1904.11534v2 [astro-ph.HE] 12 Nov 2019

arxiv

DRAFT VERSION NOVEMBER 13, 2019
Typeset using IATEX twocolumn style in AASTeX62

X-ray Lightcurves from Realistic Polar Cap Models: Inclined Pulsar Magnetospheres and Multipole Fields

WILL LOCKHART,! SAMUEL E. GRALLA,' FERYAL OzEL,> AND DIMITRIOS PSALTIS?

L Department of Physics, University of Arizona, Tucson, AZ 85721, USA
2 Department of Astronomy and Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA

ABSTRACT

Thermal X-ray emission from rotation-powered pulsars is believed to originate from localized
“hotspots” on the stellar surface occurring where large-scale currents from the magnetosphere re-
turn to heat the atmosphere. Lightcurve modeling has primarily been limited to simple models, such
as circular antipodal emitting regions with constant temperature. We calculate more realistic tem-
perature distributions within the polar caps, taking advantage of recent advances in magnetospheric
theory, and we consider their effect on the predicted lightcurves. The emitting regions are non-circular
even for a pure dipole magnetic field, and the inclusion of an aligned magnetic quadrupole moment
introduces a north-south asymmetry. As the quadrupole moment is increased, one hotspot grows in
size before becoming a thin ring surrounding the star. For the pure dipole case, moving to the more
realistic model changes the lightcurves by 5 — 10% for millisecond pulsars, helping to quantify the
systematic uncertainty present in current dipolar models. Including the quadrupole gives considerable
freedom in generating more complex lightcurves. We explore whether these simple dipole+quadrupole
models can account for the qualitative features of the lightcurve of PSR J0437—4715.

Keywords: pulsars: general, pulsars: individual (PSR J0437—4715), stars: neutron, X-rays: stars,

magnetic fields

1. INTRODUCTION

Since their discovery in the 1960s, pulsars have of-
fered a unique window onto the exotic physics of neu-
tron stars (for a recent review, see Ozel & Freire 2016).
Radio pulsars that are gravitationally bound to a com-
panion in a binary orbit lead to precise measurements
of the neutron-star masses and to global constraints on
the properties of ultra-dense baryonic matter (Demorest
et al. 2010; Antoniadis et al. 2013, 2016; Fonseca et al.
2016). Observations of pulsar glitches and of the rate of
thermal cooling of young pulsars offer additional infor-
mation about their moments of inertia (Link et al. 1999)
and their internal compositions (Page et al. 2006), re-
spectively. Spectroscopic analyses of the thermal emis-
sion from bursting and quiescent neutron stars have pro-
vided direct measurements of the radii of a handful of
sources (Ozel et al. 2009; Giiver et al. 2010; Ozel et al.
2010; Steiner et al. 2010; Guillot et al. 2013; Guillot &
Rutledge 2014; Heinke et al. 2014; Nattila et al. 2016;
Ozel et al. 2016; Bogdanov et al. 2016). More recently,
the detection of gravitational waves from the neutron-
star merger event GW170817 placed constraints on the
tidal deformability (Abbott et al. 2017; The LIGO Sci-
entific Collaboration et al. 2018) and, consequently, on

the radii of the two neutron stars (Raithel et al. 2018; De
et al. 2018; Zhao & Lattimer 2018; The LIGO Scientific
Collaboration et al. 2018; Radice et al. 2018; Coughlin
et al. 2018).

A complementary approach to measuring neutron-star
radii involves modeling the lightcurves of the surface
thermal emission from rotation-powered millisecond pul-
sars. This emission is thought to arise from localized
“hotspots” on the stellar surface that come in and out
of view as the star rotates, causing the observed bright-
ness to oscillate periodically in time. The self-lensing of
this emission in the gravitational field of a neutron star
of mass M and radius R suppresses the amplitude of
pulsations by factors that depend primarily on the com-
pactness of the neutron star GM/Rc?, where G and c
are the gravitational constant and the speed of light, re-
spectively (Pechenick et al. 1983). As a result, fitting the
detailed properties of X-ray lightcurves observed from
millisecond pulsars of known mass can lead, in princi-
ple, to a measurement of their radii (see, e.g., Zavlin
et al. 1995; Zavlin & Pavlov 1998; Bogdanov et al. 2007;
Bogdanov 2013; Psaltis et al. 2014; Ozel & Freire 2016;
Watts et al. 2016; Bogdanov et al. 2019).

The Neutron-star Interior Composition ExploreR
(NICER) is now measuring X-ray lightcurves from mil-
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lisecond pulsars with sensitivity that is poised to make
such measurements possible (Gendreau et al. 2016).
However, to exploit the full capabilities of these ob-
servations, a new generation of theoretical modeling
is required to extract physical parameters from these
lightcurves and thereby advance efforts to constrain the
neutron-star equation of state.

In the canonical pulsar model, the neutron star sur-
face is heated by relativistic electrons and positrons aris-
ing from the pair production that supports the global
magnetospheric circuit (Arons 1981, 1983). The current
flows along “open” field lines (i.e., those field lines that
cross the light cylinder), whose intersection with the
stellar surface defines the polar caps.! For a pure dipole
field configuration, the polar caps are circles centered on
the magnetic poles (at least at slow rotation), but more
generally a variety of shapes are allowed. Furthermore,
the bombardment (and thus the resulting emission) oc-
curs over only a sub-region of the polar caps determined
by the detailed properties of the current (Timokhin &
Arons 2013). In this framework, the configuration and
multipolar structure of the magnetic field of the neutron
star determines the properties of the emitting regions.

Past efforts to model the thermal surface emission
from pulsars have usually used circular hotspots that
coincide with the magnetic poles under the implicit as-
sumption of a purely dipolar magnetic field (see, e.g.,
Zavlin & Pavlov 1998). This canonical choice was
driven by the relative (numerical) simplicity of simu-
lating the dipolar configuration as well as the lack of
an obvious, physically motivated alternative. However,
there is little reason to believe that pulsar fields are
purely dipolar. Indeed it is natural to suspect that the
complexity of pulsar emission, and its variation across
sources (Lorimer 2008; Rankin et al. 2017), are driven
by similar complexity and variation in the pulsar mag-
netic field. Furthermore, for X-ray pulse profile mod-
eling itself, the lightcurves and spectra observed from
the prototypical source PSR J0437—4715 have required
multiple concentric regions of emission with different
temperatures, as well as two hotspots of emission that
are not antipodal (Bogdanov 2013). On the theoretical
side, recent force-free and particle-in-cell (PIC) simula-
tions (Spitkovsky 2006; Bai & Spitkovsky 2010; Chen &
Beloborodov 2014; Philippov et al. 2015a,b; Brambilla
et al. 2018) and analytic calculations (Gralla et al. 2016;

I Here, the light cylinder Ry, = ¢/Q is defined as the distance
at which an object co-rotating with a star with angular spin fre-
quency 2 would move at the speed of light. Note that we will
retain the term “polar caps” even when these regions are neither
polar nor cap-shaped.

Belyaev & Parfrey 2016; Gralla et al. 2017) have revealed
a similar degree of complexity in polar cap properties.

In this paper, we model the shapes and thermal prop-
erties of polar caps on neutron stars with dipolar and
“quadrudipolar” (i.e., dipole+-quadrupole) magnetic
fields using earlier semi-analytic general-relativistic
calculations of force-free currents in their magneto-
spheres (Gralla et al. 2017). We combine these cal-
culations with basic models of the resulting surface
emission and with ray-tracing calculations in the exter-
nal spacetimes of the neutron stars (see, e.g., Baubdck
et al. 2012, 2013; Psaltis & Ozel 2014) to predict the
expected lightcurves from these polar-cap models. Our
goal is to explore new pulse morphologies and properties
that result from more realistic polar-cap models and un-
derstand the magnitude of potential biases that may be
introduced by the simplified configurations commonly
used.

We find that realistic polar-cap models naturally give
rise to regions of surface emission that have different
temperatures and to lightcurves with primary and sec-
ondary peaks that are not offset by 180 degrees, as also
inferred from observations. Furthermore, the realistic
polar-cap models introduce complexity in the resulting
lightcurves at the 5 — 10% level. These effects will mask
and alter similar complexity in the lightcurves intro-
duced by rotational Doppler effects that depend primar-
ily on the neutron-star radii (Psaltis et al. 2014). As a
result, not accounting for the thermal structure of the
pulsar polar caps can lead to imprecise model selection
and may bias the radii measurements obtained with this
approach.

2. METHOD

In this section, we introduce the various ingredients of
our method, beginning with a set of neutron star param-
eters and arriving at a simulated lightcurve. Through-
out the paper, we consider a neutron star of mass M
and radius R, rotating with angular frequency Q. We
denote polar coordinates around the spin axis of the star
by the colatitude § and azimuth ¢, and the inclination
of the observer’s line of sight with respect to the spin
axis by 6,. We consider the case where the magnetic
field of the neutron star is axisymmetric with respect to
a “magnetic axis” that co-rotates with the star at an
inclination angle ( relative to the axis of rotation. We
also set G = ¢ = 1, unless explicitly stated otherwise.

Our procedure is composed of three steps:

1. From a choice of stellar parameters and magnetic
field configuration, we compute the four-current
density J# (6, ¢) near the star using the model of
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a slowly rotating, perfectly conducting star with a
force-free magnetosphere (Gralla et al. 2017).

2. Given the current J# (6, ) near the star, we deter-
mine the surface temperature T'(6, ¢) via different
phenomenological prescriptions for Joule heating.
From this temperature, we then determine the spe-
cific intensity of the emerging radiation using a
blackbody spectrum and a simple beaming func-
tion which we define later on.

3. Finally, we simulate the predicted lightcurve us-
ing general-relativistic ray-tracing of null geodesics
from the stellar surface to an observer at infin-
ity (Baubock et al. 2012, 2013; Psaltis & Ozel
2014).

Steps 1 and 3 rest on well-established underlying physics
and contribute little systematic uncertainty to the re-
sults. By contrast, the phenomenological prescriptions
in step 2 are motivated but by no means definitive. We
therefore pay careful attention to the dependence of the
lightcurves on the choice of prescription. To compare
with observations would require a further step 4 of tak-
ing into account foregrounds and instrumental response,
which is beyond the scope of the current work.

2.1. From Magnetization to Current

Our first task, given the parameters of the star and its
magnetic field configuration, is to determine the current
flow at the surface. This flow is sensitive to the global
structure of the magnetospheric circuit (extending past
the light cylinder), which can in general be determined
only with expensive numerical simulations. However,
in the slow-rotation limit, there is a decoupling of near
and far regions that enables the full general-relativistic,
non-dipolar problem to be solved analytically with in-
put from a single simulation of a dipole pulsar in flat
spacetime (Gralla et al. 2017).

We follow Gralla et al. and keep terms to leading or-
der in the rotation parameter QR/c. For NICER’s main
target, and targets of similar interest, this parameter is
estimated to be QR/c ~ 0.05. By keeping to leading
order in rotation one can therefore expect relative cor-
rections of (0.05)2 from higher-order terms, which can
safely be ignored. We briefly review this approach and
present the formulae we will need for lightcurve model-
ing.

To leading order in rotation, the spacetime geometry
outside of a general-relativistic star is given by the lin-
earized Kerr metric,

ds* = —f(r)dt> + f(r)"tdr® +

1
r? [d92 +sin?0 (dp — Qz(r)dt)*|, r> R, o

where f(r) = 1—2M/r is the square of the redshift fac-
tor, Qz = 21Q/r3 is the frame-dragging frequency, and I
is the moment of inertia (angular momentum over angu-
lar velocity). Note that the surface of the star is spheri-
cally symmetric at this order, although the spacetime is
only axisymmetric.

Assuming a perfectly conducting star, the force-free
magnetosphere is completely determined by specifying
the radial component of the magnetic field on the stel-
lar surface, BT (0, ¢,t). Let primed angles (6, ¢') denote
polar coordinates with respect to the magnetic axis, re-
lated to the unprimed coordinates by a rotation,?

cos 0’ = cos B cos ¢ — sinf cos ¢sin ¢, (2a)

sin 6 sin ¢

tan ¢’ = (2b)

sin 0 cos ¢ cos ¢ + cos@sin ¢’

Since the field is axisymmetric, we can express Bj in
terms of the magnetic flux in the co-rotating frame,
V. (0") = [ Bi\/—gd#'. We may further decompose this
flux into a set of multipole moments By,

b(0) = Ry Bi0y(®), (3)

(=1

where ©, are the eigenfunctions for magnetic flux (Gralla
et al. 2016). To leading order in QR, the magnetosphere
is completely determined by the choice of parameters
{M,R,1,9,(, B} defined above.

Using this framework, Gralla et al. (2017) have shown
that the four-current density J* near the star has the
following orthonormal frame components:

Ji— Q\/‘T?f {8904 05(95) — 093 9 (Dpx) — Dpar
(E%(iz;if96)> + 8,8 (jf%(rzara)%—é%(igii?ml))}
(4a)
I = \/%(aga Do — D93 Dscx) (4b)
Jo = — ﬁ(soi‘;j) (9,0 043) (4c)
5o = NP5, 00,9, (4)

where all the terms are to be evaluated at r = R. The
scalars a and 3 are “Euler potentials” for the magnetic

2 We work at an instant of time and make the arbitrary choice
to align the angular velocity with the z-axis.
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field near the star, given explicitly by

a(r,0,¢) = R " B Ry (r)ey(0), (5)

=1

B(r,0,0) = ¢, (6)

where R (r) are radial eigenfunctions (Gralla et al.
(2016) and Eq. 18 below). Finally, A(a,5) is a con-
served quantity on field lines related to the current on
each line. Gralla et al. (2017) provide an analytic expres-
sion for A(a, ), determined by fitting numerical data,
in terms of Bessel functions J,,,>

720 [Jo (2 arcsin \/a/ao) cos(
A, B) =

(7)

with the boundary of the polar cap delineated by

o = /3/2uQ (1 + %sm2 g) , (8)

RZ
H= PRy ®)
Here p is the magnitude of the dipole moment at the
light cylinder, which Eq. (9) relates to the dipole mo-
ment B at the star by compactness-dependent factors
given below (see Eq. 15). The polar caps are defined by
0 < a < ag. Their physical size and shape follows from
the magnetic field, the magnetic inclination, the rota-
tion rate, the moment of inertia, and the compactness
via Eq. (5) and Eq. (8). The area of the polar cap scales
as (QR)? when the other parameters are held fixed. In
this paper, we focus on the effects of magnetic field and
inclination, setting the compactness and moment of in-
ertia to fiducial values given in § 2.3.
These expressions allow the current J# on the star
to be computed analytically from the parameters
{M,R,1,9,(,By}.

2.2. From Current to Emerging Radiation

The mechanism most commonly invoked to explain
the thermal surface emission from millisecond pulsars
is the bombardment of the stellar atmosphere by rel-
ativistic electrons and positrons, produced in so-called
“gaps” (regions of non-zero E - B) just outside the star

3 = refers to the north/south hemisphere. The internal F ap-
pearing in front of J; was missing from the original formula in
Gralla et al. (2017), and has been corrected here.

FJi (2 arcsin \/a/ao) cosﬂsin(}, a<ag

0, a > ap

and accelerated by the fields (Arons 1981, 1983). While
current flows over the entirety of the polar cap (by def-
inition), pair production (leading to bombardment) oc-
curs mainly in regions where the four-current in the cor-
responding force-free solution is spacelike (J,J* > 0),
which requires the presence of both signs of charge (Tim-
okhin & Arons 2013; Philippov et al. 2015a). This
spacelike region defines the shape of the hotspot in our
model.*

The detailed plasma physics governing the deposition
of energy by magnetospheric currents in the surface lay-
ers of the neutron star is explored in Baubock et al.
(2019). As electrons and positrons bombard the sur-
face of the star, their kinetic energy is deposited onto a
thin layer of the stellar atmosphere. Assuming that a
fixed fraction x of the total current |f| is carried by rel-
ativistic particles with typical Lorentz factor 4 traveling
towards the stellar surface, we write the rate at which
this energy is deposited in the surface layers as

Po = (3~ Dmex 2L (10)

e
where e and m, are the electron charge and mass, re-
spectively. The rate at which this energy is deposited
must equal the power radiated, which can be written
in terms of the effective temperature using the Stefan-
Boltzmann law as Py = oT?. Setting P, = P,y gives

_ 1/4
1 .
T = {mEX(V)] T4 (11)
eo
Using this scaling and neglecting, for simplicity, the de-
tails of the atmospheric structure leads to the simple
prescription for the effective temperature on the polar
cap

TolJ/Jo|**, |p| < |J| (spacelike)

0, lp| > |J] (timelike)

(12)
where [J| = \/(Jf)2 +(J9)2 4 (J%)? is the three-
current density, p = J tis the charge density, Jy is the
maximum value of |J| for a neutron star with an aligned
dipolar magnetic field, and T} is the corresponding max-
imum effective temperature for the aligned dipole.

In order to convert the effective temperature to a
model for the emerging specific intensity of the radia-

T(,¢) =

4 Pair production is also expected to occur in the thin current
sheet on the last open field lines, and possibly in nearby regions
of volume return current (Timokhin & Arons 2013; Philippov &
Spitkovsky 2018). This could give rise to further X-ray emis-
sion from near the edges of the polar cap, an effect we neglect at
present.
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Figure 1. (Left) Closed (gray) and open (orange) field lines along which current flows onto a neutron star with a dipolar
magnetic field (the spin axis is oriented vertically). (Right) The temperature distribution on the northern polar cap, shown
for different inclinations of the magnetic dipole ranging from ¢ = 15° (top left) to ¢ = 90° (bottom right). The area of the
polar caps scales with (QR)Q. For our canonical parameters, the half-opening angle of the polar cap lies in the range 14 — 16
degrees, depending on the magnetic inclination. A second, disjoint emitting lobe forms within the polar cap when the magnetic

inclination exceeds (crit ~ 70°.

tion field, we need, in principle, a detailed calculation of
the thermal structure of the neutron-star atmosphere (as
done, e.g., in Baubock et al. 2019). This is beyond the
scope of this paper. Instead, we will use a simplified ap-
proximation of blackbody emission at the effective tem-
perature, with beaming that is potentially non-isotropic,

€3

exple/T(0,¢)] — 1
In this last equation, we denote the photon energy by
€, the angle to surface normal by O, and the beam-
ing function by B(©). We will mainly consider the
case of isotropic emission (B = 1) except in §5, where
we introduce a simple model for limb-darkening, B =
1 + hcos? O, with h a free parameter. Equation (13)
represents a compromise between realism and simplicity,
given current understanding of the underlying micro-
physical processes. Ultimately we expect that a more
accurate prescription will be determined by simulations;
in the meantime, we estimate the importance of the pre-
cise prescription by comparing to other reasonable mod-
els (§3 below).

1(60, ¢;¢,0) = B(©).  (13)

2.3. From Emerging Radiation to Lightcurves

Using equation (13) as a boundary condition, we then
use the numerical algorithm of Psaltis & Ozel (2014)
to trace the light rays along the null geodesics of the
spacetime and map the surface of the simulated compact
object onto the image plane of an observer at infinity.
We keep only terms that are up to first order in the

neutron-star spin frequency, treat the star as spherical
(i.e., neglecting any mass quadrupole terms; see, e.g.,
Baubick et al. 2013), and set the moment of inertia to
(2/5)M R? for simplicity.

The simulations presented in this paper have eight
parameters: the mass M, radius R, and spin frequency
fs of the star (or equivalently, the angular frequency Q =
27 f); the inclination angle 6, between the spin axis and
the line of sight of the observer; the inclination angle ¢ of
the magnetic axis from the spin axis; the beaming factor
h; the temperature constant Ty, which relates current
density to temperature; and the magnetic quadrupole-
to-dipole ratio g. When comparing to observations of a
known millisecond pulsar, the spin frequency is known
a priori.

In the following sections we present analysis of
lightcurves from pulsars with non-negligible dipolar
and quadrupolar components of the magnetic fields.
The procedure to include higher-order terms is straight-
forward in principle. We take as our default choice
of stellar parameters M = 1.5Mg, R = 11 km, and
fs = 300 Hz, which corresponds to a dimensionless com-
pactness M/R ~ 0.2 and surface velocity QR ~ 0.07c.
Unless stated otherwise, all plots are shown for these
fiducial values.

3. PULSARS WITH PURE DIPOLAR
MAGNETIC FIELDS

The simplest non-trivial magnetic field configuration
is a pure dipole, where only the dipole moment B; in



6 LOCKHART ET AL.

Eq. (3) is non-zero. The eigenfunctions for magnetic flux
reduce to®

0,(0) = sin? 0, (14)
_ 2
R = (5) LT )

where we remind the reader that f = (1—2M/r). Equa-
tion (5) for the Euler potentials becomes

Ry (r)
Ry (R)

aBlR2< )sin29’, B=¢.  (16)
Substituting equation (16) into equation (4) gives the
current flow on the star, from which equation (12) pro-
vides the temperature distribution. The polar caps are
antipodally symmetric.

Figure 1 shows the shape and temperature distribu-
tion on the polar caps for six different magnetic incli-
nation angles. For our canonical parameters, the half-
opening angle of the polar cap lies in the range 14 — 16°
depending on the inclination. For small inclinations, the
emitting region (i.e., the region with spacelike currents)
is smaller than the polar cap but centered on the mag-
netic axis. As the inclination increases, the emitting
region becomes larger and its center is displaced from
the magnetic axis (i.e., the center of the cap) until, at
a critical angle (¢ ~ 70° for the fiducial parameters), a
second lobe forms.

In the interest of simplicity and clarity of comparison
to previous dipole models, we calculate lightcurves from
neutron stars with dipolar magnetic fields by considering
only isotropic surface emission, i.e., setting the beaming
factor h = 0 so that B = 1. In order to understand our
results below, we first consider the lightcurve due to a
single polar cap; the full lightcurve is then just the sum
of the contribution from each polar cap separately. Fig-
ure 2 shows the lightcurve from a single polar cap on a
neutron star with magnetic inclination ( = 75°, spinning
at three different frequencies, and observed at an incli-
nation angle of 6, = 90°. As has been shown earlier,
the combination of Doppler and time-delay effects in-
troduces a skewness to the lightcurve, making the rising
(left) edge of the curve steeper and the waning (right)
edge shallower (Braje et al. 2000).

When two of these skewed lightcurves are added to-
gether, 180° out of phase, to generate the lightcurve of a
neutron star with two polar caps in the pure dipole field
configuration, they give rise to the asymmetric troughs
shown in Figure 3. The most striking features are the

5 Note that the expression for R; present in Gralla et al. (2017)
contains a typographical error.
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Figure 2. The bolometric pulse profile generated for a neu-
tron star with a dipole magnetic field but only one emitting
polar cap, for various spin frequencies. The magnetic incli-
nation is ¢ = 75°, and the observer inclination is 6, = 90°.
As the spin frequency increases, the combination of Doppler
and time-delay effects introduces substantial skewness to the
pulse profile.

increased complexity in the lightcurves arising from such
simple geometric polar caps and the fact that their time-
reversal symmetry is broken.

In order to explore the dependence of the simulated
lightcurves on the shape and temperature profile across
the polar caps, we compare the results from three dif-
ferent prescriptions:

(A) constant temperature over the circular polar cap
(this is the geometry that has been employed in
most previous analyses);

(B) constant temperature over just the spacelike-
current region;

(C) the phenomenological model described in §2, with
a temperature T o |J|'/* within the spacelike-
current region (Eq. 12).

Figure 4 compares the normalized lightcurves for two
neutron stars, one with moderate spin (300 Hz) and one
with high spin (600 Hz), calculated with these three
different phenomenological prescriptions. The detailed
shape and temperature profiles of the polar caps intro-
duce complexity to the predicted lightcurves at ampli-
tudes that increase with the neutron-star spin frequency
and can reach levels as large as ~ 5 —10%. A large part
of this complexity is caused by the range of tempera-
tures that are present on the more realistic polar caps.
As the star rotates, the relative projection of different
parts of the polar cap that have different temperatures
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Figure 3. Same as Figure 2, but for emission arising from two polar caps. The increasing skewness of the lightcurves arising
from each polar cap leads to asymmetric troughs between the pulses.
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Figure 4. Pulse profiles from neutron stars with dipolar
magnetic fields, for three different prescriptions of the shape
and temperature profile of the emitting regions (see §3 for
details). In all cases, the magnetic inclination is { = 60°,
the observer inclination is 6, = 90°, and the spin frequency
is set to (top) 300 Hz and (bottom) 600 Hz. The bottom
panels of both figures show the fractional difference between
the pulse profiles calculated for the different prescriptions.
The detailed properties of the polar caps affect the resulting
pulse profiles at the ~ 5—10% level and may mask rotational
effects that are of the same order.
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Figure 5. Pulse amplitude as a function of photon energy,
for the configurations shown in Figure 4. For the constant-
temperature polar caps, the weak dependence is the result
of Doppler effects. The larger amplitudes and stronger de-
pendence on photon energy for the realistic polar caps arises
from the presence of temperature variation on the polar caps.
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Figure 6. Composite diagram depicting magnetic field configurations and temperature maps of the corresponding polar caps
for a neutron star with a magnetic inclination ¢ = 30°. The middle row shows the magnetic field configuration, with current
flow along open field lines (orange) hitting the polar caps (red). The spin axis is oriented vertically. The top and bottom rows
show the north and south polar caps respectively. As the relative magnitude of the quadrupole moment evolves from ¢ = 0
(left) to ¢ = 1.5 (right), we see that the northern cap shrinks and grows hotter, while the southern cap expands and cools. For
g = 1.5, the southern polar cap is a ring. A second insert (bottom right) shows the detailed structure of the ring as a plot in
(0',¢"), with ¢’ running vertically from 0 to 2r. The polar caps are shown via parallel projection (i.e., how they would look in
the Newtonian case with no lensing). For our fiducial parameters, the boxes bounding the polar caps all have a width L equal
to half the diameter of the star, except for the final box of width 2L showing the ring. For these parameters the ring has as

angular size of A§’ ~ 5°.

evolves with time, causing the observed spectrum to also
change with time. The net result is a pulse amplitude
from realistic polar caps that is larger than that of a
polar cap with constant temperature (cf. Baubock et al.
2015).

This spectral evolution with pulse phase also results
in a pulse amplitude that depends on photon energy.

Figure 5 shows the RMS fractional pulse amplitude®
as a function of photon energy for the configurations
shown in Figure 4. The weak dependence on photon en-
ergy seen in the pulse amplitudes of configurations with
constant temperatures across the polar caps is caused
entirely by rotational Doppler effects (Psaltis & Ozel
2014). The larger amplitudes and stronger dependence

6 The RMS fractional amplitude is defined as the square root
of the time-average of the squared deviation from the mean flux.
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on photon energy seen in the simulations with realistic
polar caps is a direct outcome of the presence of regions
with different temperatures across each polar cap.

The increased amplitudes and strong photon energy
dependence of the pulse profiles generated with realis-
tic polar caps competes with and may mask the con-
sequences of the rotational Doppler effects, which are
qualitatively similar. If we were to attempt to fit the
pulse profiles shown in Figures 4 and 5 using models with
circular, constant temperature polar caps, we would be
forced to increase artificially the rotational effects in or-
der to account for the large amplitudes. For a neutron
star of known spin frequency and observer orientation,
the only way to achieve the latter is to increase arti-
ficially the stellar radius. As a result, modeling pulse
profiles with circular, constant temperature emitting re-
gions introduces the risk of biasing the inferences of the
neutron-star radii.

4. PULSARS WITH QUADRUDIPOLAR
MAGNETIC FIELDS

We now consider the effect on the simulated pulse pro-
files of adding a quadrupole moment to the magnetic
field. This amounts to including the next term in the
multipole expansion of the Euler potential,

— 2 R1>(’I’) 02/

a(r) = B1R (Rf(R)) sin” 0’ + -
ByR? (g§<(;))) cosf'sin? @',
2
where the radial functions are given by
3\3—-4 2421
R (r) = (m«) fgf f“); ogf (18a)
(10N 17T=9f—9f2+ f3+6(1+3f)log f

w0 - (52) -7 '
(18b)

We refer to this family of dipole-plus-quadrupole fields
as “quadrudipoles” and parameterize them by the ratio
q = By/Bj, with ¢ = 0 corresponding to the pure dipole.

The addition of a magnetic quadrupole moment
changes both the current density and the size and ge-
ometry of the polar caps, as shown in Figure 6. For
q < 1, the effect of the magnetic quadrupole moment is
to spread out the field lines in the southern hemisphere
and contract those in the north.” As a result, the
northern cap shrinks and grows hotter with increasing
quadrupole, while the southern cap expands and cools.

7 We take north to point in the direction of the spin vector
according to the right-hand rule.
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Figure 7. Contours of constant ratio between the aver-
age temperatures of the northern and southern emitting re-
gions of pulsars with different magnetic inclinations ({) and
quadrupole strengths (q). The temperature ratio reaches a
maximum at ¢ = 1, the critical point at which the shape of
the southern emitting region evolves from a spot to a ring.

When ¢ > 1, the southern cap is no longer circular but
becomes an annular strip encircling the star. When the
magnetic field is substantially inclined from the spin
axis, a large temperature gradient emerges along this
ring (see bottom right insert in Figure 6), since only
part of this region has spacelike four-current.

An important consequence of the quadrudipole model
is that the northern and southern emitting regions have
different effective temperatures. We can quantify this
difference by calculating the ratio of the average tem-
peratures of the two emitting regions as a function of
the magnetic quadrupole moment ¢ and the magnetic
inclination (. Figure 7 shows that this temperature ra-
tio depends primarily on ¢, initially increasing with ¢
for ¢ < 1. This is a direct result of the fact that the
total current flow onto each polar cap is the same. As
the field lines spread out with increasing ¢, the surface
area of the southern cap grows and the current den-
sity (which determines the temperature) decreases. A
quadrudipole field with ¢ = 1 marks the critical point
at which the southern emitting region transitions from
being a spot to a ring. Beyond this point, the area of
the southern region decreases with increasing ¢, causing
its temperature to rise.

The quadrudipole configuration clearly breaks antipo-
dal symmetry because the emitting regions in general
have dramatically different shapes. The one symme-
try that is maintained is reflection symmetry across the
Q — u plane, i.e. the plane determined by the spin
() and magnetic dipole (fi) vectors. This reflection
symmetry guarantees that the phases of greatest flux
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emitted from each hotspot are still 180° apart. How-
ever, when the full ray-tracing calculation is carried out
— including Doppler shift, time-delays, and lensing —
the phases of peak flux observed are no longer evenly
spaced. The quadrudipole configuration makes possible
additional features in the lightcurve that are not seen
with the antipodal configuration of the pure dipole.

Figure 8 shows the simulated lightcurve from a pulsar
with a quadrudipole magnetic field (¢ = 1.5) for a partic-
ular choice of parameters. The interesting feature of this
pulse profile is the appearance of an ‘interpulse’, which
is offset in phase from the main peak by less than 180°.
This interpulse, which we might have naively identified
with an off-axis hotspot, in fact arises because the emis-
sion regions from the northern spot and the southern
ring are not antipodally symmetric, and their contribu-
tions to the pulse profile are affected differently when
subject to the Doppler shift and time delays. Overall,
we find temperature ratios as large as ~ 2.0 between
the two emitting regions (Figure 7) and pulse profiles
with offset interpulses (Figure 8), potentially providing a
natural explanation to the multi-temperature blackbody
models and non-antipodal emission geometries that are
required to fit the observed spectra of millisecond pul-
sars (see, e.g., Bogdanov 2013).

5. APPLICATION TO X-RAY OBSERVATION
OF PSR J0437—-4715

PSR J0437—4715 is the nearest known rotation-
powered millisecond pulsar and the best candidate for
measuring neutron-star properties via pulse profile mod-
eling (Arzoumanian et al. 2014). It has a spin frequency
fs = 174Hz and orbits a white dwarf companion with an
orbital period of 5.7 days. Pulsar timing measurements
yield a pulsar mass of M = 1.44 £+ 0.07Mg (Reardon
et al. 2016).

The X-ray properties of this pulsar have posed sig-
nificant challenges to modeling (Bogdanov 2013). As
discussed earlier, fitting the X-ray spectra of the surface
emission requires multi-temperature blackbody models.
The lightcurve itself exhibits an interpulse that is not
evenly-spaced between the main pulses, but is rather
shifted forward by roughly 20 degrees. In order to model
this lightcurve, Bogdanov (2013) employed an “offset
dipole” model, in which the magnetic field is dipolar
but the dipole is not located at the geometric center of
the star. This gives rise to emitting regions that are not
antipodal. Nevertheless, the shapes of the hotspots are
assumed to be circular. Employing this model to fit the
observations requires four parameters in addition to the
ones required for the model we explore here: angular
offsets Af and A¢ that specify the location of one of

Normalized Flux

Figure 8. (Top) Neutron-star snapshots at three equally-
spaced phases in the rotation (1/12, 5/12, and 9/12 of
a period) and (Bottom) pulse profile for a star with a
quadrudipole magnetic field and ¢ = 1.5. The magnetic in-
clination is ¢ = 60° and the observer inclination is 6, = 80°.
The different geometries of the northern and the southern
emitting regions generate an offset interpulse even for a
purely axisymmetric magnetic field.

the hotspots with respect to the other, the ratio of the
two hotspot radii, and, independently, the ratio of their
temperatures.

The quadrudipole model offers the potential of repro-

ducing the key qualitative features of PSR J0437—4715
in a more satisfactory way by introducing the single pa-
rameter ¢ (the ratio of the aligned magnetic quadrupole
to dipole moments) while retaining axisymmetry. Fig-
ure 9 shows a model lightcurve that is suggestive of a
potential fit to PSR J0437—4715. The underlying mag-
netic field structure is quadrudipolar with ¢ = 0.5.
For the purposes of this plot, we have assumed a mag-
netic inclination of { = 30° and an observer inclination
of 6, = 42°, which is the value inferred for this pulsar
from the inclination of its binary orbit (Reardon et al.
2016). In order to generate a large pulse amplitude, we
have also used non-isotropic beaming, as expected for
the atmospheres of pulsars that are bombarded by mag-
netospheric charges (Baubock et al. 2019), and chose
h = 0.4. In the simulated pulse profile, the main peak
corresponds to the northern emitting region, which is
seen almost head-on at its peak intensity. The inter-
pulse is due to the southern emitting region, seen at a
glancing angle.
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Figure 9. (Top) Neutron-star snapshots (same phases as
Figure 8) and (Bottom) pulse profile for a pulsar with the
following parameters: M = 1.4My, R = 12km, fs = 174Hz,
¢ = 30° 6, = 42°, ¢ = 0.5, and a beaming factor of h =
0.4. The interpulse on the leading edge of the main pulse
is suggestive of the observed lightcurve of PSR J0437—4715,
which has previously been fit with a more complicated offset
dipole model (Bogdanov 2013).

This quadrudipole model offers several advantages
over the offset dipole. First, we only need to add a sin-
gle new parameter to the classic dipole model, without
breaking axisymmetry in the magnetic field. Second, a
natural consequence of the quadrudipole model is that
the hotspot with the smaller surface area will also have
the higher temperature. This is consistent with the rela-
tionship found in the multi-temperature blackbody fits
of the data from PSR J0437—4715. Finally, the appear-
ance of the offset interpulse is robust enough that we
are also able to set the observer angle to 6, = 42°, as is
inferred for this source.

This quadrudipole model offers several advantages
over the offset dipole. First, we only need to add a sin-
gle new parameter to the classic dipole model, without
breaking axisymmetry in the magnetic field. Second, a
natural consequence of the quadrudipole model is that

the hotspot with the smaller surface area will also have
the higher temperature. This is consistent with the rela-
tionship found in the multi-temperature blackbody fits
of the data from PSR J0437—4715. Finally, the appear-
ance of the offset interpulse is robust enough that we
are also able to set the observer angle to 6, = 42°, as is
inferred for this source.

Performing a detailed fit of our model to the data
would require taking into account the effects of interstel-
lar absorption, the response of the detector, as well as
the pulsed magnetospheric emission that contaminates
the measurement of the surface emission (Guillot et al.
2016). We expect to report on these issues in the future.

6. CONCLUSIONS

We conclude by summarizing our key results and dis-
cussing some limitations of the present work as well as
promising future directions. We have shown that the
shape and temperature profile across the pulsar hotspots
plays an important role in lightcurve modeling that
cannot be ignored, and that significant complexity in
lightcurve features is possible simply with the addition
of a quadrudipolar magnetic field.

This work is based on an analytic model of the pul-
sar magnetosphere that is guided by state-of-the-art nu-
merical simulations. We can expect refinements of the
magnetospheric structure and currents as numerical sim-
ulations improve. For example, volume return currents,
which we ignore in our present model, may also play
a role in atmospheric heating (Timokhin & Arons 2013;
Philippov & Spitkovsky 2018). However, we expect that
the basic qualitative results presented here will remain
unchanged and that this approach will aid in measur-
ing neutron star parameters and ultimately help tighten
constraints on the neutron-star equation of state.
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