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Figure 1: This paper presents a semi-supervised learning method to train a keypoint detector by leveraging multiview tracking.
This keypoint detector can localize a set of joints for non-humans species such as mouse, monkey, and dogs, where attaining

a large scale annotated data is extremely challenging.

Abstract

This paper presents a semi-supervised learning frame-
work to train a keypoint detector using multiview image
streams given the limited number of labeled instances (typ-
ically <4%). We leverage three self-supervisionary signals
in multiview tracking to utilize the unlabeled data: (1) a
keypoint in one view can be supervised by other views via
epipolar geometry; (2) a keypoint detection must be consis-
tent across time; (3) a visible keypoint in one view is likely
to be visible in the adjacent view. We design a new end-to-
end network that can propagate these self-supervisionary
signals across the unlabeled data from the labeled data in a
differentiable manner. We show that our approach outper-
forms existing detectors including DeepLabCut tailored to
the keypoint detection of non-human species such as mon-
keys, dogs, and mice.

1. Introduction

Enabling computational measurements of the motor be-
haviors of animals gives rise to scaling up neuroscientific
experiments with an unprecedented precision, leading to
deeper understanding of our behaviors (humans). For in-
stance, human surrogate models, such as monkeys and
mice, have been studied to identify the neural-behavioral
pathway through their free-ranging activities (including

several social interactions), which is largely homologous
to humans. While non-invasive markerless motion capture
is a viable solution to measure such behaviors, it still re-
mains blind to animal behaviors because of lack of a large-
scale annotated dataset unlike human subjects (e.g., MS
COCO [21] and MPII [1]).

Recently, subject-agnostic pose tracking approaches
based on deep neural networks such as DeepLabCut [24]
have shown remarkable generalization power, allowing a
smart pose interpolation: a pre-trained network based on
a generic large image dataset (e.g., ImageNet [29]) is re-
fined to learn a pose variation from a few hundreds of an-
notated images in a video, and then, the refined network
tracks the poses in the rest video by detection. It is rela-
tively labor-effective (comparing to labeling millions of im-
ages) and resilient to a target, i.e., the keypoints on body,
foot, and finger of cheetah, insects, and mouse can be reli-
ably tracked. However, their application to the free-ranging
behaviors' is challenging because such motion introduces a
larger pose variation and self-occlusion, and therefore, con-
siderable amount of annotations is needed. Figure 6(d-e)
illustrates its performance degradation as the range of mo-
tion increases (i.e., mice < monkeys).

I Their approaches are designed to track restricted motion, e.g., the an-
imal’s head be immobile and attached to a recording rig [33].
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This paper presents a new semi-supervised learning ap-
proach for a pose detector that leverages the complementary
relationship between multiview geometry and visual track-
ing given the limited labeled data. We hypothesize that
the annotation efforts can be substantially reduced by uti-
lizing three self-supervisionary signals embedded in multi-
view image streams’. (1) Multiview supervision: the pose
detection from two views must satisfy the epipolar con-
straint, i.e., the detected keypoint in one view must lie in
the corresponding epipolar line transferred from the other
view given their fundamental matrix [1 1]. We integrate the
cross-view supervision [37] by matching the keypoint dis-
tributions from two views via their common epipolar plane.
This eliminates the necessity of 3D reconstruction®. (2)
Temporal supervision: a pose changes continuously. We
incorporate the dense tracking to warp the keypoint dis-
tribution between consecutive frames to supervise them to
each other [8, 36]. (3) Visibility supervision: free-ranging
activities inherently involve with frequent self-occlusions,
producing spurious and degenerate detection. Inspired by
the observation that the keypoint visibility varies smoothly
across views [16], we use the spatial proximity of the cam-
eras to supervise the visibility map in one view from the
adjacent views. These three supervisionary signals are com-
bined to form an end-to-end system that effectively uses
both labeled and unlabeled data.

Our system takes as input multiview image streams with
a small set of annotated frames, and outputs a pose detec-
tion network that predicts the keypoint locations on the rest
unlabeled data. We propose a new formulation of multi-
view semi-supervised learning by matching keypoint distri-
butions conditioned on a visibility map across frames and
views. The formulation is implemented using a novel net-
work design composed of three pathways that can minimize
the distribution mismatches in the form of four losses: label
loss, cross-view loss, tracking loss, and visibility loss. We
demonstrate that the resulting network shows strong per-
formance in terms of the keypoint detection accuracy in the
presence of significant occlusion given a small set of labeled
data (<4%).

Our approach inherits the flexible nature of epipolar ge-
ometry, which can be applied to various camera configura-
tions. The distribution matching through their fundamen-
tal matrix eliminates the requirement of 3D reconstruction
that involves with alternating reconstruction [4, 6,30, 34] or
data driven depth prediction [17,32,39]. Finally, our design
is network-agnostic, i.e., any pose detection network pro-
ducing a probability map representation can be used with
a trivial modification such as DeepPose [31], CPM [7,35],
and Hourglass [26].

To our knowledge, this is the first paper that leverages

2Similar insight has been used to reconstruct a reliable long-term 3D
trajectories with the multiview videos [ 10, 16,38].

3This is analogous to the fundamental matrix computation without 3D
estimation [11,23].

the spatiotemporal relationship of multiview image streams
to train a pose detector. The core contributions include: (1)
a new differentiable formulation of multiview spatiotempo-
ral self-supervision for the unlabeled data; (2) a visibility
supervision based on camera spatial proximity to prevent
from spurious propagation of the self-supervision; (3) its
realization using an end-to-end network that is flexible to
camera configurations; and (4) strong performance on the
realworld data of non-human species on monkeys, dogs,
and mice with a small set of the labeled data.

2. Related Work

This paper studies designing a pose detector given the
limited labeled data by leveraging multiview epipolar ge-
ometry and temporal consistency. These two supervisionary
signals are by large studied in isolation.

Temporal Supervision The tracking results such as opti-
cal flow [3], MOSSE [5], and discriminative correlation fil-
ters [13], provides an auxiliary information that can be used
to enforce the temporal consistency across a continuous se-
quence [8, 36]. A challenge is that it suffers from track-
ing drift induced by object deformation, which substantially
limits its validity. Such challenge has been addressed by
learning the temporal evolution of tracking patches [22,27]
using recurrent neural networks. This generates a com-
promised network that minimizes the inconsistency in the
learned trajectories, which suppresses the low-quality de-
tection from the tracking drift. A pitfall of this approach
is the requirement of per-frame annotation to supervise the
recurrent network. This requirement can be relaxed by us-
ing supervision-by-registration approach [8] that achieves
higher detection rate even with the limited labeled data.
However, its application towards the pose detection for non-
human species is still challenging because: (1) supervision
from optical flow involves with the tracking drift caused by
occlusion, and therefore, long-term tracking is infeasible;
(2) the soft-argmax operation for computing the track coor-
dinate may lead to noisy supervision in the cases where the
pose detection is erroneous (e.g., multiple peaks) as shown
in Figure 2(a). This multi-modality of pose recognition es-
calates when the keypoint is invisible. This strongly influ-
ences tracking accuracy, especially for a small-sized tar-
get; (3) the argmax operation takes into account only for
the peak location where the non-maximum local peaks may
play arole.

Multiview Supervision Multiview images possess highly
redundant yet distinctive visual information that can be used
to self-supervise the unlabeled data. Bootstrapping is a
common practice: to use multiview images to robustly re-
construct the geometry using the correspondences and to
project to the unlabeled images to provide a pseudo-label,
which has been shown highly effective [6, 30, 34]. A pit-
fall of this approach is that it involves an iterative process
over learning and reconstruction. Another approach is to
separately learn depth from a single view image in isola-
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(a) Spurious soft-argmax

(b) Multiview supervision

Figure 2: (a) Soft-argmax produces a biased keypoint esti-
mate when the keypoint distribution is multimodal. (b) We
use three self-supervisionary signals: cross-view supervi-
sion (17%7), temporal supervision (xi = Wiy1¢(x}, 1)),
and visibility supervision (v; =~ vj).

tion that can be used for self-supervision [17,32,39]. This
relies on the depth prediction where the accuracy of the
trained model is bounded by the accuracy of reconstruc-
tion/prediction. Yao et al. [37] introduces a new framework
that bypasses 3D reconstruction during the training process
through the epipolar constraint, i.e., the epipolar constraint
is transformed to the distribution matching. The problem
of this approach is that its performance is highly dependent
on the pre-trained model. It has no reasoning about outliers,
i.e., the recognition network converges to a trivial solution if
the outliers dominate the distribution of the multiview pose
detection.

Our main hypothesis is that these two supervisions are
complementary. We formulate the spatiotemporal supervi-
sion that can benefit from both and address each limitation.
(1) We use dense optical flow tracking to address noisy su-
pervision, i.e., it is unlikely that the noisy prediction is tem-
porally correlated. (2) We leverage the end-to-end epipo-
lar distribution matching to avoid the multimodality issue
that arises using the soft-argmax operation. This is differ-
entiable, and therefore, trainable. (3) The multiview image
streams can alleviate the tracking drift [16,38], i.e., it is un-
likely that the tracking drift occurs in a geometrically con-
sistent fashion. (4) Visibility map can assist to determine the
validity of the tracking without explicit outlier rejection.

3. Notation and Multiview Conditions

Consider multiview image streams, Z = {I:} where I}
is the image of the " camera at ¢ time instant. We de-
note the set of synchronized images at ¢ time instant across
all views with Z, = {I},---I}'} that satisfy the epipolar
constraint [23] where n is the number of cameras. 7° =
{I,---I%.} is the set of images from the i*"" camera for all
time instances where 7’ is the total time instances*. A subset

4We consider a stationary multi-camera system [ ] while the spa-
tiotemporal constraint of epipolar geometry and temporal coherence still
applies for a moving synchronized multi-camera system, e.g., social cam-
eras [2].

of these images are manually annotated (keypoint location)

7171, and the rest remain unlabeled 7y, 1.e., 7 = Z; UZy.
A 3D keypoint X; € R? at ¢ time instant travels to Xy ;.

The point is projected onto the i*" and j*" images (I¢ and

I/) to form the 2D projections x¢,x] € R?2 as shown in

Figure 2(b):

X ~2P'X, x2PX, x,,2PX,, 0
where P? € R3** is the ' camera projection matrix, and
X is the homogeneous representation of x [11].

To be geometrically consistent across multiview image
streams, the projections of the moving 3D keypoint need to
satisfy the following three constraints:

Cross-view Constraint The keypoint x! must lie in the
epipolar line of the corresponding point x; in the ;'
view [11], ie. (X])TFyXi = IUX; = 0 where Fj; is
the fundamental matrix between the i*® and j'" views, and
1; € P? is the epipolar line transferred from x;.

Tracking Constraint The pixel brightness on x; and X1
must be persistent, I} (x}_ , +Ax) = I, (x}, ;) where Ax
is the backward optical flow at x; , ;.

Visibility Constraint The visible keypoint in one view is
likely visible in adjacent view, i.e., v; = v; if ||C; — C,|| <
e where v; € [0,1] is the probability of the keypoint be-
ing visible to the i*h camera, and C; is the optical center of
the i*" camera. For instance, v; = v; = land vy = Oin
Figure 2(b).

4. Multiview Supervision by Registration

We build a keypoint detector producing the keypoint dis-
tribution ¢(I;w) € [0, 1JV*HXC and its visibility map
Y(I;w,) € [0,1]WXHXC " These two distributions are
combined to produce a posterior per-pixel keypoint distri-
bution:

§(I) = oL w)p(I;wy) 2

where W, H, and C' are the width, height, and the num-
ber of keypoints including the background. The keypoint
distribution is parametrized by the weight w, and the vis-
ibility map is parametrized by the weight w,. We denote
the probability evaluated at x as Pf(x) = ¢(I};w)|_and
Vi(x) = 9(Ii;w,)| . In the inference phase, the result-
ing detected keypoint location is the peak in the posterior
distribution &.

We learn w and w, from the labeled and unlabeled
data where |Z;| < |Zy| where a supervised learning ap-
proach alone likely to be highly biased. To utilize the un-
labeled data, we leverage the three multiview constraints
in Section 3. However, integrating these into an end-to-
end training is challenging because of representation mis-
match. The raster representation of the keypoint distribu-
tion ¢(I; w) differs from the vector representation of the
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Figure 3: (a) A keypoint distribution can be transformed to the common epipolar plane distribution, allowing cross-view
supervision. (b) The keypoint distribution of the hind right foot in view 1 (P') is transformed to Q% and projected onto the
side view (top). (c) The keypoint distribution can be warped P; (W) using dense optical flow (W) to supervise the next frame

P, which is multimodal distribution.

constraints (e.g., 1% = 0). Conversion between these two
representations requires the argmax operation:

x* = argmax P} (x). 3)

The argmax in Equation (3) is non-differentiable, and
therefore, embedding the constraints makes the network
not trainable. This precludes from an end-to-end train-
ing for multiview supervision, leading to offline alternat-
ing reconstruction [4, 6, 30, 34] or additional depth predic-
tion [17,32,39] that often suffer from suboptimality [37].
Whilst the dlfferentlable soft-argmax can alleviate this is-
sue to some extent, it is highly sensitive to spurious and
noisy keypoint detection (e.g., multimodal probability map
as shown in Figure 2(a)). In subsequent sections, we ad-
dress this challenge by transforming the constraints into
a distribution matching with the raster representation as a
whole by minimizing KL divergence [19].

4.1. Cross-view Supervision

A set of images at the same time instant, Z;, we su-
pervise their keypoint distributions based on the epipolar
constraint. Inspired by Yao et al. [37], we reformulate the
epipolar geometry in terms of distribution matching over
their common epipolar planes. Consider a keypoint in the

ith image, x’, that corresponds to the keypoint in the 5"
1mage xJ. Their inverse projections (the 3D ray emitted
from the camera center and passing the keypoint location
x;) can be written as p;(\) = )\RTK ; + C; where
K; € R**3, R; € SO(3), and C; € R3 are the intrin-
sic parameter, rotation, and optical center of the ith camera,
and A > 0 is the depth of the point on the ray as shown in
Figure 3(a). To satisfy the epipolar constraint, their inverse
projections must lie in a common epipolar plane (IT € P?),
ie,II'p; = Hij =0.

Using the fact that the common epipolar plane can be
parametrized by its rotation about the baseline, i.e., surface
normal I1(# € $), we transform the keypoint distribution to
the epipolar plane distribution, obtained by the max-pooling

over the epipolar line:

Q'(#) = argmax P'(x), (€))
x€1;(0)

where 1;(6) is the epipolar line that is the projection of the
common epipolar plane, and @Q° is the epipolar plane distri-
bution. The bottom row in Figure 3(b) illustrates the key-
point distribution of the right hind foot in view 1 (P'). Tt
is transformed to the epipolar plane distribution Q" using
the max-pooling over the epipolar lines. We visualize the
projection of Q! onto the second view (the top row), i.e.,
the hind foot must lie in the most probable location in the
second view. Note that the multimodal keypoint distribu-
tion does not produce additional spurious supervision to the
other view.

Equation (4) allows measuring geometric discrepancy of
keypoint distributions across views. Therefore, the unla-
beled data can be self-supervised to each other by minimiz-
ing their cross entropy with the raster representation:

Lo(T) = ) | Dxu(@il|Q)), (5)

1,j€C

where C is the camera index set of Z;.
4.2. Temporal Supervision

Given a sequence of images from the i'" camera, Z?, we
supervise the keypoint distribution at t*» time instant using
that of neighboring images in time, i.e.,

Ptll( X) ~ tQ(Wtz—Hfl( x)) (6)

where W, _,;, is the pre-computed dense optical flow from
ta to t1 frames, i.e., P (Wi, (x)) is the warped distri-
bution of Ptg. We use a kernelized correlation filter [13]
with inverse compositional mapping [3] to track all pixels
offline while online optical flow computation [8,20] can be
complementary to our approach with a trivial modification.

Using Equation (6), we design a tracking loss for the
temporal supervision:

Lo(T) = > Dxu(PLIIPLWiyar,)), (D)
t1,t2€[0,T]
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Figure 4: We integrate a visibility inference to validate the
multiview supervisory signals. The left hind paw is oc-
cluded by torso, which is conditioned by the visibility map
(middle), resulting in the reduction of the keypoint proba-
bility. This prevents from influencing the occluded keypoint
detection across views.

where 7' is the number of frames.

A key innovation of Equation (7) against existing optical
flow supervision [8,21,36] is that it eliminates the necessity
of the argmax operation by warping the keypoint distribu-
tion as a whole. In practice, we find that having sufficient
time difference between frames improves training perfor-
mance and efficiency. For instance, a high framerate video
of a monkey who stays still for a majority of time gener-
ates less informative temporal supervision and is prone to
noise, i.e., W11, = I where I is the identity mapping.
On the other hand, when the frame difference is too large,
significant tracking drift is likely to occur. We address this
by selectively applying the temporal supervision on the two
frames that have the sufficient magnitude of the integral
dense optical flow, i.e., €, < D>y [[Wipme, (X)|| < e
where &’ is the domain of an image, and ¢, and €, are
lower and upper bounds of the magnitude of the integral
dense optical flow. Figure 3(c) illustrates the temporal su-
pervision using dense optical flow. The left wrist keypoint
distribution P; is warped to form P;(W). This unimodal
distribution can supervise the ambiguous prediction in P;
with two modes.

4.3. Visibility Supervision

Free-ranging activities inherently involve with self-
occlusion, e.g., a hand is occluded by the torso at a cer-
tain view. Without precise reasoning about the visibility
of keypoints, the cross-view and temporal supervisions can
be highly fragile because there is no mechanism to prevent
from such error propagation over the unlabeled multiview
images’. For instance, the temporal supervision via the op-
tical flow of the occluded hand can mislead the hand loca-
tion to the torso location in other visible images. To reject
such error, RANSAC [9] with geometric verification (e.g.,
reprojection error) has been used. However, the operation

5 A similar observation has been made for long-term trajectory recon-
struction [16].

is non-differentiable, and therefore, it requires alternating
offline reconstruction and training [30].

Instead, we design a new module that integrates the vis-
ibility inference as a part of the training process. The key
idea is that a keypoint is likely to be visible if it is visible
from the adjacent cameras. This provides a spatial prior on
the visibility map across views:

Ly(T;) = > dijmax Vi —max V/||?,  (8)
i,jeC

where J; ; is Kronecker delta that is one if the distance
between the optical centers of the i*" and j*"' cameras is
smaller than ec, ie., ||C; — C;|| < ec, and zero other-
wise, and C is the camera index set of Z;. Equation (8) is
a necessary condition that penalizes the difference in visi-
bility maps for adjacent cameras, i.e., it is valid when the
location of the maximum visibility map coincides with the
peak of the keypoint probability. In practice, the visibility
is highly correlated with the keypoint distribution where L+,
is effective. For instance, Figure 4 illustrates the visibility
supervision across views. The left hind paw is occluded by
torso, which is conditioned by the visibility map (middle),
resulting in the reduction of the keypoint probability. This
prevents from influencing the occluded keypoint detection
across views.

4.4. Label Supervision

We supervise the keypoint distribution and visibility map
using a set of the labeled data as follows:

Ly(Zp) = Z Dxr,(Pr;
I€7Z;,

Vi, 9

P+ Dxr(Vy

where FI% and VI% are the ground truth keypoint distribu-
tion and its visibility of image I:. The ground truth key-
point distribution is obtained by convolving a scaled Gaus-
sian at the ground truth keypoint location. For the visibil-
ity map, it is computed via ray-casting on a discretized 3D
voxel space. See Appendix for more details of ground truth
visibility map generation.

4.5. Overall Loss

The resulting keypoint detector is learned using both la-
beled and unlabeled data by minimizing the following over-
all loss:

T
L(w,wy) = LL(Z) + Ac Y _ Le(Z) + Ar Y Lr(TY)
t=1 i€C
T
+ v ZLV(L% (10)
t=1

where L1, Lc, and L, and Ly are the losses for the labeled
supervision, cross-view supervision, temporal supervision,
and visibility supervision, respectively. Ac, Ar and Ay are
the weights that control their importance.

424



> 11 > Pemo P () — L s
' : Reference pathway
________________________ ; QP 1l <« 1] <
P, Viewpathway, | , {i E
> > ll[P == 0} L Vel el e
L S
{7 L]

>

> > >

Keypoint probability network Visibility map network  Max-pool over epipolar line | Warping w/ optical flow
Figure 5: We design a network composed of three pathways: reference, temporal, and view pathways to utilize both labeled
and unlabeled data. Each pathway is composed of two subnetworks producing keypoint distribution and visibility map. The
labeled loss Ly, is computed from the reference pathway by comparing to the ground truth annotation (keypoint and visibility)
if available. The temporal and reference pathways measure the tracking loss L by warping the keypoint distribution using

the dense optical flow (Pti2 (Wi,—st,)), and the view and reference pathways measure the cross-view loss L¢ by transforming

the keypoint distribution to the epipolar plane distribution, i.e., Qil > Qil.

5. Implementation

We design a network that is composed of three pathways:
reference, view, and temporal pathways as shown in Fig-
ure 5. Each pathway takes as an input image with the size
of 368 x 368 x 3 and produce the keypoint probability and
visibility map with the size of 46 x 46 x 21. They all share
the network weights w and w,. The reference and view
pathways are designed to measure the cross-view loss L¢
and visibility supervision loss Ly for two adjacent views
by transforming to the epipolar plane distribution. The ref-
erence and temporal pathways measure the tracking loss Lt
by warping the keypoint distribution using the dense optical
flow. The label loss is measured for the reference pathway
if the input image is labeled. We use the convolutional pose
machine [7] as a base network to implement ¢(-) and (")
while any existing pose detector can be complementary. See
Appendix for network training. The code is publicly avail-
able: https://github.com/msbrpp/MSBR

Network Initialization by Bootstrapping To alleviate the
noisy initialization of the detector, which occurs frequently
when the unlabeled data dominate, we take a few prac-
tical steps. (1) With a subset of the labeled data in the
same time instant, we triangulate the keypoint in 3D with
RANSAC. This 3D keypoint is projected onto all multi-
view images, which can greatly augment the labeled data
reliably. (2) Based on the 3D keypoints with volume es-
timation, we compute the visibility of labeled data using
ray-casting, which provides the visibility map label for all
views. (3) With the augmented labeled data with their vis-
ibility, we train the network in a fully supervised manner.
This process is called bootstrapping [30], which provides a
good initialization to train our triple network. (4) We re-
train the pre-trained network with the unlabeled data with
cross-view, tracking, and visibility losses.

6. Experiments and Results

Datasets We evaluate our approach using realworld mul-
tiview image streams of non-human and human species
without a pre-trained model captured by multi-camera sys-
tems. (1) Monkey subject 35 cameras running at 60 fps
are installed in a large cage (9’ x 12’ x 9') that allows
the free-ranging behaviors of monkeys. There are diverse
monkey activities include grooming, hanging, and walk-
ing. The camera produces 1280 x 960 images. The ground
truth of keypoint and visibility is manually labeled. (2)
Dog subjects Multi-camera system composed of 69 syn-
chronized HD cameras (1024 x 1280 at 30 fps) are used to
capture the behaviors of multiple breeds of dogs includ-
ing Dalmatian and Golden Retrievers. The ground truth
is manually labeled. (3) Mouse subject We use a multi-
view mouse locomotion dataset used to evaluate DeepLab-
Cut [25]. A single camera with a mirror generates multi-
view synchronized images of a head-fixed mouse running
on a treadmill. The scene is captured at 200 Hz and the
keypoints are fully annotated manually®. (4) Human sub-
ject I A multiview behavioral imaging system composed
of 69 synchronized HD cameras capture human activities
at 30 fps with 10241280 resolution. We select 51 con-
secutive synchronized frames from 10 camera as training
streams. Two end frames are used for the labeled data (20
images) and the rest images are used for the unlabeled data
(490). The human pose detectors are used to triangulate the
3D pose to provide the ground truth. (5) Human subject
IT We test our approach on two publicly available datasets
for human subjects: Panoptic Studio dataset [15] and Hu-
man3.6M [14]. For the Panoptic Studio dataset, we use 31
HD videos (1920 x 1080 at 30 Hz). The scenes includes di-
verse subjects with social interactions that introduce severe

The data were prepared by Rick Warren in Sawtell lab [25].



Human subject I Dog subject Monkey subject
Method Sho Elb Wri Kne AUC Nec FlLeg Paw H.Leg | AUC Nec FLeg  Paw Hip H.Leg | AUC
Supervised learning 81.7 379 336 86.1 91.6 96.1 80.3 34.8 82.1 91.3 94.5 67.4 315 969 68.9 75.3
Temp. 864 446 325 93.4 91.7 94.2 832 31.6 833 92.0 94.2 82.8 374 903 83.7 87.4
Temp. + Vis. 927 484 411 97.8 93.3 96.9 915 38.1 88.9 92.5 94.9 87.4 458 916 87.9 89.2
Cross. 624 317 19.8 44.7 78.7 853 68.7 23.6 61.4 70.3 89.7 60.2 29.6 509 63.7 68.9
Cross. + Boot. 850 415 386 97.6 92.6 96.6 88.2 353 91.2 929 94.2 874 382 917 86.2 87.6
Temp. + Cross. 888 70.6 402 97.5 922 96.1 89.1 372 923 929 97.6 92.1 472 904 93.5 90.3
Temp. + Cross + Boot. | 89.4  77.1 57.5 98.6 92.2 98.9 92.5 52.8 95.8 93.8 97.9 94.8 48.7 920 95.1 91.6
Ours [929 772 654 98.9 [ 951 [ 989 94.2 53.2 958 | 948 [ 987 95.2 50.1 935 957 [ 922

Table 1: We conduct an ablation study on human, dog, and monkey subjects using the PCKh measure.
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Figure 6: (a-c) We conduct ablation study using a PCK measure on human, dog, and monkey subjects. (d-e) We compare

DeepLabCut (ResNet 50) [

] with ours on monkey and mouse subjects.

Method Nec FlLeg Paw Hip H. Leg AUC s :

Supervised learning 94.5 67.4 31.5 96.9 68.9 75.3 supervision, by 34% and 164% AUC reSpeCthely on the
Simon et al. (argmax) 96.1 68.4 323 95.7 70.2 76.5

Dong et al. (sofi-argmax) 857 329 106 872 378 506 Human dataset, and by 2.8% and 18.8% AUC on the Dog
Temporal sup. (flow warpi 942 828 374 903 837 874 i icibili Titv i

Temporal sup. (flow warping) | 242 828  Jr4 203 837 | 84 dataset. In addition, visibility probability improves tempo-

Table 2: We compare our approach with Simon et al. [30]
and Dong et al [8] on the monkey dataset.

social occlusion. The Human3.6M dataset is captured by 4
HD cameras that includes variety of single actor activities,
e.g., sitting, running, and eating/drinking.

Metric We use a measure of the probability of correct key-
point (PCK) and PCKh that accounts for 50% of head length
as a correct match. Area under curve (AUC) on PCK is also
used to measure overall accuracy given fixed threshold.
Ablation Study We conduct ablation study to analyze the
effect of each component in our network. (1) supervised
learning with the labeled data; (2) semi-supervised learn-
ing with temporal supervision; (3) temporal supervision
+ visibility supervision; (4) cross-view supervision; (5)
cross-view supervision + visibility supervision + bootstrap-
ping; (6) cross-view supervision + temporal supervision; (7)
cross-view supervision + temporal supervision + bootstrap-
ping; (8) ours (cross-view supervision + temporal supervi-
sion + visibility supervision + bootstrapping). Except for
the fully supervised learning, all network designs utilizes
the unlabeled data.

Table 1 and Figure 6(a-c) summarize the result of abla-
tion study on human, dog, and monkey subjects. Our ap-
proach achieves 95.1% on the Human dataset and 94.8%
AUC on the Dog dataset, which outperforms the other 2
unsupervised baselines, temporal supervision and cross-

ral supervision by 1.8% AUC on the Human dataset and
2.65% AUC on the Dog dataset. Similarly, data augmen-
tation improves cross-view supervision by 16.6% AUC on
the Human dataset and 13.9% AUC on the Dog dataset.
Comparison with Soft-argmax We conduct an experiment
to assess the performance of soft-argmax based approach.
In Table 2, the soft-argmax approach (Dong et al.) is com-
pared with our temporal supervision using dense flow warp-
ing on the monkey dataset. Our supervision approach sig-
nificantly outperforms the soft-argmax with large margin
(27.8%), which is also verified in Yao et al. [37]. The soft-
argmax leads to highly biased keypoint coordinate when the
prediction is spurious due to the nature of weighted average.
Comparison with Semi-supervised Learning We com-
pare our approach with existing semi-supervised learning
frameworks that use (1) temporal supervision [8] and (2)
cross-view supervision [37] on two publicly available hu-
man subject datasets (Panoptic Studio and Human3.6M).
No pre-trained model is used for the comparison.

Table 3 summarizes the PCKh measure of methods in-
cluding fully supervised learning with the labeled data.
Leveraging semi-supervised learning enhances the detec-
tion accuracy (there exists significant performance degrada-
tion of cross-view supervision due to long interval between
the annotated frames). This shows that our approach lever-
ages the unlabeled data better through the tight integration
of temporal and cross-view supervisions. Also we test the
generalizability of the trained pose detector by applying to
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Unlabeled data detection Unseen data detection
Panoptic Studio dataset | Nec Sho Elb  Wri Hip Kne Ank |AUC || Nec Sho Elb Wri Hip Kne Ank|AUC
Supervised learning 935 782 36.8 28.6 98.7 835 924 | 885 || 942 754 329 23.6 972 786 894 855
Temp. 98.1 883 43.6 335 97.8 927 96.6| 923 || 96.7 80.7 37.8 282 97.8 862 92.7| 90.1
Yao et al. [37] 98.6 682 383 235 289 452 69.2| 72.5 || 93.6 645 358 245 349 428 70.2| 70.8
Ours 988 93.1 785 66.8 98.5 983 98.9| 95.6 || 97.2 883 683 524 97.6 89.3 94.7| 914
Human3.6M Nec Sho EIb Wri Hip Kne Ank |AUC || Nec Sho Elb Wri Hip Kne Ank | AUC
Supervised learning 92.1 753 41.8 265 93.7 825 904|862 |[90.1 763 389 20.8 938 78.6 832|848
Temp. 954 88.6 465 352 965 956 952|916 |[91.7 814 423 256 939 834 875|869
Yao et al. [37] 958 50.8 31.5 185 32.6 408 653|699 | 89.6 483 29.7 20.5 29.8 349 60.7 | 652
Ours 979 925 76.7 643 97.2 97.6 96.9 | 948 |/ 93.2 92.8 67.3 49.6 937 87.6 89.5|88.7

Table 3: We compare our approach with existing semi-supervised learning frameworks: (1) temporal supervision and (2)

cross-view supervision [

]. We evaluate on two public human datasets (Panoptic Studio and Human3.6M) using PCKh

measure. We test the generalizability by applying on unseen subjects.

Monkey subject

DeepLabCut [24] Ours
# annotations | Nose Hea Nec  Fleg Paw Hip H.Leg | AUC Nose Hea Nec  Fleg Paw Hip H.Leg | AUC
10 92.1 93.5 90.6 59.4 28.2 97.3 63.2 73.9 93.2 94.6 91.4 83.2 43.9 92.1 85.5 89.1
20 95.9 95.7 95.2 68.3 30.8 98.3 70.1 78.7 95.1 99.3 98.7 95.2 50.1 93.5 95.7 92.2
30 95.3 95.8 96.7 73.7 332 98.5 75.6 80.3 95.4 99.1 98.5 95.9 54.8 95.7 96.0 93.8
40 96.5 96.2 96.8 77.8 39.7 97.9 78.7 83.8 96.5 99.5 99.2 96.3 55.7 94.8 96.3 95.3
50 96.5 96.5 97.1 81.9 42.6 98.3 82.3 85.4 96.6 99.4 99.0 96.4 56.3 95.1 96.7 96.2
Mouse subject
DeepLabCut [24] Ours
# annotations | LF. paw LH.paw Tail RF paw RH.paw | MAE | RMSE | AUC || LE. paw LH.paw Tail RF paw RH.paw | MAE | RMSE | AUC
5 511 53.7 73.1 513 533 6.7 8.7 63.5 57.6 58.5 76.6 579 58.1 6.1 8.4 65.7
10 60.0 61.9 78.5 60.6 61.1 5.8 79 69.8 68.4 69.5 82.8 67.8 69.8 4.9 7.3 73.6
20 64.5 65.2 80.7 64.9 66.4 5.4 7.7 742 73.9 75.6 85.4 74.5 75.0 44 6.5 79.5
40 67.3 67.1 82.1 66.7 67.3 5.0 7.5 75.9 78.8 79.0 87.9 78.4 79.2 3.9 5.9 81.4

Table 4: We compare our approach with DeepLabCut [

Methods Nec Sho EIb Wri Hip Kne Ank | AUC
Simon et al. 923 822 435 354 91.6 853 892903
Kocabasetal. | 97.6 873 427 30.6 842 91.1 90.3 | 88.5
Rhodinetal. | 98.5 852 56.6 42.1 978 904 91.7|91.9
Ours 979 925 767 643 972 972 96.9 | 94.8

Table 5: We compare our approach with three baselines: (1)
Simon et al. [30], (2) Kocabas et al. [ 18], and (3) Rhodin et
al. [28] on Human3.6 dataset.

the unseen subjects who are not used as unlabeled data. For
Panoptic Studio, Dance 1 is used for the labeled and un-
labeled and Dance 2 is used for the unseen data, and for
Human3.6M, Eating and Discussion are used for the labeled
and unlabeled data, and Greeting is used for the unseen data.
The trend is similar to the unlabeled data, i.e., our approach
shows stronger generalization power.

Comparison with DeepLabCut We compare our approach
with DeepLabCut [24] that leverages a pre-trained model
(ResNet 50 [12] trained on ImageNet [29]). In particular,
we focus on non-human subjects (monkeys and mice) to re-
flect the strength of DeepLabCut. Two datasets differ in
range of motion. For the mouse locomotion, the head of
the mouse is stabilized where the range of motion is re-
stricted to leg motion on the treadmill. On the other hand,
the monkey activities are completely unconstrained, which
produces severe self-occlusion and pose variation.

Table 4 and Figure 6(d-e) summarize the performance
comparison with respect to the number of annotations. A
notable difference is that the performance gap of the mon-
key activities is much higher than that of the mouse, e.g.,
for 10 annotated data, our approach outperforms 15% for

] that leverages a pre-trained model as varying the number of
annotations. RMSE and MAE are measured in term of confidence map size (46 x 46).
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the monkey and 3.5% for the mouse. This indicates that
our approach is more resilient to large appearance change
induced by free-ranging activities.

Qualitative Evaluation We show the qualitative result in
Figure 1. See Appendix and Supplementary Video for ex-
tensive qualitative result.

7. Summary

We present a new semi-supervised learning framework
to train a keypoint detector from multiview image streams.
We integrate three self-supervisionary signals to effectively
utilize a large amount of the unlabeled multiview data: (1)
the cross-view supervision that enforces geometric consis-
tency through the epipolar constraint across views; (2) the
temporal supervision that constrains keypoint detection to
be in accordance with dense optical flow; and (3) the visi-
bility supervision that validates the detected keypoint in the
presence of severe self-occlusion. We embed these super-
visions into a new network design composed of three path-
ways in a differentiable fashion, allowing end-to-end train-
ing. We demonstrate that our approach outperforms existing
semi-supervised learning approaches [8,37] and DeepLab-
Cut [24] that uses a pre-trained model. The resulting net-
work precisely detects the keypoints of both non-human and
human subjects with highly limited labeled data (< 4%).
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