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Abstract. The key to our investigation is an improved (and in a sense sharp)
understanding of the survival time of the contact process on star graphs. Using these
results, we show that for the contact process on Galton-Watson trees, when the
offspring distribution (i) is subexponential the critical value for local survival Ay = 0
and (ii) when it is geometric(p) we have Ay < C), where the C), are much smaller
than previous estimates. We also study the critical value A.(n) for “prolonged
persistence” on graphs with n vertices generated by the configuration model. In the
case of power law and stretched exponential distributions where it is known A.(n) —
0 we give estimates on the rate of convergence. Physicists tell us that A.(n) ~
1/A(n) where A(n) is the maximum eigenvalue of the adjacency matrix. Our results
show that this is accurate for graphs with power-law degree distributions, but not
for stretched exponentials.

1. Introduction

In the contact process on a graph G, occupied sites become vacant at rate 1,
and give birth onto vacant neighbors at rate A. Harris [14] introduced the contact
process on G = Z% in 1974. The state at time ¢ is & C Z%. It is often thought
of as a model for the spread of species. In this case & is the set of occupied sites,
and sites in & are vacant. However, it can also be viewed as a spatial SIS epidemic
model. In this case & is the set of infected sites, and sites in & are susceptible.
Both interpretations are common in the literature, so the reader will see both here.

Let £ be the process starting from only the origin occupied and let &} be the
process starting from all sites occupied. Harris introduced the critical value

Ae = inf{\: P(&) # 0 for all t) > 0},
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and proved that on Z? we have 0 < \. < co. He also showed that for A > \., &}
converges to a limit that is a nontrivial stationary distribution. A rich theory has
been developed for the contact process on Z9. See Liggett’s 1999 book [18] for a
summary of much of what is known.

Pemantle [29] was the first to study the contact process on the tree T? in which
each vertex has degree d + 1. Here, and in what follows, we assume d > 2 since
T, = Z. Let 0 be the root of the tree and let Py be the probability measure for
the process starting from only the root occupied. Pemantle found that the contact
process on T? has two critical values.

A = inf{\: Py(& # 0 for all t) > 0},
Ao = inf{\: litrgiano(O € &) >0}

By deriving bounds on the critical values, he showed that A\; < A2 when d > 3.
Liggett [17] settled the case d = 2 by showing Ay < 0.605 < 0.6609 < A2. At about
the same time, Stacey [33] gave a proof that A\; < A2 that did not rely on bounds.
The stationary distributions and limiting behavior of the contact process on trees
is an interesting subject that has been extensively studied. See Liggett’s book [18§]
for an account of the results.

1.1. Results for star graphs. Let Gj be a star graph with center 0 and leaves
1,2,...,k and let & be the set of vertices infected in the contact process at time
t. Write the state & as (i,7) where ¢ is the number of infected leaves and j = 1 if
the center is infected and j = 0 otherwise. We write P; ; for the law of the process
starting from (i,7). Pemantle [29] was the first to study the persistence time of
the contact process on stars. See his Section 4. He did his analysis on the “ladder
graph” {0,...,n} x {0,1} so he ended up with a very approximate superharmonic
function W(§). Let i be the number of infected leaves, and let I(£) = 1 if the root
is infected and = 0 otherwise.

wig = (1- 195D,

A

To make the connection change Pemantle’s n (the number of leaves) to our k and
note that his birth rate A = «//n. Pemantle has an interesting heuristic discussion
on pages 2015-2016 that explains why this form is reasonable. However the 10’s
that are thrown in to make it is easier to prove it is superharmonic ruin its accuracy.

Here, following the approach in [5], we will reduce to a discrete time one dimen-
sional chain, we will only look at times when j = 1. When the state is (¢,0) with
i > 0, the next event will occur after exponential time with mean 1/(iA +4). The
probability that it will be the reinfection of the center is A/(A+1). The probability
it will be the healing of a leaf is 1/(A + 1). Thus, the number of leaf infections
N that will be lost while the center is healthy has a shifted geometric distribution
with success probability A/(A + 1), i.e.,

1 J

Note that
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The next step is to modify the chain so that the infection rate is 0 when the
number of infected leaves is at least

L =pk where p=X\/(1+2)). (1.1)

(The reader will see the reasons that underlie this choice later.) Note that for the
modified chain the number of infected leaves is always < pk and the number of
uninfected leaves is > (1 — p)k. Thus if we look at the embedded discrete time
process for the contact process on the star and only look at times when the center
is infected, the process dominates Y,, where

jump with prob
Y,—>Y, -1 pk/D
Y, — min{¥,, + 1,pk} A1 —p)k/D
Y, =Y, —N 1/D
Here N is independent of Y,, and the denominator
D=pk+AN1-pk+1<k4+X+1<(24+ Nk (1.2)

The fact that Y,, is a reflecting random walk will simplify computations. We
will use the process to lower bound survival times. Before the infection on the
star graph goes extinct it will spend most of its time near pk, (i) this does not
lose much compared to the more accurate birth and death chain, which uses the
actual number of infected leaves not just a bound, and (ii) we make only a small
error when we return to continuous time by assuming that jumps happen at the
maximum rate. In [5] it is shown, see Lemma 2.2 on page 2339, that

Lemma 1.1. Suppose A < 1 and Ak > 50. Let Lo = \k/4 and Sy = ﬁ exp(kA?/80).
Then

P (mf €] < O.4L0) < 7e N Lo/80 fori=0,1.
t<So
In contrast our Lemma 2.4 will show that if L = Ak/(1+ 2)\) and b = €L

Pra (tigggq < bL) <B4+ N(1+N/2)7F (1.3)

where

1
= (14 A/2)t029,
S (2+)\)2k:( +A/2)

Part of the improvement comes from simply replacing Lo by L and 0.4 by €, but
the most important change is to construct a more accurate superharmonic function.
If one is proving that a critical value is 0, as [29] and [5] were, then it is not harmful
to be off by a large constant factor, but if we are trying to get a good positive upper
bound we need to be accurate.

In a companion paper we have shown that the improved lower bound is sharp.
Let Tp,0 be the extinction time of the contact process on a star graph with n leaves.
We write E; ; for the expectation of the process starting from state (i, 7).

Lemma 4 in [15]. Let K = An/(n+1). For any € > 0, the contact process on the
star graph has

Ex1Too < (logn)eToXn, (1.4)
when n is sufficiently large.
If A2n — oo then the logn prefactor can be absorbed by changing ¢ however it is
important if A = O(1//n), since in this case the exponential is O(1).
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In contrast, the lower bound time T from (1.3), ignoring the prefactor, is

L(1-26) o o Nk

(1+X1/2) A exp <(1 26)2(1+2)\)).

If X is small then the term in the exponential is about 1/2 the one in (1.4). Strictly
speaking these results are not sharp (on the exponential scale) but a factor of 2 is
much better than the factor of 80 that appears in [5]. It is not clear which result
gives the right answer. The result in (1.4) is proved by looking at the first time the
center becomes healthy and then all of the leaves become healthy before the center
is reinfected. At first sight this bound seems crazy, but the calculations above show
that it is fairly accurate. We have not been able to finding a good subharmonic
function for Y;, to find a better upper bound so we leave it to a clever reader to
determine the nature of the large deviation event that wipes out the infection on
the star.

1.2. Galton-Watson trees. Given an offspring distribution pg, we construct a Galton-
Watson trees as follows. Starting with the root, each individual has k children with
probability pg. Pemantle has shown that

Theorem 3.2 in [29]. There are constants ca and c3 so that if p is the mean of the
offspring distribution, then for any k > 1, if we let r, = max{2, colog(1/kpy)/p}

Ao < c3v/7y log i log(k) /k. (1.5)

If the offspring distribution in the Galton-Watson tree is a stretched exponential
P = ¢y exp(—k7) with v < 1 then log(1/kpx) ~ k7 and hence Ag = 0.

Given this result, it is natural to ask about the critical values A\; and Ay when
degrees have a geometric distribution. p, = (1 — p)*~!p for k¥ > 1. The most
interesting problem is to prove A\; > 0. Here, we prove upper bounds.

Theorem 1.2. A\; <p/(1—p).

Proof: Modify the contact process so that births from a site can only occur on sites
further from the root. Each vertex x will be occupied at most once. If x is occupied
then it will give birth with probability A/(A + 1) onto each neighbor y. The birth
events are not independent but that is not important. If we let Z,, be the number
of sites at distance n that are ever occupied, Z,, is a branching process in which the
offspring distribution has mean A/((A+ 1) - p) which is > 1if A >p/(1—p). O

When py, = (1 —p)k~1p, log(1/kpi) ~ cpk, so (1.5) gives a finite upper bound on
Ao. It is difficult to trace through all the calculations to get an explicit lower bound.
However, Pemantle uses e~1/5 = 0.0735 as the lower bound for the probability of
long time survival starting with only the center of a large degree star graph occupied,
while Lemma 2.5 gives 1 — 3k~/3 when the degree is k. This probability e 1/5
appears cubed near the end of his proof, so we think that his bound is much worse
than the following:

Theorem 1.3. If p,, =27 for k > 1, then Ay < 2.5.

This result is proved by combining our new estimates for the contact process on
stars with the mysterious Lemma 2.4 in Pemantle’s paper [29] (see Lemma 3.3
below).
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FIGURE 1.1. Upper bounds on As (solid line) and A; (dotted line)
as a function of p for the geometric degree distribution. The graph
is computed by using (3.3).

The proof works for a general geometric py, = (1 — p)*~!p, k > 1. We cannot
get a nice formula for the upper bound as a function of p but the upper bounds
can easily be computed numerically and graphed. These upper bounds are only
interesting for small p. A Galton-Watson tree with pg = 0 and p; < 1 contains a
copy of Z (start with a vertex with two children and follow their descendants) so
using Liggett’s bound on A.(Z) proved in [16] we conclude Ay < 2 for all 0 < p < 1.

In addition, the proof of Theorem 1.3 yields an improvement of Pemantle’s result
for stretched exponential distributions. We say that py is subexponential if

lim sup(1/k) log pr, = 0.
k—o0
Theorem 1.4. If the offspring distribution py, for a Galton-Watson tree is subex-
ponential and has mean p > 1 then Ay = 0.

Note that Ao = 0 implies Ay = 0.
In the version of this paper submitted for publication in ALEA, we conjectured
that the result in Theorem 1.4 is sharp. This has recently been proved by

Bhamidi, Nam, Nguyen, and Sly [2] Consider the contact process on the
Galton-Watson tree with offspring distribution ¢, and suppose that only the root
of the tree is initially infected. If E(exp(cC)) < oo for some ¢ > 0, then A1 > 0.

They also prove results for random graphs. See [2] for more details.
1.3. Finite graphs. Consider the contact process on {—n,...n} starting from all

sites occupied and let 7, = inf{¢ : & = (}}. Combining results of Durrett and Liu
[11] and Durrett and Schonmann [12] gives the following results
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(i) If A < A, then there is a constant 1 () so that
Tn/logn — v1(A)  in probability.
(ii) If A > A then there is a constant y2(\) so that
(log7,)/n — v2(A) in probability.
(iii) When A > A. there is “metastability”:
Tn/ ET, = exponential(1)

where = means convergence in distribution. Intuitively, the process on the interval
stays exponentially long in a state that looks like the stationary distribution for the
process on Z, and then suddenly dies out.

Results on Z¢ with d > 1 had to wait for the work of Bezuidenhout and Grimmett
[1], who showed that in d > 1 the contact process dies out at the critical value
and in doing so introduced a block construction that can be used to study the
supercritical process. Mountford [20] proved the metastability result in 1993 and
that (log7,,)/n? — v(\) in 1999, see [21].

Stacey [32] studied the contact process on a tree truncated at height ¢, T¢. To
be precise, the root has degree d, vertices at distance 0 < k < £ from the root have
degree d+1, while those at distance £ have degree 1. Cranston, Mountford, Mourrat,
and Valesin improved Stacey’s result to establish that the time to extinction starting
from all sites occupied Tlfi satisfies

Theorem 1.5. [7] (a) For any 0 < X\ < A\o(T?) there is a ¢ € (0,00) so that as
{— o0

78 /1og|T¢| — ¢ in probability.
(b) For any A\2(T?) < X\ < oo there is a ¢ € (0,00) so that as £ — o

log(t)/|T¢| — ¢ in probability.

Moreover 7/ ET{l converges to a mean one exponential.

When a tree is truncated at a finite distance, a positive fraction of the sites are
on the boundary. A more natural finite version of a tree is a random regular graph
in which all vertices have degree d 4+ 1. In this case there is no boundary and the
graph has the same distribution viewed from any point. If there are n vertices, the
graph looks like Ty in neighborhoods of a point that have < n'/? vertices. Mourrat
and Valesin have shown for a random regular graph, the time to extinction starting
from all sites occupied T,, satisfies:

Theorem 1.6. [24] (a) For any 0 < X\ < A\ (T9) there is a C < 0o so that as
n— oo

P(r, < Clogn) — 1,
(b) For any A\1(T?) < A < oo there is a ¢ > 0 so that as n — 0o

P(r, > €)= c.

Notice that the threshold in the second result comes at A1, while the one in Stacey’s
result comes at Ay. The difference is that when A € (A1, A2) on the infinite tree the
origin is in the middle of linearly growing vacant region. On the truncated tree the
system dies out when the vacant region is large enough. However, on the random
regular graph the occupied sites will later return to the origin. Durrett and Jung
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[10] investigated the qualitative differences between A € (A1, A2) and A > A on the
small world graph.

To construct a random graph G,, on the vertex set {1,2,...,n} having a specified
degree distribution, we use the configuration model. Let dy,...,d, be independent
and have the distribution P(d; = k) = pi. In order to have a valid degree sequence,
we condition on the event E, = {dy + --- + d,, is even}. Since P(E,) — 1/2 as
n — 0o, the conditioning will have a little effect on the distribution of d;’s. Having
chosen the degree sequence (dy,ds,...,d,), we attach d; half-edges to the vertex
i, and then pair these half-edges at random. This procedure may produce a graph
with self-loops or parallel edges, but we will ignore that problem for the moment.

In the early 2000’s physicists studied the contact process on a random graphs
with a power-law degree distribution, i.e., the degree of each vertex is k with prob-
ability

pr ~Ck™ ask — co.

Pastor-Satorras and Vespignani [26, 27, 28] have made an extensive study of this
model using mean-field methods. Their nonrigorous computations suggest the fol-
lowing conjectures about A., the threshold for “prolonged persistence” of the con-
tact process, and the critical exponent 3, that controls the rate at which the equi-
librium density of occupied sites p(\) goes to 0, i.e., p(\) ~ C (A — \.)?.

o If & <3, then A\, =0. If @« <3 then 8 =1/(3 — a).

e If3<a<4,then A\, >0and =1/(—3) > 1.

e If >4, then A\, >0 and g =1.

See also Section V of [25]. The values of 8 quoted above are given in formula (29)
of [25].

Chatterjee and Durrett [5] showed in 2009 that A, > 0 is not correct when a > 3
and P(d; <2) =0. The last condition guarantees that the graph is connected and
that random walks on the graph have good mixing properties. They only proved
survival for time exp(O(n'~¢)) but they obtained bounds on the critical exponent
5.

In 2013 Mountford, Mourrat, Valesin, and Yao [23] extended the results of [5]
to include 2 < a < 3 and proved upper and lower bounds that had the same
dependence on A but different constants, showing that

AL/ (B=a) 2<a<5b/2
p(A) ~ L A2 310g2 "% (1/))  5/2<a <3
A3 10g?2(1/)) 3 < a

The result for 2 < a < 5/2 agrees with the mean-field calculations quoted above but
that formula is claimed to hold for 2 < a < 3. Figure 2 gives a visual comparison of
the mean-field and rigorous resultls for critical exponents. For more about why the
change occurs at 5/2 see the next section and [23]. Three years later, Mountford,
Mourrat, Valesin, and Yao [22] showed that for all A > 0, there is a ¢(\) > 0 so
that the survival time > e“” with high probability.

1.4. Critical value asymptotics when A, = 0. While the results cited above show
that the mean-field calculations are not correct, physicists have never said they were
wrong. Indeed, a 2010 paper Castellano and Pastor-Satorras [3] claims they knew
the right answer all along. “Already in 2003, Wang et al [34] argued that the SIS
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FIGURE 1.2. Mean field critical exponents (solid line) versus rig-
orous results (dashed line) as « varies from 2 to 4.5.

epidemic threshold on any graph is set by the largest eigenvalue of the adjacency
matrix, A

Ae(n) = 1/A(n).” (1.6)

Two years earlier Pemantle snd Stacey [30] proved that 1/A(n) is the critical value
of branching random walk on the graph. To be precise they showed in Lemma 3.1
that

Theorem. Let G = (V, E) be a graph and let M (v,2n) be the number of paths with
2n steps that begin and end at v. Let
M = lim M(v,2n)Y?*" = sup M (v,2n)"/?".
n—00 n

The limit exists by supermultipicativity and is independent of v. The critical prob-
ability for local survival of the branching random walk is given by 1/M.

However, it is far from obvious why this should also be the critical value for the
contact process. For example on Z, the critical value A for branching random walk
is 1/2 while for the contact process A, ~ 0.82.

The first question that needs to be addressed before (1.6) can become a theorem
is the definition of A\.. According to page 942 of the 2015 survey paper in Reviews of
Modern Physics [25] “Above the epidemic threshold, the activity must be endemic,
so that the average time to absorption is O(e“™).” To make it clear that they
wanted to insist on this standard we note that the discussion continued with

“Chatterjee and Durrett proved that in graphs with power law de-
gree distribution ET > exp(O(N'~?)) for any § > 0. This result
pointed to a vanishing threshold but still left the possibility for
nonendemic long-lived metastable states.”
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Survival for time e” is certainly the gold standard for prolonged persistence, but
following the footsteps of Ganesh, Masoulie, and Towsley [13], we will accept sur-
vival for time exp(O(n®)) for some € > 0 as evidence that A > A..

The proofs of (1.6) in [34] and [4] do not provide a lower bound on survival time.
They let n — oo to obtain a nonlinear dynamical system (NLDS). To explain,
note that if we let p;; be the probability 7 is infected at time ¢ and let (;; be the
probability j does not receive infection at time ¢ then

Gt = H (1= Bpji-1)
Jijri

1—pit =1 —=pit—1)Gt +0pit—1Git

Then they argue that if A > A~! then one of the eigenvalues of the linearization of
the NLDS around 0 is > 1, see the Appendix of [4]. It is not clear what the last
conclusion implies in terms of persistence. Wang et al [34] use (1.6) to conclude
that the critical value for the contact process on a star graph with n leaves is 1/4/n.

The results discussed in Section 1.1 show that the survival time on the star graph
increase dramatically when A changes from O(1/+/n) to > 1/4/n. However, the
claim that critical value on a star graph is 1/A(n) is contradicted by (1.4) which
shows that if A = a/+/n then for large n

EK71T070 S 62a2 logn
where K = An/(A+1). It is not hard to show that the time needed to go from n to
K is O(logn). Thus the survival time is O(logn) which is much smaller than the
O(e™) that [25] demands. Since the results in Section 1.1 show that the survival
time is exp(O(A\?n)), we would have to take A > 0 independent of n for the contact
process on the start to survive for this long.

Returning to the implications of (1.6) for the contact process, the maximum
eigenvalue of the adjacency matrix of a random graph is trivially > di,{azx (generated
by paths going back and forth between a vertex with degree d;,q, and its neighbors).
Using results of Chung, Lu, and Vu [6] for the maximum eigenvalue for random
graphs the authors of [3] concluded that the critical value for power law random
graphs satisfies

N~ (dy/(d?) 2<a<b/2
¢ 1/Vdmaz 5/2 <«

where dyq, is the maximum degree in the graph, and (d), (d*) are the average
values of d(x) and d(x)? for the graph. More concretely
Ao ple=3)/(e=1) 2 < < 5/2
c(n
/2=l 5/9 <q
Using our results we can prove an upper bound on A, that supports this predic-
tion when o > 3. Here a = o — 1.
Theorem 1.7. Suppose that the degree distribution has
P(d(z) > k) =3~ fork>3.
We assume a > 2 so that Ed(z)? < co. Let A\ =n~(=21/2% gnd n > 0. If we start

from all 1’s then there is an € > 0 so that the system survives for time exp(O(n®))
with high probability.
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Combining this result with the fact that 1/A gives the critical value for branching
random walk and hence a lower bound on the critical value for the contact process
we have

Ae(n) = n~(Fe)/2a, (1.7)

Next we consider the stretched exponential
P(d(z) > k) = exp(—2'/* + 31/%)  for k > 3.

where b > 1. In this case, the maximum degree vertex on a graph with n vertices is
~ logb n, so the maximum eigenvalue A ~ logb/ % n and the formula in (1.6) predicts
that A\, ~ logfb/2 n but results of [2] show that this cannot be correct for b < 1.

In that case the moment generating function of the degree distribution is finite for
some positive 0 so A.(n) converges to a positive limit.

Theorem 1.8. Suppose A\, = 1og(17")(17b)/2 n. If we start from all 1’s then for
any € > 0 the system survives for time exp(O(n*~¢)) with high probability.

We believe that the last result gives the right answer.

Conjecture. Suppose A\, = logfa/2 n where a > b—1. If we start from all 1’s then
for any € > 0 the system dies out by time exp(O(n®)) with high probability.

The remainder of the paper is devoted to proofs. Section 2 gives our results for
the star graph. Section 3 proves our results for Galton-Watson trees. Section 4
gives the asymptotics for A.(n).

2. Results for the star graph
Recall from (1) that we set
L =pk where p=M\/(1+2\).
The definition of Y,, is given right after that formula.

Lemma 2.1. Let ¢ = 1/(1+ \/2). If k is large enough e®¥* is a supermartingale
while Y, € (0, pk).

Proof: We begin by noting that

E(exp(0¥ns1) — exp(0%)[Yu =) = €™ — A1 —p)k/D  (2.1)
_ e | e? A
o [ (5 ()

The term in square brackets is

1 A A e -1
. _ 1 — —_ 1 = Z O.
1—e?/(1+X) 1+A 1+A—e? 1+A—e?

Note that 6 < 0 so the last inequality implies that we must take e=? < 14+ \.

The first two terms are
ek

D

so we begin by solving

((e® = DAL =p)+ (e ? = 1)p),

(e —DAX1=p)+ (e =1)p=0.
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0

Rearranging and setting x = e¢” we want

A1 —p) — [AM(L —p) +plz+p = 0.
Factoring we have
(A1 =p)z—p)(x—1)=0.
Since p = A/(1 + 2X) the smaller root is

po . AA+2y) 1
AML=p)  AMI+N/(1+2)\) 14+

We let e =1/(14+ A/2) € (1/(1+ ), 1) so that there is a § > 0 with
AL =p)+e'p=A1-p) +p] -

and hence

(e — DAL —p)k+ (e —1) k+7‘370*1 5k+767971
e’ — — e — =- :
it p 1+X—e? 14+X—e?

From this we see that if & is large enough e is a supermartingale while Y,, €

(0, pk). The reason we restricted Y;, to (0, pk) is that when Y,, < pk, the number of
infected leaves tends to grow, which makes it possible to construct a supermartin-
gale ¥ with # < 0. Note that when Y,, is small the number of infected leaves
may become 0 before the center is reinfected but in this case the number of lost
infections N is truncated.

O

Let T, = inf{n : Y, < ¢} and let T} = inf{n : Y,, > m}. We write P; for the
law of the process Y,, starting with Yy = 1.

Lemma 2.2. Let a,b€ (0,L). If b < a then
P(T, <TF) < (1+2/2)7

Proof: To estimate the hitting probability let ¢(x) = exp(fx) where we take ¢’ =
1/(1+ A/2) and note that if 7 = T,” AT} then ¢(Y (¢t A 7)) is a supermartingale.
Let ¢ = P,(T,, < T;). Using the optional stopping theorem we have

qd(Y(T, ) + (1 = q)o(Y(T})) < ¢(a).
It is possible that Y (7,) < b. Note that since # < 0, we have ¢(x) > ¢(b) for
x < b. Hence,
a9 (b) + (1 = q)o(L) < ¢(a)

a).
Dropping the second term on the left, ¢ < é(a)/¢(b) = (1 + A/2)*~% | which
completes the proof. O

Lemma 2.3. If R, =inf{n >T; ;:Y, =L} and b € [0,L) then for sufficiently
large k
Pr(Ty < Rp) < (2+MN)(1+2/2)F,

Remark. Here, and in later lemmas, the computation of explicit constants is
somewhat annoying. However, when we consider asymptotics for critical values, A
will go to 0, so we will need to know how the constants depend on .
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Proof: To compute the left-hand side we break things down according to the first
jump. The definition of Ry, allows us to ignore the attempted upward jumps that
do nothing. Recall that L = pk. The jump is to L — 1 with probability pk/(pk + 1)
and to L — j with probability W . ﬁ. In the first case the probability of
going below b before returning to L is

<(A4+N2)0ED = (14 X/2) - (1+2/2)0F,
In the second case we have to sum over the possible values of L — j. Using Lemma
2.2

e A ; A _
j=1

oA S 1+A2Y A _
< b Li.
<(14+X1/2) ] ;—O( 1+A> +1+/\PL(Tb < Ryp)

=2(1+)/2)" L+

T )\PL(T;) < RL).

Noting that max{2,1+ A/2} < 2(1 4+ A\/2) — ¢ for some small 6 < A, we have the
following relation,

Pr(T, < Rp) < Pr(Ty < Rp)+ (2+A—0)(1+2/2) L.

A
(14 X)(1 + pk)
Hence for k sufficiently large, we have Pp,(T, < Rp) < (2+A)(1+A/2)*" L. O

Recall that & denotes the original contact process on the star graph with k
leaves.

Lemma 2.4. Let b= €L and S = m(l + \/2)E0=2¢)

Pra (322 €] < b) < B4+ N)(1+N/2)" e

We have returned to unmodified process so (L, 1) means L leaves are infected and
the center is as well. Again when we write the state as a subscript we drop the
parentheses.

Proof: Let M = (1 + A/2)*(1=2¢), By Lemma 2.3 the probability that the chain
fails to return M times to L before going below €L is

<@+ N1+ A2) 7k
Using Chebyshev’s inequality on the sum Sy; of M exponentials with mean 1 (and
hence variance 1),

P(Sn < M/2) < 4/M.
When the number of infected leaves is < L maximum jump rate is D < (24 \)k so

SM - (1 +/\/2)L(1—26)
2+ Nk — 22+ Nk

for large L. Adding up the error probabilities gives

) <4(14 2/2)7L0729 < (1 4 a/2)7Le

Pr 4 (tlgg |&:] < b) <@B+N1+ /\/2)—“

and completes the proof. O
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Up to this point we have shown that if a star has L infected leaves it will remain
infected for a long time. To make this useful, we need estimates about what happens
when the star starts with only the center infected. Let Tp o be the first time the
star is healthy. We use the pair (n,?) to denote the state of the star graph, where n
is the number of infected leaves and 7 indicates the state of the center (¢ = 1 means
the center is infected).

Lemma 2.5. Let A > 0 be fized and K = \k'/3. Then for large k
Po1 (T > Top) < 22k ~1/3,
Prc1(Too < T) < k=13,
Eor (T T < Too) <2/

Proof: Clearly
K

Po1(Tj < Too) > H

-1
J=0

(k= J)A
L+ (k—j)A+7

so subtracting the last inequality from 1 = Hf;ol 1 and using Lemma 3.4.3 from

9]

K—-1 .
1+J MR s

Py (T > Too) <
0,1( K > 0,0)_ O(k—j))\_(k:—)\k:l/?’))\_

Jj=

For the second result we use the supermartingale e from Lemma 3.1. If ¢ =

Py 1(Too < TL+ ), using optional stopping theorem we have
q-14 (1 —q)eft < K,
Dropping the second term on the left,
g <K =14+ 227K <3

To bound the time we return to continuous time

jump at rate
Y,—-Y, -1 pk

Y: —» min{Y; + 1,pk} A1 -p)k
Y-, —N 1

Before time Vi, = Ty 0 A TZF the drift of Y; is at least
w=XA1—-p)k—pk—1/A=AIpk—1/\ (2.2)
so Yy — ut is a submartingale. Stopping this martingale at the bounded stopping
time Vi At
EY(VL /\t) — ,U,E(VL A\ t) > EYy > 0.
Since EY (Vi At) < L, it follows that
L__ pk
wo Apk—1/\
where p = \/(1 4 2)), so if A is fixed and k is large
E(VL At) <2/,

E(VL /\t) <

which completes the proof. (I
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Combining Lemmas 2.4 and 2.5 gives the following. When G occurs, we say the
star at 0 is good.

Lemma 2.6. Let A; denote the number of infected leaves at time t and take S as
in Lemma 2./. Define G = {inf2/a<1<g |At] > €L}. If A > 0 is fivred and k is large
then o

Po1(G)>1—(2+2)\)k7Y/3 (2.3)

Proof: Lemma 2.5 implies

Por(TF < k*3) > Py (TF < K*3|TF < To0)Por(TF < Too)
> (1= (2/NEH(1 - (142073 > 1 - (g +2\)k713
for large k. By the definition in (1.1), L = pk where p = A/(1 + 2)). Lemma 2.4
tells us that

o <ggg|st < eL) < (BN +A/2)

Since A is fixed the right-hand side is < k~1/3/2 for large k. Adding up the error
probabilities completes the proof. (I

3. Proofs of results for Galton-Watson trees

In the previous section we developed estimates for the contact process on stars.
The next step is to obtain estimates on the probability of “pushing an infection
from one star to another.” When A > 0 is fixed we have to be careful not to lose
too much.

Lemma 3.1. Let vy, vq,...v. be a path in a graph and suppose that vy is infected
at time 0. Then there is a v > 0 so that the probability that v, will become infected

by time 2r is
)\ T
> (2 — exp(—~r)).
> <A+1) (1 —exp(=yr))

If € >0 and we let A= (1 — €)N/(\ + 1) then for large v this probability is > A

Proof: The probability that v;_; infects v; before it is cured is A/(1 4+ ). When
this transfer of infection occurs the amount of time is ¢; exponential with rate 1+ .
By large deviations for the exponential distribution P(t; + - 4+ ¢, > 2r) < e 7"
for some v > 0. ]

We say a star is nice if starting from L infected leaves, the event in Lemma 2.4
occurs. Recall that S = m(l +2/2)£(1729) a5 in Lemma 2.4.

Lemma 3.2. Run the contact process on a graph consisting of a star of size k to
which there has been added a single chain vy, ... v, of length r where v is a neighbor
of 0, the center of the star. Suppose that at time 0 there are L infected leaves and
the star with center 0 is nice.

For large v and k, the probability that v, will not be infected before time T =
m(2r + 1) for some m < S/(2r 4+ 1) is

<=
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Proof: Consider a sequence of times t; = (2r 4+ 1)i for ¢ > 1. The center 0 may not
be infected at time ¢; but since the number of infected neighbors is > €L the center
will be infected by time ¢; + 1 with probability at least 1 — e~*“L. By Lemma 3.1
the probability v, is successfully infected in [t;,t;11) is

A\ or
> (1—e ) <)\+1) (1 —exp(—nyr)) > )Y
for sufficiently large r and k. The desired result follows. O

Remark. Due to the way the proof is done, if we condition on 0 being good then
successes on two different chains are independent events.

To prepare for the proof of the main results we need the next lemma, which is
Lemma 2.4 from [29]. Let p(z) = > .7 pna™ be the generating function of the
Galton-Watson tree. We will apply Lemma 3.3 to

ft)=P(0 € &) > ppP(0 € €] 0 has at least k children).

Lemma 3.3. Let H be any nondecreasing function on the nonnegative reals with
H(z) > = when x € [0,z0]. If f satisfies (i) info<i<p f(t) > 0 and (it) f(t) >
H(info<s<i—1, f(8)) fort > L some L > 0 then liminf, .., f(t) > 0.

Proof: For any tg and € > 0, (ii) implies that there is a decreasing sequence t; with
tir1 <t; — L and t; < L for some k

f(t:) > H(f(tix1)) —e27".
If f(t;) < @ for all 1 <4 < k then

fti) > ftigr) —e2™

and summing gives f(t9) > f(tx) — € which gives the desired result. Suppose now
that j is the smallest index with f(t;) > xo. If j = 0 we have f(to) > zo. If j =1
we have f(tg) > H(xzo). If j > 2 we have

f(to) > f(tj—1) —€ > H(wo) — €

so in all cases we get the desired conclusion. O

Proof for p, = 27", n > 1. Our proof follows the outline of the proof of Theorem
3.2 in [29], see pages 2109-2110. We can suppose without loss of generality that
the root has degree k. Otherwise examine the children of the root until we find one
with degree k and apply the argument to the children of this vertex. There are two
steps in the proof.

(1) Push the infection to vertices at a distance r = k that have degree k.
(2) Bring the infection back to the root at time ¢ using Lemma 3.3.

Step 1. The mean of the offspring distribution 2. Let Z, be the number of vertices

at distance r from 0 and let v},...v/ be the subset of those that have exactly k

children, where J is a random variable that represents the number of such vertices.
Since the root has degree k and p, = 2% if we set r = k

EJ > ku™ 'p, = k/2,

where p = 2 is the mean offspring number.
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If we condition on the value of W = Z,./(ku™') and let J = (J|W) be the
conditional distribution of J given W then

J = Binomial(k2"~1W, 27%).

Let M be the random number of vertices among v}, ...v; that are infected before
time

_ 1 L(1-2¢)
5= 2k(2+/\)(1+)\/2)

defined in Lemma 2.4. The event G = {inf;2/s<;<g|A¢| > €L} in Lemma 2.6 occurs
with high probability. By Lemma 3.2, conditioning on G the probability a given
vertex will not become infected by time S is

<k < A
noi < (1—=A)™  wh A=(1- d
D ( )™ where ( e)>\ 1 2
_ k2/3 L(1—2¢)
_S—k > (1+X/2) with I — Ak '
2k +1 42k +1)(2+X) 142X
Combining the definitions and using (1 — z) < e~* we have
r* <
noi < _ h T =\1 /2 (1—26)A/(1+2/\).
P exP( 4k(2k+1)(2+>\)> where (1+2/2)
When X = 2.5
o (14 1/2)M 20 = 1.0014 > 1, (3.1)

so I' > 1 when € is small and p,,; — 0 as K — oco. From this we see that if § > 0
then for large k
EM > (1-90)EJ.
The remark after Lemma 3.2 implies that if we condition on the value of W and
let M = (M|W) then
M > Binomial (k2" W, 27%(1 — §)).

To prepare for the following two generalizations of the result for Geometric(1/2)
offspring distribution we ask the reader to verify that in Step 2, all we use is the
fact that (3.1) implies the bounds on EM and M.
Step 2. Let Hy(t) = P(vi € &_s for some 1 <i < J) and
Hy(t) = P(0 € &|vl € &_g for some 1 < i < .J),
so that f(t) > Hy(t)H2(t). Fix t > 25 and let
x(t) =inf{f(s) : s <t—S}.

Since t is fixed, we simplify the notation and write x(t) as x.

Ignore all but the first infection of each v’ by its parent. Any of these will evolve
independently from the time s < S it is first infected, and will be infected at time
t — S with probability at least x. Thus given M the number of infected at time

t — S will dominate N = binomial(M, x). If we let N = binomial(M, x) and let
d > 0, then by Lemma 2.3 in [29] we see that there exists a € > 0 such that

P(N>1)>(1—-6)xEM Ae
Therefore Hy(t) > (1 — §)xEM A e when t > 25.

Finally, if some v! is infected at time ¢t — S then the probability of finding 0
infected at time ¢ is bounded below by pjp2 where
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e p; is the probability that the contact process starting with only v¢ infected
at time ¢t — S infects 0 at some time s with ¢t — .5 < s <t¢. By Lemmas 2.5,
2.6,and 3.2, py > 1—46.

e po is the probability 0 is infected at time ¢ given the infection of 0 at such
a time s. For any ¢ > 0, by Lemma 3.2 the probability that 0 have not
been infected by time S/2 is less than e when k is sufficiently large. By
Lemma 2.6, with probability > 1 — (2 + 2A\)k~/3 there should be at least
eL infected leaves at time ¢ — e. Hence 0 is infected at ¢ with probability
at least (1 — e *'L)e=, where the second term guarantees that the root is
infected at time ¢. Choosing ¢ is sufficiently small and k sufficiently large
gives po > 1 —4.

Thus

inf0§s§25 f(S) S S t S 25

We can take ¢ < info<s<ag f(s) so that f(t) > x(t)EM (1 —8)3 Ae forall t > S.
The result now follows from Lemma 3.3 with L = S and H(z) = (1—6)3(EM)x Ae.

0> {X(t)EM(l — 63 Ae t>28,

Proof for p, = (1 — p)"~!p. It is now straightforward to replace 1/2 by p. We

only have to pick k and r so that we can prove the analogue of (3.1). The mean
of the offspring distribution is 1/p. Let Z, be the number of vertices at distance r
from 0 and let v},...v] be those that have exactly k children. Since the root has
degree k and pj, = (1 —p)*~1p

EJ > k(1/p)" (1 —p)* 'p. (3.2)

In this case we want to pick 7 so that (1/p)"(1 — p)* ~ 1. Hence EJ can be large
when k is large. Ignoring the fact that » and k& must be integers this means

r/k =log(1 —p)/logp.

Let M be the random number of vertices among v}, ...v;/ that are infected before
time S. By Lemma 3.2 the probability a given vertex will not become infected is

o Tk
< (1 A/ < e (-
s(1=X) —eXp< 4k(2r+1)(2+)\)>

where I' = Xr/k(l 4+ X/2)(A1=26X/(1+20)  That is, if we choose A such that
A r/k
(A+1> (14 AN AT 5 (3.3)

then we have I' > 1 for large k. By the same reasoning as before this choice of A
gives an upper bound on .

If we want to graph the bound as a function of p it is better to work backwards.
Given \ the second factor is > 1 so we can easily find the value of r/k that makes
this 1. Having done this we can easily compute the value of p for which A gives the
upper bound on As.

Proof for subexponential distributions. We suppose that the mean of the
offspring distribution is p > 1. If py is subexponential, i.e.,

lim sup(1/k) log pr, = 0,

k—o0



18 Xiangying Huang and Rick Durrett

then for any § there is a k with pp > (1 — §)*. It follows from the same reasoning
as in (3.2) that we can take r such that

r_ _log(1-9)

k log it

Given any A > 0, (3.3) will hold if ¢ is small enough, which implies local survival
of the process. Therefore Ay = 0.

4. Asymptotics for A\,

We begin with some general computations and then consider our two examples:
power laws and stretched exponential.

Survival on star graph. Our first step is to adapt Lemma 2.4 to the situation
in which A — 0. For reasons that will become clear when we prove Lemma 4.3 we
have to modify the definition of p:
A
1+ X

p=(1-¢) L =pk, and b=eL.

Defining Y,, as before
Lemma 4.1. Let € > 0. If \/(1+2)\) < € then (1+X/2)"Y" is a supermartingale.

Proof: (1 —p) = (14 Xe)/(A+ 1) so we have
P 1—¢

M1—p) T+
The right-hand side is < 1/(1 + A) when

1+ A—e—ed <1+ Ae,

which holds if A/(1+2)) < ¢, so the desired result follows from the proof of Lemma
3.1. O

Lemma 4.2. Let € > 0 be fired T = exp((1 — 4€)\2k/4). If X is small then for
large k

Pra (juf 6 <) < dexp(-(1 - 30X0/4),
Proof: Tt follows from Lemma 2.4 that if S = (1/2k(2 + \))(1 + A/2)X(=29) then
Pra (322 €] < b) < B+ N+ N/2) E029),

but now

(I1—€e)L=(1—e’Xk/(A+1)> (1 —2e)Ak/(A+1).
Expanding log(1 + z) = z — 22/2 + 23/3 — ... and noting that if z < 1 then the
right-hand side is an alternating series with decreasing terms

(1 + )\/2)_(1—26)N€/(1+>\) = exp (—(1 — 2€> 1/\+k>\ log(l + )\/2)>

< exp (—(1 - 26)1/\+k,\ [/2\ a /\SQD

< exp(—(1 — 3€)\?k/4),
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when A is small. To convert the formula for S we note that

(1/2k(2 + A1+ 3/2)H072) = s ((1 - E()A(1+_1)2€)Ak og(1 4+ A/Q))
S iexp ((1 —3e) Ak . [)\ B AT)
= 6k (A+1) |2 8
> exp((1 — 4€)\2k/4),

when A is small, which completes the proof. ([l

Push. Now we work with the configuration model. Let p, = P(d(z) = k) and
suppose that

(i) >k ki < 0,
(ii) P(d(z) = k) =0 for k < 2.

The first assumption implies that the size biased degree distribution ¢;_1 = jp,;/Ed(x)
has finite mean v. The second implies that the diameter of our graph ~ (logn)/log v.See
Lemma 3.4.1 in [8]. Hence Lemma 3.1 implies that if vg, ... v, is a path in the graph
and vg is infected at time 0, then the probability v, will be infected by time 27 is,
for large 7, > (A/2)". Let

K = n3y log(2/)\).
If n is large then the distance between any two vertices is < 2vlogn with high
probability. Thus the probability that one star can transfer its infection to another
before time 27k is

>1— (1— (22 em)" =1 - (12 e
> 1 — exp(—n?1082/N), (4.1)
Ignition on star graph. We have more work to do this time. The proof of Lemma

2.5 requires that K = M\k?/? — oo, and we need the new definition of L in part (iii).
Recall that T} = inf{n : Y, > m}.

Lemma 4.3. Let K = \k/\/logk. If A\ — 0 and Ak — oo then for large k
() Po (T3 > Too) < 5//logk,
(1) Prc.1(To, < T;) < exp(—A?k/2+/logk),
(#31) Eo,1 min{Tp 0, T} } < 2/e.

Proof: Let po(t) be the probability a leaf is infected at time ¢ when there are no
infected leaves at time 0 and the central vertex has been infected for all s < ¢.
po(0) = 0 and

dpo(t
Solving gives
A
A S R o WE
pO(t) A +1 (1 ¢ )
Ast—0
1 — e~ (1) )
TOFnt

so if ¢ is small po(t) > At/2.
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Taking t = 4/+/logk it follows that the number of infected leaves at time ¢
dominates B = Binomial(k, 2)\/y/log k)

Py 1 (T < Too) > P(B > K) exp(—4/+/log k).
The second factor is the probability that the center stays infected until time 4/+/log k,

and
exp(—4/+/logk) > 1—4/+/logk.
B has mean 2Mk/+/logk and variance < 2Ak/y/logk so Chebyshev’s inequality

implies

20k /+/log k 2v/log k
P(B < \k/+/logk) < < <1/+/logk
( Viek) < S oghE S " S/ Vles
if k is large.
For (ii) we use the supermartingale from Lemma 4.1, which is the same as the
one from Lemma 3.1, and simplify formulas as in the proof of Lemma 4.2. If

q=Pr1(Topo < TZF ) then for A small optional stopping theorem gives
q < (14 X/2)"M/VIek < exp(—\2k/2¢/log k).

For (iii), we follow the argument in Lemma 2.5. We return to continuous time
and note that by (2.2) the drift is

<pu=X1-pk—pk—1/)

so Yy — pt is a submartingale before time Vi = Tpo A TZF . Using the optional
stopping theorem as before we conclude

_ (1—e)Ak 1

L
B(V;) <= .

(VL)—M 1+Xx  Ml—pk—pk—1/A
p

Recalling the definition of

A(l—p)k—psz[k_ (1_6)”“} (=M 1

L+ T+A A
S ECUA RIS
14+ A 1+X A
The first term is much smaller than the second so multiplying by A/A
L A2k
k- (1+ N
since A\k? — oo. O

~ 1/e,

4.1. Power law graphs. Suppose P(d(xz) > m) = 3*m~* for m > 3, where a > 2
so that Fd(x)? < oo. In this case, the maximum degree vertex on a graph with n
1/a 50 the maximum eigenvalue A ~ n'/2* and the formula in (1.6)
predicts that A\, &~ n=/2%, To prove an upper bound on . that is close to this, we
suppose that \g = n~(1=21/2a

If d(x) > k = n~="/ we call the vertex z a star.

P(d(z) > n(l—n)/a) — 3ap—01=m)

so if n is large there are > n" stars with high probability. Now A3k = n/%. By the
estimate in the Lemma 4.2, each individual star survives for time

> exp((1 — 4n)n"//4). (4.2)

vertices is ~ n
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with probability > 1 — 7exp(—(1 — 3¢)n/%/4). The time
2rk < (4vlogn) exp(O(log? n))

so (4.1) implies that with high probability the chosen star will transfer its infection
to its target by time 2rx and we conclude that with high probability no lit star will
die out during the process.

Combining these estimates shows that if n is large then the number of infected
stars Yy at time 2rkk dominates a discrete time random walk that goes up by 1
with probability p > e/(e+1) and down by 1 with probability 1 —p. Let M > n" be
the number of stars. Recalling that ((1 — p)/p)® is harmonic function for a simple
random walk that jumps up 1 with probability p, and down 1 with probability 1 —p
random walk, we see that exp(—Y}) is a supermartingale while Y, € (0, M), so

Po,gM(TO < TM) < 6_0‘9M.

Since each cycle takes at least 0.1M(2rx) units of time, we have survival for time
exp(O(n®)) for some € > 0.

4.2. Stretched exponential. Suppose P(d(z) > m) = exp(—m'/® + 3'/%) for m > 3,
where b > 1. In this case, the maximum degree vertex on a graph with n vertices is
~ logb n, so the maximum eigenvalue A ~ logb/ % n and the formula in (1.6) predicts
that A\, =~ logfb/2 n.

If d(z) > k = n’log” n we call the vertex z a star.

P(d(z) > 1" log” n) = exp(3"/*)n"7,

so if n is large then the number of stars is > n'~" with high probability.
To see what value to take for A in our lower bound, we set the survival time
equal to 1 over the probability of a successful push, that is

exp(A\2log’ n) = (2/A)?len,
or taking logs and rearranging
A2 1-b
—— =2l .
log2/n) e "
This means that the best upper bound we can hope to get is Ag = (log n)* =1 (1-0)/2

versus the predicted value of log_b/ Zn.
By our choices we have

A%k = nb(log n)l'”’(b_l)
so Lemma 4.2 implies that the star survives for time
> exp((1 — 4n)° (log )+~ /4)
with probability > 1 — 7exp(—(1 — 3n)n°(logn)**7(=1) /4). The time
2rk < (4vlogn) exp(logn - O(loglogn))

so (4.1) implies that with high probability the chosen star will transfer its infection
to its target by time 2rx and we conclude that with high probability no lit star will
die out during the process. Comparing with random walk as in the previous proof,
we have survival for time exp(O(n!'~¢)) for any € > 0.
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