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Abstract—In the last decade, institutions from around the 
world have implemented initiatives for digitizing biological 
collections (biocollections) and sharing their information online. 
The transcription of the metadata from photographs of specimens’ 
labels is performed through human-centered approaches (e.g., 
crowdsourcing) because fully automated Information Extraction 
(IE) methods still generate a significant number of errors. The 
integration of human and machine tasks has been proposed to 
accelerate the IE from the billions of specimens waiting to be 
digitized. Nevertheless, in order to conduct research and trying 
new techniques, IE practitioners need to prepare sets of images, 
crowdsourcing experiments, recruit volunteers, process the 
transcriptions, generate ground truth values, program automated 
methods, etc. These research resources and processes require time 
and effort to be developed and architected into a functional 
system. In this paper, we present a simulator intended to 
accelerate the ability to experiment with workflows for extracting 
Darwin Core (DC) terms from images of specimens. The so-called 
HuMaIN Simulator includes the engine, the human-machine IE 
workflows for three DC terms, the code of the automated IE 
methods, crowdsourced and ground truth transcriptions of the DC 
terms of three biocollections, and several experiments that 
exemplify its potential use. The simulator adds Human-in-the-loop 
capabilities, for iterative IE and research on optimal methods. Its 
practical design permits the quick definition, customization, and 
implementation of experimental IE scenarios. 

Keywords—Information extraction, simulator, human-machine, 
human-in-the-loop, crowdsourcing, optical character recognition, 
natural language processing 

I. INTRODUCTION 

The digitization of the information stored in biological 
collections (biocollections) has accelerated in the last decade 
[1]. Around the world, funding programs, like the Advancing 
Digitization of Biodiversity Collections  (ADBC) [2] of the 
National Science Foundation, crowdsourcing initiatives for the 
transcription of the specimens’ information, like DigiVol [3] of 
the Australian Museum, and worldwide engagement campaigns 
for the digitization of biocollections, like WeDigBio [4]; have 
made possible for the information from hundreds of millions of 
specimens to become available in online data repositories [5][6]. 
The potential use of this information is enormous and crucial to 
preserve Earth’s biological heritage.  

In general, digitization entails the conversion of a physical 
entity into a representation that can be processed by computers. 
The digitization of a biocollection includes the curation, 
cataloging (e.g., bar coding of specimens), imaging, information 

transcription, and post-processing of specimens and their related 
data. The information transcription and post-processing steps 
can be completed at the same time as the imaging process [7], 
but they are commonly performed in a posterior process to 
preserve the integrity of the specimen and to benefit from the 
utilization of volunteers or non-expert users for the transcription 
task [8]. In this paper, we use the term Information Extraction 
(IE) to refer to the process of identification and transcription of 
Darwin Core (DC) Terms [9] from the photos of the specimens, 
saving those values in a structured file or database. This IE from 
biocollections is the focus of this work.  

Driven by the challenge of digitizing billions of specimens 
[10], the use of non-expert users for the transcription of 
information (crowdsourcing) [11] [12] has motivated studies on 
how to engage [13], evaluate [14], and efficiently use human 
work [15]. The complex characteristics of biocollections’ 
images justify the utilization of volunteers to perform the 
transcription of the specimens’ metadata. The text in these 
pictures may be written in different languages and styles 
(handwriting, typewriting, printed, and stamped text), using 
different typefaces and font sizes; it can be skewed, overlapped 
by objects, and have different background colors. The layout of 
their content does not follow any specific pattern. This 
variability causes Optical Character Recognition (OCR) 
engines, when applied to these images, to be prone to errors, 
which compromises Natural Language Processing (NLP) 
algorithms’ ability to extract the correct DC values. 

The progress made in Artificial Intelligence during the last 
decade has especially impacted OCR and NLP techniques. In 
particular, separated neural networks (previously used to 
recognize each of the characters of every font type) have been 
replaced by Long short-term memory (LSTM) networks, which 
have improved the character error rate [16] and have enabled 
general handwriting recognition models [17]. Despite this 
progress, OCR outputs still contain errors and human labor is 
needed to correct and complete the extracted values.  

The HuMaIN project [18] was created with the objective of 
studying hybrid human-machine approaches for the efficient IE 
from biocollections. One of its proposals has been a workflow 
model called SELFIE (Self-aware IE) [19], which organizes the 
available IE methods in a cost-incremental order to minimize the 
amount of human work dedicated to crowdsourcing in IE 
projects. SELFIE tasks identify when the values extracted by 
automated methods are correct, preventing these values from 
being extracted by humans. 
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The implementation of SELFIE workflows and research 
projects on IE from biocollections by using either 
crowdsourcing, automated processes, or hybrid human-machine 
methods, requires effort, time, and resources to be designed and 
implemented. Studies involving crowdsourcing require datasets, 
platforms, and volunteers to perform the tasks. Automated IE 
processes require access to datasets and their ground truth values 
to measure quality. These requirements delay and prevent 
research studies. To date, limited semi-automated approaches 
have been implemented for the IE from biocollections. 

In this paper, we present the HuMaIN Simulator, a tool for 
data scientists and biologists to easily conduct and 
experimentally validate research about human-machine IE from 
biocollections. The contributions of this study are: 

� Simulator: The engine and its scripts permit to run and 
supervise the simulation process, to clone projects and 
workflows, to define and run sets of similar simulations, 
and to run Human-in-the-loop (HITL) workflows, 
enabling crowdsourced data being used to iteratively train 
machine tasks. The available metric and post-processing 
scripts permit to visualize the results through tables and 
graphs and compare the output from different simulations. 

� Dataset: The dataset of the Augmenting-OCR Working 
Group of iDigBio [20] was extended to include the 
crowdsourced transcription of three DC Terms, a reviewed 
ground-truth version of the data, the OCR output of three 
engines (OCRopus [21], Tesseract [22], and the Google-
cloud OCR (GC-OCR) [23]), and the output for several 
automated IE methods, which include the execution time, 
for the specimens of the three biocollections of the dataset. 
These data permit researchers to try different scenarios and 
compare the quality of their methods. 

� Workflows: Hybrid IE workflows for three DC Terms 
(Event-date, Scientific-name, and Recorded-by) are made 
available with the simulator. Their automated components 
implement three different IE techniques that are applicable 
to most of the types of terms found in Darwin Core: 

o Regular expressions (for the Event-date term) or pattern 
matching of the named entity’s values. See sections 
IV.A, IV.B, and IV.C. 

o Pre-built dictionaries (for the Scientific-name term) or 
gazetteers: a countable set of known values or 
alternatives. See sections IV.D and IV.E. 

o Unknown dictionary (for the Recorded-by term): a 
countable set of undetermined values. See section IV.F. 

Users can clone and use as their starting point these 
workflows and IE methods included with the simulator. 

� Examples: Four experiments (see sections IV.B, IV.C, 
IV.E, and IV.F,) exemplify the use of the features and data 
of the simulator to test research scenarios.  

� Open Source and Reproducibility: Experiments can be 
easily replicated. The code and data are openly accessible 
at https://github.com/acislab/HuMaIN_Simulator.  

Researchers are encouraged to extend the simulator, use their 
own use cases, and sharing their data and code contributions. 

II. RELATED WORK 

To the best of our knowledge, there is no simulator for IE 
from biocollections, nor a hybrid human-machine IE simulator, 
nor a HITL IE simulator. In the area of biocollections, current 
IE projects seem to focus on the engagement of volunteers [13], 
instead of the automation of IE methods. 

In other areas, several simulators that use HITL have been 
implemented [24], but not for IE. In the last years, the research 
on HITL simulators has been pushed by the driver-less car 
industry [25] and the automation of car capabilities [26]. 

In the area of IE, the HITL approach has been utilized to 
keep an ontology up-to-date [27] or extracting relations from 
unstructured content [28], and in general, research projects have 
used human-annotated text to train machine learning models. 
Nevertheless, these studies and others in named-entity 
recognition [29] work with documents containing natural 
language, where parts of speech and other NLP technologies are 
the enablers of their methods. That is not the common case in 
the text found in biocollections’ images, which are basically 
scattered values. 

Several organizations, like iDigBio [5] and GBIF [30], 
provide online access to the images and DC terms of millions of 
specimens. Open data access and promotion of research on 
biodiversity are two of their goals. They provide access to two 
important resources for IE research: the specimens images and 
their correspondent transcribed DC terms. API interfaces allow 
to programmatically download these data. However, the human 
or machine IE processes which generate those DC terms, the 
associated data, and metrics are not shared. 

In the HuMaIN Simulator, the emphasis is on improving and 
testing IE processes, the metrics used to evaluate the quality of 
the output, and the human-machine integration. These steps 
entail significant time and resource overheads in real life. 

Mei et. al [31] provide a dataset for OCR post-processing 
evaluation. It is especially useful for OCR engines’ quality 
comparison and line segmentation, but the utilized images are 
different from biocollections’ images. Their images come from 
biodiversity books with pages of natural-language text and low 
graphical variability. 

In [32], Dillen et. al share a dataset of labeled data from 
herbarium specimen images. Their dataset is limited to herbaria 
specimens. They provide the segmentation coordinates of the 
labels of the images, which may be useful for the localization of 
blocks of text but not for lines (used by OCR engines). In this 
previous study there are no data from crowdsourcing (which is 
the most common extraction method), full text transcriptions of 
the images (for OCR studies), OCR outputs, or customizable 
NLP scripts. The authors provide a diverse set of images and DC 
values from herbarium specimens, but research studies are not 
facilitated in any other way. Similar capabilities can be obtained 
by using the API functions of iDigBio or GBIF. 

In the area of NLP, we are aware of GLUE [33], a 
benchmark and analysis platform for natural language 
understanding, which could potentially help the biodiversity 
community in their IE projects. This is a general-purpose test 
suite, which includes a convenient performance evaluation tool 
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for language models. However, images found in biocollections 
contain text that uses natural language very sparsely, basically 
in only two DC terms: locality and habitat. The rest of the DC 
terms may be more appropriate for extraction techniques that do 
not rely on natural-language features. 

Human-machine simulators have been utilized in other 
areas. For example, in the usability analysis of Web sites [34], 
or in the accuracy analysis of information transmitted to nurses 
and physicians [35]. Nevertheless, these projects based their 
simulations on dynamic interfaces and the mimicking or acting 
of medical cases using real nurses and physicians; this is 
different from the simulations in HuMaIN, where we use real IE 
tasks’ results, whenever necessary, to emulate the execution of 
human-machine IE workflows from biocollections’ images. 

 The HuMaIN Simulator presents few capabilities when 
compared to general purpose workflow management systems 
like Pegasus [36] or Kepler [37], because it is specific to 
biocollections. However, our simulator includes data 
manipulation scripts, workflows, and capabilities, like HITL, 
that would need to be added by users to these general-purpose 
simulation systems. 

III. THE HUMAIN SIMULATOR 

The HuMaIN Simulator works by emulating the execution 
of the tasks. The simulated tasks have been previously executed. 
Their results and correspondent metrics are reused in the 
simulations. Not all the tasks must be simulated, the engine also 
permits the execution of tasks. However, for performance 
purposes, we recommend executing in a workflow only those 
tasks that are under study. 

The HuMaIN Simulator permits to conduct different types 
of studies, for example: 

� Parameter Tuning: IE tasks usually have multiple 
parameters. Users can find the optimal value of a 
parameter by varying its value through different 
simulations. This use case is illustrated in section IV.E. 

� Tasks Comparison: Researchers may try different ways 
to perform one of the tasks of the workflow and evaluate 
the impact of every option in the output of the workflow. 
This scenario is exemplified in sections IV.B and IV.C. 

� Evaluation of IE Approaches: The same DC term(s) can 
be extracted by different IE workflows. Their evaluation 
and comparison may be simplified by the re-utilization 
of the common tasks in the respective workflows. 

� HITL Workflows: Crowdsourcing results can be used to 
iteratively improve an automated task. This approach is 
tested in section IV.F. 

To simulate an IE workflow, the components shown in 
Figure 1 must be defined and made available. 

Simulation Configuration 
Every simulation is defined through an xml file that contains 

the values for the parameters of every task. This allows running 
the same workflow with different parameters by simply 
modifying their values in the configuration file. 

Workflow Definition 
A workflow is a set of tasks arranged in a specific order, 

which may potentially include tasks that run in parallel. In the 
HuMaIN Simulator, a workflow is specified using a csv file. 
Figure 2 shows an IE workflow that follows the SELFIE model: 
self-aware IE processes arranged in incremental-cost order [19]. 
In this case, the cost is the execution time. Nevertheless, the 
simulator can potentially be used to define human-only, 
machine-only, or other types of workflows. The format of each 
line in a workflow definition file follows the following pattern: 

<task_name>, <list_of_prerequisite_tasks> 

See section IV.A for a workflow definition example. 

 

 

 

 

 

 

Figure 1. Necessary components for a Simulation. 

Tasks’ Code & Interface 
Tasks are Python scripts that simulate or execute data- 

handling or IE methods. The simulation of a task is done by 
retrieving its precomputed results. The simulation script copies 
the results and metric values from the data repository to the 
results directory, where the output of the simulation is being 
saved. The simulation saves in a log the information about the 
process, enabling its debugging and supervision.  

The interface (list of parameters) of all the tasks available to 
the workflows are defined in the file tasks.xml of the project. 
Section IV.A includes an excerpt of this file. 

File Formats and Datatypes 
The validation of the tasks’ input and output values is one of 

the responsibilities of the simulator. For verification purposes, 
only a set of datatypes and file formats are accepted, which can 
be extended modifying the code. The simulator checks every 
parameter and validates the existence and format of the data in 
the indicated directories and files passed as parameters. The 
input and output datatypes and file formats understood by the 
HuMaIN Simulator are specified in the file constants.py, they 
are the following: 

INPUT_TYPES = ['INT', 'FLOAT', 'STRING', 'JPG', 'TXT', 
'TSV', 'D_JPG', 'D_TXT', 'D_AR'] 
OUTPUT_TYPES = ['O_JPG', 'O_TXT', 'O_TSV', 'O_D_AR', 
'O_D_JPG', 'O_D_TXT'] 

 The datatype D_AR indicates a directory with two sub-
directories: Accept and Reject, utilized by self-aware tasks to 
separate the specimens for which a value was generated from the 
specimens that need to be processed by a higher cost IE process. 

Data 
The Data component represents the files with the values to 

be utilized by the tasks. Examples of data are crowdsourced 
transcriptions, images, OCR’s output text, or cropped lines.  

Workflow_Def 

Tasks’ Code & Interface 

Data 

File Formats 

Metrics 

File that defines the order of 
simulation of the tasks 

Interface and code of every 
simulated or executed task 

Data files’ internal format 

Raw data, tasks’ output and 
their metric values 

File with the value to use for 
the parameter of every task 

Sim_Config 
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Metrics 
The metrics correspond to the variables to be measured 

during the simulation of a workflow. Their values are included 
in a folder called /metrics located inside every data directory. 
If, for example, a workflow is going to use the execution time as 
a metric, every task must include a file with the per-specimen 
execution-time value in the /metrics folder. 

The specification details of the tasks’ interface, workflow-
definition, and simulation-configuration files can be found in the 
wiki page of the HuMaIN Simulator [38]. Section IV.A includes 
excerpts of these files for the Event-date workflow.  

The HuMaIN Simulator, including code and data, can be 
downloaded by cloning its GitHub repository [38]. It requires 
Python3 to run, and its installation consists in updating the 
PYTHONPATH environment variable and the BASE_DIR 
internal variable.  

After downloading and configuring the environment 
variables, an IE experiment can be defined and executed by 
following four steps: 

1) Project and Workflows: A project is a set of related 

workflows. Users can define a project and its workflows from 

scratch, with a text editor by following the specification rules 

of the simulator, or they can create a copy of an existing project 

(including workflows) using the script create_project, and 

adapt it to their convenience. The workflows and experiments 

presented in this paper, can be found in the project called 

selfie, at the simulator’s repository. 

2) Simulation Configuration: The simulation-configuration 

file specifies the values of the parameters to use in every task 

of the workflow. This configuration file can be defined from 

scratch or created from a copy of an existing file by using the 

create_simulation script. The metrics and post-processing 

scripts are specified in this file. Post-processing scripts permit 

to generate tables and graphs from the metrics’ results. Two 

features of the simulator that facilitate IE experimentation are: 

a) Groups of Simulations: This feature permits to create 
a single configuration file to run several simulations. One or 
more parameters among the group of simulations can be varied 
to perform, for example, Parameter Tuning studies. The script 
create_sim_grp can be used to automatically generate a 
configuration file for a Group of Simulations. The simulation 
engine undertands this type of configuration file. 

b) Synthetic metric values: The metrics’ values for a 
simulated task can be syntethically generated using the script 
called gen_values, which permits to generate random values 

following different types of statistical distributions. 

3) Simulation: The simulations are run by using the script 

run_simulation, which arguments are the names of the 

project, workflow definition, and simulation configuration. 

4) Results Verification: Besides the post-processing scripts 

specified in the configuration file, users can verify the correct 

simulation of the workflow by checking the log file generated 

by the HuMaIN Simulator, which registers the parameters and 

messages of every task. 

IV. EXPERIMENTAL SETUP AND RESULTS 

In order to show the potential and usability of the HuMaIN 
Simulator the following experiments were conducted: 

� Section A: The IE workflow for the Event-date DC Term 
is detailed. The included excerpts of the workflow 
definition, tasks interfaces, and simulation-configuration 
files teach how to run a simulation. The results for the 
quality and execution-time metrics are shown. 

� Section B: This experiment studies how the quality of the 
OCR engine affects the final quality of the workflow. 
Three different OCR engines are used. This experiment 
exemplifies how to compare tasks and implement groups 
of simulations. 

� Section C: The experiment shows how different crowds 
may affect the quality of the workflow’s output. In this 
example, the human task is modified and studied. 

� Section D: A workflow for the extraction of the Scientific-
name term is presented. The results for the quality and 
execution-time metrics are shown. 

� Section E: The Scientific-name workflow is used to 
exemplify how to tune an IE parameter. The parameter is 
the similarity threshold that decides when to accept or 
reject an extracted value. A group of simulations is utilized 
in this experiment. 

� Section F: The HITL workflow for the extraction of the 
Recorded-by term is explained. The number of values 
extracted by human and machine methods are compared. 
The dynamics and characteristics of HITL workflows are 
illustrated in this example. 

Additional data, workflows, and experiments are available 
in the GitHub repository of the simulator. 

A. Event-date Workflow 
Figure 2 shows the SELFIE workflow implemented for the 

extraction of the Event-date term, which is the date when the 
specimen is collected. This workflow was previously proposed 
by Alzuru et. al [19]. In this paper, the workflow was automated 
following the specification rules of the HuMaIN Simulator. The 
machine extraction task was extended to several OCR engines. 

For testing purposes, 100 specimens were randomly selected 
from the Insects, Herbs, and Lichens biocollections included in 
the simulator. The data available for the OCRopus engine were 
used when emulating the OCR step. The output data for all the 
tasks on this subset of specimens are included in the simulator’s 
repository. In the workflow, the transcription generated by the 
OCR is scanned by a script that uses regular expressions to 
extract the Event-date candidate values.  

 

Figure 2. SELFIE workflow for the extraction of Event-date. 
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If no value is extracted by the regular expression script, the 
Event-date is asked to be transcribed by three different 
volunteers. A consensus algorithm uses majority voting and 
average similarity to decide, from the three transcriptions, the 
Event-date value for the specimen (see Figure 2). 

Two metrics are used in the workflow: Execution Time 
(called here Duration for naming convenience) and Quality. 
Duration is the total sequential time of machine-processing and 
crowdsourcing effort required to generate the Event-date values. 
Quality is computed as the Damerau-Levenhstein [39] similarity 
of the extracted Event-date to the ground truth values. 

The order of simulation of the workflow’s tasks is defined in 
a csv file (event_date.csv), following the Simulator’s syntax 
(see the Workflow Definition component in section III): 

ocr_sim 
ed_reg_expr_sim, ocr_sim 
crowdsource_sim, ed_reg_expr_sim 
consensus_sim, crowdsource_sim 

 Each of the workflow’s tasks must have a correspondent 
Python script that simulates or executes this task. The 
parameters of all the tasks of a project are defined in the 
tasks.xml file. An excerpt of this file for the selfie project is:  

… 
<task name="ocr_sim"> 
 <parameter name="ocr_input_dir" type="D_TXT"></parameter> 
 <parameter name="include" type="STRING"></parameter> 
 <parameter name="specimens_list" type="TXT"></parameter> 
 <parameter name="metric" type="STRING"></parameter> 
 <parameter name="output_dir" type="O_D_TXT"></parameter> 
</task> 
… 
<task name="crowdsource_sim"> 
 <parameter name="specimens" type="TXT"></parameter> 
 <parameter name="crowd_data" type="TSV"></parameter> 
 <parameter name="metric" type="STRING"></parameter> 
 <parameter name="output_file" type="O_TSV"></parameter> 
</task> 
… 

 Once the tasks of the workflow have been defined, users 
must create a simulation-configuration file specifying the 
correspondent values for the tasks’ parameters, the scripts to 
compute the final values of the metrics, and the post-processing 
scripts (graphs and tables generation). An excerpt of the 
simulation file for the Event-date workflow is the following: 

<tasks> 
  … 
  <task name="ocr_sim"> 
    <parameter name="ocr_input_dir">…/ocropus</parameter> 
 <parameter name="include">True</parameter> 
 <parameter name="specimens_list">…/specimens.txt</parameter> 
 <parameter name="metric">duration</parameter> 
 <parameter name="output_dir">…/ocr_sim</parameter> 
  </task> 
  … 
</tasks> 
<metrics> 
  … 
  <script name="quality_measure.py"> 
    <parameter name="accepted_f">…/regexp/accepted.tsv</parameter> 
 <parameter name="accepted_f">…/consen/accepted.tsv</parameter> 
 <parameter name="ground_truth">…/event_date.tsv</parameter> 
 <parameter name="output_file">…/ed/quality.csv</parameter> 
  </script> 
  … 
</metrics> 
<post-processing> 
  … 
  <script name="basic_stats.py"> 

 <parameter name="metric_file">…/ed/quality.csv</parameter> 
 <parameter name="output_file">…/ed/quality_st.txt</parameter> 
  </script> 
  … 
</post-processing> 

 The metric and post-processing scripts are optional and are 
automatically executed after the workflow simulation has 
finished. The metric scripts help to aggregate the values for the 
metric generated in each task. For the Figure 2 workflow, the 
simulation file was called event_date_sim.xml.  

 Once verified that the data and scripts are in place, the 
simulation is started by running the run_simulation.py script: 

run_simulation.py -p selfie -w event_date -s event_date_sim 

 In this experiment, the simulation took 2 seconds. The log 
file saved the parameter’s values and the processing order, 
among other information. The post-processing scripts generated 
two tables, one for the total duration (execution time) and 
another one for the average Damerau-Levenshtein similarity of 
the extracted values to the ground truth data (see Figure 3). 

 

Figure 3. Execution time (duration) and Quality (Damerau-Levenshtein 
similarity to the ground-truth values) for the Event-date workflow. 

If real life, the crowdsourcing tasks and the execution of the 
scripts would have taken about 7,000 seconds in extracting the 
Event-date values for these 100 images. The similarity of 0.82 
to the ground truth data indicates that machine and/or human 
extraction methods in the workflow have misspelled or extracted 
wrong values. Figuring out the cause of the errors and improving 
those IE processes are two of the possible objectives of the 
researchers who use the HuMaIN Simulator. 

Once the workflow has been implemented following the 
HuMaIN Simulator specifications, users can reuse the workflow 
and its tasks to perform IE studies in a fraction of the time it 
would take to implement them without the simulator. 

B. OCR Engines Comparison. 
 This study illustrates how the selection of the OCR engine 
affects the execution time and quality of the hybrid IE 
workflow’s output. Three OCR engines are considered: 
OCRopus, Tesseract, and the Google Cloud OCR (GC-OCR).  

 To test the Event-date workflow with the three OCR engines, 
a group of simulations was configured by running the 
create_sim_grp.py script. This script creates a simulation-
configuration file which internally defines three simulations, 
one per OCR engine. The script was executed as follow: 

create_sim_grp.py -p selfie -w event_date -s event_date_sim 
-a ocr_sim -p ocr_input_dir -v …/ocropus -v …/tesseract -v 
…/gc-ocr -o ed_sim_grp 

 The generated xml file can be customized. In this example, 
we specified in the post-processing section that two bar graphs 
for the comparison of the OCR engines should be generated. 
These graphs are shown in Figure 4. 
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 The output quality of Tesseract and GC-OCR was slightly 
higher than the obtained by OCRopus, but the GC-OCR required 
less time because more Event-date values were recognized by 
the automated process (OCR + regular expression). Further 
metrics and analysis can be added to this comparison. However, 
the objective of the study is to show how easy is, by using the 
HuMaIN Simulator, to modify a task and perform IE studies. 

 

Figure 4. Duration (seconds) and Quality (similarity to the ground-truth 
values) using OCRopus, Tesseract, and GC-OCR in the Event-date workflow. 

C. Crowd comparison. 
 In the last two simulations, we have utilized the transcription 
of the Event-date term performed by volunteers of the 
Zooniverse portal [40]. These valuable citizen scientists help for 
free in research projects by dedicating time and effort to 
complete repetitive tasks that are hard to do by machines. 
Zooniverse’s users were asked to (voluntarily) read a tutorial 
before starting to transcribe the Event-date values from the 
images of the dataset. 

 In this study, we try the transcriptions generated by a 
different crowd and check how the execution time and quality 
of the Event-date workflow differs to the achieved by using the 
Zooniverse volunteers’ data.  

 The new crowd are undergraduate students, paid at a rate of 
$10 per hour, who were instructed, in person, how to perform 
the transcription of the Event-date term. The consensus 
algorithm was applied to the data collected from these users to 
generate a final Event-date value for every specimen. These data 
were included in the simulator’s dataset. 

 The simulation of the Event-date workflow was repeated for 
the new crowd’s data. The comparison of the results obtained 
for both crowds is shown in Figure 5. 

 

Figure 5. Duration (seconds) and Quality (Damerau-Levenshtein similarity) 
for the Event-date workflow, when using two different crowds. 

 The paid crowd accelerated the IE process by 15% and 
improved the result’s quality by about 2%. This experiment and 
the previous one show how, after implementing in the HuMaIN 
Simulator an IE workflow, studies on the different tasks are 
highly simplified by reusing the same structure. 

D. Scientific-name Workflow.  
 The SELFIE workflow proposed in [19] for the Scientific-
name term was automated in the HuMaIN Simulator, see Figure 
6.  The workflow is composed by two automated self-aware 
processes and a human-centered IE process (crowdsourcing).  

 The simulator includes scientific name dictionaries for 
herbs, lichens, and insects. Because the subset of 100 images 
used to test this workflow includes specimens from the three 
collections, a dictionary that includes all their entries (more than 
51 thousand) was added to the dataset directory. 

 Scanning and comparing every word extracted by the OCR 
to the 51K entries of the dictionary may be slow. That is the 
reason why the first self-aware process tries to identify scientific 
names inside the OCR output using suffixes commonly found in 
scientific names (like -iae or -anum). After  identifying words 
and pair of words with these suffixes, they are compared to the 
entries of the dictionary. If this IE process does not extract the 
Scientific-name value, all the text is scanned and its words are 
compared to the entries in the dictionary. If this second method 
also fails to extract a high-confident value, three volunteers are 
asked to transcribe the scientific name of the specimen. 

 

Figure 6. SELFIE workflow for the extraction of Scientific name. 

 The data collected in the real execution of all these IE tasks 
were saved in the simulator’s dataset folder. The simulation 
tasks and the xml configuration files for the simulation were 
implemented. Using the GC-OCR as OCR engine, the 
Scientific-name workflow was run. The successfully extracted 
values were distributed as shown in Figure 7. 

 

Figure 7. Percentage of Scientific-name values extracted by each of the IE 
processes or not extracted (Unknown). 

 The extracted values had an average similarity of 0.63 to the 
ground-truth values and, in average, every value took 78.5 
seconds to be extracted. The simulation took about 3 seconds. 

E. Similarity Threshold for Scientific-name.  
The Dictionary Extraction algorithm used in the Scientific-

name workflow accepts or rejects a candidate value based on its 
similarity to the dictionary’s entries. This value was arbitrarily 
assumed as 0.85 in the previous section. In this study, we want 
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to know how this threshold affects the quality and number of 
values accepted during the second IE process of the workflow.  

A group of simulations, like in section B, was created for 
running 11 simulations. They correspond to the values from 0.5 
to 1.0 (with a step of 0.05) of the similarity threshold. The results 
obtained from these simulations are shown in Table I. 

For threshold values less than 0.6, the quality of the 
workflow degraded. For a threshold equal or greater than 0.6, 
the number of accepted values and their quality remained 
basically constant. Probably the relatively short length of the 
compared strings prevents a smoother change in these metrics. 

TABLE I.      AVERAGE GENERAL QUALITY AND NUMBER OF SCIENTIFIC- 
                       NAMES VALUES EXTRACTED IN THE DICTIONARY EXTRACTION 
                       TASK FOR DIFFERENT VALUES OF THE SIMILARITY THRESHOLD. 

Similarity 
Threshold 0.5 0.55 0.6 - 0.85 0.9 – 1.0 

Number of 
Accepted Values 37 36 25 24 

Avg. Similarity to 
Ground-truth 0.53 0.55 0.63 0.63 

 
F. HITL Recorded-by Workflow.  

The SELFIE workflow proposed in [19] for the extraction of 
the Recorded-by (Collector) term was converted to HITL and 
automated for the HuMaIN Simulator. This term is different to 
Scientific-name because there is not a pre-defined dictionary of 
collectors. Since biological collections tend to have a reduced 
number of collectors, humans can be used to transcribe the 
Recorded-by value of a limited number of specimens and a 
dictionary or list of collectors can be built with these values on-
demand. Using the dictionary entries, the text in the remaining 
specimens can be scanned to search for the same collectors 
found before. These steps can repeat, expanding the dictionary 
in every iteration, until all the specimens have an extracted value 
or have been processed using crowdsourcing.  

 

Figure 8. Human-in-the-loop workflow for the extraction of the Recorded-
by (collector) term. 

The HITL workflow for Recorded-by is found in Figure 8. 
A task randomly selects the specimens that are going to be 
processed by the human-centered tasks in every iteration. When 
there are no more specimens to be processed, the simulation of 
the workflow stops. 

The dynamic of iterative workflows cannot be observed with 
few images. Therefore, for this study we utilized a different 
dataset of 10 biocollections and 14,233 specimens (images). The 
collections were processed in separated simulations. 

Table II shows the number of images per collection, the 
iterations required by the workflow to process all of them, and 
the humans-accepted, machine-accepted, and rejected 
specimens, considering all the iterations. There are collections 
with very few collectors, which required just two or three 

iterations, while other collections required more iterations and 
crowdsourcing sessions to unveil all the possible collectors.  

TABLE II.     ABSOLUTE VALUES OF THE ITERATION PROCESS, PER COLLECTION. 

Collection 1 2 3 4 5 6 7 8 9 10 

# Images 739 2880 1041 1639 2152 704 901 954 1252 1971 

# 
Iterations 5 11 2 3 6 1 5 6 4 5 

Human 
Accepted 224 504 73 136 252 45 207 253 169 205 

Machine 
Accepted 511 2359 967 1489 1897 654 685 686 1077 1743 

Rejected 4 17 1 14 3 5 9 15 6 23 

 
In average, about 20% of the Recorded-by values needed to 

be transcribed by humans, see Figure 9. Using HITL, the 
transcription of about 80% of the values could be automatically 
extracted by using the dictionary iteratively generated with the 
crowdsourced data. Leading to big savings in the number of 
humans required to perform the IE project. 

 

Figure 9. Per-collection distribution of the Recorded-by values accepted by 
crowdsourcing (humans), dictionary extraction (machines), or rejected. 

CONCLUSIONS 

The Information Extraction (IE) from photographs of 
biocollections specimens is a challenging process that needs to 
be accomplished with hybrid human-machine approaches 
because automated machine-only methods cannot provide, to 
date, an output quality as good as the humans can provide. 

In order to advance in the research of the IE from 
biocollections, this study proposes a human-machine simulator 
for the extraction of the specimens’ Darwin Core terms. The IE 
workflows can include executed and simulated tasks. The 
simulated tasks reuse the output of tasks previously executed. 

The simulator permits to accelerate the experimental process 
by copying and reusing workflows, tasks, simulations, and data. 
Groups of simulations can be automatically generated by 
specifying different parameter values, while Human-in-the-loop 
capabilities allow running iterative simulations that 
incrementally improve automated tasks from the data generated 
by humans. Embedded graphical capabilities permit to generate 
tables, box plots, and bar graphs to easily visualize the results 
and compare different simulations. 

After implementing a workflow in the HuMaIN Simulator, 
several experimental scenarios can be easily explored: 
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parameter tuning, tasks comparison, evaluation of IE 
approaches, and HITL workflows. 

The process of definition of the components of a workflow 
was detailed, while three workflows and four experiments were 
presented to exemplify the research process and potentiality 
offered by the HuMaIN Simulator. 
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