I-IV. These

lobules are associated with foot movements*=, a feature absent from our tasks.

Qualitatively, the activation patterns elicited by our task sets replicated numerous results obtained
in previous neuroimaging studies. For example, right-lateralized activation throughout Crus I, Crus II, and
VIIb was observed with the verb generation task* while left-lateralized activation throughout Crus, I, Crus
II was demonstrated with the biological motion task. Consistent with previous working memory studies*,
the N-Back tasks activated two distinct lateral regions of lobules VII. Recent evidence for medial Crus I

and Crus II activation during movie tasks was also corroborated here*.

The task-activation maps also demonstrated some new insights, which have not been (or not as
clearly) reported in the previous literature. The rest condition (contrasted against the mean of all the other

conditions) was associated with bilateral activation in a mid-hemispheric region in Crus I and II,



effectively forming the cerebellar component of the default-mode network:. Similar cerebellar regions
were strongly activated during the theory of mind task* and the movie tasks». The finger sequencing and
visual search tasks led to strong activation in cerebellar hand and eye-movement related areas,
respectively. Given that these activation maps were corrected for movement-related activity, these results
indicate that these areas are especially activated during movements with high attentional demands. Finally,
the action observation task elicited activation in a distinct set of areas surrounding the motor areas of the
cerebellum, especially in the posterior motor representation. When using a dissimilarity measure to
construct a representational space for all tasks (Fig S4), the action observation condition emerged as one

of the most unique activity patterns.

The passive picture viewing tasks (i.e. sad faces) did not elicit much activation in the cerebellum.
This is generally consistent with the notion that the cerebellum does not receive cortico-pontine
projections from the inferior temporal cortex, a pathway involved in visual object and scene recognition.
To quantify this observation, we tested the activation patterns of all possible task conditions against each
other. While over 95% of the pairwise comparisons were significant (uncorrected p<.001 level), the most
notable exceptions were pairs of the picture-viewing tasks (Fig S4a). In contrast, passively watching
engaging movie snippets (Nature movie, Animated movie) resulted in reliable and specific activity

patterns (Fig le, Fig S1), likely related to processes required for action perception and social cognition.

Cerebellar lobules do not reflect functional subdivisions

One way to summarize these activation patterns is to subdivide the cerebellum into functionally distinct
regions. This approach, however, is only meaningful if there are stable functional subdivisions in the
cerebellum that generalize across tasks. To address this fundamental question, we developed a new
evaluation metric, which we refer to as the distance controlled boundary coefficient (DCBC). If a boundary
divides two functionally heterogeneous regions, then any equidistant pair of voxels within a region should
have activation profiles that are more correlated with each other than two voxels that are separated by the
boundary (Fig 2a, see methods). Specifically, we calculated correlations between voxel pairs using a range
of spatial bins (4 mm to 35 mm). The difference between the within- and between-region correlations for
each spatial bin then served as our evaluation criterion. This method extends standard clustering metrics
(i.e., silhouette coefficient) to account for spatial distance. Given that the spatial resolution of fMRI is
insufficient to cleanly resolve individual folia, the spatial distance was measured in the volume (see

methods for details).



We first employed this evaluation method to determine the degree to which functional boundaries
follow the major lobular subdivisions:. This is a question of high practical importance given that lobular
boundaries are commonly used to define regions-of-interest for interpreting functional activations in the
cerebellum. Notably, the correlation between voxels within a lobule was not much greater than the
correlation between voxels that spanned a lobular boundary (Fig 2b). The correlations, averaged over

distances of 4 mm to 35 mm, were r=0.28 (0.26 — 0.30) within-lobules and r=0.25 (0.05 — 0.46) between-
lobules (95% confidence interval). While statistically significant (tp3= 4.62, p<.01), the difference was

very small (DCBC=0.03). Thus, lobular boundaries do not reflect strong functional subdivisions in the

cerebellum.

The DCBC can also be used to evaluate the strength of individual boundaries (Fig 2c). For
example, the superior posterior fissure separating lobule VI from VII was the strongest lobular boundary
(DCBC=.152), while the primary fissure, which serves as the first principle subdivision of the cerebellum,
was relatively weak (DCBC=.068). The boundary separating Crus I and Crus II did not predict any

functional specialization (DCBC=0). In sum, many cerebellar fissures did not demarcate a change in

function.
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Figure 2. Distance-corrected boundary coefficient (DCBC). (a) Correlations between all pairs of voxels
with the same distance were calculated and averaged depending on whether they were “within” or
“between’” regions. Voxel-pairs were then binned according to spatial distance in the volume (4-35mm in
steps of Smm). (b) Average cross-validated correlation (see methods) as a function of spatial distance for
lobular boundaries. The DCBC is defined as the difference in correlation (within-between) within each

distance bin. Error bars show between-subject standard error of the mean for N=24 participants. (c)



Strength of the boundaries for the lobular parcellation, with the thickness of the black lines indicating the
DCBC value.

MDTB parcellation uncovers strong functional boundaries

Next, we asked whether a parcellation based on the MDTB data would more clearly identify functional
boundaries. We first estimated a group-based parcellation using all of the MDTB data. Using convex semi-
nonnegative vector factorization, we decomposed the N (tasks) x P (voxels) data matrix into a product of
an N x Q (regions) matrix of task profiles and a Q x P matrix of voxel weights. The voxel weights, but not
the task profiles, were constrained to be non-negative. Using a winner-take-all approach, we then assigned

each voxel to the region with the highest weight. Fig 3b shows the resulting parcellation using 10 regions.
For this parcellation, the average DCBC was .159 (Fig 3a, dashed line, t23=31.85, p<le-10), a value higher
than that obtained for the strongest lobular boundary.

However, functional parcellations will invariably yield boundaries for a given task set, as training
and evaluation data overlap. Critically, a good parcellation should be able to predict boundaries for a new
set of tasks. We therefore determined the parcellation based on all task conditions from set A, and

evaluated the boundaries using the unique tasks from set B. We repeated this out-of-sample generalization

test in the other direction and averaged the two values. Using this approach, the average DCBC was .130,
only slightly lower that the non-crossvalidated estimate (Fig 3a; t23=24.232,p<le-10). The cross-validated

DCBC will underestimate the true predictive power of the full parcellation, with true performance on a
novel task likely falling between the cross-validated and non-crossvalidated DCBC. To remain

conservative, we only report the cross-validated DCBC estimates for the remainder of the paper.
The exact form of a parcellation depends on the specified number of regions. We also derived a

parcellation with 7 (Fig S5d) or 17 regions (Fig S5f). While the 7-region parcellation performed slightly
poorer than the 10-region parcellation (DCBC=.121, t23=-4.18, p=.00036), the 17- and 10-region

parcellations performed comparably (DCBC=.133, t23=1.57, p=.131; Fig 3e). While there was reasonable

agreement across the different MDTB parcellations (Fig S5h), some differences in the functional
subdivisions for the different parcellations emerged. While our results clearly show that the MDTB
parcellations reflect true functional boundaries in the cerebellum, they also make clear that there are a

number of equivalent ways to subdivide the cerebellum. Thus, the exact choice of a “final” parcellation is



constrained by practical considerations. Here, we focus on the 10-region parcellation, as it provides a

useful level of resolution for a full functional characterization.

To assess the stability of the parcellation, we conducted a bootstrap analysis, both across
participants and task conditions (for details, see methods). The mean Rand coefficients between each of
the new parcellations and the original parcellation was 0.646 (95% CI=0.55-0.73) for the bootstrap across
participants and 0.654 (95% CI1=0.58-0.73) across task conditions. To quantify the uncertainty of specific
boundaries, we calculated the proportion of bootstrap samples for which each voxel was assigned to the
same compartment as in the original parcellation (Fig 3c). Overall the consistency was good for most of
the cerebellum (Fig 3d). Lobules I-IV had higher uncertainty, likely a consequence of a lack of foot

movements in our task-battery.

The parcellations described above were based on group data. To quantify the variability in
functional organization across individuals, we compared the correlation between the task-activation maps
across participants to the within-subject reliability across the two sessions (Fig 3f). Overall, 27.7% of the
pattern variance was shared between individuals, whereas 72.3% reflected idiosyncratic patterns. A
spatial-frequency decomposition of the patterns (see methods) revealed that commonalities across
participants were restricted to the low spatial frequencies (< 1 cycle/cm; activations of more than Smm in
size), while the fine-grained patterns were purely idiosyncratic to the participant. Indeed, a parcellation

derived from the functional data from the individual significantly outperformed the group parcellation in

predicting functional boundaries for new tasks for that same individual (Fig 3g; t23=5.88, p<le-5).

In summary, using the MDTB data, we were able for the first time to quantitatively demonstrate
the existence of distinct functional regions in the human cerebellum. Our results clearly advocate the
adoption of a functional parcellation to replace lobular subdivisions as a tool to summarize functional

cerebellar data.
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Figure 3. The MDTB parcellation reveals functional boundaries in the cerebellar cortex. (a) Average
cross-validated correlations (see methods) for “within” (red) and “between” (black) voxel-pairs for the
MDTB parcellation (10 regions). Solid lines indicate the values for the cross-validated estimates; the
dashed lines are the estimates for the full parcellation. (b) 10-region MDTB parcellation. The DCBC for
each boundary is visualized by the thickness of the black lines. (¢) Proportion of samples in the
bootstrapped analysis (participants) in which the voxel was assigned to the same compartment as in the
original parcellation. Most voxels had a consistency of assignment >0.6. (d) Visualization of boundary
uncertainty, using the color scheme in panel b), but adjusted such that the degree of transparency is
indicative of the uncertainty of the assignment. Voxels that were assigned to a single compartment on less
than 50% of the cases are shown in gray. (e) DCBC as a function of the spatial distance for the lower
bound of the three MDTB parcellations (colored lines) and lobular parcellation (black line). (f) Within-

subject (black) and between-subject (red) reliability of activation patterns overall, and across different
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spatial frequencies. (g) DCBC as a function of voxel distance for the 10-region group parcellation (red)
and average of the 10-region individual parcellations (black). Only shown are the cross-validated
estimates of the prediction performance for novel tasks. In all panels, error bars show between-subject

standard error of the mean for N=24 participants.

Task-free parcellations identify overlapping, but weaker boundaries

Prior work has leveraged the correlational structure of task-free (or “resting state”) fMRI data to derive
various parcellations of the cerebellum, using 7+, 10¢, or 17° regions (Fig 4a-c). These parcellations were
only moderately consistent with each other (Fig 4f), with an average adjusted Rand index (AR) of 0.33 (0
= no communality; 1 = perfect match). Correspondence between the different MDTB parcellations was
slightly higher (AR=0.47), indicating more stability across the MDTB parcellations. The average AR
between the MDTB and task-free parcellations was 0.15 indicating that there are systematic differences
between the two approaches. To determine where task-free and MDTB parcellations diverge, we
conducted a searchlight analysis, computing the AR locally using a 1cm-radius sphere for each pair of
parcellations. The results demonstrated that task-free and MDTB parcellations corresponded most tightly
in mid-lateral areas of lobule VII. In these “default mode” regions, the agreement between the MDTB and
task-free maps (Fig 4g) was similar to the agreement between the MDTB maps themselves (Fig S5h). In
contrast, in more lateral aspects of lobule VII, and especially areas engaged in motor control or action
observation, the correspondence between task-free and MDTB parcellations was much weaker. This is

likely due to the relatively low consistency among the task-free parcellations (Fig S5g).

We then evaluated whether task-free parcellations were able to predict functional boundaries in

our MDTB data. The average DCBC for the task-free 7, 10, and 17-region parcellations was .109, .106,
and .097 respectively, substantially higher than the lobular parcellation (t23=16.849, p<le-10; Fig 4d).

Thus, all of the task-free parcellations are, to some degree, able to predict functional boundaries. However,

the average task-free DCBC was significantly lower than the “lower bound” for our MDTB 10-region
parcellation (t23=5.585, p<le-5). This indicates that the MDTB parcellation outperformed the task-free
parcellations in predicting functional boundaries on a novel set of task conditions.

Although the task conditions used for evaluation did not overlap with the tasks used for deriving
the MDTB parcellation (see also Fig S6), we wanted to ensure that the superior performance of the

MDTB parcellation would generalize to a completely separate data set. To this end, we evaluated the
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MDTB and task-free parcellations using data from 186 participants from the task-based Human
Connectome Project (HCP; Fig 4e)*. Again, the MDTB 10-region parcellation significantly

outperformed the three task-free parcellations (7-region: t185=22.671, p<le-10; 10-region: t;g5=13.266,

p<le-10; 17-region: t185=28.09, p<le-10).

To ensure that the higher predictive power of the MDTB parcellation was not solely driven by
regions associated with motor control, we re-evaluated the DCBC using only the three movie tasks (Fig
4h). Even though these conditions did not demand any overt movement, the advantage of the MDTB
over the 7-region (t23=2.7, p=.01), 10-region (t23=5.3, p<le-5), and 17-region (t23=5.1, p<le-5) task-free

parcellation remained significant. Overall, these results demonstrate that the advantage of the MDTB

over task-free parcellations extends to new data sets and to conditions that do not involve active tasks.
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Figure 4. Comparison of MDTB and task-free parcellations of the cerebellum. (a-c) Cerebellar
parcellations based on task-free data with 7, 10, and 17 regions:. Thickness of the black lines indicates
the DCBC for the corresponding boundary. (d) DCBC for different spatial distances for lobular (black),
task-free (dark-light blue) and MDTB (green) parcellations. The MDTB parcellation was evaluated in a
cross-validated fashion (see text). (e) Evaluation of the same parcellations on task-based data from 186
HCP participants. (f) Matrix of adjusted Rand coefficients (AR) between three versions of the MDTB
parcellations (7, 10, 17) and the three task-free parcellations (7, 10, 17). (g) Correspondence between
MDTB and task-free parcellations. A value of 1 (yellow-green) indicates that the AR between task-free
and MDTB parcellations is the same size as the AR between MDTB parcellations. Lower values (blue-
green) indicate weaker agreement between task-free and MDTB parcellations compared to MDTB by
itself. (h). Evaluation of the MDTB parcellation (derived only from Set A) and the task-free parcellations
on the three movie tasks from Set B. In all panels, error bars show between-subject standard error of the

mean for N=24 or N=186 (panel e) participants.

Characterizing activation by cognitive features

An important advantage of a task-based approach is that we can make inferences about the processes that
activate the cerebellar cortex. To characterize the functional profiles in each of the regions across tasks,
we used predefined and non-orthogonal features”. We already successfully applied this approach when
characterizing the activation patterns elicited by motor features (Fig 1c), which could be directly
operationalized as the number of finger and eye movements. To extend this approach, we needed to
describe each task condition in terms of its underlying cognitive features. We therefore turned to Cognitive
Atlas, an online cognitive ontology®, that summarizes the current consensus in cognitive science of the
processes associated with a large array of tasks. To construct a feature space, each of the task conditions
was rated on each of the cognitive concepts (see methods). We then estimated feature weights for each
region using non-negative regression. For visualization purposes, we depicted the top three feature weights
for each region (Fig 5).

The dominant features describing the three motor regions (regions 1, 2, 3) were left-hand, right-
hand and saccadic eye movements, respectively. The posterior associative motor region (region 4) was
driven predominantly by action observation. For the remaining regions, the dominant features related to a

range of cognitive processes. Regions 5 and 6 in the mid-hemispheric aspects of Crus I/11, lateralized to
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the left and right hemisphere respectively, were associated with attention- and working-memory related

features such as divided attention and active maintenance.

More medially in both hemispheres were regions 7 and 8, best described by features associated
with narrative (region 7) and word comprehension (region 8). Activity in right-hemispheric region 9,
lateral to region 8, was best explained by features related to language processing (e.g., verbal fluency and
word comprehension). Finally, region 10, encompassing the most lateral aspects of Crus I/Il was
dominated by autobiographical recall. This region shows strong task-free correlations with the frontal pole
and other areas related to the default-mode network:. Overall, activity in the larger proportion of the

cerebellum was explained by features related to cognitive, rather than motor processes®.

Motor Planning
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Divided Attention

Motor Planning
1 Left Hand Presses

Interference Resolution

Divided Attention
4 Action Observation
Motor Planning

Visual Working Memory
3 Saccades

Visual Letter Recognition

Active Maintenance

5 Divided Attention

Mental Arithmetic

Active Maintenance
6 Divided Attention
Verbal Fluency

Visual Letter Recognition
» 10 Autobiographical Recall

Interference Resolution

Figure 5. Cognitive descriptors for the 10 functional regions in the MDTB parcellation. Three features

that best characterize each region are listed. Font size indicates the strength of these feature weights.

Discussion

Summary

The aim of this study was to derive a comprehensive picture of the functional organization of the human
cerebellum. To do this, a group of participants was scanned over the course of four fMRI sessions while
performing a diverse multi-domain task battery. The task-evoked activation patterns were leveraged to
derive a functional parcellation of the cerebellar cortex. Using a new technique to quantitatively evaluate
functional boundaries, we showed that the MDTB parcellation successfully predicted functional
boundaries when tested with a novel set of tasks, outperforming existing parcellation based either on task-

free fMRI data or on lobular structure.
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Parcellations of the cerebellar cortex

The lobular architecture of the cerebellum has provided, both in neurophysiological and neuroimaging
studies, the primary reference for defining sub-regions**. The macroanatomical folding into ten lobules is
well conserved across species and under strong genetic control*. While the results from
electrophysiological” and neuroimaging studies” have suggested that lobular boundaries do not demarcate
functional subdivisions, we present here the first quantitative evaluation of this hypothesis. Indeed, lobular
boundaries appear to constitute only very weak boundaries in terms of functional organization. The
identified functional regions often spanned multiple lobules, with many of the boundaries traversing the
cerebellar cortex along the parasagittal axis. The clear dissociation of anatomical and functional
organization of the cerebellum, as revealed here, questions the value of summarizing functional and

anatomical data in terms of lobular regions-of-interest.

As an alternative, we employed our task-related data to develop a parcellation that could
comprehensively describe the functional organization of the cerebellar cortex. Critically, the group-based
MDTB parcellation predicted functional boundaries for new tasks in the same data set, as well as for a
completely separate data set (HCP task data). These findings provide a compelling demonstration of
discontinuities in the functional specialization across the cerebellar cortex. Evidence from meta-analyses
has suggested the existence of “motor”, “cognitive”, and “affective” regions of the cerebellum*. However,
it has also been suggested that functional variation across the cerebellar cortex may be best understood in
terms of smooth gradients’, without definable boundaries. If this were the case, our DCBC measure,
reflecting the difference of within-region to between-region correlations, would have been near zero when

tested on a novel task set. Instead, the values were positive, providing a rigorous demonstration of

functional boundaries in the cerebellar cortex.

An open question is whether the boundaries defined through our task-based approach relate
systematically to anatomical features of the cerebellum identified by molecular techniques>. Specifically,
studies investigating Adolase-C (Zebrin) expression in Purkinje cells in the rodent* and primate brain*
have revealed a series of parasagittal zones across the cerebellar cortex. Olivo-cerebellar projections
respect this zonal organization, with single climbing fiber inputs synapsing onto Purkinje cells that lie
within a zone*. The organization of Zebrin-zones remains to be established in the human cerebellar cortex.
However, we suspect that the alignment with the organization observed here may not be very tight given

that the cerebellar hemodynamic signal is primarily reflective of mossy fiber input». Relative to climbing
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fibers, mossy fiber innervation patterns are likely to be patchier and more diffuse, potentially spanning

multiple zonal regions.

Boundaries identified from task-free fMRI data were also able to predict task-based
discontinuities. This finding is in accord with similar analyses of the cerebral cortex, demonstrating that
task-based activation patterns in the neocortex can be predicted to some degree by parcellations obtained
from the spontaneous fluctuations in the fMRI signal during rest”. However, our MDTB parcellation
outperformed alternative task-free parcellations* in predicting functional boundaries for completely
different tasks within the MDTB and HCP datasets. While the MDTB parcellation was based on fewer
participants than the other parcellations (24 vs. 1000), our data set entailed considerably longer scanning
time/participant. One notable difference between the task-free parcellations and our MDTB parcellation
was that the latter assigned homologous areas in the left and right hemispheres to different regions. This
was the case for regions associated with hand movements (regions 1 & 2), working memory (regions 5 &
6) and narrative comprehension (regions 7 & 8). While the parcellation therefore suggests some degree of
hemispheric asymmetry within the cerebellum, the task-activity profiles between homologous regions also
shared many similarities (Fig S7). Secondly, the MDTB parcellation also indicated that the areas
correlated with the default-mode network in task-free data could be subdivided into regions related to
narrative comprehension (regions 7 & 8), language functions (regions 8 & 9) and autobiographical recall
(region 10).

While our group-based map could predict functional boundaries in individual participants, the finer
spatial details of the functional organization were idiosyncratic for each individual. Consistent with this,
the individual parcellation outperformed the group parcellation in predicting functional boundaries in that
individual. Of course, individual parcellations require data collection for each participant using at least a
subset of our task battery. It is worth noting that each individual parcellation was obtained on almost 3
hours of data per participant, an amount of scanning time that is usually not feasible or practical. In future
studies we aim to determine the required amount of data per participant, identify the best subset of tasks,

and explore the possibility of combining individual and group data to derive an optimal parcellation.

Novel insights about functional topography

An additional advantage of a multi-domain task-based approach for mapping the cerebellum is that we
can not only identify functional boundaries, but relate the activation patterns to the task requirements. For

many of the tasks in our battery, the activation patterns were in accord with the results obtained in previous
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fMRI studies that have examined a single or limited set of task domains. Examples here include working

memory, hand movement, language, and theory of mind tasks.

By using a rich multi-domain task battery, we also identified functional regions that had not been
observed or well-described in previous work. A large and extended region of the cerebellar cortex was
activated during action observation (region 4), surrounding the anterior, but to a much larger extent,
posterior hand motor region. Interestingly, the action observation region was also activated during
complex movement as shown by the sequence production task. Taken together, these results suggest that
anterior motor regions are more related to primary action execution, whereas posterior motor regions are
more akin to a “premotor” area, perhaps associated more with action planning and action comprehension.

Notably, lesions limited to the posterior cerebellum rarely lead to lasting symptoms of ataxia>.

A second example comes from our motor feature model, which revealed a region around vermis
VI that was strongly associated with saccadic eye movements (region 3). This finding is consistent with
neurophysiological data from non-human primates showing that this region is associated with oculomotor
control". However, prior neuroimaging studies of the cerebellum have proven controversial with respect
to this issue. Some studies have also linked this area with eye movements», but other studies have argued
for a functional role of this region in more complex cognitive and/or affective processes’. Based on pilot
work for this study and other unpublished observations, we have found it difficult to elicit any cerebellar
activation with a simple saccadic eye movement task. In contrast, we observed robust activation in this
area during the visual search task, even when accounting for the average number of saccades made during
a 30 second block. Thus, our results offer a novel perspective on the functional role of this region,
indicating that the hemodynamic signal here is driven by eye-movements performed under high attentional

demands.

The identification of this oculomotor region is also of interest given that prior studies have
suggested that vermal activation in lobule VI is associated with emotional processing’. Conditions in our
battery designed to engage emotional and affective processing (e.g., static images of unpleasant and
pleasant scenes, sad faces) only weakly activated this region. Given the strong association of this region
with eye movements, it may be that the prior activations were more related to differences in saccadic eye
movements between conditions, rather than the emotional and affective processing demands of the tasks.
Further support for this hypothesis comes from task-free fMRI studies showing that the oculomotor vermis

is functionally connected to visual regions of the cerebral cortex+. An obvious challenge for future research
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is to explore how variation in eye movements, affective processing, and attentional demands interact in

driving activation within this region.

Conclusions

This paper presents a comprehensive multi-domain task battery for the human cerebellum, unique in its
functional diversity and amount of data per individual. The group and individual task contrast maps and
the group parcellations are made available at diedrichsenlab.org/imaging/mdtb.htm. We anticipate that
this resource will be useful for two important applications. First, the data, combined with our novel
evaluation criterion, provides a quantitative assessment of functionally defined boundaries, something that
has been absent in prior studies. Given that our acquisition parameters covered the entire brain, the
methods presented here can be used to evaluate parcellations of the neocortex and other brain structures.
Second, the novel MDTB parcellations provide an important tool to define functional regions of the
cerebellum. Our analyses clearly show that the MDTB parcellations predict functional boundaries in a
novel set of tasks better than existing task-free parcellations. Moreover, each region can be characterized
by a rich functional task-profile, allowing for a characterization of the associated cognitive processes. For
future research, the parcellation and the associated features can provide a useful guide in designing studies
to test specific functional hypotheses, and to provide a reference for interpreting the results. The MDTB
functional parcellation should also be of considerable utility for translational work, given the hypothesized
involvement of cerebellar dysfunction in a range of neurological and psychiatric disorders”. A
functionally-defined parcellation can help reveal dysfunction in specific cerebellar regions and cerebro-

cerebellar circuits», providing further insight into the interaction between the cerebellum and neocortex.
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Methods

Participants

All participants gave informed consent under an experimental protocol approved by the Institutional
Review Board at Western University. A total of 31 participants were scanned performing set A, and 26 of
this original cohort returned to perform set B (mean break between sessions = 166 days; SD=153 days,
with half returning about a year later and the other half having sessions separated by 2-3 weeks). The five
participants who did not return for set B were not included in the analyses. Two additional participants
were excluded from the analyses as they failed to complete all 32 scanning runs. Therefore, the final
sample for the multi-domain task battery (MDTB) consisted of 24 healthy individuals (16 females, 8
males; mean age=23.8 years old, SD=2.6) with no self-reported history of neurological or psychiatric
illness. All participants self-reported as right-handed (Edinburgh Handedness Inventory > 40). The sample
size was chosen to allow for an accurate assessment of the inter-subject variability of the functional

organisation of the cerebellum (see also Life Science Reporting Summary).

Experimental tasks

The experimental tasks included in set A were chosen to engage a wide range of processing domains
(cognitive, motor, affective, social), in many cases drawing on tasks that had previously been shown to
engage the cerebellum. While recognizing that our selection process was somewhat arbitrary and that the
tasks would differ on a number of different dimensions, our main criterion was to use a large battery that
broadly sampled different functional domains. A full description of the tasks, along with the

accompanying references is provided in Supplementary Table 1.

Set B included 8 tasks that had been included in set A (shared tasks, e.g., i.e. theory of mind, finger
sequence) and 9 unique tasks. The shared tasks provided a means to establish a common baseline across
the two task sets. This enables between-task comparison across task sets, which is done by subtracting the
mean activation pattern of the shared tasks from each task set. Only tasks that were successful at eliciting
activation in the cerebellar cortex in set A were included as shared tasks in set B. For some of the novel
tasks, we selected conditions that are thought to assay similar processing domains as in task set A. For
example, both sets included working memory tasks, but the tasks involved different stimulus dimensions
(e.g., verbal working memory in set A and spatial mapping in set B). Other tasks (for example the

naturalistic movie-viewing tasks) were novel in task set B.
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Experimental design

Each set consisted of 17 tasks. In every imaging run, each task was performed once for 35 s. The 35 s
block was divided into a 5 s instruction period, where the task name (e.g., ‘“Theory of Mind Task’), the
response effector (‘Use your LEFT hand’) and the button-to-response assignment (‘1 = false belief. 2 =
true belief’) were presented on the screen. This was followed by a 30 s period of continuous task
performance. In general, novel stimuli were introduced across imaging runs to prevent participants from
learning specific stimulus-response associations. The one exception was the motor imagery task in which
participants were required to imagine playing a game of tennis. The number of trials within the 30 s block
varied from 1 (e.g., the movie viewing and mentalizing tasks) to 30 (e.g., Go-No-Go task). Most tasks
involved 10-15 trials per block. The motivation for testing all tasks within a scanning run, as opposed to
testing one task in each run, was to ensure a common baseline for all tasks, enabling between-task

comparisons.

Three of the shared tasks (object N-Back, visual search, semantic retrieval) had a rapid, discrete
trial structure (15/block), whereby each unique stimulus (picture, letter, noun) was presented for 1.6 s,
with the response required to be completed within this window, followed by an inter-trial interval (ITI) of
400 ms. Three of the shared tasks had a slower discrete trial structure: sequence motor task (trials=8; trial
duration=4.6 s; ITI=400 ms), theory of mind (trials=2; duration = 14.6 s; ITI=400 ms) and action
observation (trials=2; duration=14 s; ITI=1 s). The remaining two shared tasks, spatial imagery and rest

did not have a discrete trial structure (duration=30 s).

Of the nine unique tasks in set A, six had the rapid discrete trial structure (interval timing, IAPS
affective, IAPS emotional, verbal N-back, motor imagery, stroop, math, passive viewing: trial=15,
duration=1.6 s, IT[=400 ms; go/no-go: trials=30; duration=800 ms; ITI=200 ms). The math task was
comprised of 10 trials (duration=2.6 s; ITI=400 ms). The motor imagery task did not have a discrete trial

structure (duration=30 s).

Of the nine unique tasks in set B, six had a discrete trial structure: The prediction, spatial map, and
response alternatives tasks entailed 6 trials/block (duration=4.8 s; ITI=200 ms), the mental rotation task 9
trials/block (duration=3 s; ITI=300 ms), the biological motion task 10 trials/block (duration=3 s; ITI=0 s),
and the permuted rules task 4 trials/block (duration=7.3 s; ITI=200 ms). The three movie-viewing tasks

(landscape, animated, and nature) did not have a discrete trial structure (duration=30 s).
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Hand assignment across tasks

For each task requiring responses, the responses were made with either the left, right, or both hands using
four-key button boxes. Hand assignment was consistent for sets A and B for the shared tasks. For tasks
requiring 2-choice discrimination, responses were made with the index or middle finger of the assigned
hand while responses for tasks requiring 4-choice discrimination were made with the index and middle
fingers of both hands. By including a motor feature model in our analysis (see below), we were able to

account for the motor requirements across the tasks.

Behavioral training

For each task set, participants completed three days of training prior to the first scanning session. Training
included all of the tasks with the exception of the rest condition and the three movies (set B). For each set,
the three training sessions took place over the course of four to seven days (set A: mean number of

days=5.2, SD=3.5; set B: mean number of days=4.4, SD=1.8).

The first day was used to familiarize the participants with the requirements for each of the 17 tasks.
The participants were instructed to carefully read the instructions. When ready, they initiated a 35 s
training block. The number of training blocks differed depending on the perceived level of difficulty of
the task. For example, the 2AFC picture-based tasks (IAPS affective, IAPS emotional) were practiced for
three blocks, while the Stroop task was practiced for seven blocks. During this training session, a run
consisted of consecutive blocks of the same task. On-line feedback was provided for response-dependent
tasks (green or red squares to indicate correct or incorrect responses, respectively). At the end of each run,

an overall accuracy score was provided concerning performance on the tasks requiring a button response.

On the second training day, the switching between tasks was introduced. Participants were given
six runs of training, with each run composed of one block for each of 11 tasks that required manual
responses. As on day 1, the timing for the first four run was self-paced, with the participants allowed to
read the instructions at their own pace prior to initiating the 30 s block. For the final two practice runs,
the instruction phase was limited to 5 s, thus introducing the protocol that would be used in the scanner.
Training on this day only included tasks that required overt responses. On the third training day, the
participants practiced all 17 tasks in four 10-minute runs (35 s/task), emulating the protocol to be used in

the scanner sessions.

This training program ensured that participants were familiar with the requirements for each task

and had considerable experience in switching between tasks. In this manner, we sought to minimize the
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impact of learning during the scanning sessions. On the third training day, performance was asymptotic,
with the participants correct on at least 85% of the trials for all of the tasks (range = 85% to 98%; see Fig
S3).

Eye tracking

Eye-tracking data were recorded on the third training session to obtain an estimate of saccadic eye
movements for each of the tasks. An algorithm implemented in the Eyelink toolbox* identified saccadic
eye movements as events in which eye velocity briefly exceeded a threshold of 30deg/s. These data,
tabulated as the mean number of eye movements per task, were included as a motor feature in the second-
level feature model (see below). Eye-tracking data from two participants in set A and three participants
in set B were not obtained due to technical problems. However, since the eye-movement behavior was

consistent across participants, we used group-based estimates.

Scanning sessions

Participants completed four scanning sessions in total, two with set A and two with set B. The first
scanning session for each set was conducted within a few days of the final training session (set A:
mean=2.0 days, SD=1.6 days; set B: mean=2.2 days, SD=1.7) and the second scanning session was
completed no more than 7 days after the first scanning session (set A: mean=3.1 days, SD=2.5; set B:
mean=2.7 days, SD=2.3). Each scanning session consisted of eight imaging runs (10 min/run). Each of
the 17 tasks was presented once for 35 s in each imaging run, producing 16 independent measurements
per task. The task order was randomized across runs. To reduce order effects within each set, no two tasks
were presented in the same order in two different runs. The order within each run, as well as the order of
the runs, was kept constant for all of the participants. This procedure was chosen to allow for cross-
participant analyses on the time series level (results not presented here). As noted above, when possible,

novel stimuli were used in each run to reduce the recall of specific stimulus-response associations.

Image acquisition

All fMRI data were acquired on a 3T Siemens Prisma at the Centre for Functional and Metabolic Mapping
at Western University. Whole-brain functional images were acquired using an EPI sequence with multi-
band acceleration (factor 3, interleaved) and in-plane acceleration (factor 2), developed at the Centre for
Magnetic Resonance Research at the University of Minnesota. Imaging parameters were: TR=1 sec,

FOV=20.8cm, phase encoding direction P to A, 48 slices, 3 mm thickness, in-plane resolution 2.5 mm x



25

2.5 mm. GRE field maps were acquired for distortion correction of the EPI images due to BO
inhomogeneities (TR=.5 s, FOV=24 cm, 46 slices with in-plane resolution of 3 mm x 3 mm x 3 mm). We
also acquired on-line physiological recordings of both heart and respiration during each functional run.
For anatomical localization and normalization, a 5 min high-resolution scan of the whole brain was

acquired (MPRAGE, FOV=15.6 cm x 24 cm x 24 cm, at 1x1x1 mm voxel size).

Image preprocessing

Data preprocessing was carried out using tools from SPM 12», Caret®, and SUIT», as well as custom-
written scripts written in MATLAB 2015b. For all participants, the anatomical image was acquired in the
first scanning session. Functional data were re-aligned for head motion within each session, and for
different head positions across sessions using the 6-parameter rigid body transformation. The mean
functional image was then co-registered to the anatomical image, and this transformation was applied to

all functional images. No smoothing or group normalization was applied.

General linear model

A general linear model (GLM) was fit to the time series of each voxel separately for each imaging run.
The 5 s instruction phase for all tasks was modeled using a single regressor, but not included in later
analyses. Each task was modeled using a boxcar regressor of 30 s, or a combination of multiple regressors
if the block contained sub-conditions. These regressors could be 2 boxcar regressors of 15 s each (e.g., N-
back task where one sub-condition is 0-Back and the second is 2-Back), 3 boxcar regressors of 10 s each
(e.g., visual search, display sizes of 4, 8, or 12), or 2 event-related regressors (e.g., Stroop task, where each
trial was congruent or incongruent). The rest condition was not modeled explicitly, but rather used as an

implicit baseline in the model.

The quality of the GLM in modeling the BOLD response was determined by measuring the
consistency of the activation patterns in the cerebellum across runs. This measure indicated that it was
advantageous to omit the traditional high-pass filtering operation before the linear model (default
operation in SPM). Instead, we opted to rely on the high-dimensional temporal autocorrelation model
(FAST option in SPM) to determine the optimal filtering, implemented in the GLM-estimation. The beta-
weights from the first-level GLM were univariately pre-whitened by dividing them by the square root of
the residual mean square image. To include rest as a task condition in all subsequent analyses, we added

a zero as an estimate for the rest condition and then removed the mean for each voxel across all conditions.
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As such, the beta-weights expressed the amount of activation elicited by each condition relative to the

mean of all conditions.

To combine activation estimates across the two tasks sets, the mean of the shared tasks was
removed separately for each set. Both sets were then combined, retaining the repeated estimates for the
shared task. This resulted in a total of 61 estimates (set A: 29; set B: 32) for the 47 unique conditions. The

activation patterns were re-centered by removing the overall mean across all 61 conditions.

Cerebellar spatial normalization

The spatially unbiased infratentorial template (SUIT) toolbox (v3.2) in SPM 12 was used to isolate the
cerebellum from the rest of the brain and to provide a normalization to a spatially unbiased template of
the cerebellum*. The resulting cerebellar isolation mask was hand corrected to ensure that it did not contain
any shared voxels between the superior cerebellum and the directly abutting cerebral cortical regions of

the inferior temporal and occipital cortex.

The probabilistic maps for the cerebellum were normalized into SUIT space using the
diffeomorphic anatomical registration (DARTEL) algorithm*. This algorithm deforms the cerebellum to
simultaneously fit the probability maps of cerebellar gray and white matter onto the SUIT atlas template.
This non-linear deformation was applied to both the anatomical and functional data. The activation
estimates (i.e., the beta weights), and residual mean-square images from the first-level GLM were resliced
into SUIT space. All images were masked with the cerebellar mask to avoid activation influences from
the inferior occipital cortex. All data were visualized on a surface-based, flat-map representation of the
cerebellar cortex in the SUIT toolbox. The flat-map representation allows the spatial extent of task-evoked
activation patterns to be fully visualized. Note that this flat-map is not a true unfolding of the cerebellar

cortex, but averages over a substantial number of folia. It is therefore meant for display purposes only*.

Motor feature model

Our primary goal was to study the task-evoked activation patterns in the cerebellum beyond the well-
known domain of motor function. Although not designed explicitly to measure motor-related activation,
the 61 task conditions differed in the number of manual responses, as well as eye movements. To account
for these motor-related activations, we generated a motor feature model (task conditions x 3 motor
features). For the hand movements, we entered the number of left and right hand presses for each task

during the scanner runs. For eye movements, we used the group-averaged eye movement data from the
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third training day to estimate the number of saccades for each task condition. All motor features were

encoded in terms of movements/s and z-normalized.

To extract and remove the motor-related activation across tasks, the three motor features were
combined with an indicator matrix that had a 1 for each of the 61 task conditions. To estimate and
subsequently remove the influence of the motor features, we estimated the linear model with L2-norm
regression (fixed lambda of .01) from the beta-estimates of each participant (task conditions x voxels x
participant). The average of all task conditions was used as a baseline measure and subtracted from the
motor-corrected activation estimates. The activation estimates for the shared tasks were first averaged and

then a group average was computed for the purposes of visualization on the cerebellar flat-map+.

Reliability of activation patterns

To determine intra-subject reliability across the entire cerebellar cortex, we calculated the correlation
between the average activation estimates for the first and second session for each task set, separately for
each participant. To obtain an overall reliability, we stacked the 29 (A) or 32 (B) activation estimates for
all cerebellar voxels into a single vector and calculated the Pearson correlation between the two estimates.
For Fig le this analysis was also performed for each voxel separately. The group-averaged correlations

were then visualized on the cerebellar flat-map.

Spatial frequency of activation patterns

To determine how much of the variance of the activation patterns was common to the group relative to
how much was idiosyncratic to the individual participants, we calculated two correlations, one between
task-activity maps between two sessions for the same participant (as for the reliability), and the second
between sessions of different participants. Correlations were computed on all gray matter voxels in SUIT
space. To determine the spatial scale of these common activation patterns, we decomposed the volume
image for each task condition into five spatial frequency bands ranging from O to 5 cycles/cm. This
decomposition was done separately for each participant, study, session, and task condition. The within-

and between-subject correlations were then computed for each spatial frequency band.

Evaluating functional boundaries

We developed a novel method to evaluate functional boundaries from fMRI data. The rationale of the
method is that, if a boundary is dividing two functionally heterogeneous regions, then two voxels that lie
within the same region should have more similar functional profiles than two voxels that are in different

regions (Fig 2a; Eq. 1). Because functional organization tends to be smooth, the correlation between two
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voxels will be higher for two adjacent voxels, and fall off as the spatial distance increases®. To control for
distance, we calculated the activation pattern correlations for all pairs of voxels separated by a specific
Euclidean distance, using spatial bins ranging from 4 mm to 35 mm. Of course, it would have been
preferable to measure the distance on the cerebellar cortical sheet, rather than in the volume. However, a
veridical surface reconstruction of the cerebellar folia is only possible for resolutions better than 0.2mm
(Sereno, Diedrichsen, Tachrount, Silva, & De Zeeuw., 2014, Society for Neuroscience Abstracts (733)).
The use of volumetric distances will slightly favor lobular boundaries, as two voxels within the same
lobule will tend to be closer on the cerebellar cortex than two voxels separated by a fissure, even if their
distance in the volume is matched. To exclude spatial correlations that were driven by noise, we used a
cross-validated correlation. Using u, to represent the functional profile (zero-meaned) of voxel i from one
session, and u,, the functional profile of voxel j from the other session, the correlation was calculated as:
%Zi.j(”€1"i.2+"iT,2"j,1)

- )
T T
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Equation 1

where the sum was done on all voxel pairs 7,j in the corresponding 5 mm bin. Separate correlations were
calculated for voxel pairs from the same region (within) and those in which the voxel pairs came from
different regions (between). We excluded voxels where the term uiT'l u; , was negative, as it indicated the
absence of any reliable tuning across the two sessions. The difference between the within-region
correlation and the between-region correlation defined the distance controlled boundary coefficient
(DCBC). A positive DCBC value indicates that voxel pairs originating from the same region are more
functionally related than voxel pairs that lie across boundaries. The DCBC was calculated for each

participant and spatial bin separately, and then averaged.

The DCBC can serve not only as a global measure of a parcellation (averaging across the
cerebellum and spatial bins), but also as a measure to evaluate the strength of individual boundaries. For
the latter, we first identified boundaries using an edge-based connectivity scheme*. The strength of a given
boundary is defined by the DCBC calculated only on the voxel pairs from the two regions that are
separated by that boundary. To visualize boundary strength, the thickness of the boundary on the flat-map

was based on its DCBC value.

We applied this boundary evaluation procedure to MDTB parcellations, as well as parcellations
based on lobular boundaries or task-free fMRI data. The lobular parcellation was obtained from a

probabilistic atlas of the human cerebellum» that includes regions for lobules I-IV, V, VI, Crus I, Crus II,
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VIIb, VIIIa, VIlla, IX, and X. To ensure that that poor performance of the lobular parcellation was not
due to inaccuracies in detecting the lobular boundaries, we repeated the analysis using a manual lobular
parcellation in five participants. The parcellation from this sample predicted functional boundaries about
as well as the one derived from the probabilistic atlas (DCBC: .022 vs. .025; t=1.441. p=0.209). The task-
free 10-region parcellation® was based on data archived as part of the Human Connectome Project (HCP),
while the other two were based on a large 1000-person dataset collected at Harvard and Massachusetts
General Hospital*. All parcellations were sampled into SUIT space and evaluated using our multi-domain

task battery.

Multi-domain task dataset (MDTB) parcellation

To derive a parcellation from the MDTB, we used the activation profiles of gray-matter voxels averaged
in SUIT volumetric space across participants. We used convex nonnegative matrix factorization” to
decompose the N (tasks) x P (voxels) data matrix into a product of an N x Q (regions) matrix of task
profiles and an Q x P matrix of voxel weights. The voxel weights, but not the task profiles, are constrained
to be non-negative. Furthermore, the task profiles are convex combinations of the raw data. In comparison
to other decomposition methods, such as independent component analysis (ICA), this method has the
advantage that voxels cannot be explained by an inverted or negative regional task profile. This constraint
is also reasonable given that mossy fiber input, the main neural signal driving the BOLD response in the
cerebellum, is excitatory”. To ensure convergence, we started the decomposition with random
initializations, and selected the iteration with the best reconstruction of the original data. A winner-take-

all approach was adopted to assign each voxel to the region with the highest weight.

To allow for a direct comparison with existing task-free parcellations*, we used parcellations with
7, 10, and 17 regions (Fig S5d-f). Parcellations involving regions within this range achieved similar

reconstruction accuracy and quality of functional boundaries.

We also derived separate parcellations for each participant to determine whether boundaries could
be predicted better using an individual approach. An advantage of the individual parcellation is that
idiosyncrasies of within-subject organisation are captured. The disadvantage is that individual

parcellations are derived on substantially less data than the group.
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Bootstrap analysis

To obtain a measure of boundary uncertainty, we performed bootstrap analyses across both participants
and task conditions. For the participant bootstrap, we repeatedly drew 24 participants (with replacement)
from our sample, averaged the data, and derived a new functional parcellation. To be able to relate the
parcellations to each other, each parcellation used the original solution as a starting value. For the task
bootstrap, we repeatedly drew 47 task conditions (with replacement) from our data, again deriving a new

parcellation each time. For each analysis, we repeated this process 100 times.

To evaluate the consistency of the parcellations globally, we calculated the adjusted Rand Index,
which measures the correspondence between two parcellations (0: overlap not different from chance, 1:
perfect overlap). For a regionally specific analysis, we counted the number of times that each voxel was
assigned to the same (most frequent) region. For visual display (Fig 3d), we then used this assignment
certainty to determine the transparency of the region coloring (<50%: fully transparent, 100%: fully

opaque).

Evaluation of functional parcellations

To evaluate the group and individual MDTB parcellations, we wanted to know how well functional
boundaries could be predicted for each participant, using a completely novel set of tasks. Because we did
not acquire data with a third, independent task set, we used the existing data to estimate lower and upper
bounds of predictability. For the lower bound, we derived the parcellation using the data from set A and
evaluated it with the data from set B, using the unique tasks only. This procedure was then repeated with
the task sets reversed, and the results were averaged across the two cross-validation folds. Note that the
outcome of this analysis will likely result in a lower value than would be obtained with the final
segmentation, as each parcellation is based on half of the available data. As such, we use this estimate as
an approximate lower bound. We also evaluated a parcellation derived from both sets A and B. We
evaluated this parcellation as before, excluding the shared tasks from both task sets to make the estimate
consistent with the lower-bound estimate. Because there is overlap between the data used for training and
evaluation, the performance measure here is overfit and, therefore, was taken as an approximate upper
bound. The true performance of the full parcellation, if applied to a completely new task set, would likely

fall between these lower and upper bounds.
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The anatomical and task-free parcellations could be directly evaluated on the MDTB data since
each parcellation was derived from independent data. For consistency, we excluded the data from the

shared tasks in the evaluation set.

To evaluate the degree to which the results depended on the similarity of the tasks in the training
and test sets, we repeated the analysis, this time selecting the 7 most distinct task conditions in each test
set (Fig S6). The conditions were selected by computing the distance between activity patterns for each
test condition to each training condition (Fig S4a). We then identified, for each test condition the closest

match in the training set and selected the 7 test conditions for which this closest match was most dissimilar.

To further validate our results, we evaluated the MDTB and task-free parcellations on the task-
based data from the HCP dataset (https://db.humanconnectome.org) . We utilized data from the 214 most
recently added participants (scanned at 3T). Of the 214, 186 participants had complete data sets, and these
constituted our final sample. For each participant, we evaluated the parcellations on a set of 22 contrast

maps from 7 tasks (all against rest).

Representational structure of task-related activation patterns

Representational similarity analysis” (RSA) was used to investigate the representational structure of task-
related activation patterns from the MDTB cerebellar data. The dissimilarity between the motor-corrected
activation patterns was measured for each pair of task conditions using the cross-validated Mahalanobis
distance, using the imaging runs as independent partitions*. To calculate the distances between conditions
across the sets, we subtracted the mean of the shared task conditions from each imaging run first. Cross-
validation ensures that the average (expected) value of the dissimilarity measure is zero if the two
activation patterns only differ by noise. This allowed us to test for significant differences between

activation patterns using a one-sample t-test against zero.

Classical multidimensional scaling (MDS) was employed to visualize the distances between all
possible pairs of task conditions. For the purposes of visualization, the pairwise distances for the shared
tasks were averaged so that there were 47 (rather than 61) task conditions in the representational
dissimilarity matrix (RDM). MDS projects the N-dimensional RDM into a lower-dimensional space so
that distances from the higher space are preserved with as much integrity as possible. MDS was performed

on the group-averaged RDM, and the first three dimensions were visualized in a 3-dimensional space.
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Feature-based approach

The power of our task-based approach in studying the cerebellum is that we can identify the involvement
of each region across functional domains and different task variations. To summarize the task activation
profiles for each region, we used a feature-based encoding model. The features included the three motor
features (see above) and cognitive features, selected to capture the hypothetical mental processes involved
in each task. To derive these features, we used an online cognitive ontology*, an atlas of tasks and the
concepts associated with those tasks. Of the 815 concepts currently included in the atlas, 46 were judged
to provide an appropriate and sufficient characterization of the tasks in our battery, creating a feature
matrix (47 task conditions x 46 features). For example, features such as semantic knowledge and lexical
processing were associated with tasks such as verb generation and semantic prediction; emotion
recognition was associated with the IAPS emotional processing task and the biological motion task. As
with the motor feature model, each feature was z-standardized and feature weights for each region were
estimated with non-negative regression. For visualization purposes, the three highest weights for each

region were computed.

Statistical analysis and inference

Unless otherwise noted, all statistical tests were based on the N=24 participants of our sample,
considering participants a random effect. Therefore, all t-tests were repeated measures with 23 degrees
of freedom. Only the analysis presented in Fig 4e is based on the HCP task data and was therefore based
on N=186 participants. All t-tests were two-sided. Data distribution was assumed to be normal, but this

was not formally tested.

Data availability

The activation maps and functional parcellations are made available on
diedrichsenlab.org/imaging/mdtb.htm. The raw behavioral and imaging data for the cerebellum is also
available on the data-sharing repository openneuro.org. Experimental code is available at

github.com/maedbhk/MDTB-Cerebellum.
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Supplementary Figures

Task Name Task Description Dataset Conditions Hand
Assignment
Object Viewing Passive viewing, pictures of objects and a checkerboard pattern. A None
Motor Imagery~ Imagine playing a game of tennis. A None
Stroop* 3AFC, indicating color of stimulus word (3 colors), comparing | A Congruent Both
conditions in which color-word mapping is congruent or Incongruent
incongruent (Stroop task).
Verbal Working | 2AFC, indicating if current stimulus in stream of letters matches | A 2-Back Left
Memory* letter displayed two items previously (2-back). 0-Back
Interval Timing" 2AFC, indicating if a tone is short (100ms) or long (175ms) A Right
Arithmetic® 2AFC, indicating if simple multiplication equations (e.g. 2x7=14) | A Math Right
are correct or incorrect. For control task, participants view a series Digit Judgment
of four numbers and indicate presence/absence of target number
(e.g., 1).
IAPS affective* 2AFC, indicating if picture (scenes, animals, foods) is pleasant or | A Pleasant Scenes Left
unpleasant. Unpleasant Scenes
IAPS emotion* 2AFC, indicating if picture depicts sad or happy face. A Happy Faces Right
Sad Faces




Go/No-Go- Go-NoGo task with positive (Go) or negative (No Go) words. A Go Left
No Go
Theory of Mind« 2AFC to indicate if short story contains true or false belief (Theory | A & B Left
of Mind task)
Rest Passive viewing of fixation cross. A&B None
Object N-Back As above, with objects instead of letters (2-back). A&B 2-Back Right
0-Back
Verb Generation” Verb generation task requiring covert responses to visually- | A & B Verb Generation None
presented nouns, either repeating the stimulus (Read) or generating Word Reading
a verb associated with the noun (Generate).
Spatial Imagery~ Imagine walking from room to room in childhood home, withacue | A & B None
specifying the path to be taken (e.g., “Imagine walking from the
kitchen to the bedroom, stopping to look around at different
rooms”).
Motor Sequence* 6-element sequence, either requiring one key press with each of six | A & B Finger Sequence Both
fingers (bimanual) or repetition of a single key press with one Finger Simple
finger (unimanual left or right).
Action Observation~ | Passive viewing of videos of knots being tied, learning the name of | A & B Video Actions None
the knot (presented at top of screen) for a latter recall test. Video Knots
Visual Search= 2AFC, indicating if target stimulus (“L”) is present among | A & B Small (4) Left
distractors (“T”), with varying set size (4, 8, 12). Medium (8)
Large (12)
Spatial Map Memorize a spatial mapping of numbers (either, 1, 4, or 7) for | B Easy (1) Both
subsequent recall Medium (4)
Hard (7)
Mental Rotation* Mentally rotate target object to determine whether it can be brought | B Easy (0) Right
into alignment with baseline object. Difficulty is measured by Medium (50)
angular disparity between target and baseline image. Stimuli were
obtained from Ganis and Kievit (2015)- Hard (150)
Biological Motion® | 2AFC to identify intact point-light walkers (either happy or sad) or | B Biological Motion Right
scrambled walkers (fast or slow). Stimuli obtained from Troje et Scrambled Motion
al. (2017)=
Concrete Permuted | Apply task-rule set (logic, sensory, & motor rules) to two | B Both
Rules  Operations | consecutively presented stimuli (rectangles: either red or blue,
(CPRO)+ vertical or horizontal)
Word Prediction* 2AFC task to indicate if five sequentially-presented words | B Prediction Left
comprise a semantically meaningful sentence. Stimuli obtained Prediction Violated
from D’Mello et al. (2017)+ ..
Prediction Scrambled
Response Execute a fast motor response to an imperative signal (white cross) | B Easy (1) Both
Alternatives” that appears in one of 1, 2, or 4 primed positions Medium (2)
Hard (4)
Nature Movie* Passive viewing of a nature clip of kickboxing kangaroos, taken | B None

from “Planet Earth II: Islands”

34
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Animated Movie~ Passive viewing of an emotional love story between two characters | B None
from the Pixar movie “Up”

Landscape Movie® | Passive viewing of an aesthetically-pleasing clip that depicts a | B None
diverse scenery, taken from Vimeo

Table S1. Task set description for all 26 unique tasks and 47 unique conditions. Tasks that require overt

motor responses are executed either with the left, right, or both hands.

No-Go Go Unpleasant Pleasant Math Digit Judgment Object Viewing Rest Interval Timing Motor Imagery Verbal 0Back  Verbal 2Back
Acti Fi ial
Stroop Stroop Happy Faces Sad Faces Video Knots ction Finger Simple inger Theory of Mind Spatia Object 0Back  Object 2Back

Incongruent Observation Sequence Imagery
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Word Verb Visual Search  Visual Search  Visual Search Permuted True Violated Scrambled Spatial Map Spatial Map Spatial Map
Reading Generation easy medium Prediction Prediction Prediction easy medium hard
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Biological Scrambled Resp. Alt Resp. Alt Resp.Alt  Mental Rotation Mental Rotation Mental Rotation Nature Landscape Animated
Motion Motion easy medium hard easy medium hard Movie Movie Movie
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Figure S1. Unthresholded, group-averaged activation maps for the 47 unique task conditions displayed

a.u

on a surface-based representation of the cerebellar cortex*. All activations are calculated relative to the
mean activation across all conditions. Red-to-yellow colors indicate increases in activation and blue
colors indicate decreases in activation. Activity is normalized by the root-mean-square-error of the time-

series fit for each voxel.
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Figure S2. Unthresholded, individual activation maps for 4 representative tasks and motor feature maps
for 11 representative participants. All activations are calculated relative to the mean activation across all
conditions. Red-to-yellow colors indicate increases in activation and blue colors indicate decreases in

activation. Activity is normalized by the root-mean-square-error of the time-series fit for each voxel.

IAPS Emotion
095!t Average Task
S .
> Spatial Map
© 09f
>
v
)
<
0.85f
L~
4/
0 L L
1 16

Runs



37

Figure S3. Stability of task performance. Percent accuracy, averaged across two scanning sessions, each
composed of eight runs. Average across all tasks is shown in black. Poorest performance was on the
spatial map task (red line) and best performance was on the IAPS emotion task (green line). Error-bars

indicate between-subject (N=24) standard error.
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Figure S4. Representational task space for 47 unique task conditions. (a) Group-averaged
representational dissimilarity matrix (RDM) data for the unique 47 task conditions. Shared tasks are
averaged across the four scanning sessions. Dark blue represents low dissimilarity between pairwise task-
evoked activity patterns while high distances (bright yellow) represent high dissimilarity between pairwise
task-evoked activity patterns. Thresholded values are shown below the diagonal (dark blue cells indicating
pairwise comparisons between task conditions were not significant (p<.001, e .g., pleasant and unpleasant
scenes). (b) A multi-dimensional scaling plot (MDS, using first three PCs for display purposes), showing
the relative similarity of the task-evoked activity patterns after correction for activity related to basic
motor output. Hierarchical clustering was applied to the tasks, with colors in both the RDM and MDS

indicating cluster membership.
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Figure S5. Comparison of task-based and task-free parcellations. 7, 10, and 17 region parcellations
derived from task-free HCP (a-c) and MDTB (d-f) data. (g) Average Rand coefficient between task-free
parcellations, computed locally (1cm sphere) around each cerebellar voxel. (h) Average Rand coefficient

between MDTB parcellations. (i) Average difference of Rand coefficients for the MDTB and task-free

parcellations.
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Figure S6. Cross-validated evaluation of MDTB parcellation on a subset of 7 tasks, selected to be most
dissimilar to task conditions included in the data set. For comparison purposes, task-free parcellations
are evaluated on the same tasks. (a) MDTB parcellation trained on Set A and evaluated on 7 tasks from
Set B (Mental Rotation Easy, Mental Rotation Medium, Mental Rotation Hard, Spatial Map Medium,
Spatial Map Hard, Animated Movie, and Nature Movie). (b) MDTB parcellation trained on Set B and
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evaluated on 7 tasks from Set A (Sad Faces, Interval Timing, Go, Theory of Mind, Word Reading, Motor

Imagery, Math). Error-bars indicate between-subject standard error (N=24).
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Figure S7. Pearson correlation between the task-profiles of the 10 regions of the MDTB parcellation. The
values in the correlation matrix are scaled between 0 (blue) and 1 (yellow). The bar on the right denotes

the colors of each of the 10 regions (see Fig 5).
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