2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

HART: A Concurrent Hash-Assisted Radix Tree for
DRAM-PM Hybrid Memory Systems

Wen Pan
Computational Science Research Center
San Diego State University
San Diego, USA
wpan@sdsu.edu

Abstract—Persistent memory (PM) exhibits a huge potential
to provide applications with a hybrid memory system where
both DRAM and PM are directly connected to a CPU. In
such a system, an efficient indexing data structure such as a
persistent tree becomes an indispensable component. Designing a
capable persistent tree, however, is challenging as it has to ensure
consistency, persistence, and scalability without substantially
degrading performance. Besides, it needs to prevent persistent
memory leaks. While hash table has been widely used for main
memory indexing due to its superior performance in random
query, ART (Adaptive Radix Tree) is inherently better than
B/B*-tree in most basic operations on both DRAM and PM. To
exploit their complementary merits, in this paper we propose
a novel concurrent and persistent tree called HART (Hash-
assisted ART), which employs a hash table to manage ARTs.
HART employs a selective consistency/persistence mechanism
and an enhanced persistent memory allocator, which can not
only optimize its performance but also prevent persistent memory
leaks. Experimental results show that in most cases HART
significantly outperforms WOART and FPTree, two state-of-the-
art persistent trees. Also, it scales well in concurrent scenarios.

Index Terms—ART, hash table, persistent tree, selective con-
sistency/persistence, concurrent access, persistent memory leak

I. INTRODUCTION

Persistent memory (PM, also called storage class memory
or SCM) is a byte-addressable non-volatile memory (NVM),
which can be directly connected to the main memory bus and
accessed by CPU through load/store instructions [1]. Emerging
PM technologies include 3D XPoint [2], phase change memory
(PCM), spin-transfer torque memory (STT-RAM), resistive
memory (RRAM), FeRAM, and memristor. Their near-DRAM
performance plus DRAM-like byte-addressability as well as
disk-like persistence and capacity inspire a DRAM-PM hybrid
memory system where PM is connected directly to a CPU [3].
In such a system, most modules of an operating system are
still running on DRAM while a PM-oriented file system (e.g.,
PMEFS [1] or NOVA [4]) or a key-value store (e.g., HIKV [5])
managing user data on a PM device. Obviously, an efficient
persistent indexing data structure such as a persistent indexing
tree (hereafter, persistent tree) becomes indispensable.

This work is sponsored by the U.S. National Science Foundation under
grant CNS-1813485.

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/1PDPS.2019.00100

Tao Xie
Department of Computer Science
San Diego State University
San Diego, USA
txie@sdsu.edu

921

Xiaojia Song
Computational Science Research Center
San Diego State University
San Diego, USA
xsong2 @sdsu.edu

Designing a capable persistent tree, however, is challenging
[6]. Unlike its volatile counterpart, a persistent tree has to en-
sure data consistency when a system failure occurs. Otherwise,
if an update is being carried out on a data structure in PM
when a system crash happens, it could be left in a corrupted
state. Thus, a data consistency mechanism is required to solve
this problem. Unfortunately, prior studies found that most data
consistency mechanisms like logging or copy-on-write (CoW)
incur a significant performance penalty [6], [7]. Developing
a persistent tree that can ensure data consistency without
substantially degrading performance becomes a challenge.
Besides, a persistent tree needs to prevent persistent memory
leaks [8]. Memory leaks are more detrimental for PM than for
DRAM because they are persistent in PM [8].

Several persistent trees [3], [6]-[9] have been proposed
recently. Most of them are a variant of either a B-tree [3]
or a B*-tree [6], [8], [9]. Lee et al., however, proposed three
persistent trees that are variants of a radix tree [7]. In fact, a
radix tree is more appropriate to PM due to some of its unique
features. For example, the height of a radix tree depends on
the length of the keys rather than the number of records [10].
Besides, it does not demand tree re-balancing operations and
node granularity updates [10]. We found that existing B/B*-
tree based persistent trees [3], [6], [8], [9] face two dilemmas.
First, they are in a dilemma in deciding whether or not to keep
nodes sorted. In a traditional B/B*-tree, all keys in a node are
sorted so that a search operation can be quickly carried out.
However, the overhead of keeping nodes sorted in PM is high.
Therefore, NV-Tree [6] and FPTree (Fingerprinting Persistent
Tree) [8] choose to leave nodes unsorted in order to avoid
that overhead. As a result, their search performance is greatly
degraded. Since each leaf node in a radix tree only contains
one record, the dilemma does not exist in a radix tree. Second,
they are in a dilemma in whether or not to still maintain
tree balance, which is a critical property of a B/B*-tree. An
unbalanced B/B*-tree not only yields a degraded performance
but also wastes space. However, performing a tree re-balancing
operation such as a merge operation (i.e., two nodes with each
having keys no more than half of its capacity are merged into
one new node) in PM causes a noticeable cost. A radix tree
has no such issue.

In addition to various trees, hash table is another widely

IEEE
computer
® psoaety

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

used indexing data structure in main memory. Without hash
collisions, the time complexity of a search/insertion operation
is O(1). In contrast, the time complexity of these operations
is O(h) for a tree structure where h is the height of the tree.
Therefore, compared with B*-trees and radix trees, hash table
can deliver better search performance for sparse keys [10].
However, hash table has its own limitations. First, since a hash
table scatters the keys through a hash function, its range query
performance is much worse than that of a tree. Second, the
scalability of a hash table is not as good as that of a tree. When
the number of records grows hash collision happens more
frequently, which is detrimental to its performance. Third,
its insertion performance is worse than that of a radix tree
under various workloads. To exploit the complementary merits
of a radix tree and a hash table, in this paper we propose
a novel concurrent and persistent tree called HART (Hash-
assisted Adaptive Radix Tree), which utilizes a hash table to
manage multiple adaptive radix trees (ARTS).

HART only stores the leaf nodes of ARTs in PM. The
hash table and the internal nodes of ARTs are all stored
in DRAM to achieve better performance. It employs an
enhanced persistent memory allocator to avoid performance
degradation caused by expensive persistent memory alloca-
tion operations. Algorithms of operations (e.g., insertion)
that require a memory allocation are carefully designed so
that persistent memory leaks are prevented. HART main-
tains a lock on each ART to enable concurrent writes on
different ARTs. We implemented HART, WOART (Write
Optimal Adaptive Radix Tree) [7], ART+CoW (Adaptive
Radix Tree with Copy-on-Write) [7], and FPTree [8]. Af-
ter using three workloads (i.e., Dictionary, Sequential, Ran-
dom) to evaluate them, we found that HART outperforms
WOART [7] and FPtree [8] in most cases. In the best sce-
narios, HART outperforms WOART [7], ART+CoW [7], and
FPTree [8] by 4.1x/3.3x/2.4x/2.3x, 5.4x/4.4x/2.4x/2.3X, and
4.0x/7.1x/4.6x/5.4x in insertion/search/update/deletion.

The rest of this paper is organized as follows. Section II
explains the challenges for developing a persistent tree and
related work. Section III presents the design and implemen-
tation details of HART. Section IV evaluates the performance
of HART. Section V concludes this research.

II. BACKGROUND

In this section, we first briefly introduce ART. Next, we
explain the challenges of developing an efficient persistent
tree. Finally, we summarize existing persistent trees.

A. Adaptive Radix Tree (ART)

A radix tree exhibits several features desirable for PM (see
Section I). However, it has a poor utilization of memory
and cache space when the keys are sparsely distributed [7].
To solve this issue, Leis et al. proposed ART (Adaptive
Radix Tree), which adaptively chooses compact and efficient
data structures for internal nodes [10]. Since the number of
entries in a node could vary greatly, instead of enforcing all
nodes same size, ART employs four node types (i.e., NODE4,

922

NODE16, NODE48, and NODE256) to accommodate nodes
with different numbers of entries [10]. For example, NODE4
is the smallest node type, which uses two 4-element arrays to
store up to 4 keys and 4 child pointers, respectively. Along the
same line, NODE16 is used for storing between 5 and 16 keys
as well as child pointers. Path compression and lazy expansion
further allow ART to efficiently index long keys by collapsing
nodes, and thus, lowering the tree height [10]. More details of
ART can be found in [10].

B. Challenges of Developing A Persistent Tree

a) Data consistency guarantee: Data consistency is an
essential requirement for a persistent tree as it guarantees that
all data stored in the tree can survive a system failure like a
process crash or a power outage. However, current processors
only support a 8-byte atomic memory write [6]. Updating a
piece of data with a larger size requires some mechanisms
like logging or CoW [6]. To implement these mechanisms, a
certain write order has to be enforced. For example, to ensure a
pointer to a valid content, updating a pointer to a leaf node has
to be done after the leaf node itself is modified. Unfortunately,
memory writes could be reordered by CPU cache or memory
controller for performance purpose. Data consistency demands
a careful design of a persistent tree.

b) High data consistency overhead: An existing solution
to ensure ordered persistent memory writes is to employ a
sequence of {MFENCE, CLFLUSH, MFENCE} instructions
[6], [7]. The two instructions are supported by Intel processors.
However, a study discovered that CLFLUSH significantly
increases the number of cache misses, and thus, degrades
performance substantially [6]. How to ensure consistency
while minimizing its cost remains a difficult task.

c) Persistent memory leaks: Different from a memory
leak on DRAM, a persistent memory leak is much more severe
as the leaked memory cannot be reclaimed by restarting a
process or system. For example, assume a system crash occurs
right after a persistent leaf node of a tree is allocated. The
persistent memory allocator will mark the memory space as
used. However, the tree structure loses track of the leaf node.
Thus, the persistent memory space taken by the leaf node
can never be reclaimed, which results in a persistent memory
leak. To prevent it, a persistent tree has to maintain persistent
pointers to keep track of each persistent memory allocation.

C. Existing Persistent Trees

While HART and FPTree [8] target a DRAM-PM hybrid
memory system, all rest trees aim at a pure PM memory sys-
tem. CDDS B-Tree is a multi-version B-tree for PM [3]. The
side effect of versioning is that it could generate many dead
entries and dead notes. NV-Tree utilizes two new strategies:
an append-only update strategy and a selective consistency
strategy. Unfortunately, each split of the parent of the leaf
node leads to the reconstruction of the entire internal nodes,
which incurs a high overhead. A write atomic B*-tree called
wB*-Tree requires expensive logging or CoW for a node
split [9]. FPTree employs fingerprints, which are one-byte

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

hashes of in-leaf keys [8]. By scanning a fingerprint first,
the number of in-leaf probed keys is limited to one, which
leads to a significant performance improvement [8]. The three
persistent trees WORT (Write Optimal Radix Tree), WOART,
and ART+CoW (an ART using CoW to ensure its consistency)
are all based on a radix tree [7]. Experimental results from
[7] show that they outperform NV-Tree [6], wB*-Tree [9], and
FPTree [8]. Among the three trees, WOART performs the best
in most cases [7]. Since WOART is also a variant of ART, we
select it as a competitor of HART. We compare HART with
FPTree as both target a DRAM-PM hybrid memory system.
None of the existing persistent trees is open-sourced.

III. HART DESIGN

In this section, we first present our design principles. Next,
we elaborate the algorithms of various operations.

A. Design Principles

1. Hash-assisted ARTs. After analyzing the characteristics
of hash table and ART, we find that integrating a hash table
into ARTSs can generate a new indexing data structure that
can enjoy their complementary merits while avoiding their
respective shortcomings. On the one hand, the use of a hash
table can reduce the time complexity of operations on an
ART. On the other hand, using an ART can escape the three
limitations of a hash table (see Section I). HART limits the
length of each key in the hash table so that the performance
degradation caused by hash collisions is effectively reduced.

Assume that the length of each key is k£ bytes. In an ART,
the time complexity of an insertion/search operation is O(k)
when there is no key compression. In a HART, the first &,
bytes of a key are used as a hash key and the rest k — kj, bytes
ae used as an ART key. Since kj, is a predefined parameter
in HART, it will not grow when the key length k increases.
Thus, the hash collision rate is always in a low range and the
time complexity of an insertion/search operation in the hash
table is close to O(1). Therefore, the overall time complexity
of an insertion/search operation in a HART is k& — kj + 1,
which is less than that of an ART when k;, > 1. However,
hash table shows poorer insertion performance than ART.
By distributing first &k, bytes of each key in the hash table,
frequently inserting new keys in the hash table can be avoided.
In fact, for a sequential workload, the hash table only needs
to insert a new key periodically because the first kj, bytes of
a key are expected to be identical for a period of time. For
a random workload, the frequency of inserting a new key to
the hash table decreases after more and more keys have been
inserted. Also, no update is needed as the value in a hash node
is the address to an ART, which remains the same unless a
reconstruction operation happens.

Fig. 1 shows the structure of HART. A key AABF is split
into AA (i.e., a hash key) and BF (i.e., an ART key). HART
first uses the hash key to locate the AA node in the hash table,
which contains a pointer to its corresponding ART (i.e., ART
1 shown in Fig. 1). All keys in ART 1 share the same prefix
AA. After ART 1 is located, the ART key BF' is used to find

923

the leaf node that contains AABF. The complete key AABF
is stored in the leaf node for the purpose of failure recovery.
2. Selective consistency/persistence. Similar to FPTree [8],
HART also adopts a selective consistency/persistence strategy.
As shown in Fig. 1, HART keeps the leaf nodes on PM while
leaves all internal nodes and the hash table on DRAM. In
fact, an ART does not need to store a key in a leaf node
because the path to a leaf node represents the key of that
leaf. Still, HART persistently stores complete keys in leaf
nodes so that all critical information is durable. This selective
consistency/persistence strategy offers two benefits: First, the
performance (especially, write performance) of most existing
PM technologies is still much lower than that of DRAM. For
example, while the write latency of PCM is normally above
150 ns, DRAM write latency is only 15 ns [6]. Thus, storing
internal nodes in DRAM can improve the overall performance,
especially for insertion operations. Second, since HART can
rebuild reconstructable data (i.e., the hash table and internal
nodes) onto DRAM based on the critical data stored on PM
(i.e., leaf nodes), it only needs to maintain the consistency
of critical data on PM. Thus, a noticeable data consistency
maintenance overhead can be saved.

3. Concurrent access. A finer granularity of locking can in-
crease the concurrency of an indexing data structure. However,
it also raises lock maintenance overhead. To make a good
trade-off between concurrency and overhead, HART adopts a
locking mechanism that maintains a read/write lock on each
ART shown in Fig. 1. Thus, the maximal number of concurrent
writes allowed by a HART is equal to its number of ARTSs.
4. An enhanced persistent memory allocator. Existing
persistent memory allocators exhibit poor performance when
allocating numerous small objects [11], [12]. We develop a
new persistent memory allocator called EPallocator (enhanced
persistent memory allocator) on top of an existing PM alloca-
tor. Each time EPallocator is called, instead of allocating only
one item (e.g., a leaf node or a value object), it allocates a
memory chunk with multiple items so that the average cost
of a single allocation is reduced. Unlike a B*-tree, leaf nodes
of an ART are not linked together, and thus, it cannot be
recovered after a system crash. An intuitive solution is to

Hashtable‘ AA ‘ XY ‘ BM ‘ ‘ ‘

'

“X&%Aikpﬂ

| B | [cp]] DRAM
salEiiEn
GG (ARG (e | PM

Fig. 1: The structure of HART.

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

PHead
A linked-list of | Memory | PNext Memoryh Memory
memory chunks L_chunk _1_chunk chunk
A memory chunk ChunkheaderlPNext‘ L, I L, I I Lse ‘

~~--.__ 56 leaf nodes
A chunk header | Leaf bitmap (56 bits)]_, 4]

T 00: Available
Next free leaf index Full indicator (1: Full

(6 bits) (2 bits) 10/11: Reserved

Fig. 2: A memory chunk of leaf nodes.

add a next pointer to each leaf node so that all leaf nodes
are traversable [8]. However, we found that the space and
performance overhead caused by maintaining a next pointer for
each leaf node on PM is high. To solve this issue, EPallocator
groups memory chunks in a singly linked-list so that one
persistent next pointer is needed for each memory chunk rather
than for each leaf node.

Fig. 2 shows a memory chunk of leaf nodes. Within each

memory chunk, in addition to the 56 leaf nodes, there are two
more fields: a 8-byte chunk header and a 8-byte pointer to
the next memory chunk (i.e., PNext). The first 7 bytes of a
chunk header serve as a leaf bitmap to indicate the status of
leaf nodes. If a bit is set to 1, the corresponding leaf node
is used. Otherwise, it is free. The last byte is split into two
parts: the first 6 bits are used as an index to the next free
leaf node in the 56-element leaf node array and the last 2 bits
are employed as an indicator, which shows whether or not a
free leaf node exists in a memory chunk (see Fig. 2). If “full
indicator” is 00, the memory chunk has at least one free leaf
node. If it is ”01”, there is no free leaf node as the memory
chunk is already full. The rest two values (i.e., ”10” and ”11”)
are reserved.
5. Variable-size values support. HART also supports
variable-size values. Fig. 3 illustrates the layout of a leaf
node and a memory chunk of 56 value objects. Instead of
keeping the value of a key in a leaf node, HART stores a
8-byte pointer (i.e., p_value) to the value in the leaf node.
Although this design choice incurs an extra cost as EPallocator
has to allocate and free PM space for the out-of-leaf value
objects, it supports variable-size values that many applications
require. As shown in Fig. 3, EPallocator manages PM space
for value objects in the same way as what it does for leaf
nodes. To support variable-size values, it maintains multiple
singly linked-lists of memory chunks of value objects so
that all value objects in one linked-list have the same size.
The structure of a value object memory chunk is the same
as that of a leaf node memory chunk as shown in Fig. 2.
For simplicity, HART currently only supports two sizes of
value objects: 8-byte values and 16-byte values. However, it
can be easily extended to support more sizes of values by
implementing more singly linked-lists of value object memory
chunks. Algorithm 2 shows how EPallocator allocates PM for
a leaf node or a value object.

For a radix tree and its variants, key length directly deter-

mines the height of a tree if a compression technique is not
utilized. Even with a compression technique, for a radix tree
with a random or dense key distribution key length is still
a leading factor that determines its height. Although HART
supports variable-size keys, it sets a limit on the maximal key
length. The maximal key length supported by HART is 24
bytes, which could generate 2'92 distinct keys.
6. Memory leak prevention. A persistent memory leak is
more severe than a volatile memory leak as the leaked memory
cannot be reclaimed through a system reboot. EPallocator can
prevent persistent memory leaks. The memory chunk data
structure shown in Fig. 2 is stored on PM so that the addresses
of items are durable. The bitmap of a memory chunk is used
to maintain the status of each item (i.e., either a leaf node or
a value object). HART only sets the corresponding bit in the
bitmap after an item is successfully inserted to it. If a system
crash happens after a leaf node is allocated but before it is
inserted to the tree, the space of the allocated leaf node can
be reused as its bit in the leaf bitmap indicates that its status
is still free. For value update and memory chunk recycling,
HART utilizes a log mechanism to ensure consistency (see
Algorithm 3 and Algorithm 6).

B. Algorithms of Operations

In this section, we present the algorithms of the four
basic operations (i.e., insertion, update, search, and deletion)
plus recovery. Similar to existing persistent trees [6]—[8], we
use a sequence of {MFENCE, CLFLUSH, MFENCE} as
a persistent flush instruction, which is called persistent().
Also, we explain EPMalloc() and EP Recycle(), which are
two components of EPallocator. They are used for persistent
memory allocation and freeing, respectively.

1. Insertion. Algorithm 1 presents the pseudo code of an
insertion operation. The first step of an insertion is to find
an ART based on a hash key, which is the first several bytes
of a complete key K (line 1-2). If the ART is not found, a
new ART is initialized and then linked to the corresponding
hash node (line 3-5). Next, a search operation on the ART is
performed (line 6). If a leaf node with the same key K exists,
the Update() function is called to update its value (line 7-8).
The algorithm of Update() is shown in Algorithm 3. If the leaf
node is not found, a new leaf node and a space for its value
(i.e., a value object) are then allocated through EP M alloc()
(line 10-11). The EPMalloc() function is shown in Algorithm
2. It can allocate two types of objects: LEAF (i.e., a leaf node)

|€—8 bytes—Pi€—24 bytes—P1€—6 bits—PK—2 bits

Leaf node

p_value key Key_len| rsvd
A memory chunk | Chunk header | PNext| Vi | | Vo | .. |V56|
8 bytes 56 value objects

Fig. 3: Leaf node layout and a memory chunk of value objects.

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

and VALUE (i.e., a value object). After the value and the
pointer to the value become persistent, the corresponding bit
in the value bitmap (see Fig. 3, hereafter, the value bit) is set
(line 12-14). Next, the key and its length are updated (line
15-16). The new leaf node is then inserted into HART in a
way similar to a conventional ART insertion operation (line
17), which might lead to multiple internal node creations or
expansions. Finally, the corresponding bit in the bitmap for the
leaf node (hereafter, the leaf bit) is set. If a failure happens
between line 14 and line 18, the value bit has been set but the
leaf bit has not, which implies an exception. When EPallocator
tries to allocate the same leaf node next time, it will detect
the exception. As a result, it frees the PM space for the value
object (line 14-15 of Algorithm 2).

EPallocator allocates PM space for both a leaf node and its
value. As shown in Algorithm 2, EPMalloc() searches through
a linked-list of leaf/value memory chunks to find a memory
chunk that contains a free object (line 1-7). If no such memory
chunk is found, a new memory chunk is allocated and then
added to the linked-list. Next, a free object is obtained from the
newly allocated memory chunk (line 8-11). If the allocation is
for a leaf node, before EPMalloc() returns a free leaf object it
has to check whether there is a value linked to the leaf object
due to a prior incomplete insertion or deletion operation. If
there is a value linked to the leaf object, EPMalloc() simply
resets the value bit to make the value object available for a
future allocation (line 12-16).

Algorithm 1 Insertion(Key K, Value V, HART HT)

1: HashKey, ARTKey = SplitKey(K)

2: T = HashFind(HashKey, HT)

3: if !T then

4: T = NewART()

5: HashInsert(HashKey, T)

6: leaf = SearchNode(ARTKey, HT)

7: if leaf then

8: Update(ARTKey, V, leaf)

9: else

10: leaf = EPMalloc(LEAF)

11: value = EPMalloc(VALUE)

12: value = V; persistent(value)

13: leaf.p_value = &value; persistent(leaf.p_value)
14: Set and persistent() the corresponding value bit
15: leaf.key = K; persistent(leaf.key);

16: leaf.key_len = len(K); persistent(leaf.key_len)
17: Insert2Tree(T, leaf)

18: Set and persistent() the corresponding leaf bit

2. Update. HART employs an out-of-place update mechanism.
To ensure consistency and prevent memory leaks, it requires
an update log, which contains three persistent pointers: PLeaf,
POIdV and PNewV. First, the address of the leaf node to be
updated is recorded in PLeaf and then the address of the leaf
node’s old value is stored in POIdV (line 2-3 in Algorithm 3).
Next, the new value is written into a newly allocated space

925

Algorithm 2 EPMalloc(Type type)

1: current_chunk = GetChunkHead(type)

2: while current_chunk != NULL do

3: object = GetFreeObject(current_chunk)

4: if object != NULL then

5: break

6: else

7: current_chunk = current_chunk.PNext

8: if object == NULL then

9: new_chunk = AllocMemChunk(type)

10: Insert2ChunkList(GetChunkHead(type), new_chunk)
11: object = GetFreeObject(new_chunk)

12: if type == LEAF then

13: if object.p_value && GetBitmap(object.p_value) then
14: Reset and persistent() the value bit

15: EPRecycle(MemChunkOf(object.p_value))

16: object.p_value = NULL

17: return object

(line 4-5). Further, PNewV is set to the address of the new
value, after which HART sets the value bit for the new value
and then updates the value pointer in the leaf node (line 7-8).
The value bit for the old value is then reset and EPRecycle()
(see Algorithm 6) checks whether the memory chunk that the
old value belongs to can be freed (line 9-10). Finally, the
update log is reclaimed (Line 11).

After a system crash happens, a failure recovery process
checks the update log. If only PLeaf is valid, it simply resets
the log. If both PLeaf and POIdV are valid but PNewV is
invalid, the crash happened between line 3 and line 6. In this
case, since the old value is still valid and the space for the new
value can be reused as its value bit has not been set, the failure
recovery process simply resets the update log. If all three
pointers are valid, the system crash must happen somewhere
between line 7 and line 10. In this case, the recovery process
resumes the update process from line 7.

Algorithm 3 Update(Key K, Value V, Leaf Node L)

: ulog = GetMicroLog(UPDATE)

: ulog.PLeaf = &L; persistent(ulog.PLeaf)

: ulog.POIdV = L.p_value; persistent(ulog.POIdV)
new_value = EPMalloc(VALUE)

new_value = V; persistent(new_value)

: ulog.PNewV = &new_value; persistent(ulog.PNewV)
: Set the bit in the bitmap for new value

: L.p_value = &new_value; persistent(L.p_value)
: Reset the bit in the bitmap for the old value

10: EPRecycle(MemChunkOf(L.p_value))

: LogReclaim(ulog)

R I T Y N T

—
—

3. Search. First step of the search algorithm (Algorithm 4)
is to find the corresponding ART by the searching the hash
table (line 1-2). After an ART is found, the search algorithm is
similar to an ART search algorithm. The only difference is that

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

after a leaf node is found, HART will check the corresponding
bitmap to make sure that it is a valid leaf node (line 9-10).

Algorithm 4 Search(Key K, HATRT HT)
1: HashKey, ARTKey = SplitKey(K)
2: T = HashFind(HashKey, HT)
3: if !T then
4: return NOT_FOUND
5: leaf = SearchNode(ARTKey, T)
6
7
8
9

. if !leaf then
return NOT_FOUND

. else
if The corresponding leaf bit is set then
10: return leaf.p_value
11: else
12: return NOT_FOUND

4. Deletion. A deletion operation is illustrated in Algorithm
5. First, the corresponding ART is found through the hash
table (line 2). Second, HART uses a conventional ART search
function to locate the leaf node to be deleted (line 5). After
the leaf node is found, it is first removed from the tree (line
9). Third, HART resets the leaf bit and the value bit (line
11-12). Next, EPRecycle() is called to check whether the
corresponding memory chunks can be reclaimed (line 13-14).
Finally, HART will free the ART if it becomes empty after
the leaf is successfully deleted (line 15-16).

Algorithm 5 Deletion(Key K, HART HT)

: HashKey, ARTKey = SplitKey(K)
: T = HashFind(HashKey, HT)
: if !T then

return NOT_FOUND
leaf = SearchNode(ARTKey, T)
. if !leaf then

return NOT_FOUND
else

DeleteFromTree(T, leaf)
10: value = leaf.p_value
Reset and persistent()the leaf bit
12: Reset and persistent() the value bit
13: EPRecycle(MemChunkOf(value))
14: EPRecycle(MemChunkOf{(leaf))
15: if is_empty(T) then
16: free(T)

AR A R o e

Each time EPRecycle() is called an object is deleted from
the tree. Algorithm 6 shows its procedure. Before recycling
a memory chunk, EPRecycle() has to make sure that there is
no used object in it (line 1-2 in Algorithm 6). To remove the
memory chunk from the memory chunk linked-list, a persistent
recycle log is needed to ensure the consistency of the linked-
list. The recycle log contains two persistent pointers: PPrev,
and PCurrent. First, PCurrent is set to point to the memory
chunk to be deleted (line 4). If PCurrent is not PHead, which

is a pointer to the head of a linked-list (see Fig. 2), then the
address of PPrev is also stored in the log (line 8-9). Next, the
next pointer of previous memory chunk is updated (line 10),
after which the memory chunk is freed and the log is reset
(line 11-12). If a failure happens before the log is reclaimed,
a failure recovery process will check the log. If both PPrev
and PCurrent are set, the deletion can be resumed from line
10. If only PCurrent is valid, the failure recovery process has
to compare it with PHead. If PCurrent = PHead, the deletion
can be resumed from line 6. If PCurrent.PNext = PHead, the
deletion can be resumed from line 11.

Algorithm 6 EPRecycle(Mem_Chunk mem_chunk)

1: if mem_chunk has a used object then

2: return

3: rlog = GetMicroLog(RECYCLE)

4: rlog.PCurrent = &mem_chunk; persistent(rlog.PCurrent)
5: if rlog.PCurrent == PHead then
6
7
8
9

PHead = mem_chunk.PNext; Persist(PHead);
: else
pre = GetPrev(mem_chunk)
. rlog.PPrev = &pre_chunk; persistent(rlog.PPrev)
10: pre.PNext = mem_chunk.PNext; persistent(pre.PNext)

11: pfree(mem_chunk)
12: LogReclaim(rlog)

5. Recovery. Since HART only stores leaf nodes on PM, all
internal nodes need to be recovered after a system crash or
a system reboot. Recovering a HART is much faster than
building a new HART from scratch because the leaf nodes
and values are already on PM before a recovery process
starts. As shown in Algorithm 7, the recovery process first
initialize a new HART (see line 1), which allocates space for
the hash table. Then the recovery process traverses all memory
chunks through the memory chunk list to recover a HART.
For each memory chunk, only the leaf nodes whose leaf bits
are in a “set” status will be inserted to the tree. Function
Insert2HART() in line 6 is similar to Algorithm 1.

()

Algorithm 7 Recovery(HART HT)
. InitializeHART(HT)
. current_chunk = GetChunkHeade(LEAF)

1
2
3: while current_chunk do

4: fori=0;i< NUM_OBJECTS_PER_CHUNK; i++ do
5

6

if The corresponding bit in the bitmap is set then
Insert2HART(HT, &(current_chunk.leaf_array[i]))

IV. EVALUATION
In this section, we first introduce experimental setup. Next,
we discuss our experimental results of the four trees.
A. Experimental Setup

We implemented HART and three existing persistent trees
(i.e., WOART [7], FPTree [8], and ART+CoW [7]) in C

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

language. The source code of HART is available on GitHub
(https://github.com/CASL-SDSU/HART). While the imple-
mented FPTree is based on an open-source implementation
of BT-Tree [13], the rest three trees were implemented based
on an open-source implementation of ART [14]. We did
not compare HART with HiKV [5] because some critical
implementation details (e.g., the hash function used) were not
disclosed in [5].

Existing PM research studies [1], [4], [7], [12] have to
leverage a PM emulator due to the lack of real PM hardware.
Intel PMEP (Persistent Memory Emulator Platform) [1], [15]
and Quartz [16] are two commonly used PM emulators.
However, Intel PMEP was no longer public available at the
time of this research. As for Quartz, we found that when it was
running in the DRAM-PM hybrid mode it needs to frequently
call numa_alloc_onnode(), which emulates an allocation of
a piece of PM by executing a DRAM allocation on a remote
node. Unfortunately, we observed that when the number of
invocations of numa_alloc_onnode() was large enough (e.g.,
more than 10 million) the experimental results provided by
Quartz became meaningless as they were greatly distorted. We
discovered that this is because the software latencies of Quartz
caused by numa_alloc_onnode() became dominant such that
real PM latencies were concealed. Therefore, we employed
two methods to emulate PM write latencies and PM read
latencies, respectively. To emulate PM write latency, similar to
current work [5], [16], we added the write latency difference
between PM and DRAM to each invocation of persistent(),
which flushes a piece of data from CPU cache to memory. To
emulate PM read latency, we have to consider the effect of
CPU cache hits. We calculated the extra latency caused by the
read latency difference between DRAM and PM by using the
following two equations proposed by [15], [16]:

ey

Ostali_cycles = S * (Lpayr — Lpram)/Lprawm,

(©3)

where dgtaii_cycles 1S the extra number of CPU stall cycles
caused by the read latency difference between DRAM and
PM, S is the total number of CPU cycles that a processor has
stalled due to serving all LOAD memory requests on a remote
node during an experiment, L pr 4z is the latency of DRAM,
Lpy is the desired PM latency, and 6, _jgtency i the extra
latency caused by the read latency difference between DRAM
and PM. Fortunately, Quartz [16] provides the statistics of .S.
Thus, we run it to conduct an experiment so that we can obtain
S to calculate additional read latency off-line. Authors of [17]
also adopted this PM read latency off-line adding method.
We conducted all experiments on a Mercury RM102 1U
Rackmount Server running Ubuntu 16.04 with Kernel 4.4.0.
It has two sockets each equipped with one Intel Xeon ES5-
2640 v3 2.6 GHz processor. Each processor has 8 cores, a
shared 20 MB L3 cache, and 32 GB DRAM. The server
is organized into 2 NUMA nodes (i.e., node 0 and node 1)

5r_latency = 5stall_cyclcs/CPU_frequencyv

927

with each having a processor and 32 GB local memory. All
single-threaded experiments were running on node O (i.e., the
local node) whose local DRAM is treated as DRAM. The
DRAM in the remote node (i.e., node 1) is taken as PM. A
PM allocation is emulated by calling numa_alloc_onnode(),
which in fact allocates a DRAM space from the remote node.
We measured the local DRAM latency and remote DRAM
latency. They are about 100 ns and 150 ns, respectively. To
avoid the problem associated with numa_alloc_onnode(), we
run each experiment in two rounds. In the fist round, we
run it in a pure DRAM environment (i.e., each invocation of
numa_alloc_onnode() was replaced by a calling to malloc())
to obtain a baseline execution time of the experiment. In the
second round, we run the experiment again in a DRAM-PM
hybrid environment (i.e., enabling numa_alloc_onnode()) so
that we can obtain the total number of CPU stall cycles S.
The write latency difference between DRAM and PM has
been added to each invocation of persistent() in the first
round because the execution time measured in the second
round cannot be used. Next, we employed the two equations to
obtain the extra latency caused by the read latency difference
between DRAM and PM, which was then added to the baseline
execution time. Finally, we obtained the execution time of the
experiment on an emulated DRAM-PM memory system.

We compiled all four tree implementations using GCC 5.4.0.
For HART, the hash key length is set to 2 in our experiments.
We used three workloads, namely, Dictionary [19], Sequential,
and Random. Dictionary is a collection of 466,544 different
English words [19]. Sequential and Random are two synthetic
traces generated by ourselves. Sequential contains sequential
strings, whereas Random includes random strings with vari-
able sizes from 5 to 16 bytes. For Sequential and Random,
each character in a key is chosen from the 52 alphabetic
characters (i.e., A to Z and a to z) and 10 Arabic numerals (i.e.,
0 to 9). A typical range of PM latencies is from several ns to
1,000 ns [20]. Since we use DRAM to emulate PM, we can
only imitate PM latency larger than or equal to 100 ns, which
is the measured DRAM latency on the server that we used.
Three PM write/read latency configurations were employed in
our experiments: 300 ns/100 ns, 300 ns/300 ns, and 600 ns/300
ns. Similar PM write/read latency settings have been used in
existing PM research such as FPTree [8] and NOVA [4]. For
simplicity, hereafter the three latency configurations are called
300/100, 300/300, and 600/300, respectively. For 300/100, the
default number of records on Sequential and Random is set to
100 million. For the other two PM latency configurations, we
set the default number of records to 1 million for Sequential
and Random to prevent memory allocation failures caused by
numa_alloc_onnode(). Note that in 300/100 we only need
to run each experiment in the first round because in this
configuration the read latency of PM is equal to that of DRAM.

Thus, the problem of numa_alloc_onnode() does not exist
as a call for the function is not needed. That is why we can
test up to 100 million records in 300/100. We measured the
performance of the four persistent trees in terms of average
time per operation for four basic operations: insertion, search,

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

OHART OWOART SART+CoW ®FPTree

OHART OWOART RART+CoW

BFPTree OHART ©WOART ®ART+CoW ®FPTree

Z12 ERp) g 12
= z i
9_8) 8 § 8 § 8
£ 5 &
N N RS\
E @ V_E& V_E@ 5
:>:0 0 Z0 %D 0
300/100 300/300 600/300 300/100 300/300 600/300 300/100 300/300 600/300
(a) Dictionary (b) Sequential (c) Random
Fig. 4: Insertion performance comparisons.

OHART OWOART RART+CoW ®BFPTree OHART OWOART SART+CoW BFPTree OHART OWOART ®SART+CoW BFPTree
73 23 23
= =
T 2 E 2 g 2
2 £ E
+ 5] +
g1 £l 21
5 -l —NE N ¢ —m N\ N\ 29 ——
< 300/100 300/300 600/300 300/100 300/300 600/300 300/100 300/300 600/300

(a) Dictionary (b) Sequential (c) Random

Fig. 5: Search performance comparisons.

update, and deletion. We also tested range query, memory
consumption, recovery, and scalability of HART.

B. Performance of Four Basic Operations

Insertion: Fig. 4 shows the four persistent trees’ average
times of inserting one record under the three workloads and
three PM write/read latency configurations. Results from Fig.
4 demonstrate that HART consistently outperforms all its
competitors. Compared with WOART, in the best case HART
is 4.0x faster under Dictionary in 300/300 (Fig. 4a). In the
worse case, HART is 1.4x faster under Sequential in 600/300
(Fig. 4b). This is because HART stores internal nodes in
DRAM while WOART keeps them on PM. Therefore, HART
does not need to maintain the consistency for internal nodes,
and thus, that overhead can be saved. Compared with FPTree,
in the best case HART is 4.0x faster under Sequential in
300/300. In the worst case, HART is still 1.9x faster under
Random in 600/300 (Fig. 4c). HART performs much better
than FPTree because it does not need to search on unsorted
leaf nodes. In short, the performance differences between
DRAM and PM as well as the reductions of persistent() calls
substantially boost the insertion performance of HART. Fig. 4
shows that in most cases ART+CoW performs the worst. The
main reason is that its CoW overhead is very high.

Search: Fig. 5 illustrates the search performance of the four
persistent trees. HART shows better search performance under
300/300 and 600/300 across all three workloads. We notice
that when PM read latency is equal to that of DRAM (i.e.,
300/100), WOART achieves better performance than HART.
The reason is that for a read-only operation, HART consumes
more memory, which results in a lower cache hit rate. We
also find that FPTree is faster than WOART under Dictionary
in 300/300 and 600/300. The reason is that Dictionary has

928

a relatively small number of records, and thus, the height
of FPTree is also small. However, the height of WOART
is independent of the number of records. FPTree performs
much better under Sequential than under Random because its
performance is closely related to the cache hit rate as each
leaf node contains multiple records.

Update: In our implementations, we used a similar update
mechanism for HART, WOART, and ART+CoW: since all
three support variable-size values, only the pointer to a value is
stored in each leaf node. During an update, a new PM space
is allocated for the new value. A pointer to that new value
is updated as the last step to ensure consistency. Although
the update functions are similar in the three ART-based trees,
we can see from Fig. 6 that HART still outperforms WOART
and ART+CoW in most cases. The performance improvements
of HART come from its capability of quickly searching an
existing leaf node. For the same reason, HART outperforms
FPTree in all cases.

Deletion: A deletion operation requires a search operation
to find the leaf to be deleted. Fig. 7 shows that under
Dictionary FPTree achieves the best performance. The reason
is twofold. First, Dictionary has a relatively small amount
of records (i.e., 466,544 records), which makes the height
of FPTree low. Thus, the search operation can be finished
quickly. Second, FPTree does not perform tree re-balancing
on leaf nodes, which accelerates a deletion. Under Random
and Sequential, since FPTree no longer has the tree height
advantage as the number of records in each workload is at
least one million, it shows the worst performance. In general,
HART exhibits its strength when the PM latency is set higher
than that of DRAM for a larger data set.

To understand the impact of the number of records on the
performance of the four basic operations, we evaluate the four

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

OHART @ WOART SART+CoW ®FPTree

2.

—

300/100 300/300 600/300

time/record (us)

Avg. time/record (us)

4
3
2
1
0

Avg

300/100

(a) Dictionary

OHART OWOART ®ART+CoW

. ol [N

(b) Sequential

B FPTree OHART @ WOART SART+CoW ®FPTree

Fig. 6: Update performance comparisons.

OHART @WOART @ART+CoW mFPTree

3
2

o o e e

300/100 300/300 600/300

Avg. time/record (us)
LS}
Avg. time/record (us)

300/100

(a) Dictionary

OHART @WOART @ART+CoW

' a ol Al

(b) Sequential

e
=
s 3
3
= 2
o
£ I
@ o LI L LI
300/300 600/300 < 300/100 300/300 600/300
(¢) Random
B FPTree OHART @WOART m@ART+CoW ®FPTree
z
23
2
3 2
=
£l I
g 0
300/300 600/300 < 300/100 300/300 600/300
(¢) Random

Fig. 7: Deletion performance comparisons.

HART &WOART = ART+CoW =FPTree HART +WOART -<ART+CoW ++FPTree

1000 100.0
2100 =100
2 b

= 10 / E i

1 10 50 100
Number of records (million)
(b) Search

1 10 50 1
Number of records (million)

(a) Insertion

#HART -4+WOART -5ART+CoW -+=+FPTree #HART -4WOART = ART+CoW +&-FPTree

100 100
10

1

Time (s)
Time (s)

0.1 0.1
1 10 50 100 1 10 50 100
Number of records (million) Number of records (million)

(c) Update (d) Deletion

Fig. 8: Impact of the number of records on the four basic operations.

trees in Fig. 8 when the number of records increases from
1 million to 100 million under Random in 300/100. Fig. 8a
shows that HART exhibits a much better scalability in terms
of insertion. In search, FPTree shows the worst performance
because it has to conduct key comparisons (see Fig. 8b). The
three ART-based trees deliver very similar performance in
search and update (see Fig. 8b and Fig. 8c). In deletion, there
are little differences among HART, WOART, and FPTree (see
Fig. 8d). Note that the latency differences between DRAM and
PM are not substantial in 300/100. That is why HART shows
a performance similar to that of WOART in three operations.
However, after the latency differences enlarge (i.e., 300/300
or 600/300) HART offers a much better performance than
WOART and FPTree (see Fig. 4 - Fig. 7).

C. Performance of Mixed Workloads

To understand the performance of HART under realistic
benchmarks, we measured the performance of the four trees
using three typical cloud database workloads generated by
YCSB (Yahoo! Cloud Serving Benchmark) [21]. YCSB is a
standard benchmarking framework to evaluate various cloud
key-value stores that provide online read/write access to data

[21]. Each workload generated by YCSB represents a par-
ticular mix of read/write operations and a specific request
distribution, which decides which record in a database to read
or write. The three mixed workloads that were used in our
experiments all employ a Uniform request distribution, which
means that all records in the database are equally likely to
be chosen when a read or write request arrives [21]. They
cover three typical online database workload scenarios: (1)
Read-Intensive: a workload with 10% insertion, 70% search,
10% update, and 10% deletion; (2) Read-Modified-Write:
a workload with 50% search and 50% update; (3) Write-
Intensive: a workload with 20% search, 40% insertion, and
40% update. While Read-Intensive and Write-Intensive stand
for two extreme cases, Read-Modified-Write represents a read-
write-balanced scenario. Experimental results from the three
mixed workloads are presented in Fig. 9, which shows that
HART outperforms its three competitors in almost all cases.
The only exception is for the Read-Modified-Write workload
under 300/100 (see Fig. 9b). WOART and ART+COW per-
forms better than HART in that case because they exhibit a
lower latency in both search (see Fig. 5) and update (see Fig.
6) operations under 300/100. Other than the 300/100 setting,

929

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

OHART ©WOART ®ART+CoW ®FPTree

= S 4
g3 E
P g3
£ £
))
z0 Zo

300/100 300/300 600/300 300/100

(a) Read-Intensive

OHART OWOART ®ART+CoW ®FPTree

ol

300/300

(b) Read-Modified-Write

OHART OWOART SART+CoW

ol

300/100 300/300 600/300

BFPTree

Avg. time/record (us)
S = W s N

600/300

(c) Write-Intensive

Fig. 9: Performance comparisons under three mixed workloads.

OHART @WOART BART+CoW ®FPTree 0OPM EDRAM
208 12
= ~10
m
F06 &)
804 =
i 0
Eo02 é 4
i“ 0 % T2
300/100 300/300 600/300 =)

‘Write latency (ns) / Read latency (ns) HART WOART ART+CoW FPTree

(a) Range query (b) Memory consumption

=<HART Build
-=-FPTree Build
1.0E+3

—HART Recovery
FPTree Recovery

=

1 10 50 100
Number of records (million)

-&-Insertion -=-Search -4-Update ¢Deletion
50

40
£30
=20

10

0

1 2 4 8
Number of threads

(c) Recovery (d) HART scalability

Fig. 10: Performance in range query, memory consumption, recovery, and HART scalability.

HART is 2.0x to 2.6x faster compared with WOART under all
three mixed workloads. Also, it is 2.4x to 5.7x faster compared
with FPTree under all three mixed workloads. The conclusion
is that HART outperforms its three competitors under realistic
workloads in almost all cases.

D. Performance of Range Query

We tested the range query performance by querying 100,000
records for the four persistent trees under Sequential. In fact,
the range query function in the three ART-based trees are
simply implemented by calling a search function for each
key. For FPTree, since its leaf nodes are ordered in the
linked-list, it shows the best range query performance in Fig.
10a. Compared with FPTree, the range query performance of
HART is 2.6x, 2.3x, 2.3x slower under 300/100, 300/300, and
600/300, respectively. Nevertheless, compared with WOART
and ART+CoW, HART still shows a much better performance
when the PM read latency is set to be higher than that of
DRAM (i.e., higher than 100 ns). In fact, the side-effect of
hash on range query of HART is very limited because the
main part of HART are multiple ART trees (see Fig. 1).

E. Memory Consumption

We also measured the memory consumption of the four
data trees. Due to space limit, we only show results under
Sequential with 100 million records in Fig. 10b. Note that
WOART and ART+CoW do not use any DRAM. We found
that compared with FPTree, HART consumes much more
DRAM. The major reason is that each character in a key
is chosen from 62 different characters (i.e., A to Z, a to z,
and 0 to 9). Thus, many nodes of the NODE256 type are
needed as NODE48 has an insufficient space to accommodate
these keys. Also, the hash table in HART takes extra DRAM
space. FPTree consumes more PM space than HART does.

930

The reason is that the fingerprints in FPTree take a large PM
space. Also, FPTree does not coalesce a leaf node with its
neighbor when the number of available keys in it is less than
half of its capacity.

E. Performance of Recovery

Since both WOART and ART+CoW are a pure PM tree,
they have no need to recover nodes after a system failure or
a normal reboot. Thus, we only evaluated the recovery times
for HART and FPTree in Fig. 10c. Also, we tested their build
times. The build time of HART or FPTree is the time taken
to generate a new HART or FPTree by sequentially inserting
a number of records. All experiments were conducted under
Random with 300/100. The number of records to be rebuilt
varies form 1 million to 100 million. We noticed that for both
trees their recovery times are shorter than their build times. On
average, HART recovery is 2.4x faster than its build. However,
the recovery time of FPTree is much shorter than that of
HART. The reason is that each FPTree leaf node contains
multiple records while a HART leaf node only has one record.
As a result, FPTree needs much less insertions than HART
does, which leads to a much shorter recovery time. However,
we argue that tree recovery is normally not a frequent event.

G. Multi-threaded Results

To allow concurrent accesses, HART maintains an exclusive
write lock and a sharable read lock for each of its ART
(e.g., ART1 shown in Fig. 1). It employs the POSIX threads
library (i.e., pthread) to implement its feature of supporting
concurrent accesses. For each operation (e.g., a read operation
like a search or a write operation like an insertion), HART
assigns a thread to accomplish it. HART only supports concur-
rent writes that target distinctive ARTSs. For concurrent reads,
such restriction does not exist. On each ART, HART allows

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

multiple read threads (e.g., search or scan) to share the read
lock so that they can operate concurrently on the same ART.
However, on each ART it allows only one write thread (e.g.,
insertion, update, deletion) to hold the exclusive write lock
at any time. Besides, when a write thread is working on an
ART all incoming read threads on the same ART are blocked.
For an incoming write operation, HART first checks whether
the read lock on its destination ART is currently free. If it
is not free, the write operation is blocked. Otherwise, HART
further checks whether the exclusive write lock on the write
operation’s destination ART is presently held by another write
thread. If so, the write operation is blocked until the exclusive
write lock is freed. If not, a thread (i.e., a write thread) is
assigned to the write operation and then the exclusive write
lock is acquired by the write thread. For an incoming read
operation, HART checks whether the exclusive write lock is
free. If not, the read operation is blocked. Otherwise, a thread
(i.e., a read thread) is assigned to the read operation. The read
thread starts to work after either acquiring the free read lock or
sharing it with other ongoing read threads on the same ART.

All experimental results shown from Fig. 4 to Fig. 10c
were obtained when HART was executed in a single-threaded
mode. We evaluated its concurrent access performance in
terms of MIOPS (million I/O operations per second) using
the 300/100 latency configuration and 100 million Random
records in Fig. 10d. All threads were running on a single
socket, which has 8 physical cores. Using Hyper-Threading,
each physical core can support 2 threads. Thus, a single socket
can support up to 16 threads. Fig. 10d shows that compared
with single-threaded scenarios the performance of HART on
2 threads is increased by a factor of 1.96/1.94/1.93/1.93 for
insertion/search/update/deletion, respectively. Also, the perfor-
mance of HART increases by a factor of 7.18/7.30/7.13/7.09
for the four operations when the number of threads increases to
8 (see Fig. 10d). In fact, when the number of threads increases
from 2 to 8, the performance of HART almost increases pro-
portionally to the number of threads. However, compared with
the single-threaded cases the performance of HART with 16
threads is only increased by a factor of 10.7/11.9/11.3/10.8 for
the insertion/search/update/deletion, respectively. The reason
is that when using 16 threads each physical core is abstracted
as two logical cores by Hyper-Threading. The performance of
a logical core is lower than that of a physical core. We also
found that the performance improvement of search is higher
than that of other three operations. This is because concurrent
read threads do not block each other. Fig. 10d demonstrates
that HART scales well in concurrent situations.

V. CONCLUSIONS

In this paper, we design, implement, and evaluate a persis-
tent indexing data structure called HART. Our comprehensive
experimental results demonstrate the strength of HART. Com-
pared with WOART, HART can not only provide much better
performance in most cases but also prevent persistent memory
leaks, which has not been addressed in WOART. Although
both FPTree and HART target a DRAM-PM hybrid memory

931

system, HART significantly outperforms FPTree in the four
basic operations due to the inherent advantages of an ART
over a BT tree. In terms of range query and tree recovery,
however, FPTree exhibits a better performance than HART.
Besides, it consumes less DRAM. We will release the source
code of HART for public use in the near future.

VI. ACKNOWLEDGMENT

We thank Ismail Oukid for his help in FPTree implemen-
tation. We thank Bo-Wen Shen for providing us with the
Mercury RM102 1U Rackmount Server.

REFERENCES

[11 S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent memory,”
in EuroSys. ACM, 2014, p. 15.

(2017) The wait is over! 3d xpoint technology. [Online]. Available:
http://www.intelsalestraining.com/infographics/memory/3DXPointc.pdf
S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell et al.,
“Consistent and durable data structures for non-volatile byte-addressable
memory.” in FAST, vol. 11, 2011, pp. 61-75.

J. Xu and S. Swanson, “Nova: A log-structured file system for hybrid
volatile/non-volatile main memories.” in USENIX Conference on File
and Storage Technologies, 2016, pp. 323-338.

F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-
value store for dram-nvm memory systems,” in USENIX ATC. USENIX
Association, 2017, pp. 349-362.

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems.” in FAST,
vol. 15, 2015, pp. 167-181.

S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “Wort: Write
optimal radix tree for persistent memory storage systems.” in FAST,
2017, pp. 257-270.

I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree:
A hybrid scm-dram persistent and concurrent b-tree for storage class
memory,” in ICMD. ACM, 2016, pp. 371-386.

S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
VLDB Endowment, vol. 8, no. 7, pp. 786-797, 2015.

V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in ICDE. IEEE, 2013, pp. 38—
49.

I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan,
and N. Binkert, “Consistent, durable, and safe memory management
for byte-addressable non volatile main memory,” in Timely Results in
Operating Systems. ACM, 2013, p. 1.

I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes, “Memory management techniques for large-scale persistent-
main-memory systems,” VLDB, vol. 10, no. 11, pp. 1166-1177, 2017.
“bpt: B+ tree implementation,” 2016. [Online]. Available:
http://www.amittai.com/prose/bpt.c

(2017) Adaptive radix trees implemented in c. [Online]. Available:
https://github.com/armon/libart

S. R. Dulloor, “Systems and applications for persistent memory,” Ph.D.
dissertation, Georgia Tech, 2015.

H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,” in
Middleware. ACM, 2015, pp. 37-49.

S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage manage-
ment in the nvram era,” VLDB, vol. 7, no. 2, pp. 121-132, 2013.

“Memcached,” http://http://memcached.org/, [Online; accessed
Januray-2019].

(2017) A text file containing 479k english words for all your dictionary.
[Online]. Available: https://github.com/dwyl/english-words

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
vol. 39, no. 1. ACM, 2011, pp. 91-104.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143-154.

[2

—

3

[l

[4]

[5

—

[6]

[71

[8

—

9

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]
[18] 1-
[19]

[20]

[21]

Authorized licensed use limited to: San Diego State University. Downloaded on June 08,2020 at 17:04:10 UTC from IEEE Xplore. Restrictions apply.

