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Abstract—To reduce the impact of the memory-access con-
straint in k-Nearest Neighbors (kNN) problems, in this paper we
implement one kNN kernel through high-level synthesis (HLS)
on FPGA by employing two data access reduction methods: low-
precision data representation and principal component analy-
sis based filtering (PCAF). The kernel is called MPCAF-kNN
(Memory-efficient PCAF kNN), which has been highly optimized
to fully exploit the characteristics of FPGA. It is adaptive to
all key parameters. We evaluate MPCAF-kNN by comparing it
with a state-of-the-art kNN implementation on a high-end CPU
server. Our results show that MPCAF-kNN achieves up to a
performance equivalent to that of a 56-thread of CPU server
while greatly reducing external memory-accesses.

Index Terms—kNN, FPGA, High-level synthesis, Low-
precision data representation, PCA-based filtering, Memory-
access-efficient, Adaptive kernel.

I. INTRODUCTION

Existing investigations on accelerating the search of k-

Nearest Neighbors (kNN) using FPGA have presented some

promising results [3] [6] [8]. However, a new challenge is

emerging due to the fact that both the size and dimensionality

of datasets that kNN is working on have been rapidly growing

recently. For example, the number of images in Tineye’s

indexed image database has increased from 0.7 billion in

2008 to 35 billion in 2019 [10]. Meanwhile, the number of

dimensions of each feature vector could be as large as 4,096

[9]. As a result, a kNN search in a large database with a high

dimensionality becomes both compute-intensive and memory-

intensive [5]. Unfortunately, a modern FPGA board normally

can only provide a moderate throughput between the FPGA

chip and its on-board external DRAM.

To reduce the impact of the memory access constraint, in

this paper we implement one kNN kernel called MPCAF-kNN

(Memory-efficient PCAF kNN) through high-level synthesis

(HLS) [1] on FPGA by employing two data access reduction

methods: low-precision data representation [4] and principal

component analysis based filtering (PCAF) [2]. Low-precision

data representation has been successfully applied in various

domains as it can improve hardware bandwidth utilization by

lowering data precision, and thus, reducing the volume of data

being read/written [4]. PCAF, on the other hand, uses a data

filtering mechanism to exclude those reference features that are

not likely to be k-NN features according to the PCA estimation

[2]. Although the idea of PCAF is borrowed from a recent

research paper [2], this study is the first attempt to apply PCAF

in a kNN kernel implementation on FPGA. The kernel has

been highly optimized to fully exploit the characteristics of

FPGA. Besides, it is adaptive to all key parameters including

the number of dimensions (D), number of data points in a

database (N ), number of nearest neighbors (k), number of

bits per feature (B), and number of principal components (d).

We evaluate MPCAF-kNN in terms of performance and

energy-efficiency by comparing it with a state-of-the-art kNN

implementations on a high-end CPU server. This paper makes

the following contributions. First, to the best of our knowledge,

this is the first research utilizes a PCA-based data filtering

mechanism to reduce memory accesses of a kNN kernel

running on FPGA. Second, two approaches are proposed to

optimize MPCAF-kNN through HLS. (see Section III-C). The

rest of paper is organized as follows. Section II briefly sum-

marizes the related work. Section III provides implementation

details of the kernel. Section IV evaluates the kernel. Finally,

Section V concludes the paper.

II. RELATED WORK

Traditional kNN implementations like [3] were all devel-

oped using an HDL. Hussain et al. proposed two adaptive

FPGA architectures of the kNN classifier using HDL [3]. After

HLS became available, recent kNN implementations switched

to HLS to fully exploit its advantages. For examle, Pu et al.
employed a specific bubble sort algorithm to speed up the

sorting phase of a BFS-kNN (Brute-Force Searching kNN)

algorithm using OpenCL [8]. Muslim et al. also accelerated a

BFS-kNN search using FPGA under the OpenCL framework

[6]. They found that an optimized FPGA-based kNN kernel

could offer performance and energy-efficiency better than a

GPU-based kNN implementation [6]. Unfortunately, both [6]

[8] are not suitable for kNN searching in a large dataset

because they store all the temporary distance data in on-chip

memory whose size is usually very limited.

III. IMPLEMENTATION AND OPTIMIZATION

In this section, we first introduce the FPGA hardware

resources of VCU1525 [1]. Next, we elaborate the details of

implementation and optimization of MPCAF-kNN.
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Figure 1: Implementation of PCAF-kNN on FPGA.

A. FPGA Resources of VCU1525

On-board memory external to FPGA chip: Totally, there

are 4 SDRAM banks (64 GByte on-board DDR SDRAM).

The maximal bandwidth to access an individual memory bank

is 512 bits per clock cycle [1]. The limited bandwidth largely

constrains the performance of a memory-intensive application.

B. PCA-based data filtering

The details of PCAF-kNN on CPU can be found in [2].

Our implementation of PCAF-kNN on FPGA is illustrated

in Fig. 1. k_max block maintains a temporary heap called

heap’ whose size is m*k and a k-sized heap called heap.

The rd_dist_calc_pca block is in charge of reading each data

point in the PCA space and then calculating its distance from

q′. The similarity_comparison_or block performs a similarity

comparison between a point in the original DB space and q.

At time t0, p′0 (i.e., a PCA space projection of data point

p0x) is read into buffer. At time t1, SM starts the subtraction

and multiplication for the 16 data pairs from p′0 and q′. After

time t2, the calculation of a distance value will be finished,

and then, it will be compared with the maximal value of heap′

at time t3 (see Fig. 1). If the new distance value is larger,

this data point is not a potential nearest neighbor. Therefore,

PCAF-kNN simply discards it and then immediately starts to

process the second data point in the PCA space. Otherwise,

the similarity_comarision_or block will be invoked to read

the first data point p0 of the original space DB between time

t4 and t7. Next, PCAF-kNN calculates the distance between

p0 and query q by accumulating intermediate distance values

in dist_reg. The final distance value will become available at

time t10 and it will be compared with the maximal value of

heap at time t11 (see Fig. 1).
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Figure 2: PCAF-kNN timelines: (a) 32-bit; (b) 16-bit; (c) 16-

bit optimized.

If the new distance value is larger, then the rd_dist_calc_pca
block continues to compare the second distance value with the

maximal value of heap’. Otherwise, PCAF-kNN confirms that

the data point p0 is a potential nearest neighbor for query q.

Thus, the two distance values obtained from the two functional

blocks and the index of p0 will be inserted to heap’ and heap,

respectively. After all data points in the PCA space have been

processed, the final k nearest neighbors are output from heap
on FPGA chip to a buffer called Final kNN on the external

DRAM (see Fig. 1).

C. Two optimizations of PCAF-kNN

Simply transplanting a PCAF-kNN algorithm designed for

a CPU platform into an FPGA-based heterogeneous system

could lead a poor performance. In this section, we propose

two techniques that can optimize the performance of PCAF-

kNN on FPGA.

Optimization one: packaging tasks with feedback into one
function.If performing a stage is viewed as a task, a task

dependency can be observed in line 5 of Algorithm-1 in

work [2]. In other words, the task of the current data point’s

similarity comparison has to wait till the processing of its prior

data point is finished. This blocks the pipelining.

We package the task of data reading in the PCA space as a

function called data_read_pca(). Similarly, the task of distance

calculation in the PCA space (see line 4 of Algorithm-1 in

work [2]) is packaged as dist_calc_pca(). Finally, tasks from

line 5 to line 11 in Algorithm-1 in work [2] are packaged as a

function named similarity_com_or(). Now, the three functions

can be successfully pipelined as they do not have feedback

among each other.

Optimization two: comparing distance values in PCA space
in parallel. A timeline example of PCAF-kNN (see Fig. 1) on

the dataset (d = 16, D = 64, B = 32, totally 20 data points)

is shown in Fig. 2a. In the rd_dist_calc_pca block shown in

Fig. 1, the data point p′0 in the PCA space can be read from

the DRAM into a kernel in one cycle at time t0 and then it

goes to SM_pca at time t1 as shown in Fig. 2a, where 16

subtractions with the features of q′ and square operations are
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Algorithm 1: Optimized MPCAF-kNN

Input : q, DB, q′, DB′, and k
Output: k nearest neighbors

1 Create and initialize a heap of size k with +∞;
2 Create and initialize a heap′ of size k ∗m with +∞;
3 data_read(q′ and q);
4 for i ← 0 to N − 1 do
5 data_read(p′i, p

′
i+1, ..., p

′
i+h−1);

/* h: # of data points per read */
6 for j ← 0 to h− 1 do
7 #pragma HLS UNROLL
8 δ′j ← (q′ − p′i+j)

2;

9 end
10 for j ← 0 to h− 1 do
11 #pragma HLS UNROLL
12 (flag & = (δ′j > heap′.max))

13 end
14 if flag==0 then
15 for j ← 0 to h− 1 do
16 data_read(pi+j );
17 δj ← (q − pi+j)

2;
18 if δj < heap.max then
19 heap′.insert(δ′j);
20 heap.insert(δj);
21 end
22 end
23 end
24 i = i + h;
25 end
26 return final k nearest neighbors from heap;

executed in parallel. Next, Sum_pca accumulates the 16 values

from SM_pca to generate a distance value in the PCA space.

SC_or stands for similarity_comparison_or shown in Fig. 1.

In the timeline example shown in Fig. 2a, we assume that

the distance value of data point p′0 is larger than the maximal

value of heap’. Thus, SC_or (i.e., similarity_comparison_or
shown in Fig. 1) is not invoked as a further examination in

the original space for this data point becomes unnecessary.

The distance value is simply discarded. At the same time,

the distance value of the data point read in time t1 (i.e.,

data point p′1) is ready, which is assumed to be smaller than

the maximal value of heap’. As a result, it will be further

processed in similarity_comparison_or shown in Fig. 1. Since

similarity_comparison_or conducts a similarity comparison in

the original space, it needs 4 (i.e., D*B/512=64*32/512=4)

cycles to read a data point from DDR. Thus, the data process-

ing path of SC_or becomes longer. The goal of PCAF is to

keep more data processing in the rd_dist_calc_pca block (see

Fig. 1) while avoiding to invoke the similarity_comparison_or
block. Based on the results from [2], in most cases the filtering

rate F (i.e., the ratio between the number of data points

processed only in the PCA space and the total number of

data points) is larger than 95%. This why PCAF can greatly

accelerate the kNN search.

Now, we integrate low-precision data representation into

PCAF-kNN to further reduce the impact of memory access

constraint. Fig. 2b shows the timeline when 16 bits instead of

32 bits are used to represent each feature in a data point. Since

using 16 bits for each feature saves 50% cycles for reading a

data point from DRAM, each cycle a kernel can read 32 (i.e.,
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Figure 3: Performance comparison

512 bits /16 bits = 32) features, which covers two data points

in the PCA space. In Fig. 2a, each grey square represents one

data point in the PCA space as each feature is 32-bit. However,

when each feature is only 16-bit a grey square shown in Fig. 2b

consists of two triangles with each representing a data point in

PCA space. To fully exploit the increased data reading speed

(i.e., the number of data points can be read per cycle), SM_pca
needs to double its resources to processing more incoming

data points. Two distance values from the PCA space will

be generated concurrently. Although at a given time multiple

distance values can be generated, SC_or can only process them

one-by-one due to the feedback between the processing of two

adjacent data points (see line 5 to line 11 in Algorithm-1 in

work [2]). This is the reason why we see two grey triangles

are scheduled in t3 and t4, respectively. This explains why

a stall occurs repeatedly between two adjacent data readings

after t11 (see Fig. 2b). This issue will be even worse when

using less bits (e.g. 8-bit or 4-bit) for data representation. Our

goal is to eliminate these stalls.

One approach is to optimize Algorithm-1 in work [2]. We

found that the performance bottleneck occurs in the compari-
son stage of SC_or (see Fig. 2b). Since in more than 95% [2]

cases the stages of rd+dc+kmc in SC_or will not be executed,

which implies that most of the distance values obtained in the

PCA space are larger than the current maximal value of heap’
(i.e., heap’_max). This observation suggests that multiple

comparisons between distance values in the PCA space and

the same heap’_max can be performed concurrently. Thus,

Algorithm-1 in [2] can be revised to Algorithm 1. The main

difference between them lies in line 5 of Algorithm-1 in work

[2] and lines 10-13 of Algorithm 1, which show how these

comparisons are carried out in parallel. Note that the #paragma
HLS UNROLL directive informs the HLS compiler to flat the

specified for-loop. By doing so, multiple distance values from

the PCA space can be compared with heap’_max in one cycle

if all of them are smaller than heap’_max, which is true in

more than 95% cases. A timeline of Algorithm 1 is shown

in Fig. 2c, where all stalls in Fig. 2b disappear. We name

the optimized algorithm of PCAF-kNN shown in Algorithm

1 MPCAF-kNN in this paper. Note that this optimization also

applies to the kNN desgin on CPU or GPU.
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Table I: Place and route synthesis results for MPCAF-kNN

(N=1000000, D=960, d=16, k=5, m=4, s=4, B=32/16/8/4)
B 32-bit 16-bit 8-bit 4-bit

Clock fr equency (Mhz) 300 300 297.7 263.7
Kernel Gmem Utilization 80.93% 79.45% 76.76% 71.39%
Kernel Gmem BW(MB/s) 9322.95 9152.18 8842.39 8224.57

FF/2,364,480 38446 38759 43033 49958
LUT/1,182,240 59273 66892 58496 95127

DSP/6,840 192 96 192 384
BRAM/2,160 208 178 182 190
Power (Watt) 22.42 22.07 22.43 22.83

IV. EVALUATION

A. Experimental Setup

1) Datasets: GIST1M is selected to evaluate all kNN

implementations. It’s 3.8 GB and contains one million 960-

dimensional data points [7].

2) Baseline: CPU server: PowerEdge R730xd Rack Server

has two Intel(R) Xeon(R) CPU E5-2699 @ 2.20GHz. Each

CPU has 22 physical cores and 2 threads can run on each

core (i.e., totally 88 threads). The server has 128 GB DDR4.

B. Evaluation of MPCAF-kNN

Theoretically, d can be chosen in the range of [1, D]. Two

other parameters mentioned in Section III-B, which are also

crucial to filtering rate and search accuracy, are heap scaling

factor (i.e., m) and the number of k_max functional blocks

(i.e., s) (see Fig. 1 where s is equal to 3). The 16-4-4 (d-m-s)

setting is chosen for our MPCAF-kNN on the GIST1M dataset

as it achieves a high search accuracy (i.e., 98.18%) and a high

filtering rate (i.e., 98.98%).

Fig. 3 compares the performance of a PCAF-kNN imple-

mentation on the CPU server and MPCAF-kNN on FPGA un-

der the GIST1M dataset. MPCAF-kNN(FPGA) shows the re-

sults obtained by our proposed MPCAF-kNN on the VCU1525

FPGA board with d-m-s being 16-4-4 and B varying from 4

to 32. From Fig. 3 we can see that when both implementations

use 32-bit for data representation the MPCAF-kNN kernel

can achieve a performance equivalent to that of a 4-thread

CPU server. When a lower data-precision is employed the

performance of MPCAF-kNN quickly improves. MPCAF-

kNN with a 16-bit, 8-bit, and 4-bit data-precision achieves

a performance equivalent to that of a 8-thread, 16-thread, and

56-thread CPU server, respectively

Table I summaries system clock frequency, memory access

bandwidth, resource utilization, and system power after the

placement and routing for MPCAF-kNN. Fig. 4a summaries

the energy efficiency of four kNN implementations on the

CPU server and FPGA. All kNN implementations use a single

thread or kernel. Base on our results, we found that MPCAF-

kNN achieves the highest energy-efficiency, which is 2,849x

and 324x higher than that of BFS-kNN(CPU) and PCAF-

kNN(CPU), respectively.

C. Evaluation of memory access

Fig.4b summarizes the amount of memory accesses of

MPCAF-kNN with different precisions of data representation.
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Figure 4: (a) Energy efficiency; (b) Memory access.

We can see that the amount of data accessed by MPCAF-kNN

(32-bit) is reduced by 28.9x compared to BFS-kNN (32-bit).

Also, using a low-precision data (e.g., 4-bit) can reduce that

number further to 231.46x .

V. CONCLUSIONS

In this paper, we design and implement one kNN kernel

on FPGA through HLS. Two data access reduction methods

are employed to reduce the external memory accesses. The

kernel is adaptive to all key parameters. Further, we evaluate it

under different settings. The experimental results show that our

optimized MPCAF-kNN kernel outperforms existing ones in

both execution time and energy-efficiency. We plan to release

the source code of the two kernels to benefit the community.
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