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Abstract—To reduce the impact of the memory-access con-
straint in k-Nearest Neighbors (kNN) problems, in this paper we
implement one kNN kernel through high-level synthesis (HLS)
on FPGA by employing two data access reduction methods: low-
precision data representation and principal component analy-
sis based filtering (PCAF). The kernel is called MPCAF-kNN
(Memory-efficient PCAF kNN), which has been highly optimized
to fully exploit the characteristics of FPGA. It is adaptive to
all key parameters. We evaluate MPCAF-KNN by comparing it
with a state-of-the-art kNN implementation on a high-end CPU
server. Our results show that MPCAF-KNN achieves up to a
performance equivalent to that of a 56-thread of CPU server
while greatly reducing external memory-accesses.

Index Terms—KkNN, FPGA, High-level synthesis, Low-
precision data representation, PCA-based filtering, Memory-
access-efficient, Adaptive kernel.

I. INTRODUCTION

Existing investigations on accelerating the search of k-
Nearest Neighbors (kNN) using FPGA have presented some
promising results [3] [6] [8]. However, a new challenge is
emerging due to the fact that both the size and dimensionality
of datasets that kNN is working on have been rapidly growing
recently. For example, the number of images in Tineye’s
indexed image database has increased from 0.7 billion in
2008 to 35 billion in 2019 [10]. Meanwhile, the number of
dimensions of each feature vector could be as large as 4,096
[9]. As a result, a kNN search in a large database with a high
dimensionality becomes both compute-intensive and memory-
intensive [5]. Unfortunately, a modern FPGA board normally
can only provide a moderate throughput between the FPGA
chip and its on-board external DRAM.

To reduce the impact of the memory access constraint, in
this paper we implement one kNN kernel called MPCAF-kNN
(Memory-efficient PCAF kNN) through high-level synthesis
(HLS) [1] on FPGA by employing two data access reduction
methods: low-precision data representation [4] and principal
component analysis based filtering (PCAF) [2]. Low-precision
data representation has been successfully applied in various
domains as it can improve hardware bandwidth utilization by
lowering data precision, and thus, reducing the volume of data
being read/written [4]. PCAF, on the other hand, uses a data
filtering mechanism to exclude those reference features that are
not likely to be k-NN features according to the PCA estimation
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[2]. Although the idea of PCAF is borrowed from a recent
research paper [2], this study is the first attempt to apply PCAF
in a kNN kernel implementation on FPGA. The kernel has
been highly optimized to fully exploit the characteristics of
FPGA. Besides, it is adaptive to all key parameters including
the number of dimensions (D), number of data points in a
database (/V), number of nearest neighbors (k), number of
bits per feature (B), and number of principal components (d).

We evaluate MPCAF-kNN in terms of performance and
energy-efficiency by comparing it with a state-of-the-art kNN
implementations on a high-end CPU server. This paper makes
the following contributions. First, to the best of our knowledge,
this is the first research utilizes a PCA-based data filtering
mechanism to reduce memory accesses of a kNN kernel
running on FPGA. Second, two approaches are proposed to
optimize MPCAF-kNN through HLS. (see Section III-C). The
rest of paper is organized as follows. Section II briefly sum-
marizes the related work. Section III provides implementation
details of the kernel. Section IV evaluates the kernel. Finally,
Section V concludes the paper.

II. RELATED WORK

Traditional kNN implementations like [3] were all devel-
oped using an HDL. Hussain et al. proposed two adaptive
FPGA architectures of the kNN classifier using HDL [3]. After
HLS became available, recent kNN implementations switched
to HLS to fully exploit its advantages. For examle, Pu et al.
employed a specific bubble sort algorithm to speed up the
sorting phase of a BFS-kNN (Brute-Force Searching kNN)
algorithm using OpenCL [8]. Muslim et al. also accelerated a
BFS-kNN search using FPGA under the OpenCL framework
[6]. They found that an optimized FPGA-based kNN kernel
could offer performance and energy-efficiency better than a
GPU-based kNN implementation [6]. Unfortunately, both [6]
[8] are not suitable for kNN searching in a large dataset
because they store all the temporary distance data in on-chip
memory whose size is usually very limited.

III. IMPLEMENTATION AND OPTIMIZATION

In this section, we first introduce the FPGA hardware
resources of VCU1525 [1]. Next, we elaborate the details of
implementation and optimization of MPCAF-kNN.
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Figure 1: Implementation of PCAF-kKNN on FPGA.

A. FPGA Resources of VCUI1525

On-board memory external to FPGA chip: Totally, there
are 4 SDRAM banks (64 GByte on-board DDR SDRAM).
The maximal bandwidth to access an individual memory bank
is 512 bits per clock cycle [1]. The limited bandwidth largely
constrains the performance of a memory-intensive application.

B. PCA-based data filtering

The details of PCAF-KNN on CPU can be found in [2].
Our implementation of PCAF-kNN on FPGA is illustrated
in Fig. 1. k_max block maintains a temporary heap called
heap’ whose size is m*k and a k-sized heap called heap.
The rd_dist_calc_pca block is in charge of reading each data
point in the PCA space and then calculating its distance from
q'. The similarity_comparison_or block performs a similarity
comparison between a point in the original DB space and gq.

At time 10, p} (i.e., a PCA space projection of data point
Pog) 1S read into buffer. At time tI, SM starts the subtraction
and multiplication for the 16 data pairs from pf, and ¢’. After
time 72, the calculation of a distance value will be finished,
and then, it will be compared with the maximal value of heap’
at time 73 (see Fig. 1). If the new distance value is larger,
this data point is not a potential nearest neighbor. Therefore,
PCAF-kNN simply discards it and then immediately starts to
process the second data point in the PCA space. Otherwise,
the similarity_comarision_or block will be invoked to read
the first data point pg of the original space DB between time
t4 and t7. Next, PCAF-KNN calculates the distance between
po and query g by accumulating intermediate distance values
in dist_reg. The final distance value will become available at
time ¢/0 and it will be compared with the maximal value of
heap at time t/1 (see Fig. 1).
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If the new distance value is larger, then the rd_dist_calc_pca
block continues to compare the second distance value with the
maximal value of heap’. Otherwise, PCAF-KNN confirms that
the data point pg is a potential nearest neighbor for query g.
Thus, the two distance values obtained from the two functional
blocks and the index of pg will be inserted to heap’ and heap,
respectively. After all data points in the PCA space have been
processed, the final k nearest neighbors are output from heap
on FPGA chip to a buffer called Final kNN on the external
DRAM (see Fig. 1).

C. Two optimizations of PCAF-kNN

Simply transplanting a PCAF-kNN algorithm designed for
a CPU platform into an FPGA-based heterogeneous system
could lead a poor performance. In this section, we propose
two techniques that can optimize the performance of PCAF-
kNN on FPGA.

Optimization one: packaging tasks with feedback into one
function.If performing a stage is viewed as a task, a task
dependency can be observed in line 5 of Algorithm-1 in
work [2]. In other words, the task of the current data point’s
similarity comparison has to wait till the processing of its prior
data point is finished. This blocks the pipelining.

We package the task of data reading in the PCA space as a
function called data_read_pca(). Similarly, the task of distance
calculation in the PCA space (see line 4 of Algorithm-1 in
work [2]) is packaged as dist_calc_pca(). Finally, tasks from
line 5 to line 11 in Algorithm-1 in work [2] are packaged as a
function named similarity_com_or(). Now, the three functions
can be successfully pipelined as they do not have feedback
among each other.

Optimization two: comparing distance values in PCA space
in parallel. A timeline example of PCAF-kNN (see Fig. 1) on
the dataset (d = 16, D = 64, B = 32, totally 20 data points)
is shown in Fig. 2a. In the rd_dist_calc_pca block shown in
Fig. 1, the data point p{ in the PCA space can be read from
the DRAM into a kernel in one cycle at time #0 and then it
goes to SM_pca at time tI as shown in Fig. 2a, where 16
subtractions with the features of ¢’ and square operations are
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Algorithm 1: Optimized MPCAF-kNN

Input :gq, DB, ¢, DB’, and k

Output: k nearest neighbors

Create and initialize a heap of size k with +oo;
Create and initialize a heap’ of size k * m with +oo;
data_read(q’ and q);

for i < 0to N — 1 do

data_read(p}, p; | 1, ""pé+h—1);

/* h: # of data points per read

6 for j < 0toh—1do

7 #pragma HLS UNROLL
8

9

[T S PR

*/

6],' A (q/ *p;+j)2;
end
for j <~ 0to h —1do
#pragma HLS UNROLL
(flag & = (5; > heap’.maz))
end
if flag==0 then
for j < 0to h—1do
data_read(p;4;);
8j (¢ — pitj)%
if 6; < heap.max then
heap'.insert(87);
heap.insert(d;);
end
end

end
i=1+ h;

end

26 return final k nearest neighbors from heap;

executed in parallel. Next, Sum_pca accumulates the 16 values
from SM_pca to generate a distance value in the PCA space.
SC_or stands for similarity_comparison_or shown in Fig. 1.
In the timeline example shown in Fig. 2a, we assume that
the distance value of data point py, is larger than the maximal
value of heap’. Thus, SC_or (i.e., similarity_comparison_or
shown in Fig. 1) is not invoked as a further examination in
the original space for this data point becomes unnecessary.
The distance value is simply discarded. At the same time,
the distance value of the data point read in time ¢/ (i.e.,
data point p}) is ready, which is assumed to be smaller than
the maximal value of heap’. As a result, it will be further
processed in similarity_comparison_or shown in Fig. 1. Since
similarity_comparison_or conducts a similarity comparison in
the original space, it needs 4 (i.e., D*B/512=64%32/512=4)
cycles to read a data point from DDR. Thus, the data process-
ing path of SC_or becomes longer. The goal of PCAF is to
keep more data processing in the rd_dist_calc_pca block (see
Fig. 1) while avoiding to invoke the similarity_comparison_or
block. Based on the results from [2], in most cases the filtering
rate F' (i.e., the ratio between the number of data points
processed only in the PCA space and the total number of
data points) is larger than 95%. This why PCAF can greatly
accelerate the kNN search.

Now, we integrate low-precision data representation into
PCAF-kNN to further reduce the impact of memory access
constraint. Fig. 2b shows the timeline when 16 bits instead of
32 bits are used to represent each feature in a data point. Since
using 16 bits for each feature saves 50% cycles for reading a
data point from DRAM, each cycle a kernel can read 32 (i.e.,
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Figure 3: Performance comparison

512 bits /16 bits = 32) features, which covers two data points
in the PCA space. In Fig. 2a, each grey square represents one
data point in the PCA space as each feature is 32-bit. However,
when each feature is only 16-bit a grey square shown in Fig. 2b
consists of two triangles with each representing a data point in
PCA space. To fully exploit the increased data reading speed
(i.e., the number of data points can be read per cycle), SM_pca
needs to double its resources to processing more incoming
data points. Two distance values from the PCA space will
be generated concurrently. Although at a given time multiple
distance values can be generated, SC_or can only process them
one-by-one due to the feedback between the processing of two
adjacent data points (see line 5 to line 11 in Algorithm-1 in
work [2]). This is the reason why we see two grey triangles
are scheduled in 73 and #4, respectively. This explains why
a stall occurs repeatedly between two adjacent data readings
after t/1 (see Fig. 2b). This issue will be even worse when
using less bits (e.g. 8-bit or 4-bit) for data representation. Our
goal is to eliminate these stalls.

One approach is to optimize Algorithm-1 in work [2]. We
found that the performance bottleneck occurs in the compari-
son stage of SC_or (see Fig. 2b). Since in more than 95% [2]
cases the stages of rd+dc+kmc in SC_or will not be executed,
which implies that most of the distance values obtained in the
PCA space are larger than the current maximal value of heap’
(i.e., heap’_max). This observation suggests that multiple
comparisons between distance values in the PCA space and
the same heap’_max can be performed concurrently. Thus,
Algorithm-1 in [2] can be revised to Algorithm 1. The main
difference between them lies in line 5 of Algorithm-1 in work
[2] and lines 10-13 of Algorithm 1, which show how these
comparisons are carried out in parallel. Note that the #paragma
HLS UNROLL directive informs the HLS compiler to flat the
specified for-loop. By doing so, multiple distance values from
the PCA space can be compared with heap’_max in one cycle
if all of them are smaller than heap’_max, which is true in
more than 95% cases. A timeline of Algorithm 1 is shown
in Fig. 2c, where all stalls in Fig. 2b disappear. We name
the optimized algorithm of PCAF-kNN shown in Algorithm
1 MPCAF-kNN in this paper. Note that this optimization also
applies to the kNN desgin on CPU or GPU.
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Table I: Place and route synthesis results for MPCAF-kNN
(N=1000000, D=960, d=16, k=5, m=4, s=4, B=32/16/8/4)

B 32-bit 16-bit 8-bit 4-bit
Clock fr equency (Mhz) 300 300 297.7 263.7
Kernel Gmem Utilization | 80.93% | 79.45% | 76.76% 71.39%
Kernel Gmem BW(MB/s) | 9322.95 | 9152.18 | 8842.39 | 8224.57
FF/2,364,480 38446 38759 43033 49958
LUT/1,182,240 59273 66892 58496 95127
DSP/6,840 192 96 192 384
BRAM/2,160 208 178 182 190
Power (Watt) 22.42 22.07 22.43 22.83

IV. EVALUATION
A. Experimental Setup

1) Datasets: GISTIM is selected to evaluate all kNN
implementations. It’s 3.8 GB and contains one million 960-
dimensional data points [7].

2) Baseline: CPU server: PowerEdge R730xd Rack Server
has two Intel(R) Xeon(R) CPU E5-2699 @ 2.20GHz. Each
CPU has 22 physical cores and 2 threads can run on each
core (i.e., totally 88 threads). The server has 128 GB DDR4.

B. Evaluation of MPCAF-kNN

Theoretically, d can be chosen in the range of [1, D]. Two
other parameters mentioned in Section III-B, which are also
crucial to filtering rate and search accuracy, are heap scaling
factor (i.e., m) and the number of k_max functional blocks
(i.e., s) (see Fig. 1 where s is equal to 3). The 16-4-4 (d-m-s)
setting is chosen for our MPCAF-KNN on the GIST1M dataset
as it achieves a high search accuracy (i.e., 98.18%) and a high
filtering rate (i.e., 98.98%).

Fig. 3 compares the performance of a PCAF-kNN imple-
mentation on the CPU server and MPCAF-KNN on FPGA un-
der the GIST1M dataset. MPCAF-kNN(FPGA) shows the re-
sults obtained by our proposed MPCAF-kNN on the VCU1525
FPGA board with d-m-s being 16-4-4 and B varying from 4
to 32. From Fig. 3 we can see that when both implementations
use 32-bit for data representation the MPCAF-kNN kernel
can achieve a performance equivalent to that of a 4-thread
CPU server. When a lower data-precision is employed the
performance of MPCAF-KNN quickly improves. MPCAF-
kNN with a 16-bit, 8-bit, and 4-bit data-precision achieves
a performance equivalent to that of a 8-thread, 16-thread, and
56-thread CPU server, respectively

Table I summaries system clock frequency, memory access
bandwidth, resource utilization, and system power after the
placement and routing for MPCAF-kNN. Fig. 4a summaries
the energy efficiency of four kNN implementations on the
CPU server and FPGA. All kNN implementations use a single
thread or kernel. Base on our results, we found that MPCAF-
kNN achieves the highest energy-efficiency, which is 2,849x
and 324x higher than that of BFS-kNN(CPU) and PCAF-
kNN(CPU), respectively.

C. Evaluation of memory access

Fig.4b summarizes the amount of memory accesses of
MPCAF-kNN with different precisions of data representation.
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Figure 4: (a) Energy efficiency; (b) Memory access.

We can see that the amount of data accessed by MPCAF-kNN
(32-bit) is reduced by 28.9x compared to BFS-kNN (32-bit).
Also, using a low-precision data (e.g., 4-bit) can reduce that
number further to 231.46x .

V. CONCLUSIONS

In this paper, we design and implement one kNN kernel
on FPGA through HLS. Two data access reduction methods
are employed to reduce the external memory accesses. The
kernel is adaptive to all key parameters. Further, we evaluate it
under different settings. The experimental results show that our
optimized MPCAF-kNN kernel outperforms existing ones in
both execution time and energy-efficiency. We plan to release
the source code of the two kernels to benefit the community.
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