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ABSTRACT

Speculative execution attacks present an enormous security threat,
capable of reading arbitrary program data under malicious specula-
tion, and later exfiltrating that data over microarchitectural covert
channels. Since these attacks first rely on being able to read ar-
bitrary data (potential secrets), a conservative approach to defeat
all attacks is to delay the execution of instructions that read those
secrets, until those instructions become non-speculative.

This paper’s premise is that it is safe to execute and selectively
forward the results of speculative instructions that read secrets,
which improves performance, as long as we can prove that the for-
warded results do not reach potential covert channels. We propose a
comprehensive hardware protection based on this idea, called Spec-
ulative Taint Tracking (STT), capable of protecting all speculatively
accessed data.

Our work addresses two key challenges. First, to safely selec-
tively forward secrets, we must understand what instruction(s) can
form covert channels. We provide a comprehensive study of covert
channels on speculative microarchitectures, and use this study to
develop hardware mechanisms that block each class of channel.
Along the way, we find new classes of covert channels related to
implicit flow on speculative machines. Second, for performance, it is
essential to disable protection on previously protected data, as soon
as doing so is safe. We identify that the earliest time is when the in-
struction(s) producing the protected data become non-speculative,
and design a novel microarchitecture for disabling protection at
this moment.

We provide an extensive formal analysis showing that STT en-
forces a novel form of non-interference, with respect to all specu-
latively accessed data. We further evaluate STT on 21 SPEC and 9
PARSEC workloads, and find it adds only 8.5%/14.5% overhead (de-
pending on attack model) relative to an insecure machine, while re-
ducing overhead by 4.7x/18.8X relative to a baseline secure scheme.
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1 INTRODUCTION

Spectre [31], Meltdown [35] and follow-up attacks [8, 13, 24, 30, 32,
36, 46, 54, 57, 58] based on speculative execution have opened a new
chapter in hardware security. In these attacks, adversary-crafted
sequences of transient instructions—i.e., speculative instructions
bound to squash—access and then transmit sensitive program data
over microarchitectural covert channels (e.g., the cache [59]). For
example, Spectre Variant 1, shown in Figure 1, bypasses a bounds
check due to a branch misprediction and transmits secret data
behind that bounds check over a cache-based covert channel [31].
Since the address addr can take an arbitrary value, val can be any
value in program memory, meaning the covert channel can reveal
arbitrary program data. (In this paper, we denote a potentially secret
value in green.)

uint8 A[10];
uint8 B [256+64];
void victim (size_t addr) {
if (addr < 10) { // mispredicted branch

Mi1: uint8 val = A[addr]; // secret is accessed

M2: =B[64 « val]; // secret is transmitted
}

}

Figure 1: Spectre Variant 1 assuming a 64 byte cache line size. Vari-
ables carrying potentially secret data are colored green. If the if
condition is predicted as true, then the cache line of B indexed by
val is loaded to the cache (load M2) even though both loads are even-
tually squashed.
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Prior work has pointed out that speculative execution attacks
are broken into two components [29, 46]. First, a secret value is
speculatively accessed and read into architectural state (e.g., a regis-
ter) due to adversary-controlled speculative execution. For example,
load M1 in Figure 1 reads val even if addr > 10 due to a branch
misprediction. Second, that secret value is transmitted over a covert
channel (formed using one or more younger instructions). For ex-
ample, load M2 in Figure 1 transmits the secret over a cache-based
covert channel (displacing the attacker’s line in the cache).

Using this distinction, a conservative scheme to protect all spec-
ulatively accessed data is therefore to delay the execution of any
instruction deemed capable of accessing a secret (access instruc-
tion for short) until it becomes non-speculative. For example, if
we define access instructions to be “all loads,” it isn’t possible for
val in Figure 1 to leak an out of bounds value through the covert
channel formed by load M2, since we delay executing load M1 until
the branch resolves (and squashes). On the other hand, this scheme
has high overhead, as delayed execution blocks execution for all
dependent instructions.

1.1 This Paper

The key observation underpinning this paper is that one can im-
prove the above conservative scheme’s performance, without hurt-
ing security, by executing and selectively forwarding the results of
speculative access instructions to younger instructions, as long
as those younger instructions cannot form a covert channel. For
example, suppose the microarchitect designs simple arithmetic (e.g.,
adds, xors) to have data-independent timing (e.g., implemented
with a single-cycle ALU). Then, it is safe to execute and forward
the result of load M1 to these dependent instructions, because their
execution cannot reveal the result’s value. By issuing load M1 and
the arithmetic early, we improve performance if the branch resolves
with a correct prediction.

This paper designs a framework to selectively forward data in
this fashion, providing an efficient mechanism to comprehensively
protect all speculatively accessed data. At a high level, our scheme
tracks the flow of results from access instructions, through their
def-use chains in a manner similar to dynamic information flow
tracking [17, 49], until those results reach an instruction, or se-
quence of instructions, that may form a covert channel. Only at that
later point do we stop forwarding the access instruction-dependent
value. To be secure and efficient, this approach needs to solve two
key technical challenges:

Challenge 1: Blocking leakage through all covert channels.
First, paramount to deciding when to forward the results of specu-
lative access instructions (called secrets for short) is having a com-
plete understanding of how instructions can form covert channels
in speculative execution attacks. This is not trivial, as prior attacks
have shown there to be many ways to leak a secret (e.g., through
loads that interact with the cache [31], SIMD units [46], and port
contention [8]).

A key contribution of this paper is a comprehensive study of
how instructions can be used to create covert channels and com-
municate data. In particular, we find that all covert channels are
one of two flavors, which we call explicit and implicit channels.
First, in an explicit channel data is directly passed to an instruction
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whose execution creates operand-dependent hardware resource
usage, and that resource usage reveals the data. For example, how
a load impacts the cache depends on the load address [31]. Second,
in an implicit channel data indirectly influences how (or that) an
instruction or several instructions execute, and these changes in re-
source usage reveal the data. For example, the instructions executed
after a branch reveal the branch predicate [8, 46].

Implicit channels are related to implicit flow from the informa-
tion flow literature [43], which is notoriously difficult to deal with
in side channel research [52]. To our knowledge, we are the first
to study and provide comprehensive protection for implicit chan-
nels in the speculative execution attack setting. Along the way,
we also discover new ways that these channels can leak, and also
find entirely new forms of implicit channels, unique to speculative
microarchitectures.

Challenge 2: Disabling protection as soon as access instruc-
tions become non-speculative. Second, to be efficient, it is impor-
tant to disable protection on data produced by access instructions,
as soon as doing so is safe. Consider the example in Figure 1. Here,
a simple, secure scheme is to execute and forward data from load
M1, yet wait to issue load M2 until load M2 reaches the head of the
ROB. This is overly conservative. In fact, it is safe to issue load M2
as soon as the branch resolves in a correct prediction, as this is
the soonest point when the data returned by load M1 is no longer
considered secret (i.e., load M1 is no longer speculative). To reiter-
ate: at that earlier point, we can issue load M2. This is important for
performance. The later we delay issuing load M2, the greater the
chance it delays instruction retirement in the ROB.

The general principle is that it is safe to disable protection on
data, as soon as the data’s producer access instruction(s) have all
become non-speculative. This is technically challenging for a va-
riety of reasons, as data can be the result of complicated def-use
chains through potentially many access instructions, and other
instructions such as arithmetic. Yet, our solution requires simple
hardware and can disable protection on any protected data in a
data-independent number of cycles (e.g., 1 cycle), regardless of the
complexity of def-use dependencies through older instructions.

Putting everything together, we call our combined protection
scheme Speculative Taint Tracking, or STT for short.

Security guarantees and formal analysis. In addition to propos-
ing STT itself, we provide an extensive formal analysis and prove
that STT enforces a novel form of non-interference [38] with re-
spect to speculatively accessed data, given a powerful adversary
that can monitor potentially any covert channel at cycle granular-
ity. We show how this implies that with STT enabled, arbitrary
speculative execution is only able to leak retired register file state as
opposed to arbitrary program memory. This means STT comprehen-
sively defeats the worst Spectre attacks, e.g., those which form a
universal read gadget [37] such as Spectre Variant 1. We provide
an overview of our analysis in this paper, and provide proof details
in a companion technical report [61].

Contributions. To summarize, we make the following contribu-
tions:

(1) We provide a comprehensive study of covert channels on

speculative microarchitectures, including the first in-depth

look at implicit channels (related to implicit flow), new ways
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implicit channels can leak, and new forms of implicit chan-
nels not yet exploited by speculative attacks.

(2) Based on our study of covert channels, we propose a general
framework for preventing speculatively accessed data from
leaking over any covert channel.

(3) We propose a novel scheme to quickly disable protection on
flows of data, once the data’s producer access instruction(s)
becomes non-speculative.

(4) We formalize our protection mechanisms and show they
are able to achieve a strong security definition, akin to non-
interference [38], with respect to data returned by specula-
tive access instructions.

(5) We extensively evaluate STT on 21 SPEC and 9 PARSEC
workloads, and find it adds only 8.5%/14.5% overhead (de-
pending on threat model) relative to an insecure machine,
while reducing overhead by 4.7x/18.8X relative to the base-
line secure scheme from Section 1.

We have open-sourced our simulation infrastructure used for

performance studies here: https://github.com/cwfletcher/stt.

2 BACKGROUND

Out-of-order Execution. Dynamically scheduled processors exe-
cute instructions in parallel and out of program order to improve
performance [21, 53]. Instructions are fetched in the processor fron-
tend, dispatched to reservation stations for scheduling, issued to
execution (functional) units in the processor backend, and finally
retired (at which point they update architected system state). In-
structions proceed through the frontend, backend and retirement
stages in order, possibly out of order, and in order, respectively.
In-order retirement is implemented by queueing instructions in a
reorder buffer (ROB) [26] in instruction fetch order and retiring a
completed instruction when it reaches the ROB head. Instructions
are referred to by their age in the ROB, i.e., if I; precedes I in fetch
order, then I, is younger than I;.

Speculative Execution. Speculative execution improves perfor-
mance by executing instructions whose validity is uncertain instead
of waiting to determine their validity. If such a speculative instruc-
tion turns out to be valid, it is eventually retired; otherwise, it is
squashed and the processor’s state is rolled back to a valid state. (As
a byproduct, all following instructions also get squashed.)

3 ATTACKER MODEL

We assume a powerful adversary that can monitor any microar-
chitectural covert channel from anywhere in the system, and in-
duce arbitrarily speculative execution to access secrets and create
covert channels. (For a more formal definition, see the BitCycle
adversary from [60].) For example, the attacker can monitor covert
channels through the cache/memory system [31], data-dependent
arithmetic [20], port contention [8], branch predictors [3], etc. As
in [58], the adversary may try to induce and monitor malicious
speculative execution by priming predictors, caches, etc.—from
within the victim thread itself (SameThread [46]), or from an exter-
nal context such as an SMT sibling (SMT) or nearby processor core
(CrossCore).
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4 SCOPE: PROTECTING SPECULATIVELY
ACCESSED DATA

A speculative execution attack consists of two components [29, 46].
First, an instruction that reads a potential secret into a register, mak-
ing it accessible to younger instructions. We call this instruction
the access instruction [29]. Second, a younger instruction or instruc-
tions that exfiltrate the secret over a covert channel. The access
instruction is almost always a load [8, 13, 24, 30, 32, 36, 46, 54, 57],
but some attacks use a privileged register read [11].

We further distinguish attacks based on whether the access
instruction is transient or non-transient, i.e., doomed to squash
or bound to retire, respectively [11]. Figure 2 shows the general
schema. Note that the covert channel must be transient. Otherwise,
all older instructions—including the access instruction—are also
non-transient, which means that the attack is a traditional side
channel attack (e.g., [39]) and out of scope.

This paper

(Transient) (Transient)
Access instruction Covert channel

Type 1: —rvo ‘@)
Start misspeculation

( ) (Transient)
Access instruction Covert channel
), »
Start misspeculation
Instruction fetch order
—

Type 2:

Figure 2: Schema for speculative execution attacks. Attacks can be
classified into two types, depending on whether the instruction ac-
cessing the secret is transient (top) or non-transient (bottom). This
paper protects data returned by transient access instructions.

This paper’s goal is to block attacks involving transient access
instructions, which are arguably the most dangerous speculative
execution attacks. The reason is that a transient access instruc-
tion can often be maneuvered to access data that its correct (not
misspeculated) execution would never access. The worst such at-
tacks can read from any location in memory, which is referred to
as a universal read gadget [37]. For example, in Spectre Variant 1
(Figure 1), misspeculating that a bounds check passes allows the
transient access instruction—load M1—to read from an arbitrary
out-of-bounds address. There are additional universal read gadgets
that exploit different program constructs and covert channels [37].

In contrast, attacks involving non-transient access instructions
cannot create a universal read gadget, because they can only leak
retired (or bound to retire) register file state. Figure 3 depicts such an
attack. Here, a secret is legitimately accessed by the program, i.e.,

secret = xaddr; // retired (non-—transient) access instruction

if (..) { // mispredicted branch
b = B[64 « secret]; // secret is transmitted

}

Figure 3: Example speculative execution attack involving a non-
transient access instruction. Blocking this class of attack is out of
scope.
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the access instruction retires. Later, a transient covert channel cre-
ated through a branch misprediction exfiltrates secret. Although
such leakage is important to address, it is clearly less dangerous
than leaking all of program memory. Moreover, potential leakage of
retired state can be reasoned about by programmers and compilers
and blocked using complementary techniques (e.g., [60]). Therefore,
we consider such leakage out of scope.

5 COVERT CHANNELS IN SPECULATIVE
EXECUTION ATTACKS

As discussed in Section 1, STT executes and selectively forwards
the results of speculative access instructions (which are deemed
secrets) to younger instructions. For security, it is essential to un-
derstand how instructions, computing on secrets, can be used to
create covert channels. For this, we propose a novel abstraction for
covert channels in the speculative execution attack setting, shown
in Figure 4. We note that, although our scope is protecting data
read by speculative access instructions (Section 4), our analysis
here applies to covert channels following non-speculative access
instructions as well.

Covert channel

Explicit channel | | Implicit channel |

| Implicit branch |

a — b meansaisa
subtype of b

| Explicit branch |

f

| Prediction-based |

| Resolution-based |

Figure 4: Covert channel classification on speculative microarchi-
tectures.

5.1 Explicit vs. Implicit Channels

To start, we classify all covert channels as one of two types: ex-
plicit channels and implicit channels. An explicit channel, related
to explicit flow in information flow [43, 52], is one where data
(e.g., a secret) is directly passed to an instruction whose execution
creates operand-dependent hardware resource usage, and that re-
source usage reveals the data. An implicit channel, related to implicit
flow [43, 52], is one where data indirectly influences how (or that)
an instruction or several instructions execute, and these changes in
resource usage reveal the data. Examples of explicit channels are
memory instructions (e.g., load M2 from Figure 1), variable latency
arithmetic instructions [20] and prefetch instructions. Importantly,
that load M2 executes is not secret; it is how the load executes
(i-e., brings a line into cache at a secret-dependent set) that leaks.
Recent speculative execution attacks have also started exploiting
implicit channels. Examples are branches with secret-dependent
predicates, which influence the instruction cache footprint, pro-
gram timing [46], execution unit port usage [8], etc.

A key contribution in this paper is finding new ways that implicit
channels can leak (Section 5.2), and finding entirely new classes
of implicit channels related to what we call “implicit branches”
(Section 5.3). Figure 5 gives examples of “traditional” (Figure 5(a))
and new (Figure 5(b)-(c)) channels. We denote the value being
revealed through the channel as secret. The examples assume
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(a) Control dependency:
if (secret)
load rX <- (rY)

(b) Squash dep. (new):
if (secret)

rX += 64
load rY <- (rz)

(c) Alias dep. (new):
store rX -> (secret)
load rY <- (rz)

Figure 5: Examples of implicit covert channels revealing secret.
Assume an older speculative access instruction has already read
secret into a register, e.g., M1 in Figure 1. The attacker can see the
sequence of load addresses sent to the memory system. rX, rY and
rZ are registers. Each of these covert channels can be “plugged into”
existing attacks as the “Covert channel” in Figure 2. For example, in
Spectre V1 (Figure 1) we can replace load M2 with one of (a)-(c) above.

secret B predicts Load Bresolves
== 0 nottaken issues not taken
—— e ——————
secret Bpredicts Load Bresolves Load
== 1 hottaken issues  taken issues

Figure 6: Resolution-based implicit channel for example Figure 5
(b). When the branch (B) resolves, it leaks the secret based on
whether a squash occurs. There is an analogous case when the (pub-
lic) predictor state takes the branch.

the attacker can monitor the cache-based covert channel, but in
many cases (e.g., Figure 5(a) and (b)) the load can be replaced by an
instruction whose execution timing/etc. does not depend on its input.
Importantly, secret is not passed directly as the load address in
any of the examples, yet still leaks.

5.2 Prediction- vs. Resolution-based Leakage

We make a key observation that on speculative machines, implicit
channels can leak secrets at two points: when a control-flow pre-
diction is made (if any) and when that prediction is resolved. Recall,
branch prediction and resolution occur in the processor frontend
and backend, respectively (Section 2). This creates new types of
leakage depending on the adversary’s capability. In the following,
consider a branch whose predicate depends on a secret.

At prediction time, the sequence of instructions fetched after this
branch is fetched (after branch prediction but before resolution)
leaks secrets if the predictor structures have been updated based
on secret information at some time in the past. For example, if
an attacker runs repeated experiments and the branch predictor is
updated speculatively based on how the branch resolves, the branch
predictor “learns” the secret and will make future predictions based
on the secret.

At resolution time, the branch can also leak the secret even if the
predictor state has not been updated based on secret data, because
incorrect predictions will cause a pipeline squash. See the code
snippet in Figure 5(b), whose timing is shown as a function of the
secret in Figure 6. If the attacker knows the branch will predict
not taken (e.g., by priming it beforehand [31]), a squash means the
branch was actually taken. The adversary can observe the squash
through different effects, e.g., program timing or the fact that the
load issues twice. Importantly, Figure 5(b) would not be considered
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a leak in traditional implicit flow, because the load is control- and
data-independent of the branch.

5.3 Explicit vs. Implicit Branches

We make a key observation that on speculative machines, non-
control flow instructions that speculate can similarly influence
control flow based on conditions in the pipeline. For example, in
Figure 5(c) there is no control flow instruction and the load address
seemingly does not depend on secret data. Note, stores in isolation
don’t form covert channels because they are not performed until
they retire.

Yet, there may still be an implicit channel. For example, on a
machine that performs memory dependence prediction [42], if the
store address resolves after the load is issued, the load will squash
based on whether secret==rZ, causing a similar pipeline distur-
bance as discussed above.! Likewise, if store-load forwarding is
enabled, the load conditionally accesses the L1 cache depending on
whether secret==rZ. Many additional hardware mechanisms, e.g.,
memory consistency speculation [19], value prediction [34], etc.,
create similar issues.

An important observation is that hardware optimizations like
those above can be modeled as implicit branches, whereas explicit
control-flow instructions like branches can be viewed as explicit
branches. That is, the store bypass in Figure 5 (c) can be rewritten
as “if (secret == rZ) {rY = rX; } else { load rY <~ (rZ); }” where
the “implicit branch” direction is predicted if secret has not yet
resolved. In this sense, implicit branches may also leak at prediction
and/or resolution time (Section 5.2), e.g., if the architecture uses a
store set predictor [15].

Summary. To summarize, covert channels can be explicit or im-
plicit, and implicit channels can be further broken down based on
when they leak and their branch type. The next section uses these
observations to block leakage through all channel types with a
unified mechanism. For reference, Table 1 specifies channel types
for existing attacks and a variety of hardware optimizations.

Table 1: Classifying existing attacks and covert channel-creating
hardware structures. A channel’s Type can be either Explicit (Exp) or
Implicit (Imp), c.f. Section 5.1. An implicit channel’s Branch Type is
likewise Exp or Imp, c.f. Section 5.3. Attacks utilizing implicit chan-
nels may be either prediction- or resolution-time (Section 5.2), thus
we leave that field out.

[ Channel [ Spectre PoC? Type Branch Type ]
Cache timing [40, 59] Spectre V1 [31] Exp -
Execution unit timing [6, 20] - Exp -

SIMD utilization NetSpectre [46] Imp Exp
Port contention [5] SmotherSpectre [8] Imp Exp
Store-load forwarding - Imp Imp
Mem. dep. prediction [42] - Imp Imp
Mem. consist. speculation [19] | - Imp Imp
Value prediction [34] - Imp Imp

6 SPECULATIVE TAINT TRACKING

Speculative Taint Tracking (STT) is a low-overhead framework that
protects data accessed under misspeculation, such as data obtained

!Note, this is not the already known Spectre Variant 4 (SSB) attack [25, 58]. In that
attack, an access instruction reads stale data through a store bypass. Our attack is
concerned with store bypass used as a covert channel.
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by an out-of-bounds array access. We refer to such data, that a
non-speculative execution would never read, as secret.

In a manner similar to dynamic information flow tracking
(DIFT) [17, 49], STT “taints” secret data. The STT framework (Sec-
tion 6.1) defines which data should be tainted, which instructions
might leak it and thus should be protected, and when protection
can be disabled. Section 6.2 describes how STT tracks the flow of
tainted data between instructions and how—in contrast to conven-
tional DIFT schemes—it automatically “untaints” data once the in-
struction that produces it becomes non-speculative. Based on taint
information, STT applies novel protection mechanisms to block
explicit covert channels (Section 6.3) and implicit covert channels
(Sections 6.4-6.5).

6.1 Framework & Concepts
STT has three characteristics, which are set at design time.

Which data should be tainted? The microarchitecture classifies
instructions capable of reading secrets under speculative execution
as access instructions. We focus on the case where access instructions
are loads, as this will be sufficient to block universal read gadget
attacks (Section 4). STT taints the output of any speculative access
instruction.

When can data be untainted? The microarchitecture specifies
when a speculative access instruction is no longer considered a
security threat, referred to as the instruction’s visibility point [58].
The visibility point depends on the attack model. In the Spectre
model, an instruction has reached the visibility point if all older
control-flow instructions have resolved. In the Futuristic model, an
instruction has only reached this point if it cannot be squashed.
(The futuristic model protects data read by any possible hardware
speculation, blocking additional attacks such as Meltdown.) In-
structions reach the visibility point in fetch order. We call access
instructions before and after the visibility point unsafe and safe,
respectively, as instructions which have passed the visibility point
are not speculative from a security perspective. STT untaints the
output of an access instruction once it becomes safe.

Who can leak secrets? The microarchitecture classifies certain
instructions as transmit instructions. (Note that an instruction can
be neither, either, or both an access and a transmit instruction.)
STT considers the execution of a transmit instruction as an explicit
covert channel that leaks its argument (Section 5). Classifying only
loads as transmitters will block memory system-related explicit
covert channels. Classifying all instructions that have operand-
dependent hardware resource usage as transmitters will block all
explicit channels. We assume that stores trigger a cache coherence
invalidation only on retirement, or else are defined as transmitters.

To block implicit channels, STT requires the microarchitect to
classify explicit branch instructions, which affect control-flow, and
to identify the implicit branches that represent additional sources
of data-dependent resource usage, e.g., store-to-load forwarding,
memory consistency speculation [19], etc. Section 6.4.2 discusses
implicit branches in detail.

6.1.1 Identifying Access Instructions, Transmit Instructions and Im-
plicit Branches. Here, we describe how microarchitects can identify
access and transmit instructions, and implicit branch conditions.
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(a) Figure 1 machine code (b) Access instruction executes (c) Transmit instruction delayed (d) Transmit instruction’s input untainted
rA=8&A g g
B =8B visibility instr output inputs Visibility instr output inputs instr output inputs
- point point
rC=64 branch o branch A branch
X =(addr ) 1 unresolved unresolved resolved
if (rX < 10
rd = rA + rX executes\’ load rl rA load rl rA load rl rA
load rl <- (rA) // M1 .
r2 = Pl * rC |npl:t B mul r2 rlrC executed/ mul r2 rl rC oxecute mul r2 rl rC
r3 =rB + r2 rz':dy add r3 B r2 lled ™~ add r3 B r2 \ add r3 B r2
stalled, g~
} load ra <- (r3) // M2 load r4 r3 tainted input load r4 r3 V'S'b.'l'tty load r4 r3
poin

Figure 7: Snapshots of ROB state during the STT execution of the Spectre V1 code, in the Spectre threat model. (Tainted registers are green.)

An instruction should be an access instruction if it has the po-
tential to read a secret. Except for loads, there are only a handful of
such instructions (e.g., privileged/configuration register reads or
/O instructions), which can be identified manually.

An instruction should be a transmit instruction if its execu-
tion creates operand-dependent resource usage that can reveal
the operand (partially or fully). Identifying implicit branches is
similar: the architect must analyze whether the resource usage
of some in-flight instruction changes as a function of some other
instruction’s operand. Examples of both transmitters and implicit
branch-based channels are given in Table 1. This informal definition
can be formalized by analyzing (offline) how information flows in
each functional unit at the SRAM-bit and flip-flop levels to deter-
mine whether resource usage depend on the input value, in the
style of the OISA [60] or GLIFT [52] formal frameworks. We leave
such analysis to future work.

6.2 Taint and Untaint Propagation

STT tracks information flow from access instructions to younger
in-flight instructions. STT taints the output register of an unsafe
access instruction and propagates taint using standard taint tracking
rules, namely that an instruction’s output register is tainted if any
of its input registers are tainted. Unlike conventional DIFT, STT
automatically untaints data. When an access instruction becomes
safe, its output register is untainted. Untaint information is also
propagated, so that when all the data dependencies of an instruction
become untainted, the instruction’s output is untainted.

We defer the details of STT’s taint/untaint tracking implementa-
tion to Section 7. At a high level, taint propagation is piggybacked
on the existing register renaming logic in a modern out-of-order
core. As an instruction enters the frontend and its registers are
renamed, the instruction’s output register is tainted if (1) it is an ac-
cess instruction or (2) any of its input (physical) registers are tainted.
Tainting is therefore fast. Propagating untaint is non-trivial, be-
cause dependency chains can be long and each instruction can have
many data dependencies whose taint status needs to be tracked.
STT addresses these challenges with a novel fast untaint algorithm
in Section 7. In this section, we simply assume that taint/untaint
information is available.

Unlike prior DIFT schemes [17, 49, 50, 60], STT does not require
tracking taint in any part of the memory system (TLB, caches, or
memory) or across store-to-load forwarding. The reason is that
the taint of the output of a load—which is an access instruction—
is determined only based on whether it has reached the visibility
point: If a load is unsafe, its output is always tainted. If a load is safe,
every instruction on which it depends has also reached its visibility

959

point (since this happens in-order) and so the load’s output is not
tainted.

6.3 Blocking Explicit Channels

STT blocks explicit channels by delaying the execution of any
transmit instruction whose operands are tainted until they become
untainted.? This scheme imposes relatively low overhead because
it only delays the execution of transmit instructions if they have
tainted operands. For example, a load that only reads a (potential)
secret but does not transmit one—such as load M1 in Figure 1—
executes without delay. Load M2, however, will be delayed and
eventually squashed, thereby defeating the attack.

Figure 7 depicts this scenario in detail. Figure 7(a) shows a se-
quence of instructions executing the Spectre V1 code; load M1 is
an access instruction. In Figure 7(b), the access instruction has exe-
cuted, and its output and all dependencies are tainted. Non-transmit
dependent instructions can freely execute, but any transmit depen-
dent instruction like M2 is stalled (Figure 7(c)). If the speculation
succeeds (i.e., rX < 10), the branch resolves as correct and the ac-
cess instruction becomes safe (assuming the Spectre threat model
defined in Section 6.1). In this case, its output becomes untainted
and the transmit instruction is allowed to execute (Figure 7(d)).
Although in this example the transmit instruction becomes safe
together with the access instruction, this is not true in general (e.g.,
if there is an unresolved branch between them). Thanks to STT’s
untaint mechanism, however, even an unsafe transmitter (i.e., that
has not reached the visibility point) whose input becomes untainted
can execute without having to delay until it reaches the visibility
point or head of ROB.

In contrast, if the branch is mispredicted (i.e., rX > 1) the trans-
mitter remains stalled until it is eventually squashed along with
the access instructions it depends on.

Protection strategies. STT can apply different protection strate-
gies to transmit instructions with tainted arguments. We chose
to delay execution for simplicity, and also because this allows us
to prove non-interference (Section 8). Yet, other protections are
possible which create security-performance trade-offs. For example,
one can combine STT with a scheme such as InvisiSpec [58], which
would allow loads with tainted arguments to be executed earlier.

6.4 Eliminating Implicit Channels

STT blocks implicit channels by enforcing an invariant that the
sequence of instructions fetched/executed/squashed never depends

Notice that for loads, delaying execution implies delaying the TLB lookup.
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(a) Implicit covert channel (control dep. / squash dep.) | (c) When earlier branch B8 mispredicts (left: B predicts taken, right: B predicts not taken)
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Figure 8: STT executing the code in (a), which includes an untainted branch B0, an access instruction reading secret, and an implicit channel.

on tainted data. That is, STT makes the program counter independent
of tainted data.

A key challenge in enforcing this invariant is how to maintain
efficiency. For example, a strawman DIFT approach to block implicit
channels would be to consider the execution of any instruction
following a branch with a tainted predicate (or tainted branch) as
an implicit channel, and delay the execution of all such instructions.
This approach would impose high overhead, as it requires delaying
execution of all instructions following a tainted branch until the
branch predicate becomes untainted. Even then, such an approach
would not block implicit channels caused by implicit branches
(Section 5.3), which are unique to the speculative execution setting.

To efficiently maintain the STT program counter invariant, we
introduce two general principles to neutralize the sources of implicit
channels identified in Section 5.2:

Prediction-based channels are eliminated by preventing
tainted data from affecting the state of any predictor structure.

Resolution-based channels are eliminated by delaying the
effects of branch resolution until the branch’s predicate becomes
untainted.

In the following, we discuss how STT applies these principles
to eliminate implicit channels over explicit and implicit branches.
Implementation details are presented in Section 7.

6.4.1 Explicit Branches. To prevent implicit channels through ex-
plicit branches (i.e., control flow instructions), STT modifies the
baseline microarchitecture as follows.

Prediction-based channels. STT requires that every frontend
predictor structure be updated based only on untainted data. This
makes the execution path fetched by the frontend unaffected by
the output of unsafe access instructions. STT passes a branch’s
resolution results to the direct/indirect branch predictors only after
the branch’s predicate and target address become untainted; if the
branch gets squashed before this, the predictor will not be updated.

Figure 8(c) demonstrates the effect of STT on a speculative exe-
cution of the code snippet in Figure 8(a), in which the branch Be
is mispredicted as taken. No matter how many experiments the
attacker runs, the predicted direction of the branch B will not be
a function of secret, because the branch predictor is not updated
when B resolves. As a result, the execution path does not depend on
secret (top vs. bottom)—it only depends on the predicted branch
direction (left vs. right).
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STT does not need to change how the return address stack
(RAS) [27] (which predicts RET results) is updated; we discuss this
issue shortly.

Resolution-based channels. STT delays squashing a branch that
resolves as mispredicted until the branch’s predicate becomes un-
tainted. As a result, a transient branch with a tainted predicate
(such as the branch B in Figure 8(c)) will never be squashed and
re-executed, preventing the implicit channel leak shown in Figure 6.
As Figure 8(c) shows, the transient branch B is eventually squashed
once an older (mispredicted) branch with an untainted predicate
squashes. Thus, the squash does not leak any information about
the transient branch’s resolution. Importantly, note that it is safe to
resolve a branch as soon as its predicate becomes untainted, even if
an older branch with a tainted predicate has not yet resolved.

To summarize, where the strawman DIFT approach would stall
the execution of any instruction following a tainted branch, STT lets
the instructions execute, and only increases the latency of recover-
ing from a tainted branch misprediction. For example, in Figure 8(b),
the load M does not execute immediately after the tainted branch B
resolves, because B’s predicate is tainted at this point. This is in con-
trast to a modern processor, which squashes a mispredicted branch
and starts executing the correct path immediately upon resolving
the branch [1, 4, 12]. Fortunately, tainted branch mispredictions
are only a small fraction of overall branch mispredictions (Sec-
tion 9), which are infrequent in the first place because successful
speculation requires accurate branch prediction.

Handling the RAS. With STT, the RAS is updated by the frontend
as usual: as CALLs and RETs are fetched, they push and pop return
addresses from the RAS. The reason is that STT makes the predicted
execution path up to a CALL—and therefore the return address it
pushes—independent of tainted data. Thus, RETs can safely pop
from the RAS as usual, as the values they pop do not depend on
tainted data.

STT does need to delay squashes due to RAS misprediction until
the mispredicted RET reaches its visibility point, because the RAS
misprediction resolution depends on the return address the RET
reads from the stack. We assume that the baseline microarchitecture
can repair the RAS after a squash to undo the effects of squashed
CALLs [47]. We do not require a perfect RAS repair algorithm. Our
only requirement is that the repair does not depend on tainted data.
In particular, any repair algorithm whose input is only the RAS
state [47] is fine.
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6.4.2 Implicit Branches. Implicit branches frame microarchitec-
tural mechanisms that observably change how the processor ex-
ecutes instructions as being caused by a branch “injected” into
the execution (Section 5.3). Speculations—such as memory depen-
dence speculation [42], value prediction [34], memory consistency
speculation [19], etc.—are predictions of an implicit branch.

Formulating microarchitectural mechanisms as implicit branches
allows STT to block leakage through them using a similar mecha-
nism as was used to block prediction- and resolution-based chan-
nels for explicit branches. This section walks through this process
for several common optimizations. While we cannot exhaustively
discuss all known processor optimizations, the successful system-
atic application of STT’s principles is evidence that they should
generalize to other optimizations.

Implicit branch without prediction. Consider a store-to-load
forwarding design without memory dependence speculation (e.g.,
[23]). In such a design, a load stalls until the addresses® of all older
stores have resolved. As shown in Figure 9(a), store-to-load for-
warding creates an implicit channel because the load M2 accesses
the cache only if it does not alias with the store S, i.e., if the secret
r2 is not 17. Figure 9(b) shows store-to-load forwarding framed as
an implicit branch, denoted by implIf in the code.

This implicit branch only creates a resolution-based implicit
channel, because the branch is not predicted. We eliminate this
channel by delaying the resolution of the implicit branch until its
predicate is untainted. In our example, this means that M2 (and
so all instructions data-dependent on it) are delayed until both
r2 and ro@ become untainted, which means they are delayed until
the mispredicted explicit branch B squashes. (Section 6.5 describes
an STT optimization that handles store-to-load forwarding more
efficiently.)

In general, the store-to-load forwarding implicit branch predicate
checks that every older in-flight store does not alias with the load,
i.e., it is a conjunction of the “no alias” predicate for each older
store. For example, Figure 9(b) should have:

implIf (ANDs)|in-flight store S older than M2} S-addr # &Y[r0]).

Crucially, the implicit branch predicate never depends on prior
explicit or implicit branches. This ensures that implicit branch pred-
icates do not grow more complicated as more speculative instruc-
tions enter the ROB. Because of STT’s invariant that instructions
fetched/executed/squashed thus far are independent of tainted data,
we need only guarantee that subsequent instructions do not create
an implicit channel by (in this case) delaying the branch’s resolu-
tion until its predicate is untainted. Implementation-wise, our STT
microarchitecture (Section 7) efficiently tracks the taint of addresses
in the load-store queue (LSQ), which allows resolving the implicit
branch as part of the store-to-load forwarding logic.

Implicit branch with prediction. Consider now memory depen-
dence speculation, where the processor might execute a load (read
from memory) speculatively and squash it if an older store ends up
aliasing with it. This is simply a prediction of the store-to-load for-
warding implicit branch. We eliminate its predictor-based channel
by requiring that the relevant predictor (e.g., a store set predic-
tor [15]) be updated only by untainted data, i.e., only after the

3 We refer to physical addresses simply as “addresses.”
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(b) Store-to-load forwarding implicit branch:
re = 17
if (r1 < size) {

(a) Store-to-load forwarding:
re = 17

B: if (rl < size) { // mispredict |B: // mispredict

M1: load r2 <- &X[rl] // access |M1: load r2 <- &X[ri] // access
S: store re -> &Y[r2] S: store rl -> &Y[r2]
M2: load r3 <- &Y[re] // transmit implIf (r2 != re)
} M2: load r3 <- &Y[re] // transmit
else
r3 =ril
}

Figure 9: Store-to-load forwarding implicit channel due to implicit
branch.

implicit branch predicate becomes untainted. The prediction typi-
cally also depends on the LSQ state—for example, a prediction is
made only if there are older stores with unresolved addresses. In this
case, eliminating the predictor-based channel also requires delaying
the prediction until the relevant LSQ state becomes untainted, e.g,
until the addresses of older stores become untainted. We eliminate
the resolution-based channel by delaying the squashing of the load
on a misspeculation (misprediction of the implicit branch) until the
branch’s predicate becomes untainted.

Squashing implicit branches early-on. An advantage of implicit
branches is that the microarchitecture knows the structure of their
predicates. In some cases, this knowledge allows STT to untaint an
implicit branch predicate early-on, based on the observation from
GLIFT [52] that “the output of a logical function should only be
untrusted if some untrusted input actually had an opportunity to
affect the output”

For example, suppose that the memory dependence predictor
predicts that the implicit branch in Figure 9(b) is taken, and that
this turns out to be a misprediction. Naively, STT would need to
delay squashing the implicit branch until the load’s address and the
addresses of all older stores become untainted, as the predicate is a
function of them. However, the GLIFT observation implies that we
need to delay the squash only until one term that evaluates to false
becomes untainted—i.e., until the address of some older aliasing
store and the load are untainted. At this point, the result of the
AND becomes a function of only untainted data—the attacker only
learns that an alias between untainted addresses exists.

Statically-predicted implicit branches. Several common forms
of speculation can be formulated as implicit branches that are pre-
dicted statically, and therefore have no predictor-based channels.
We only need to eliminate resolution-based channels by identifying
the branch’s predicate and, if the implicit branch is mispredicted,
delay the resulting squash until the predicate becomes untainted.
Below, we consider the example of memory consistency speculation
in a multicore processor. Load-load ordering is another example
with similar characteristics.

Memory consistency speculation. A memory consistency model (or
memory model) specifies the order in which a processor’s memory
operations are performed and observed by other processors in
the system [48]. Memory consistency speculation [19] allows the
processor to maintain any required ordering between loads while
still issuing them out of order. The idea is that if two loads, M1 and
M2, must appear to execute in program order (M1 before M2), then M2
can still execute before M1 but will be squashed if the data loaded
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by M2 is invalidated by another processor or gets evicted from the
cache before M2 retires.

Memory consistency speculation is thus a static prediction of true
for an implicit branch predicate that the cache line a load accesses
remains valid until the load retires. It turns out that with STT’s
delayed execution protection strategy, the resolution of this implicit
branch predicate can only occur when it becomes untainted. There-
fore, its resolution does not need to be delayed—i.e., consistency
squashes can be performed when signalled, as usual.

The reason is that a consistency squash of load L can be signalled
only after L accesses the cache, which implies that L’s address is
untainted. In addition, the memory access that triggers the line’s
invalidation/replacement is independent of tainted data. This holds
because such a memory access occurs either because of a load/store
instruction or a hardware prefetch. With STT, loads and stores ac-
cess memory only if their address argument is untainted, which also
implies that hardware prefetching state at the caches is a function
of untainted data. Therefore, if the implicit memory consistency
branch predicate evaluates to false, it is due to an untainted term.

6.5 Optimizing Store-to-Load Forwarding

We now describe an optimization that allows resolving the store-to-
load forwarding implicit branch without waiting for its predicate
to become untainted. The insight is, because store-load forward-
ing can only result in two observable outcomes (issue the load,
or forward from a prior store) it is feasible to hide which occurs.
Specifically: when the load address becomes untainted, we issue
the load unconditionally. (That is, we do not wait for the prior store
addresses to become untainted.) If forwarding should occur, we
ignore the value read from memory and use the forwarded store
value as the load’s output. The load’s output register is written only
after the memory access completes, to guarantee that the timing of
younger instructions is unchanged from the “no forwarding” case.

The optimization maintains STT’s property that tainted data does
not influence the execution path. The reason is that the resolution
of this implicit branch only determines whether the load will access
memory (and its output). It does not influence the execution path
as long as the load is unsafe. This principle is general to other
implicit branches whose resolution does not determine whether
instructions retire/squash.

7 MICROARCHITECTURE

We now present a microarchitecture for STT. The key challenge
in the implementation is how to implement the automatic untaint
operation (Section 6.2). We present a unified mechanism that im-
plements taint and untaint, and show how it can be used to block-
/eliminate both explicit and implicit channels. In the following,
instructions are labeled with monotonically increasing numbers,
which we loosely refer to as their position in the ROB (younger
instructions are assigned larger numbers).

7.1 Main Ideas

We make a key observation that helps implement untainting. Since
instructions reach their visibility point in program order (Sec-
tion 6.1), to untaint the arguments for an instruction i, it suffices to
wait for the youngest access instruction that is causing the taint for
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i to reach the visibility point. We call this instruction the Youngest
Root of Taint (YRoT) of i.

With this approach, we do not need to track exact def-use chains
between instructions. Conceptually, we track the position of the
YRoT for each instruction in the ROB. Then, we broadcast the
ROB position of each access instruction as it reaches the visibility
point. Each younger instruction whose YRoT is smaller or equal
to the broadcasted value becomes untainted. If multiple access
instructions reach the visibility point in the same cycle, we can
broadcast the maximum index of all of them (instead of all of their
indices). We note that logic indicating which instructions reach the
visibility point is provided by prior work on InvisiSpec [58].

Untainting can trigger different operations. When a transmit in-
struction’s arguments become untainted, it can execute (Section 6.3).
When an explicit branch predicate is untainted, subsequent instruc-
tions are squashed if the branch was mispredicted (Section 6.4.1).
Finally, when an implicit branch predicate is untainted, any ob-
servable effect related to the implicit branch, e.g., a squash due to
memory dependence prediction (Section 6.4.2), can occur.

7.2 Hardware Changes to Frontend

We now describe an architecture that implements STT (Figure 10).
Our architecture is meant to model a modern speculative out-of-
order multicore with optimizations such as those described in Sec-

tion 6.
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Figure 10: Microarchitecture with support for STT. Shaded block
represent new hardware added to support our scheme; dashed lines
are new wires. The per-instruction Youngest Root of Taint is de-
noted yrot, whereas fields added to hardware tables are denoted
YRoT.

In the processor frontend (up to dispatch to execution units) the
main hardware changes are to add logic to generate the Youngest
Root of Taint (Section 7.1) for fetched instructions. We reuse logic
from the InvisiSpec paper [58] paper to generate the visibility point
(VP, shown as @). For example, in the Spectre model the VP equals
the ROB index of the oldest unresolved branch.

Tracking Youngest Root of Taint. We calculate the Youngest
Root of Taint (YRoT) in the processor rename stage (Figure 10
@). We add two new fields to the entries in the rename table
(which maps logical registers to physical registers): YRoT and the
access instruction ROB index (AccessInstrldx), both of which require
log,(ROBSize) bits. YROT tracks the Youngest Root of Taint of the
instruction that last produced each logical register in program order.
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AccessInstrldx records the ROB index of the last producer for each
logical register, if that producer was an access instruction, or —1
otherwise.

Suppose a new instruction is being renamed. Then we calculate
the Youngest Root of Taint for that instruction (denoted yrot) as
the YRoT of the argument, in the rename table, which reaches the
visibility point the latest. If an argument was directly produced by
an access instruction, that instruction’s index in the ROB directly
becomes the YROT for that argument (which is known through the
Accesslnstrldx field). For example, suppose that this instruction
has source registers Rs1 and Rs2. Let RT be short for rename table.
Assume that when the source for a logical register Rx is in retired
architectural state, RT[Rx].YRoT = -1. Then at rename time, we
compute the instruction’s yrot as:

yrot = max(

((RT[Rs1].AccessInstrIdx == -1) ?
RT[Rs1].YRoT : RT[Rs1].AccessInstrIdx),
((RT[Rs2].AccessInstrIdx == -1) ?

RT[Rs2].YRoT : RT[Rs2].AccessInstrIdx));

Recall, younger instructions have larger ROB indices, hence the
use of max. If the instruction has a different number of arguments,
the same max is taken over all of them.

If the instruction has a destination register, call it Rd, then we up-
date the rename table as RT[Rd].YRoT = yrot. As previously men-
tioned, RT[Rd].AccessInstrIdx is set to the instruction’s index
in the ROB, if the instruction is an access instruction (determined
in decode), or -1 otherwise. If the instruction does not update a
register (e.g., a branch or store), the rename table is not updated
because no logical register is being updated.

After rename, the instruction is dispatched to a reservation sta-
tion (RS) based on its type. Depending on the instruction type, yrot
may travel with the instruction and be stored in the RS (see below).

Importantly, this design assigns each instruction a yrot without
adding new ports to the rename table or ROB. The YRoT and Ac-
cessInstrldx fields for each entry are read along with the logical to
physical register mappings that are read per-argument in the re-
name table already. As with the normal logical-to-physical register
mappings, the YRoT and AccessInstrldx in each entry needs to be
restored after a squash.

7.3 Hardware Changes to Backend

At dispatch time, each instruction travels with its yrot. We now
describe logic changes at the reservation stations (RS) for each
instruction type, based on whether those instructions can form
explicit and/or implicit channels (Section 5).

Our goal is design simplicity, and note that many optimizations
are possible. While we cannot cover every proposed microarchitec-
tural optimization, we cover an example for instructions that cause
neither, both or one of explicit/implicit channels. The mechanisms
can be generalized to other instructions. Recall, the microarchi-
tecture is responsible for denoting each instruction as potentially
creating explicit and/or implicit channels (Section 6.1).

Data-Independent Arithmetic. In the simplest case, the instruc-
tion performs a simple task that cannot create either an explicit
or implicit covert channel (e.g., single-cycle add, xor without side
effects), shown in Figure 10 @. In this case, there are no changes to
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the RS and the yrot is dropped. Such instructions can execute as
soon as their arguments are available, even if they are tainted. This
is key for performance.

Data-Dependent Arithmetic. Instructions may be capable of cre-
ating only explicit channels, such as arithmetic with data-dependent
timing (e.g., a multiplier [20]), see Figure 10 @. If the microarchi-
tecture classifies these as transmitters, the yrot of each instruction
waiting in the RS is stored alongside the instruction in a new field
called YRoT. When the VP changes, we calculate for each instruction
i in the RS:

instr i can execute = yrot; < VP.

Our current design performs these checks in parallel, for each RS
entry, in a fashion similar to instruction wakeup logic that checks
if a dependency is ready.

Recall, yrot is based on each instruction’s def-use chains, not
where each instruction appears in program order. So, instruction
wakeup due to yrot still allows instructions to execute out of order
once their arguments become untainted.

Branches. Instructions may be capable of creating only implicit
channels, such as conditional/unconditional branches and jumps,
see Figure 10 ®. We handle these cases with the same mechanism
as in the previous case for Data-Dependent Arithmetic: the yrot is
stored alongside each branch in the branch RS (branch unit) and
wakeup occurs by performing the same comparison between yrot
and VP. This ensures that branch resolution only occurs when the
branch’s predicate and target (if any) is untainted. This design also
avoids any modification to the branch predictors in the frontend,
because only executions based on untainted data will update the
predictors.

Loads and Stores. Finally, there are instructions which can create
both explicit and implicit channels such as stores and loads, see
Figure 10 ®. Discussed in Section 5.1, memory instructions are an
important type of explicit channel. At the same time, loads and
stores can also create implicit channels due to hardware features
such as store-to-load forwarding, memory dependence speculation
and memory consistency checks across cores (Section 6.4.2).

In isolation, a store creates neither explicit or implicit channels
because we assume stores are performed at retirement. Yet, stores
may alias with younger loads; we thus must store the yrot for each
store, calculated in rename, along with the store, to calculate the
predicate for implicit branches.

We block channels related to loads as follows. First, loads are
stored in the LSQ with their yrot, as with previous cases, in a new
YROT field. Loads are also assigned two additional fields: Pend-
ingSquash (1 bit), and YRoT_impSquash (same width as the YRoT
field). YROT is used in the same way as before, to notify when the
load address is untainted (can no longer form an explicit channel),
at which point it is safe to perform the load.

When the load address becomes untainted, it may require store-
load forwarding or memory dependence speculation. We handle
store-load forwarding as discussed in Section 6.5: we uncondition-
ally perform the load unless all prior stores are resolved and un-
tainted. PendingSquash and YRoT_impSquash are used to handle
memory dependence speculation. After the load is performed, if
it suffers an alias to an earlier store whose address resolves late,
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we set YROT_impSquash to the YRoT of the store causing the alias
and set the PendingSquash bit (but do not perform the squash). If
PendingSquash is set and YRoT_impSquash < VP, we perform the
squash. (This checks requires analogous logic as comparing the
normal yrot values to the VP.) This is equivalent to performing
the squash when the implicit branch predicate becomes a function
of untainted data (see Section 6.4.2). As explained in Section 6.4.2, a
memory consistency violation simply squashes when it is signalled.
Multiple late resolving stores may alias with the load, resolving
one after another. In this case, YRoT_impSquash is set to the min
YRoT_impSquash of any store causing an alias. This is important
for security. Once any memory violation occurs, it will eventu-
ally cause a squash, unless a squash is triggered beforehand by
older instructions in the ROB. If the memory violation itself causes
the squash, we must reveal that squash only when the implicit
branch predicate is untainted. This moment is exactly when the
min YRoT_impSquash of any alias reaches the visibility point. The
logic for repeatedly updating the YRoT_impSquash in this fashion
piggybacks off of the existing LSQ logic for detecting aliases.

8 SECURITY ANALYSIS

We formally prove that STT in the Spectre threat model enforces
a novel notion of non-interference [38] appropriate for enforcing
privacy of speculatively accessed data. (The formal proof for the
futuristic model is ongoing work.) Our proof applies to a strong
adversary that observes the instructions fetched, when and which
functional units are busy (i.e., resource usage and port contention),
and the target address of every cache/memory access. (See Sec-
tion 3.) This section summarizes the key ideas and results; the
details appear in a companion technical report [61].

We formally model processors as state machines. We define an
STT machine that is a detailed model of a speculative out-of-order
processor with STT. In addition to registers and memory, its state in-
cludes hardware structures such as branch predictors, the ROB, LSQ,
etc. Its state also includes taint bits for registers. A processor logic
defines how the state changes at every cycle. In each cycle, the pro-
cessor logic performs events that modify the machine’s state. These
events model microarchitectural events such as instruction fetch,
execution by a functional unit, squashes, retirement, tainting/un-
tainting, etc. The STT machine models the protections described in
Section 6 (e.g., delaying execution of tainted transmit instructions)
and the fast untaint mechanism described in Section 7.

We show that the STT machine provides the following non-
interference security guarantee: at each step of its execution, the
value of a doomed register, that is, a register written to by a specu-
lative access instruction that is bound to squash, does not influence
future visible events in the execution. The key challenge is that
when an instruction executes, we do not know whether it is going
to squash or not. We address this by considering a simple in-order
processor model, which we use to verify the STT machine’s branch
predictions against their true outcome, obtained from the in-order
processor. Specifically, at each step of the STT machine’s execution
of a program, in our formal analysis we maintain an auxiliary bit of
state, mispredicted, that is only set to true if the prediction of one of
the preceding branches differs from the outcome of a corresponding
branch in the in-order execution of the program.
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With the way to identify whether the STT machine mispredicts at
each point of the execution, we are able to distinguish doomed reg-
isters: a register r is doomed in a state o with a given mispredicted
flag, if it gets tainted in the shadow of what the in-order processor
identifies as a misprediction, i.e., while mispredicted = true. For
each register, we also maintain auxiliary state indicating whether
it is doomed. We refer to the STT machine state coupled with its
auxiliary state as an extended state. Given two extended STT states,
k1 and k3, we say that k1 =~ k3 holds if k1 and k3 only differ by
values of doomed registers.

We prove the following theorem, which states that values of
doomed registers neither influence which events the STT machine
executes at each cycle nor get leaked into the rest of the state by
those events. We parameterize the theorem by an observability func-
tion view, which models the adversary’s view [60], i.e., it projects
event traces onto the parts the adversary can observe. The theorem
holds in particular for the strong adversary described above, which
observes the entire event trace.

THEOREM 1. At any cycle t, given two extended states k1 and ko
such that k1 ~ kg holds, if 11 and ty are the sequences of events the
STT processor logic performs at the cycle t from k1 and k respectively,
then the following holds:

(a) view(ry) = view(r2) holds, and
(b) for the extended states k| and x resulting from executing vy and
T2 respectively, k] = i, holds.

The theorem proves that k1 ~ k3 is an invariant preserved by
each cycle of the machine execution. Since this invariant is in-
ductive, we obtain the following corollary: at any cycle ¢t in any
extended state k, changes to doomed registers do not influence the
future of the execution of the machine. In particular, they never in-
fluence the program counter’s value, which is sufficient to eliminate
traditional implicit covert channels.

9 EVALUATION
9.1 Experimental Setup

Simulator setup. We evaluate STT with the Gem5 [10] simulator,
which models the performance implications of speculative instruc-
tions. We run SPEC CPU2006 [22] and PARSEC 3.0 [9] benchmarks,
as representatives of both single-threaded and multi-threaded pro-
grams. For SPEC, we use the reference input size, and launch detailed
simulation for 1 billion instructions after skipping the first 10 bil-
lion instructions. PARSEC benchmarks are all run with eight cores
with the simmedium input size (except x264, whose input size is
simsmall). A detailed architecture specification used for all schemes
is shown in Table 2.

Microarchitectural features modeled in Gem5. In Gem5, in-
structions that create explicit channels are loads. The simulator
also models the implicit channels discussed in Section 6, including
direct/indirect branches, jumps, calls/returns, as well as implicit
branches formed by store-load forwarding, memory dependence
speculation (with a store set predictor), memory consistency checks
and load-load ordering.

Configurations. We evaluate the following design variants, as
shown in Table 3. We evaluate a baseline scheme DELAYEXECUTE
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Table 2: Parameters of the simulated architecture.

Value ]

1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz

8-issue, out-of-order, no SMT, 32 Load Queue entries, 32
Store Queue entries, 192 ROB, Tournament branch
predictor, 4096 BTB entries, 16 RAS entries

32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port
64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports
Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local
latency, 16 cycles RT remote latency (max)

Parameter [

Architecture
Core

Private L1-I Cache
Private L1-D Cache
Shared L2 Cache

Network 4x2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol | Directory-based MESI protocol
DRAM RT latency: 50 ns after L2

which conservatively delays execution for all access instructions un-
til they reach the visibility point. This models the strawman, secure
scheme from Section 1. Our main proposal DELAYEXECUTE+STT
only applies this protection to tainted transmitters, and additionally
eliminates implicit channels.

Table 3: Evaluated configurations.

Description ]

Configuration |

An unmodified insecure Gem5 processor as baseline.
Delay the execution of every transmit instruction
until it reaches the visibility point.

Unsafe
DelayExecute

DelayExecute STT implemented on top of DelayExecute, therefore
+STT only transmitters with tainted arguments are delayed.
DelayExecute DelayExecute+STT without handling implicit channels.
+STT-ExpOnly Thus this configuration has weaker security.

For each configuration, we evaluate the two visibility points
from [58], namely Spectre and Futuristic, together with both To-
tal Store Ordering (TSO) and Release Consistency (RC) memory
consistency models.

Penetration testing. Prior to performance modeling, we evaluated
whether our framework blocked Spectre variants, such as Spectre
V1 (Figure 1) and confirmed the attack was blocked.

9.2 Main Performance Result

Figures 11 and 12 compare the execution time of configurations
UNSAFE, DELAYEXECUTE and DELAYEXECUTE+STT on the single-
threaded SPEC and multi-threaded PARSEC applications, respec-
tively. The goal is to show the performance overhead of DELAYEXE-
cuTE+STT (our complete proposal) relative to UNSAFE and perfor-
mance improvement relative to the naive but secure DELAYEXECUTE
scheme. All individual benchmark results use the TSO model, and
execution times are normalized to UNSAFE for each memory model.

SPEC analysis. With the Spectre threat model, STT improves over-
head on average relative to naive DELAYEXECUTE from over 40%
without STT to 8.5% with STT, in TSO. RC results are similar. The
main reason is that only a small portion of all speculative loads
(transmitters) are tainted due to older speculative loads (access
instructions).

The savings is even more pronounced using the Futuristic model,
where overhead drops from around 3X to 14.5%. This makes sense
because Futuristic is a more restrictive model that forces longer
delays before loads can execute. The fact that Futuristic overhead
is close to Spectre overhead (14.5% to 8.5%) is an important result.
Futuristic was designed in [58] to be a holistic threat model, taking
into account all possible reasons for an instruction to be specula-
tive. The small difference between the two models suggests that
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Table 4: The effect of delaying predictor updates and resolution
(for explicit and implicit branches). All numbers assume TSO + Fu-
turistic.

Benchmark Suite SPEC2006 PARSEC
. . - DelayExe- - DelayExe-
Protection Mechanism Unsafe cutesSTT Unsafe cutesSTT
1 | ¥ cxplicitbr. misp. / 8.81% 9.04% 3.62% 3.85%
# explicit branches
Fiai it br mish.
o | *tainted explicit brmisp. /-y 8.87% N/A 28.81%
# explicit br. misp.
#1 ici . misp.
3 | f implicit br. misp. 0.008% 0.01% 0.022% | 0.018%
# implicit branches
4 | *taited implicit br.misp. /|y 15.5% N/A 7.74%
# implicit br. misp.

supporting comprehensive security definitions is viable with STT
without sacrificing much performance.

PARSEC analysis. The multi-threaded PARSEC workloads in Fig-
ure 12 exhibit the same trends seen in the SPEC workloads. For
the Spectre model, DELAYEXECUTE+STT reduces the overhead of
DELAYEXECUTE from 78% to 24% in TSO model, and from 103% to
30% in RC. For the Futuristic model, DELAYEXECUTE+STT lowers
the overhead (over 3x in both TSO and RC) of DELAYEXECUTE to
27% and 36% for TSO and RC, which are close to the weaker Spectre
model.

Overhead from implicit branch protection. A central compo-
nent in STT is mechanisms that eliminate implicit channels by
delaying predictor updates and explicit/implicit branch resolutions
until branch predicates are untainted. Figure 11 and 12 include re-
sults for DELAYEXECUTE+STT-ExPONLY, which shows performance
for a weaker security guarantee that ignores implicit channels.
For SPEC workloads, ignoring implicit branches reduces overhead
on average relative to DELAYEXECUTE+STT by around 1%, for all
memory models and visibility points. The number increases to 3%
for PARSEC workloads. The takeaway is that protection against
implicit branches using our mechanisms is very cheap.

For more insight into implicit channel overhead, Table 4 shows
the explicit and implicit branch misprediction rates for both the
UNSAFE baseline and DELAYEXECUTE+STT, under TSO in the Fu-
turistic model. We see that, delaying branch predictor updates only
increases explicit branch misprediction rate by 0.2% relative to the
unsafe baseline, and the rate of memory violations (implicit branch
misprediction) is close for all schemes. Second, the percentage of
branch mispredictions where STT would delay resolution—and thus
may incur performance overhead—is small. These are the explicit
and implicit branch mispredictions that occur when the branch is
tainted. For example, with DELAYEXECUTE+STT on SPEC, only 0.8%
of all dynamic branches are both tainted and mispredicted (8.87%
of the 9.04% mispredicted branches). The situation is even more
apparent for memory violations, as they are very rare (< 0.1%, re-
gardless of whether the implicit branch predicate is tainted). Results
for PARSEC are similar.

9.3 InvisiSpec vs. STT

InvisiSpec [58] is a prior hardware mechanism for blocking specu-
lative execution attacks. The two schemes have different security
trade-offs: On one hand, InvisiSpec only blocks covert channels
through the cache hierarchy, whereas STT can block any covert
channel. On the other hand, STT does not prevent leaking secrets
which are part of retired state (Section 4) whereas InvisiSpec does
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Figure 12: Execution time (normalized to the UNSAFE baseline) of
PARSEC benchmarks. Results shown and methodology follow Fig-
ure 11.

handle this case. As we mentioned, STT is sufficient to prevent the
universal read gadget, which is the most dangerous class of attacks.

We compare overhead of InvisiSpec and STT running SPEC2006,
using the Spectre and Futuristic threat models.* We find InvisiSpec
and STT have 7.6% and 8.5% overhead relative to UNSAFE for the
Spectre model, respectively; and 18.2% and 14.5% overhead in the
Futuristic model, respectively.

10 RELATED WORK

STT builds on the rich literature of hardware DIFT [14, 16-18, 41,
49, 51, 52, 55, 60]. Most DIFT works consider threat models that
occur outside of speculative execution and do not involve covert
channels (we note exceptions below). Our conceptual contribution
is in exposing new types of implicit flow in the speculative execution
attack setting (Section 5).

Several hardware defenses work for speculative execution at-
tacks: InvisiSpec [58], SafeSpec [28], and DAWG [29] only block
covert channels through the cache hierarchy. Conditional Specula-
tion [33] and Selective Delay [44] additionally block covert channels
through the memory system (e.g., DRAM contention). In contrast,
STT can block all covert channels (Section 6).

“InvisiSpec is evaluated using a recent code update that models the design accu-
rately [2].
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Oblivious ISA Extensions (OISA) [60] and GLIFT [52] can achieve
non-interference on speculative architectures (similar to Section 8),
but impose restrictive, potentially low performance programming
models such as data oblivious programming. Context Sensitive Fenc-
ing [50], OISA, and ConTExXT [45] require taint tracking through
memory, while STT does not require taint tracking for retired state
or the memory system. Context Sensitive Fencing briefly men-
tions implicit flow. They do not mention the new, different ways
branches can leak (Section 5.2) or implicit branches (Section 5.3).
Their scheme—tainting the PC—is relatively high overhead (11.8%
for explicit branches), relative to our 1-3% overhead for both explicit
and implicit branches.

NDA [56] and SpecShield [7], which are concurrent to our work,
share a similar high-level strategy as STT: to restrict propagation
of potential secrets to covert channels. However, neither NDA nor
SpecShield provide an abstraction to classify all covert channels,
identify implicit branch-based implicit channels, distinguish be-
tween prediction- and resolution-time leakage for implicit channels,
or propose an untaint mechanism which is as aggressive as STT’s.
For example, SpecShield delays forwarding tainted data to covert
channels until the youngest instruction dependency (as opposed to
the youngest access instruction; Section 7.1) producing that data
reaches the visibility point. As a result, both NDA and SpecShield
propose multiple design variants, each with security-performance
trade-offs. By contrast, STT proposes a single design that is both
high performance and high security.

11 CONCLUSION

This paper proposes Speculative Taint Tracking (STT), a novel
protection framework to comprehensively protect speculatively
accessed data from speculative execution attacks. STT has two key
novelties: a framework to eliminate both explicit and implicit covert
channels, and a new taint/untaint procedure capable of waking
instructions up early. Together, these mechanisms enable a high-
performance and high-security design, able to enforce strong non-
interference properties with respect to speculatively accessed data.
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