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Abstract
Let  be the set of rooted trees containing an infinite binary

subtree starting at the root. This set satisfies the metaproperty

that a tree belongs to it if and only if its root has children u
and v such that the subtrees rooted at u and v belong to it. Let

p be the probability that a Galton-Watson tree falls in . The

metaproperty makes p satisfy a fixed-point equation, which

can have multiple solutions. One of these solutions is p, but

what is the meaning of the others? In particular, are they

probabilities of the Galton-Watson tree falling into other sets

satisfying the same metaproperty? We create a framework

for posing questions of this sort, and we classify solutions to

fixed-point equations according to whether they admit prob-

abilistic interpretations. Our proofs use spine decompositions

of Galton-Watson trees and the analysis of Boolean functions.
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1 INTRODUCTION

A seminal problem in discrete probability is to determine the probability of survival of a Galton-Watson

tree. For the sake of simplicity, suppose that the offspring distribution is Poi(𝜆), and denote the tree

by T𝜆. Let inf denote the set of infinite rooted trees. Let p denote the survival probability, given by

P[T𝜆 ∈ inf]. The typical solution gives p as a fixed point of a map as follows: Let Z be the number

of children v of the root of T𝜆 such that the subtree rooted at v is infinite. Each subtree is infinite with

probability p, just like the original tree. Thus Z ∼ Poi(p𝜆) by Poisson thinning. Since T𝜆 is infinite if

and only if Z ≥ 1,

p = 1 − e−𝜆p. (1)
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As is well known [3], when 𝜆 > 1, this equation has two solutions, and the positive one is the true

value of p. In arriving at (1), the only property of inf we used was that t ∈ inf if and only if there

exists some child v of the root of t such that the subtree descending from v is in inf. Let us call this the

metaproperty of inf that yields (1).

Again, let T𝜆 be a Galton-Watson tree with child distribution Poi(𝜆). It is natural to ask if there is

some other set of trees 0 satisfying the metaproperty such that P[T𝜆 ∈ 0] is the other solution to (1),

which is 0. A bit of thought reveals that 0 = ∅ fits this criteria. Vacuously, t ∈ ∅ if and only if the

root of t has a child whose subtree is in ∅, and clearly P[T𝜆 ∈ ∅] = 0. Thus, the metaproperty yields

an equation with two solutions, and each solution gives the probability under the Galton-Watson mea-

sure of a set of trees satisfying the metaproperty. Indeed, we will later see that inf and ∅ are the only
two sets of trees satisfying the metaproperty, up to measure zero changes under the Galton-Watson

measure with child distribution Poi(𝜆) (see Remark 1.2 for more discussion on measure zero

changes).

This work was motivated by a nearly identical example that is more difficult to resolve. This time,

we consider sets of trees  where t ∈  if and only if the root of t has at least two children u and v
whose subtrees are in . Let us call this metaproperty the at-least-two rule. Suppose p = P[T𝜆 ∈ ]
for some set of trees  obeying the at-least-two rule. Invoking Poisson thinning and self-similarity as

in the first example, we get

p = 1 − e−𝜆p(1 + 𝜆p). (2)

As explained in [23], which investigated the existence of a giant 3-core in a random graph, there is

a critical parameter 𝜆crit ≈ 3.35 where this equation changes behavior (see Figure 1). For all 𝜆 > 0,

there is a trivial solution to (2) given by p = 0. When 𝜆 < 𝜆crit, this is the only solution. At 𝜆 = 𝜆crit,

a second solution emerges, and when 𝜆 > 𝜆crit there are three solutions. (We prove these statements

in Example 5.5.) Let 0 be the set of all trees that contain an infinite binary subtree starting at the

root. Note that 0 satisfies the at-least-two rule. It was shown by Dekking [8] (also see [22]) that

P[T𝜆 ∈ 0] is the largest solution to (2) when 𝜆 > 𝜆crit, shown in green in Figure 1. An immediate

intuition as to why the green curve is the one corresponding to P[T𝜆 ∈ 0] is that this is the only curve

which is increasing in 𝜆. Another set of trees obeying the at-least-two rule is the empty set. Obviously,

P[T𝜆 ∈ ∅] = 0, the smallest solution to (2), shown in red in Figure 1. Joel Spencer posed the question

that set this work in motion: is there a set of trees to go with the middle solution (shown in blue in

Figure 1)? More formally, the question asks the following:

Question 1.1 (Spencer). Let T𝜆 be a Galton-Watson tree with child distribution Poi(𝜆). Say that a

set of trees  follows the at-least-two rule if t ∈  if and only if the root of t has two children u and v

FIGURE 1 A plot showing all p satisfying (2) for given 𝜆. For 𝜆 < 𝜆crit ≈ 3.35, the only solution to (2) is p = 0. For 𝜆 = 𝜆crit,

there are two solutions for p, and for 𝜆 > 𝜆crit, there are three [Color figure can be viewed at wileyonlinelibrary.com]
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such that the subtrees rooted at u and v are also in . Suppose that 𝜆 > 𝜆crit. Does there exist a set of

trees  following the at-least-two rule such that P[T𝜆 ∈ ] is the middle solution of (2)?

We answer this question in the negative. More generally, our main result, Theorem 1.7, gives

the answer to any question of this form. In the language of this paper, it is a criterion for which

fixed points of tree automata admit interpretations. In this example, the tree automaton refers to

the at-least-two metaproperty. For the Galton-Watson child distribution Poi(𝜆), the fixed points of

this automaton are the solutions to (2). An interpretation corresponds to a set of trees following the

metaproperty given by the automaton. Theorem 1.7 shows that 0 and ∅ are the only two sets of trees

following the at-least-two rule, up to measure zero changes under the Galton-Watson measure with

child distribution Poi(𝜆).

Remark 1.2. It is important that we consider sets of trees satisfying a metaproperty only up to mea-

sure zero changes under a Galton-Watson measure with a given child distribution. For example, let 
be the set of trees that contain an infinite binary subtree somewhere within them (i.e., not necessarily

starting from the root). This set satisfies our original metaproperty: a tree is in  if and only if its root

has at least one child initiating a tree in  . But on its face,  is neither inf nor ∅, which we claimed

were the only sets of trees satisfying this metaproperty. The solution to this apparent paradox is that

from the perspective of the Galton-Watson tree T𝜆 with child distribution Poi(𝜆), the set  is in fact

equivalent to either inf or ∅. For 𝜆 < 𝜆crit, there is zero probability that T𝜆 lies in  , and hence  is

a measure zero change away from ∅. For 𝜆 ≥ 𝜆crit, the tree T𝜆 falls in  with probability 1 given that

T𝜆 is infinite. Hence  is a measure zero change away from inf in this case.

1.1 Summary of main result

We start by giving a nonrigorous version of our main result, since it will take some effort to state all the

definitions we need for a formal statement. A tree automaton is a set of rules determining the color of a

parent vertex in a tree from the color of its children. LetΣ be a finite set representing the possible colors.

The automaton corresponding to the at-least-two rule acts on colors Σ = {0, 1}, assigning color 1 to

the parent if and only if it has at least two children of color 1. A fixed point of a tree automaton is a

probability distribution 𝜈 on Σ such that if a Galton-Watson tree is generated and the children of the

root are assigned i.i.d.-𝜈 colors, then the color of the root induced by the automaton is also distributed

as 𝜈. For the example presented earlier, the fixed points have the form Bernoulli(p), where p satisfies

(2). To define an interpretation of a tree automaton, suppose we have a map 𝜄∶  → Σ, where  is

the space of rooted trees. Now, imagine coloring each vertex v in an arbitrary tree by applying 𝜄 to the

subtree rooted at v. If the resulting coloring of the tree is always consistent with the rules given by the

tree automaton, then we call the map an interpretation of the automaton. We saw two interpretations

in our earlier example: the first mapped a tree to 0 or 1 depending on whether it contained an infinite

binary tree starting at its root, and the second mapped all trees to 0.

It is not hard to see that the color of a Galton-Watson tree assigned by an interpretation of an

automaton must be distributed as a fixed point of the automaton (see Lemma 1.4). For example, if 𝜄 is

the first interpretation described above and T is a Galton-Watson tree with child distribution Poi(𝜆),
then 𝜄(T) is distributed as Bernoulli(p2), where p2 is the largest solution to (2). Our main result flips

this around, letting us determine for a given fixed point 𝜈 whether there exists an interpretation 𝜄 such

that 𝜄(T) ∼ 𝜈.

The criterion is based on an object we call the pivot tree. Essentially, first generate the

Galton-Watson tree to level n. Then, randomly color the vertices at level n by sampling independently

from the given fixed point. Apply the automaton to color the vertices at levels 0 to n − 1. Now, call a



JOHNSON ET AL. 799

FIGURE 2 The first three levels of a tree colored consistently with the at-least-two automaton given in Example 1.3. Red

denotes state 0 and green denotes state 1. Vertices in bold are pivotal, meaning that flipping their colors and recoloring above

them according to the automaton causes the root to flip colors [Color figure can be viewed at wileyonlinelibrary.com]

vertex pivotal for this coloring if altering its color and recoloring all of its ancestors by the automaton

alters the color of the root (see Figure 2). The set of all pivotal vertices to level n then forms a random

subtree of the original Galton-Watson tree. There is a natural way to extend this construction beyond a

fixed n to give a (possibly) infinite tree, the pivot tree, which turns out to be multitype Galton-Watson.

Loosely speaking, the main result of this paper is that when |Σ| = 2, a given fixed point of a tree

automaton has a corresponding interpretation if and only if the associated pivot tree is subcritical or

critical (or equivalently, if it is almost surely finite). If so, then it has precisely one interpretation, up

to measure zero changes with respect to the Galton-Watson measure. This criterion is quite practical

to check, and we do so for the at-least-two automaton and some other examples in Section 5.

When 3 ≤ |Σ| < ∞, we prove only that a subcritical pivot tree implies existence of an interpreta-

tion. We believe that our approach in this paper can be adapted to prove that a supercritical pivot tree

implies nonexistence of an interpretation, but there are several complications (see Remark 4.16).

We now proceed to define these terms more formally. We then state our main results in Section 1.8.

1.2 Notation

We define  to be the set of locally finite, ordered, rooted trees (ordered means that an ordering is given

for the children of each vertex). This set can be viewed as a metric space (see [19, Exercise 5.2]), which

we endow with its Borel 𝜎-algebra to make a measure space. Our results will be for Galton-Watson

trees with general child distributions, sometimes under mild moment conditions. We will typically

denote the tree by T and the child distribution by 𝜒 . We always assume that 𝜒 puts positive probability

on {2, 3,…}, so that T is a true tree. For any tree t ∈  , we let V(t) denote its vertex set and Rt its root.

Let t(v) denote the subtree of t made up of v and its descendants. We let t|n denote the tree obtained by

truncating t beyond its nth generation and [t]n ⊆  the set of trees that match t up to the nth generation,

where the root is considered to belong to generation 0. Let Ln(t) denote the set of all nodes of t in

generation n, and let 𝓁n(t) = |Ln(t)|. We abbreviate Ln(T) by Ln and 𝓁n(T) by 𝓁n.

We will often work with colored trees, defined as a pair (t, 𝜏) consisting of a tree t ∈  together

with a coloring 𝜏 ∶ V(t) → Σ. We denote the space of colored trees as col, taking the set of colors Σ
as fixed in advance. For (t, 𝜏) ∈ col, let [t, 𝜏]n ⊆ col denote the set of colored trees that match (t, 𝜏)
up to the nth generation.

1.3 Tree automata

Let Σ denote a finite set, to be thought of as colors or states. A tree automaton on the states Σ is

essentially a set of rules for determining the state of a parent in the tree from the states of its chil-

dren. Formally, we define an automaton as a map A∶ NΣ
0
→ Σ, where N0 = N ∪ {0}. The vector

http://wileyonlinelibrary.com


800 JOHNSON ET AL.

n⃗ =
(
n𝜎 ∶ 𝜎 ∈ Σ

)
∈ NΣ

0
represents the count of children in each state, and A(n⃗) represents the state

assigned to the parent.

Example 1.3 (At-least-two automaton). We define an automaton A on states Σ = {0, 1} that assigns

state 1 to the parent if and only if at least two of its children have state 1. Formally, the automaton is

the map (n0, n1) → 1{n1 ≥ 2}. As we mentioned, this automaton is implicit in Question 1.1.

Tree automata are of interest in logic and theoretical computer science. In these settings, they

typically act on trees with vertex labels rather than plain trees, and there are some restrictions on

them. See [7] and [17, Chapter 7] for more details on automata for finite trees, and [27, Section 6]

for more on infinite trees. Tree automata can be used to determine which sets of trees can be defined

by a given logic. For example, call a set of trees regular if there exists a tree automaton so that a tree

falls into the set if and only if the automaton assigns its root one of a set of accepted states. A set of

finite trees is definable in monadic second-order logic if and only if it is regular [17, Theorem 7.30,

Theorem 7.34]. A similar statement holds for infinite trees as well [27, Theorem 6.19]. We will revisit

logic in Section 1.9, after we state our results.

For a given tree t, we say that an assignment of colors 𝜏 ∶ V(t) → Σ is compatible with the
automaton A if for every v ∈ V(t), we have

𝜏(v) = A(n⃗), (3)

where n⃗ = (n𝜎 ∶ 𝜎 ∈ Σ) and n𝜎 is the number of children of v that are colored 𝜎 under 𝜏. If t is finite,

there is only one coloring compatible with A. At each leaf, this coloring takes the value A(0,… , 0),
and then the automaton determines the colors of all other vertices. When t is infinite, however, there

are typically many assignments compatible with a given automaton.

1.4 Interpretations

An interpretation of an automaton is a deterministic classification of trees into the states of Σ such

that the state of a tree can be computed from the states of the subtrees descending from the children

of its root, according to the rules of the automaton. For example, assign a tree state 1 if it contains an

infinite binary subtree starting at its root, and assign it state 0 otherwise. This is an interpretation of

the at-least-two automaton of Example 1.3, since a tree t has state 1 if and only if its root Rt has at least

two children u, v with subtrees t(u), t(v) in state 1.

Formally, we define an interpretation as follows. Let 𝜒 be a probability measure on the nonnegative

integers, and let GW(𝜒) denote the Galton-Watson measure on  with child distribution 𝜒 . We call a

measurable map 𝜄∶  → Σ an interpretation of the automaton A under GW(𝜒), if for a.e.-GW(𝜒) tree

t ∈  , the coloring 𝜏 ∶ V(t) → Σ, defined as

𝜏(v) = 𝜄(t(v)), for all v ∈ V(t), (4)

is compatible with A. Typically, we will call 𝜄 an interpretation of A without mentioning GW(𝜒), since

the offspring distribution will be fixed throughout. For many interpretations, including our example

of assigning a tree 1 if it contains an infinite binary subtree from the root, the compatibility condition

holds for every tree in  , and the measure GW(𝜒) is irrelevant.

1.5 Fixed points and their connections with interpretations

Let T ∼ GW(𝜒). If 𝜄∶  → Σ is an interpretation of the automaton A under GW(𝜒), then the

distribution of 𝜄(T) is constrained by the self-similarity of T . For example, if 𝜒 ∼ Poi(𝜆) and 𝜄 is
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an interpretation of the at-least-two automaton of Example 1.3, then 𝜄(T) ∼ Bernoulli(p), where p
satisfies (2).

We now describe these constraints on the distribution of 𝜄(T) when 𝜄 is an interpretation of a general

automaton A and T ∼ GW(𝜒). Let D denote the set of all probability distributions on Σ (as Σ is finite, D
is a finite-dimensional simplex). We define a mapΨ∶ D → D that we call the automaton distributional
map corresponding to A and 𝜒 , as follows. Fix x⃗ ∈ D. Consider a random tree whose root has children

according to 𝜒 . To each child, mutually independently, we attach a random state in Σ that follows the

distribution x⃗. For every realization of this random procedure, we determine the state at the root using

the rules of the automaton A. We then set Ψ(x⃗) to be the distribution of the random state thus induced

at the root.

Lemma 1.4. Let T ∼ GW(𝜒). If 𝜄 is an interpretation for the tree automaton A, then the distribution
of 𝜄(T) is a fixed point of the automaton distribution map Ψ.

Proof. Let the distribution of 𝜄(T) be y⃗ = (y𝜎 ∶ 𝜎 ∈ Σ) ∈ D. Let 𝜏 ∶ V(T) → Σ be the assignment

defined by 𝜏(v) = 𝜄(T(v)) for all v ∈ V(T), which is almost surely compatible with A by definition of

interpretation.

Under the labeling 𝜏, the state of the root RT is distributed as y⃗, since 𝜏(RT ) = 𝜄(T). On the other

hand, RT has children according to the distribution 𝜒 ; each of these children has an independent copy

of T descending from it. So, from the definition of 𝜏, the children of RT have i.i.d. labels distributed

as y⃗. Hence the corresponding label at the root is Ψ(y⃗), by definition of Ψ. This shows that Ψ(y⃗) = y⃗,

which is what we claimed. ▪

For all tree automata, the automaton distribution map Ψ has at least one fixed point. This holds

because Ψ is a continuous map from a finite-dimensional simplex to itself, and so the Brouwer

fixed-point theorem guarantees the existence of a fixed point.

For a given automaton A and child distribution 𝜒 , suppose 𝜈 is some fixed point of Ψ. We call

𝜄 an interpretation of the automaton A corresponding to 𝜈 if 𝜄 is indeed an interpretation of A and

𝜄(T) ∼ 𝜈. It is not hard to show that up to measure zero changes, there is at most one interpretation

corresponding to a given fixed point (see Proposition 1.6). If such an interpretation exists, we call 𝜈

interpretable; otherwise, we call it rogue. Our main results are a criterion for determining whether a

given fixed point is rogue or interpretable when |Σ| = 2 (Theorem 1.7), as well as a sufficient condition

for interpretability for |Σ| ≥ 3 (Theorem 1.8). To state this criterion, we must define the two randomly

colored trees explained in the next two sections.

1.6 The random state tree

Fix a child distribution 𝜒 , automaton A, and a fixed point 𝜈 of the resulting automaton distributional

map Ψ. The random state tree associated with 𝜈 is a colored Galton-Watson tree. We write it as (T , 𝜔),
where 𝜔∶ V(T) → Σ is a random coloring of the tree T . It is defined by the following properties:

(i) T ∼ GW(𝜒);
(ii) for every n, the conditional distribution of

(
𝜔(v) ∶ v ∈ Ln

)
given T|n is i.i.d. 𝜈;

(iii) 𝜔 is almost surely compatible with A.

Proposition 1.5. These properties uniquely determine the distribution of (T , 𝜔).

Essentially, the random state tree is defined up to height n by generating the first n levels of T ,

coloring the leaves i.i.d. 𝜈, and then coloring the first n−1 levels of the tree according to the automaton.
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The distributions of colored trees generated by this procedure turn out to be consistent for different

values of n, which is a consequence of 𝜈 being a fixed point of Ψ. Kolmogorov’s extension theorem

then shows the existence of the distribution of the entire colored tree. This is shown in detail in the

proof of Proposition 1.5, which we give in Section 2.

The coloring of the vertices of the random state tree is reminiscent of an interpretation, which

also yields a coloring of the tree via (4). But note that for a given fixed point of Ψ, the random state

tree coloring always exists, and it is a random coloring (on top of the randomness of the tree). On the

other hand, given a fixed point of Ψ, there may be no interpretations associated with it; if there is an

interpretation, the coloring it yields is deterministic given the tree.

1.7 Definition of the pivot tree

We now describe the pivot tree, leaving its formal definition to Section 2.3. Consider some vertex of

(T , 𝜔), and imagine changing its color and then recoloring all the vertices above it according to the rule

of the automaton. We call this recoloring operation a switching. If the switching changes the color at

the root, then we call the vertex pivotal for (T , 𝜔). It is not hard to see that a vertex can only be pivotal if

its parent is pivotal. The subgraph of T induced by the pivotal vertices is thus a subtree, which we call

the pivot tree Tpiv. As we will see in Proposition 2.4, the pivot tree is a multitype Galton-Watson tree.

We mention that the pivot tree is a bit more complicated when there are more than two states,

because a vertex can change colors in more than one way. However, to state Theorem 1.8, we need

only use the pivot tree with maximal target set, in which a vertex is pivotal if its color can be switched

to any other color with the result of changing the color of the root in any way.

1.8 The main result

For all of our results, fix a child distribution 𝜒 , an automaton A on a finite set of states Σ, and let

Ψ∶ D → D be the automaton distributional map corresponding to A and 𝜒 , defined in Section 1.5.

First, as we mentioned, there is at most one interpretation for each fixed point:

Proposition 1.6. If 𝜄, 𝜄′ ∶  → Σ are interpretations of A under GW(𝜒) corresponding to the same
fixed point of the automaton distribution map, then 𝜄 = 𝜄′ a.e.-GW(𝜒).

Now, we give our main results. Let 𝜈 be a fixed point of Ψ. We assume that the support of the

probability distribution 𝜈 is all of Σ; that is, as a vector, all entries of 𝜈 are nonzero. This is in fact no

restriction, since if 𝜈 is supported on a subset of Σ, we can simply remove the extra elements of Σ and

view A as an automaton on this smaller set. Recall that the pivot tree associated with 𝜈 is a multitype

Galton-Watson tree, which will be proven in Proposition 2.4. We define a multitype Galton-Watson

tree to be subcritical, critical, or supercritical depending on whether its matrix of mean offspring sizes

has spectral radius smaller than, equal to, or greater than 1 (see Section 2.4).

Theorem 1.7. Suppose that |Σ| = 2 and 𝜒 has finite logarithmic moment. Then 𝜈 admits an
interpretation if and only if the pivot tree associated with 𝜈 is subcritical or critical.

This theorem completely classifies fixed points as interpretable or rogue when |Σ| = 2. It is practi-

cal to apply (see Section 5 for some examples), since it only takes a computation to check the criticality

of a given Galton-Watson tree.

When |Σ| ≥ 3, we give only a sufficient condition for existence of an interpretation.
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Theorem 1.8. If the pivot tree with maximal target set associated with 𝜈 is subcritical, then 𝜈 admits
an interpretation.

Our full version of this result, Proposition 3.1, is actually slightly stronger and applies in some

cases when the pivot tree is critical (see Remark 3.6).

1.9 Connections to other work

This work has some concrete connections with mathematical logic. We start by defining first-order
and monadic second-order logic on trees. A sentence in the first-order language for rooted trees is a

finite combination of the following:

• a constant symbol R representing the root;

• a function 𝜋 where 𝜋(v) represents the parent of vertex v;

• a relation =, denoting equality of vertices;

• the Boolean connectives;

• existential and universal quantifications over vertices.

For example, a valid first-order sentence is that some vertex has exactly one child, which is expressed

in the formal language by

∃x ∃y
(
(𝜋(y) = x) ∧

(
∀z (𝜋(z) = x =⇒ z = y)

))
.

The monadic second-order language adds

• existential and universal quantifications over sets of vertices;

• the relation ∈, denoting set membership.

For example, the following sentence states that the tree is infinite:

∃S ∀x
(
(x ∈ S) =⇒

(
∃y (𝜋(y) = x) ∧ (y ∈ S)

))
.

The quantifier depth of a sentence in either language is the maximal depth of nesting of existential and

universal qualifiers. In the example above, the quantifier depth is 3.

Using Ehrenfeucht games, one can partition the set of rooted trees into finitely many types by the

relation that two trees have the same type if they have the same truth value for all first-order sentences

of quantifier depth at most k (see [17, Chapter 3]). Call this partition the rank-k types. One can do the

same replacing first-order logic with monadic second-order logic, producing the MSO rank-k types
[17, Section 7.2]. In both cases, one can deduce the type of a given tree t from the types of the trees

rooted at the children of the root of t. This gives rise to tree automata on the set of rank-k and MSO

rank-k types, both of which have interpretations given by mapping a tree to its type.

In [24, 25], this automaton is investigated for the first-order case. The most fundamental result of

[25] is that its automaton distribution map is a contraction and hence has a unique fixed point. As a

consequence, since the at-least-two property has multiple fixed points, the property of a tree containing

an infinite binary tree starting from its root cannot be expressed in first-order logic. We discuss this

further in Section 5.3. Our initial motivation for this paper was to make sense of the meaning of multiple

fixed points.

Our work also has some connections to the theory of recursive distributional equations (RDEs) as

developed by Aldous and Bandyopadhyay [1]. A prototypical example of an RDE is for the height of
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a Galton-Watson tree. Given a child distribution, let N be the number of children of the root. Then the

height of the tree H satisfies the distributional equation

H
𝑑
= 1 + max(H1,… ,HN),

where H1,H2,… are independent copies of H.

For a given tree automaton, the automaton distribution map Ψ defines an RDE. For any choice of

fixed point 𝜈, the random state tree (T , 𝜔) is an example of an object introduced by Aldous and Bandy-

opadhyay called a recursive tree process (RTP). RTPs are classified as endogenous or nonendogenous,

which for (T , 𝜔) corresponds to whether 𝜔(RT ) is measurable with respect to T . In Proposition 2.2,

we show that this is equivalent to interpretability of 𝜈. Thus, Theorems 1.7 and 1.8 can be viewed as

criteria for the endogeny of an RTP, for RTPs in a certain class. This work or extensions of it might

prove useful, as the endogeny of RTPs is an actively pursued topic (see [2, 4, 13, 16], for example).

Two very recent papers have a similar flavor as ours. In [6], the authors consider critical

Galton-Watson trees conditioned to have n vertices. Each vertex of the tree is given a label from a finite

set. The label of a parent is a function of the labels of the children along with an independent set of

randomness. (This is also the case with Aldous and Bandyopadhyay’s definition of a RTP.) The main

result of the paper is a limit theorem for the distribution of the label of the root as n → ∞.

The paper [20] considers Galton-Watson trees labeled by elements of [0, 1], cut off at level 2n.

Leaves are assigned independent labels sampled uniformly from [0, 1]. Then, the label at a parent at an

even generation is the minimum of its children’s labels; at an odd generation, it is the maximum of its

children’s labels. This models a game in which two players take turns, one trying to make the score big

and one trying to keep it small. The paper classifies possible limit distributions for the label at the root

as n → ∞. It also investigates endogeny, the question of whether the value at the root is determined

by the structure of the tree.

1.10 Outline

In Section 2, we first establish basic properties of interpretations, fixed points, the random state tree,

and the pivot tree used throughout this paper. In Section 3, we prove the first direction of Theorem 1.7,

existence of an interpretation when the pivot tree is almost surely finite. The main tool for this is

the Kahn-Kalai-Linial inequality from the theory of Boolean functions [14]. The other direction of

Theorem 1.7 is proven in Section 4 using the spine decomposition technique pioneered by Lyons,

Peres, and Pemantle [18]. Finally, in Section 5, we apply these results to answer Question 1.1. We also

give examples exhibiting a phase transition between interpretable and rogue for a fixed point as the

child distribution of the tree is varied. In Section 6, we discuss some open questions.

2 FOUNDATIONAL PROPERTIES OF OUR OBJECTS

In this section, we fix a child distribution 𝜒 , an automaton A on a set of states Σ, and a fixed point 𝜈

of the automaton distributional map Ψ∶ D → D determined by A and 𝜒 . We will demonstrate some

of the basic properties of fixed points, interpretations, the random state tree, and the pivot tree.

2.1 The random state tree

We now give the proof of Proposition 1.5, establishing the existence of the random state tree (T , 𝜔)
defined in Section 1.6. We then show in Proposition 2.1 that it is a multitype Galton-Watson tree.



JOHNSON ET AL. 805

Proof of Proposition 1.5. To invoke the Kolmogorov extension theorem [15, Theorem 6.16], we

must construct a sequence of random variables (Tn, 𝜔n) such that Tn is the truncation to level n of a

GW(𝜒)-distributed tree, the distribution of (𝜔n(v))v∈Ln(Tn) conditional on Tn is i.i.d.-𝜈, the values of

𝜔n(v) for v in levels 0,… , n − 1 are as given by the automaton, and the truncation of (Tn+1, 𝜔n+1) to n
levels is distributed as (Tn, 𝜔n). (Formally speaking, to apply the Kolmogorov extension theorem, we

view labeled trees as a sequence of their finite truncations, but we will ignore these details.)

To construct (Tn, 𝜔n), we simply define Tn as the truncation of a Galton-Watson tree, then color

the level n vertices i.i.d.-𝜈, and then color levels 0,… , n − 1 of the tree according to the automaton.

The crux of the proof is showing that the truncation of (Tn+1, 𝜔n+1) to level n is distributed as (Tn, 𝜔n).
Clearly, Tn+1|n is distributed as Tn, and the coloring given by 𝜔n+1 on levels 0,… , n − 1 of Tn+1|n is

as induced by the automaton. We need only show that conditional on Tn+1|n, the labeling 𝜔n+1 assigns

i.i.d. 𝜈 colors to the level n vertices.

To see this, recall how we defineΨ(x⃗): We let a node have children according to distribution𝜒 . Each

of these children is assigned, mutually independently, a state according to distribution x⃗. The induced

random state of the parent node, obtained via the rules of A, has distribution Ψ(x⃗). Meanwhile, each

v ∈ Ln(Tn+1) has children according to 𝜒 , these children receive i.i.d.-𝜈 labels from 𝜔n+1, and 𝜔n+1(v)
is given by applying the automaton to these labels. Hence, the distribution of 𝜔n+1(v) conditional on

Tn+1|n is Ψ(𝜈). As 𝜈 is assumed to be a fixed point, this equals 𝜈. The values of 𝜔n+1(v) are independent

for the different level n vertices v conditional on Tn+1|v, showing that 𝜔n+1 assigns i.i.d. 𝜈 colors to the

level n vertices. ▪

Now that we have shown the existence of the random state tree, we prove that it is Galton-Watson

with types given by 𝜔.

Proposition 2.1. The random state tree (T , 𝜔) is a multitype Galton-Watson tree.

Proof. For 𝜎1,… , 𝜎k ∈ Σ, let

𝜒col(𝜎1,… , 𝜎k) = 𝜒(k)𝜈(𝜎1) · · · 𝜈(𝜎k),

the probability that RT has exactly k children and that their types in order are 𝜎1,… , 𝜎k. Let

𝜒𝜎
col
(𝜎1,… , 𝜎k) denote the conditional probability that RT has exactly k children and that their types

in order are 𝜎1,… , 𝜎k, given that 𝜔(RT ) = 𝜎. Thus, if 𝜎 is the type according to A for a vertex with

children of types 𝜎1,… , 𝜎k, then

𝜒col(𝜎1,… , 𝜎k) = 𝜈(𝜎)𝜒𝜎
col
(𝜎1,… , 𝜎k). (5)

Our goal is to prove that conditional on the first n levels of (T , 𝜔), each vertex v at level n inde-

pendently gives birth according to the distribution given by 𝜒
𝜔(v)
col

. Fix any (t, 𝜏) ∈ col. By definition

of 𝜔,

P
[
(T , 𝜔) ∈ [t, 𝜏]n+1

]
= P

[
T ∈ [t]n+1

] ∏
u∈Ln+1(t)

𝜈
(
𝜏(u)

)
,

recalling the notation [t]n and [t, 𝜏]n defined in Section 1.2. For a vertex v ∈ V(t), let C(v) denote its

children in t. Since T is Galton-Watson with child distribution 𝜒 ,

P
[
(T , 𝜔) ∈ [t, 𝜏]n+1

]
=
(

P
[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜒
(|C(v)|)) ∏

u∈Ln+1(t)
𝜈
(
𝜏(u)

)
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= P
[
T ∈ [t]n

] ∏
v∈Ln(t)

(
𝜒
(|C(v)|) ∏

u∈C(v)
𝜈
(
𝜏(u)

))

= P
[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜒col

(
𝜏(u)u∈C(v)

)
.

By (5), this becomes

P
[
(T , 𝜔) ∈ [t, 𝜏]n+1

]
= P

[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜈(𝜏(v))𝜒𝜏(v)
col

(
𝜏(u)u∈C(v)

)
= P

[
(T , 𝜔) ∈ [t, 𝜏]n

] ∏
v∈Ln(t)

𝜒
𝜏(v)
col

(
𝜏(u)u∈C(v)

)
,

which is exactly what we set out to prove. ▪

2.2 Equivalent conditions for interpretability of fixed points

We start with a definition that will come up again elsewhere in the paper. Given a rooted tree t and a

coloring of its level n vertices, we can repeatedly apply the automaton A to determine the state of the

root. We define An
t ∶ Σ𝓁n(t) → Σ to be the result of doing so, considering it as a map from the colors at

level n to a color at the root.

Now, we show that a given fixed point can have at most one interpretation:

Proof of Proposition 1.6. Viewing the statement of the proposition probabilistically, our goal is to

show that 𝜄(T) = 𝜄′(T) a.s. Fix some 𝜎 ∈ Σ. We first show that for any n,

P
[
𝜄(T) = 𝜎 || T|n] = P

[
𝜄′(T) = 𝜎 || T|n] a.s. (6)

To prove this, we start by observing that 𝜄(T) is determined by
(
𝜄(T(v))

)
v∈Ln

. Indeed, since 𝜄 is an

interpretation of A and thus respects the automaton,

𝜄(T) = An
T

((
𝜄(T(v))

)
v∈Ln

)
.

Conditional on T|n, each tree T(v) for v ∈ Ln is independent and distributed identically to T . Let

𝜈 be the fixed point corresponding to 𝜄 and 𝜄′. Since the distribution of 𝜄(T) is 𝜈, the distribution of

(𝜄(T(v)))v∈Ln conditional on T|n is i.i.d. 𝜈. Therefore,

P
[
𝜄(T) = 𝜎 || T|n] = P

[
An

T

((
𝜔(v)

)
v∈Ln

)
= 𝜎

||| T|n] a.s., (7)

recalling that by its definition, the coloring 𝜔 of the random state tree (T , 𝜔) also assigns colors to

the level n vertices by sampling independently from 𝜈, conditional on T|n. The exact same reasoning

shows that

P
[
𝜄′(T) = 𝜎 || T|n] = P

[
An

T

((
𝜔(v)

)
v∈Ln

)
= 𝜎

||| T|n] a.s.,

which proves (6).
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Now, we take limits as n → ∞ to complete the proof. The 𝜎-fields generated by T|n form a filtration

that converges to the 𝜎-field generated by T . Hence, by Lévy’s upward theorem,

P
[
𝜄(T) = 𝜎 || T|n] → P

[
𝜄(T) = 𝜎 || T

]
= 1{𝜄(T) = 𝜎} a.s. (8)

and

P
[
𝜄′(T) = 𝜎 || T|n] → P

[
𝜄′(T) = 𝜎 || T

]
= 1{𝜄′(T) = 𝜎} a.s. (9)

By (6), these two limits are identical. We conclude that 1{𝜄(T) = 𝜎} = 1{𝜄′(T) = 𝜎} a.s.

for all 𝜎 ∈ Σ. ▪

The expression An
T

(
(𝜔(v))v∈Ln

)
in (7) is equal to 𝜔(RT ), since the coloring 𝜔 is compatible with A.

Thus (7) can be written as

P
[
𝜄(T) = 𝜎 || T|n] = P

[
𝜔(RT ) = 𝜎

||| T|n] a.s., (10)

which will come up again in the next proposition. Before we state it, we mention a standard char-

acterization of measurability [15, Lemma 1.13]: Let X and Y be random variables taking values in

measurable spaces  and  , respectively, with  assumed to be a Polish space endowed with its Borel

𝜎-algebra. Then the measurability of X with respect to Y is equivalent to existence of a measurable

map f ∶  →  such that X = f (Y) a.s.

Proposition 2.2. The following statements are equivalent:

(i) 𝜈 is interpretable;
(ii) for each 𝜎 ∈ Σ,

lim
n→∞

P
[
𝜔(RT ) = 𝜎 || T|n] ∈ {0, 1} a.s.;

(iii) 𝜔(RT ) is measurable with respect to T;
(iv) 𝜔 is measurable with respect to T.

Proof that (i) =⇒ (ii). Let 𝜄 be the interpretation of automaton A corresponding to 𝜈 (it is unique

up to GW(𝜒)-negligible sets by Proposition 1.6). By (10),

lim
n→∞

P
[
𝜔(RT ) = 𝜎 || T|n] = lim

n→∞
P
[
𝜄(T) = 𝜎 || T|n] = 1{𝜄(T) = 𝜎} ∈ {0, 1} a.s.,

applying Lévy’s upward theorem as in (8). ▪

Proof that (ii) =⇒ (iii). Invoking Lévy’s upward theorem and then (ii),

P
[
𝜔(RT ) = 𝜎 || T

]
= lim

n→∞
P
[
𝜔(RT ) = 𝜎 || T|n] ∈ {0, 1} a.s. (11)

Thus, given the entire tree T , we can almost surely determine whether 𝜔(RT ) equals 𝜎 or not. Since

this is true for every 𝜎 ∈ Σ, the state 𝜔(RT ) is almost surely equal to a deterministic function of T ,

showing that 𝜔(RT ) is measurable with respect to T . ▪
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Proof that (iii) =⇒ (iv). Fix any v ∈ Ln. Let 𝜔|T(v) denote the restriction of 𝜔 on the subtree T(v).
The conditional distribution of the colored tree

(
T(v), 𝜔|T(v)) given T|n is the same as the unconditional

distribution of (T , 𝜔). By (iii), we know that 𝜔(v) is measurable with respect to T(v) and is hence an

almost sure function of T(v). As T has countably many vertices, we can write 𝜔 as an almost sure

function of T . ▪

Proof that (iv) =⇒ (i). Since 𝜔 is measurable with respect to T , so is 𝜔(RT ). Therefore there exists

a measurable map 𝜄∶  → Σ such that 𝜄(T) = 𝜔(RT ) a.s. We claim that this will serve as the desired

interpretation: Since 𝜔 is almost surely compatible with A, the assignment v → 𝜄(T(v)) is also almost

surely compatible with A and is hence an interpretation. Furthermore, from the construction of 𝜔, we

know that 𝜔(RT ) will be distributed as 𝜈, and hence so is 𝜄(T). ▪

We mentioned at the end of Section 1.6 that the coloring of T given by 𝜔 and the coloring given

by an interpretation via (4) are in general different. However, it is a consequence of Proposition 2.2

that when an interpretation exists for a given fixed point, the two colorings are the same:

Corollary 2.3. The fixed point 𝜈 is interpretable if and only if 𝜔 is measurable with respect to T. If
this occurs, then 𝜔(Rt) is determined by t for GW(𝜒)-a.e. t ∈  , and the resulting map  → Σ given by
t → 𝜔(Rt) is the unique interpretation corresponding to the fixed point, up to a.e.-GW(𝜒) equivalence.

Proof. The equivalence of interpretability and measurability of 𝜔 with respect to T is one part

of Proposition 2.2. In the proof that (iv) implies (i), it is shown that t → 𝜔(Rt) yields an inter-

pretation corresponding to the given fixed point. The uniqueness of this interpretation is given by

Proposition 1.6. ▪

The equivalences proven in this section reduce the question of whether a fixed point of Ψ is rogue

or interpretable to whether the coloring 𝜔 in the random state tree (T , 𝜔) is random or deterministic

given T . This question is on its face no easier than the original one. To answer it, the key will be the

pivot tree, a random subtree of (T , 𝜔) that we discuss now.

2.3 The pivot tree

We start with some notation. Suppose we are given a colored tree (t, 𝜏) with 𝜏 compatible with A.

Suppose v ∈ Ln(t). Now, imagine that we change the color of v to some 𝛾 ∈ Σ ⧵ {𝜏(v)}, and then

recolor the vertices at levels 0,… , n−1 based on this. We say that we have switched the color at v to 𝛾 ,

and we denote the new coloring by 𝜏v→𝛾 . Note that 𝜏v→𝛾 is only defined on t|n, and that it is consistent

with the automaton at levels 0,… , n − 1.

Now, we give the full definition of the pivot tree. When |Σ| = 2, this definition is simple: the pivot

tree of (t, 𝜏) consists of the subgraph induced by all vertices v such that switching 𝜏 at v changes the

value of the root. We denote the pivot tree of (T , 𝜔) by Tpiv, which we will prove shortly is indeed a

tree. See Figure 2 for an example.

When |Σ| ≥ 3, we sometimes demand that the color of the root change to one of a specific set of

colors, known as the target set, complicating the definition. Given (t, 𝜏) with 𝜏 compatible with A, let

 ⊆ Σ ⧵ {𝜏(Rt)} represent this target set. Given t, 𝜏, and , for any v ∈ V(t) we define

Bv =
{
𝛾 ∈ Σ∶ 𝜏v→𝛾 (Rt) ∈ }

.

In other words, Bv is the set of colors such that switching v to an element of Bv changes the color of the

root to an element of . For any v ∈ V(t), we say that v is pivotal for (t, 𝜏) with target set  if Bv ≠ ∅.
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FIGURE 3 The automaton in this example is on {0, 1, 2}. The state of a parent is given by the sum of its children’s states,

capped at 2. Bold vertices are pivotal with target set {0, 1}. Written to the right of each vertex v is the set Bv, indicating which

states v can be switched to with the effect of changing the state of the root to a value in the target set

To define the pivot tree of (T , 𝜔), we must specify a target set for each possible state of the root.

For each 𝜎 ∈ Σ, let ∅ ≠ 𝜎 ⊆ Σ ⧵ {𝜎} be a given (deterministic) set that we call the target set of
the root at state 𝜎. The most basic example is to set 𝜎 = Σ ⧵ {𝜎} for all 𝜎, which corresponds to

requiring the color of the root to change without caring what it changes to. Let  = (𝜎)𝜎∈Σ. We

define the pivot tree, Tpiv = Tpiv(), as the subgraph of T induced by all vertices pivotal for (T , 𝜔)
with target set 𝜔(RT ). The pivot tree is measurable with respect to (T , 𝜔); that is, Tpiv is a measurable

function of (T , 𝜔). Also, observe that this definition works in the |Σ| = 2 case as well. Here, there is

only one possible choice of 𝜎 , and either Bv = ∅ or Bv is a singleton set made up of the opposite

color as 𝜔(v).

Proposition 2.4. For given target sets (𝜎)𝜎∈Σ, assign the type (𝜔(v);Bv) to each vertex v ∈ V(T).
With these types, both T and Tpiv are multitype Galton-Watson trees.

Proof. We start with proof for T . Let ℱn denote the 𝜎-algebra generated by T|n and by the types

(𝜔(v);Bv) for vertices v up to level n. We will refer to these as augmented types, in contrast with the

unaugmented types given by 𝜔 alone.

We must show that conditional on ℱn, the vertices at level n independently give birth accord-

ing to their augmented types. First, we observe that the values of Bv for v in T|n are determined by

the first n levels of (T , 𝜔). Hence, conditioning on ℱn is the same as conditioning on the first n lev-

els of (T , 𝜔). Thus, by Proposition 2.1, conditional on ℱn, each vertex v at level n independently

gives birth to children whose number and unaugmented type are determined by the unaugmented

type of v.

Now, we just need to extend this statement to the augmented types. The key fact is the following:

Let u1,… , uk be the children of some node v. Then for each i = 1,… , k, the set Bui is determined by

𝜔(u1),… , 𝜔(uk) and Bv. Indeed, from 𝜔(u1),… , 𝜔(uk), we can determine the effect on the color of v
of changing ui to have any given color. From Bv, we know whether the change will alter the color of

the root to have a value in 𝜔(RT ). Thus we can determine Bui .

Let C(v) denote the children of a vertex v, as in Proposition 2.1. From the fact above, conditional

on ℱn, the distribution of
(
Bu ∶ u ∈ C(v)

)
for any v ∈ Ln is determined by (𝜔(v);Bv). This completes

the proof that T is multitype Galton-Watson with the augmented types.

To prove the statement for Tpiv, we first observe that Tpiv is indeed a tree, since if a vertex u has

Bu ≠ ∅, then its parent v evidently satisfies Bv ≠ ∅. Thus, Tpiv is the tree formed by ignoring vertices

of certain types in the Galton-Watson tree T , which always creates another Galton-Watson tree. ▪

See Figure 3 for an example of a pivot tree when |Σ| ≥ 3. In general, when we refer to Tpiv as

a Galton-Watson tree from now on, we mean with types given as in Proposition 2.4. When |Σ| = 2,

since either Bv = ∅ or Bv is a singleton set for each v, we can think of the type (𝜔(v);Bv) as simply
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𝜔(v) along with an indicator on v being pivotal. Thus Tpiv in this case is Galton-Watson with the types

given by 𝜔 alone. Naively, one might think that (Tpiv, 𝜔) would be Galton-Watson even when |Σ| ≥ 3.

We can see the problem with this in Figure 3. Let u be the 0-labeled vertex on the bottom level of the

tree, and let v be its parent. Vertex u is not pivotal for the given target set of the root (or indeed, for any

possible target set). However, for the subtree rooted at v, vertex u is pivotal for the target set {0, 2}.

Thus, if we do not include the sets Bv in the information given by the types, the law of the progeny of

a vertex would depend not just on the type of the vertex but on its ancestors.

2.4 Regularity properties of the pivot tree

For a given multitype Galton-Watson tree, define a matrix by setting Mij to the expected number of

offspring of type j for a parent of type i. We classify the process as subcritical, critical, or supercritical

depending on whether the spectral radius of M is smaller than, equal to, or greater than 1. If Mn has

strictly positive entries for some choice of n, then the Galton-Watson process is called positive regular.

This says that it is possible for any type to have a descendant of any other type, and that no periodic

behavior occurs. The process is called singular if each type gives birth to exactly one child with prob-

ability one. Multitype Galton-Watson trees are nearly always considered under the assumption that

they are positive regular and nonsingular. Under this assumption, the process dies out with probability

one in the subcritical and critical cases, and it survives with positive probability in the supercritical

case. Regardless of the starting type, the expected size of the nth generation vanishes exponentially

in the subcritical case; remains of constant order in the critical case; and grows exponentially in the

supercritical case.

For a Galton-Watson tree without these assumptions, the situation is messier. To illustrate, con-

sider a process with two types A and B and matrix of means M =
[

1 a
0 1

]
for a > 0. The expected

number of vertices of each type at level n starting with a vertex of type A is given by the first row of

Mn, which is (1, an). Thus, even though this process is critical, the expected size of the nth generation

grows to infinity, though only at a polynomial rate. On the other hand, this tree still dies out with

probability one, as we can see by viewing it as a backbone of a critical single-type Galton-Watson

tree of vertices of type A, each of which gives birth to critical single-type trees of vertices of type B,

all of which die out with probability one.

In general, without the assumption of positive regularity and nonsingularity, it is still correct

that a subcritical tree has exponentially vanishing expected nth generation and hence dies out almost

surely. By [26] (see [12, Theorem 10.1]), so long as there does not exist a collection of types  such

that the children of a vertex of type in  include exactly one of the types in  with probability one,

a critical tree dies out almost surely; and a supercritical tree survives with positive probability from

some starting state.

The Galton-Watson tree Tpiv need not be positive regular. Nonetheless, when |Σ| = 2, many features

of positive regularity still hold. We give a lemma that we will use to prove this.

Lemma 2.5. Suppose that Σ = {0, 1}. Let Z0 and Z1 be the number of children of RT pivotal for
(T , 𝜔) of types 0 and 1, respectively. Then

E[Z0 ∣ 𝜔(RT ) = 0] = E[Z1 ∣ 𝜔(RT ) = 1],

and

E[Z0 ∣ 𝜔(RT ) = 1] = 𝜈(0)2

𝜈(1)2
E[Z1 ∣ 𝜔(RT ) = 0].
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Hence, if M is the matrix of means of Tpiv, given by M = (mij)i,j∈{0,1} where mij = E[Zj ∣ 𝜔(RT ) = i],
then

M =
( m00 m01

𝜈(0)2

𝜈(1)2
m01 m00

)
. (12)

Proof. Given a list 𝜎 = (𝜎1,… , 𝜎k) ∈ {0, 1}k representing the states of an ordered set of children, we

abuse notation slightly and write A(𝜎) to mean the value that the automaton assigns to the parent given

these children. For example, if 𝜎 = (0, 0, 1, 0, 1), then we write A(𝜎) to denote A(3, 2), the type of the

parent when there are three children of type 0 and two of type 1. We say that coordinate 𝜎i is pivotal if

switching its value changes A(𝜎). For example, if A is the at-least-two automaton of Example 1.3 and

𝜎 is as above, then 𝜎3 and 𝜎5 are pivotal.

For a, b ∈ {0, 1}, let

Sk(a, b) =
{
(𝜎, i)∶ 𝜎 ∈ {0, 1}k, i ∈ {1,… , k}, A(𝜎) = a,

𝜎i = b, and 𝜎i is pivotal
}
,

representing a configuration of k children making the parent have type a and a choice of a pivotal child

of type b. There is a natural bijection between Sk(a, b) and Sk(1−a, 1−b). The map is given by sending

(𝜎, i) ∈ Sk(a, b) to (𝜎′, i) ∈ Sk(1−a, 1−b), where 𝜎′ is equal to 𝜎 except at coordinate i. Applying this

bijection, keeping in mind that the states of the level 1 vertices of (T , 𝜔) conditional on T|1 are i.i.d. 𝜈,

E
[
Z01{𝜔(RT ) = a} ∣ RT has k children

]
=

∑
(𝜎,i)∈Sk(a,0)

𝜈⊗n(𝜎)

=
∑

(𝜎,i)∈Sk(1−a,1)

𝜈(0)
𝜈(1)

𝜈⊗n(𝜎)

= 𝜈(0)
𝜈(1)

E
[
Z11{𝜔(RT ) = 1 − a} ∣ RT has k children

]
.

Here we use the notation 𝜈⊗n to denote the n-fold product measure of 𝜈 with itself. Taking expectations,

in the a = 0 case this yields

E
[
Z01{𝜔(RT ) = 0}

]
𝜈(0)

=
E
[
Z11{𝜔(RT ) = 1}

]
𝜈(1)

,

while in the a = 1 case it yields

E
[
Z01{𝜔(RT ) = 1}

]
𝜈(1)

= (𝜈(0)
2

𝜈(1)2
)
E
[
Z11{𝜔(RT ) = 0}

]
𝜈(0)

.

▪

This lets us prove that when |Σ| = 2, the pivot tree behaves nicely. In particular, at criticality Tpiv

dies out and has expected size one at every generation.

Proposition 2.6. Suppose thatΣ = {0, 1} and that both entries of 𝜈 are positive. Let M = (mij)i,j∈{0,1}
be the matrix of means of Tpiv.
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(a) The largest eigenvalue of M in absolute value is equal to E[𝓁1(Tpiv)].
(b) For all n, it holds that E[𝓁n(Tpiv)] = E[𝓁1(Tpiv)]n.
(c) If Tpiv is supercritical, then it is infinite with positive probability conditional on both 𝜔(RT ) = 0

and on 𝜔(RT ) = 1.
(d) If Tpiv is critical, then it is finite with probability one.

Proof of (a). By (12) from Lemma 2.5, the characteristic polynomial of M is

(x − m00)2 −
𝜈(0)2

𝜈(1)2
m2

01
,

which has roots m00 ± 𝜈(0)
𝜈(1)

m01. The larger of these is m00 + 𝜈(0)
𝜈(1)

m01. We then compute

E[𝓁1(Tpiv)] = E[Z0 + Z1] = 𝜈(0)(m00 + m01) + 𝜈(1)(m10 + m11)

= 𝜈(0)(m00 + m01) + 𝜈(1)
(

𝜈(0)2

𝜈(1)2
m01 + m00

)
=
(
𝜈(0) + 𝜈(1)

)
m00 +

𝜈(0)
(
𝜈(1)+𝜈(0)

)
𝜈(1)

m01

= m00 + 𝜈(0)
𝜈(1)

m01.

▪

Proof of (b). The value of E[𝓁n(Tpiv)] is the sum of entries of the vector 𝜈Mn. We can confirm by

hand that 𝜈 is a left eigenvector of M corresponding to the eigenvalue E[𝓁1(Tpiv)], from which the

statement follows.

There is a more conceptual explanation for this, which we briefly sketch. Let v be a vertex at

level n of T , and consider the following question: conditional on T|n and on v being pivotal, what is

the distribution of 𝜔(v)? The answer is 𝜈, just as if we had not conditioned on v being pivotal. This is

because switching the color of v yields a bijection between colorings in which v is pivotal with color 0

and pivotal with color 1, with a ratio 𝜈(0)∕𝜈(1) of probabilities of each corresponding state under the

product measure 𝜈⊗𝓁n . Thus, pivotal vertices are colored by 𝜈, and so the expected number of pivotal

children of a pivotal vertex is E[𝓁1(Tpiv)]. Iterating this and applying linearity of expectation yields

E[𝓁n(Tpiv)] = E[𝓁1(Tpiv)]n. ▪

Proof of (c). We consider two cases. First, suppose that m01 = m10 = 0. By Lemma 2.5, the matrix

M has the form
[ m00 0

0 m00

]
, and by our supercriticality assumption m00 ≥ 1. Hence, Tpiv conditional on

either 𝜔(RT ) = 0 or 𝜔(RT ) = 1 is a supercritical single-type Galton-Watson tree, and it survives in

both cases with positive probability.

Now, suppose it is not true that m01 = m10 = 0. Since the multitype Galton-Watson tree (Tpiv, 𝜔)
is supercritical, it survives with positive probability from some starting state. Hence at least one of the

two probabilities P
[
Tpiv survives || 𝜔(RT ) = 0

]
and P

[
Tpiv survives || 𝜔(RT ) = 1

]
must be positive.

By Lemma 2.5, both m01 and m10 are positive. Thus, the root of Tpiv conditioned to be type 0 has

positive probability of giving birth to a pivotal vertex of type 1, and vice versa. Therefore if either of

P
[
Tpiv survives || 𝜔(RT ) = 0

]
or P

[
Tpiv survives || 𝜔(RT ) = 1

]
is positive, then both of them are. ▪

Proof of (d). As in the previous proof, we break the proof into two cases depending on whether

m01 = m10 = 0. If so, then Tpiv conditional on either 𝜔(RT ) = 0 or 𝜔(RT ) = 1 is a critical single-type

Galton-Watson tree, which dies out with probability one unless it is singular. To rule this out suppose

that a vertex of type 0 gives birth to a single pivotal vertex of type 0 with probability one. Then in
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particular, a vertex of type 0 always gives birth to exactly one child of type 0, since all children of a given

type have the same pivotal status. Now, we claim that a vertex of type 0 cannot give birth to any vertices

of type 1. Indeed, they would be nonpivotal, and hence switching one of them would yield another

configuration with multiple children of type 0 but still with a type 0 root. (Note that we have assumed

that 𝜈 puts positive probability on both types, meaning that the configuration after the switching still

has positive probability of occurring.) Hence, a vertex of type 0 gives birth almost surely to exactly

one child, which has type 0. Thus, we have deduced the automaton: it assigns a parent type 0 if and

only if there is exactly one child, which has type 0. Since 𝜈 is a fixed point, it satisfies 𝜈(0) = 𝜒(1)𝜈(0).
But then 𝜈(0) ∈ {0, 1}, contradicting our assumption that 𝜈 places positive probability on both types.

The same argument also shows that a vertex of type 1 does not give birth to exactly one child of type 1

in the m01 = m10 = 0 case.

Now, consider the case that m01 and m10 are nonzero. According to [12, Theorem 10.1], we must

show that for the pivot tree, there does not exist a collection of states  such that the children of a

vertex of type in  almost surely include exactly one with type in . Suppose there exists such a set

. If  = {0}, then m00 = 1. But as the highest eigenvalue of M is m00 + 𝜈(0)
𝜈(1)

m01 and m01 is assumed

to be nonzero, Tpiv is not critical. The same argument rules out  = {1}. If  = {0, 1}, then every

vertex (of whatever type) gives birth to exactly one pivotal vertex almost surely. Since all children of

the same type have the same pivotality status, this implies that every vertex must give birth almost

surely to a unique child (i.e., one whose type is the opposite of all of its siblings). But this can happen

only if 𝜒 is supported on {0, 1}, since otherwise choosing the number of children according to 𝜒 and

then coloring them i.i.d. 𝜈, there is positive probability that they all are colored the same. But this is a

contradiction, since 𝜒 is assumed to assign positive weight to {2, 3,…}. ▪

3 SUBCRITICAL PIVOT TREES

As in Section 2, throughout this section we fix a child distribution 𝜒 , an automaton A on a finite set of

states Σ, and a fixed point 𝜈 of the automaton distributional map Ψ∶ D → D corresponding to A and

𝜒 . We let (T , 𝜔) be the random state tree for 𝜈. As usual, we let Tpiv denote the pivot tree for (T , 𝜔), but

in this section we fix the maximal target set 𝜎 = Σ ⧵ {𝜎} for 𝜎 ∈ Σ. Throughout this section, when

we refer to a vertex as pivotal for (T , 𝜔), we mean that it is pivotal with this target set (see Section 2.3).

Recall from Proposition 2.4 that Tpiv is a Galton-Watson tree with the types defined there. Our goal in

this section is to prove the following:

Proposition 3.1. Suppose that Tpiv is almost surely finite and that E𝓁n(Tpiv) ≤ 1 for all sufficiently
large n. Then 𝜈 is interpretable.

This condition on Tpiv holds when it is subcritical, and when |Σ| = 2 it also holds when Tpiv is

critical, as discussed in Section 2.4.

Our proof will use the theory of Boolean functions and influences (see [11,21]). We first introduce

some ideas and results from this theory, starting with pivotality in the context of Boolean functions.

For a function g∶ Σm → {0, 1}, we say that the ith coordinate is pivotal for g at (s1,… , sm) if the map

s → g(s1,… , si−1, s, si+1,… , sm)

is nonconstant. To relate this to our earlier definition of a pivotal vertex in Section 2.3, recall the map

An
t ∶ Σ𝓁n(t) → Σ defined in Section 2.2, which gives the color at the root of t according to the automaton
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A as a function of the colors at level n. For some fixed 𝜎 ∈ Σ, define gt,n ∶ Σ𝓁n(t) → {0, 1} by

(𝜎1,… , 𝜎𝓁n(t)) → 1
{

An
t (𝜎1,… , 𝜎𝓁n(t)) = 𝜎

}
. (13)

Then every pivotal coordinate for gT ,n at (𝜔(v))v∈Ln(T) is a pivotal vertex for (T , 𝜔). We mention that

the converse is false: not every pivotal vertex for 𝜔 is a pivotal coordinate, because changing the label

of the vertex might change the label of the root from one element of Σ ⧵ {𝜎} to another, leaving gT ,n
the same either way.

The influence of the ith coordinate of a map g∶ Σm → {0, 1}, denoted by Ii(g), is the probability

that the ith coordinate is pivotal for (S1,… , Sm), where S1,… , Sm are independent and identically dis-

tributed as 𝜈. The total influence, I(g), is the sum of the influences of all the coordinates, or equivalently

the expected number of pivotal coordinates for g at (S1,… , Sm).
The following is a variant of the BKKKL inequality [5, Theorem 1], which is itself a variant of the

KKL inequality [14].

Proposition 3.2 (Theorem 3.4 from [10]). There exists a universal constant c > 0 such that the
following holds. Let g∶ Σn → {0, 1} be an arbitrary map, and let p = P[g(S1,… , Sn) = 1], where
S1,… , Sn are independent and distributed as 𝜈. Then

I(g) ≥ c min(p, 1 − p) log

(
1

maxi Ii(g)

)
.

Thus, if the total and maximum influences are small, then min(p, 1− p) is small, meaning that g is

nearly constant. Our idea is to apply this to the map gT ,n introduced in (13), which will then show that

criterion (ii) of Proposition 2.2 is satisfied and hence 𝜈 is interpretable.

For the rest of this section, we fix an arbitrary state 𝜎 ∈ Σ and consider gt,n as defined in (13).

Define

In(t) = E
[
𝓁n(Tpiv) || T|n = t|n].

When we consider the random state tree (T , 𝜔) up to level n, there are two sources of randomness:

the tree itself, which is Galton-Watson, and the colors, which are determined by coloring the level n
vertices i.i.d. 𝜈. We obtain In(t) by taking an expectation only over this second source of randomness,

with the structure of the tree fixed. In other words, if the level n vertices of the deterministic tree t are

colored i.i.d. 𝜈, then In(t) is the expected number of these vertices that are pivotal. Thus, In(T) is the

expected number of pivotal vertices for (T , 𝜔) conditional on T|n. Since a level n vertex of T is pivotal

for 𝜔 if the corresponding coordinate of gT ,n is pivotal at (𝜔(v))v∈Ln(T), we have I(gT ,n) ≤ In(T).
For a given tree t, let

Imax
n (t) = max

v∈Ln(t)
P
[
v ∈ Tpiv

|| T|n = t|n].
Observe that In(t) has the same definition except that a sum replaces the maximum. Just as I(gT ,n) ≤

In(T), we have maxi Ii(gT ,n) ≤ Imax
n (T).

Lemma 3.3. If Tpiv is almost surely finite, then Imax
n (T) → 0 a.s. as n → ∞.
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Proof. We will show this by proving that

Imax
n (T) ≤ P

[
Tpiv survives to height n || T|n] a.s. (14)

and

P
[
Tpiv survives to height n || T|n] → 0 a.s. (15)

as n → ∞.

For the first claim, we start with the observation that for any v ∈ Ln(T),

P
[
v ∈ Tpiv

|| T|n] ≤ P
[
Tpiv survives to height n || T|n] a.s.,

since v ∈ Tpiv implies that Tpiv survives to height n. Since

Imax
n (T) = max

v∈Ln(T)
P
[
v ∈ Tpiv

|| T|n],
this proves (14).

Now we turn to (15). As n → ∞,

P[Tpiv survives to height n] → 0,

since Tpiv is almost surely finite. Hence the convergence in (15) holds in L1. To get the almost sure

convergence, we show that

P
[
Tpiv survives to height n || T|n] (16)

is a supermartingale, which is more trivial than it looks at first glance. If Tpiv survives to height n + 1,

then it survives to height n. Hence,

P
[
Tpiv survives to height n + 1 || T|n, 𝜔|T|n] ≤ P

[
Tpiv survives to height n || T|n, 𝜔|T|n]

= 1{Tpiv survives to height n}.

Taking conditional expectations,

P
[
Tpiv survives to height n + 1 || T|n] ≤ P

[
Tpiv survives to height n || T|n].

Finally,

E
[
P
[
Tpiv survives to height n + 1 || T|n+1

] ||| T|n]
= P

[
Tpiv survives to height n + 1 || T|n].

Altogether, this shows that

E
[
P
[
Tpiv survives to height n + 1 || T|n+1

] ||| T|n] ≤ P
[
Tpiv survives to height n || T|n],

proving that (16) is a supermartingale. Thus it has an almost sure limit, which must coincide with the

L1 limit. This proves (15), which completes the proof. ▪
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Next, we give two easy technical lemmas to be used in the proof of Proposition 3.1.

Lemma 3.4. Let Xn and Yn be nonnegative random variables, and suppose that EXn ≤ 1 for all n
and Yn → ∞ a.s. Let Zn = min(Xn∕Yn, 1). Then EZn → 0.

Proof. Fix some large N. We then compute

EZn = E
[
Zn1{Yn ≥ N}

]
+ E

[
Zn1{Yn < N}

]
≤ E

[
Xn∕N

]
+ P

[
Yn < N

]
≤ 1∕N + P

[
Yn < N

]
.

Since P[Yn < N] → 0 as n → ∞, we have lim supn→∞ EZn ≤ 1∕N. This holds for arbitrarily large

values of N, confirming that EZn → 0. ▪

Lemma 3.5. Suppose that (Xn)n≥0 takes values in [0, 1] and is a martingale under some filtration
(n)n≥0. Then

(
min(Xn, 1 − Xn)

)
n≥0

is a supermartingale under the same filtration.

Proof. Let Yn = min(Xn, 1 − Xn). Since Yn+1 ≤ Xn+1 and Yn+1 ≤ 1 − Xn+1, we can take expectations

to get

E[Yn+1 ∣ n] ≤ E[Xn+1 ∣ n] = Xn, (17)

and

E[Yn+1 ∣ n] ≤ [1 − EXn+1 ∣ n] = 1 − Xn. (18)

On the event Xn ≤ 1∕2, which is measurable with respect to n, Equation (17) gives E[Yn+1 ∣ n] ≤ Yn,

since Yn = Xn. On the complement of this event, (18) gives E[Yn+1 ∣ n] ≤ Yn, since Xn = 1 − Yn.

Hence E[Yn+1 ∣ n] ≤ Yn holds in both cases, proving that (Yn) is a supermartingale. ▪

Proof of Proposition 3.1. We will check that criterion (ii) of Proposition 2.2 holds. Fix a color 𝜎 in

Σ. Let

p(T|n) = P
[
𝜔(RT ) = 𝜎 || T|n].

Our goal is to show that p(T|n) converges almost surely to 0 or 1. We can assume that 𝜎 is in the support

of 𝜈, since otherwise p(T|n) = 0 a.s. for all n. Consider gT ,n as defined in (13). Observe that

1{𝜔(RT ) = 𝜎} = gT ,n
(
(𝜔(v))v∈Ln(T)

)
,

and that the conditional distribution of (𝜔(v))v∈Ln(T) given T|n is i.i.d. 𝜈. We thus apply Proposition 3.2

conditionally on T|n to obtain

I(gT ,n) ≥ c min
(
p(T|n), 1 − p(T|n)) log

(
1

maxi Ii(gT ,n)

)
.

Rearranging this, we obtain

min
(
p(T|n), 1 − p(T|n)) ≤ I(gT ,n)

c log
1

maxi Ii(gT ,n)

≤ In(T)
c log

1

Imax
n (T)

. (19)
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Now, we show that min
(
p(T|n), 1 − p(T|n)) converges to 0 in L1 as n → ∞. Let Xn = In(T) and

Yn = c log
1

Imax
n (T)

. Then EXn is the expected number of pivotal vertices for (T , 𝜔) at level n, which by

assumption is bounded by 1. Since Tpiv is assumed to be almost surely finite, Lemma 3.3 shows Yn → ∞
a.s. By Lemma 3.4, it holds that E min(Xn∕Yn, 1) → 0. Since min

(
p(T|n), 1−p(T|n)) ≤ min(Xn∕Yn, 1),

this proves that min
(
p(T|n), 1 − p(T|n)) converges to 0 in L1.

Since p(T|n) is a martingale, Lemma 3.5 shows that min
(
p(T|n), 1− p(T|n)) is a supermartingale.

Hence it has an almost sure limit, which must match its L1 limit of 0. This proves that lim p(T|n) ∈
{0, 1} a.s. By Proposition 2.2, the fixed point 𝜈 is interpretable. ▪

Proof of Theorem 1.7 (⇐=). Subcritical Galton-Watson trees have exponentially vanishing expected

nth generation size and are almost surely finite (see Section 2.4). Hence the conditions of Proposi-

tion 3.1 hold in the subcritical case. In the critical case, E𝓁n(Tpiv) = 1 and Tpiv is almost surely finite

by parts (b) and (d) of Proposition 2.6. ▪

Proof of Theorem 1.8. If Tpiv is subcritical, then the conditions of Proposition 3.1 hold. ▪

Remark 3.6. While we have stated Theorem 1.8 for subcritical pivot trees only, Proposition 3.1 in

fact applies to critical pivot trees, so long as E𝓁n(Tpiv) ≤ 1 (any constant bound would also work).

As discussed in Section 2.4, Galton-Watson trees that are not positive regular can have their expected

nth generation size grow to infinity even in the critical case. However, even though pivot trees are not

necessarily positive regular, we are not sure if it is possible for E𝓁n(Tpiv) to grow to infinity when Tpiv

is critical.

4 SUPERCRITICAL PIVOT TREES

As usual, throughout this section we fix a child distribution 𝜒 , an automaton A on a set of states Σ, and

a fixed point 𝜈 of the automaton distributional map Ψ∶ D → D corresponding to A and 𝜒 , and we let

(T , 𝜔) be the random state tree for 𝜈.

Our goal is to prove that if the pivot tree is supercritical, then 𝜈 is rogue in the |Σ| = 2 case.

According to Proposition 2.2, rogueness of 𝜈 is equivalent to nonmeasurability of 𝜔 with respect to T .

Thus, we will try to show that for T in some class of trees of positive weight under the GW(𝜒) measure,

the coloring 𝜔 is nondeterministic. The idea of the proof is that Tpiv is supercritical, it occurs with

positive probability that 𝜔(RT ) = 0 and Tpiv survives. On this event, we randomly choose an infinite

path starting from the root of Tpiv and switch all the colors along it. This gives us a new colored tree

with the same underlying tree but a different color at the root. Since the new coloring of the tree only

differs at one vertex per level, it seems intuitive that it occurs with similar likelihood as the original

one, meaning that 𝜔 takes different values for the same tree with positive probability.

The difficulty lies in making rigorous the idea that the switched coloring has similar probability

as the original one. To do so, we use spine decompositions as developed by Lyons, Pemantle, and

Peres [18], an elegant probabilistic method for proving two branching processes absolutely contin-

uous or mutually singular to each other. The two processes we consider are (T , 𝜔), conditioned on

survival of the pivot tree, and the switched version of this process described above. We prove the

switched version is absolutely continuous with respect to the original. Under the assumption that 𝜈

is interpretable, it is a probability one event that the color 𝜔(RT ) is given as a deterministic function

of T . By absolute continuity, the color of the root in the switched process is equal to the same func-

tion of the tree. But this is a contradiction, as we know that these colors differ while the trees are

the same.



818 JOHNSON ET AL.

Let our set of colors be Σ = {0, 1}. Recall from the discussion after Proposition 2.4 that the

definition of the pivot tree is simpler in the two-color case. A vertex is pivotal for (T , 𝜔) if swapping

its color results in the root swapping colors, and the pivot tree Tpiv can be defined as the subtree of T
consisting of all pivotal vertices. The pivot tree is Galton-Watson with types given by 𝜔, with no need

for the sets  and Bv used in the definitions when there are three or more colors.

We now formalize this and add an extra bit of information to the types, extending 𝜔 to a map

𝜔∗ ∶ V(T) → {0d, 0s, 1d, 1s} as follows. For a vertex v, the 0 or 1 in 𝜔∗(v) is given by 𝜔(v). To decide

on d or s, consider (T(v), 𝜔|T(v)), the restriction of the random state tree to v and its descendants.

If this tree has an infinite pivot tree, then 𝜔∗(v) assigns type s, for survives. If this tree has a finite

pivot tree, then 𝜔∗(v) assigns type d, for dies. For v ∈ Tpiv, this is equivalent to assigning either s

or d depending on whether Tpiv restricted to v and its descendants is infinite or finite. We will refer

to vertices as s-labeled or d-labeled according to the value assigned to them by 𝜔∗. Define 𝜈∗ as the

distribution of 𝜔∗(RT ), a probability measure on {0d, 0s, 1d, 1s}. Let col∗ denote the space of trees

with vertices labeled {0d, 0s, 1d, 1s}. For (t, 𝜏∗) ∈ col∗, let [t, 𝜏∗]n denote the subset of col∗ made up

of trees agreeing with (t, 𝜏∗) up to the nth generation.

Proposition 4.1. (a) Conditional on T|n, the distribution of (𝜔∗(v))v∈Ln(T) is i.i.d. 𝜈∗.
(b) For i ∈ {0, 1}, let 𝜌(i) be the probability that Tpiv survives conditional on 𝜔(RT ) = i. Then condi-

tional on T|n and on 𝜔T|n , the s- and d-labels given to each vertex v ∈ Ln by 𝜔∗ are independent,
with v receiving an s-label with probability 𝜌(𝜔(v)).

(c) The labeled tree (T , 𝜔∗) is multitype Galton-Watson.

Proof. Given T|n, the distribution of (𝜔(v))v∈Ln(T) is i.i.d. 𝜈, by definition of (T , 𝜔). Hence, con-

ditional on T|n, the trees (T(v), 𝜔|T(v)) for v ∈ Ln(T) are independent and distributed as the

(unconditional) distribution of (T , 𝜔). Since 𝜈∗ is the distribution of 𝜔∗(RT ), it is thus the conditional

distribution given T|n of each of the independent𝜔∗(v) for v ∈ Ln(T), proving (a). For (b), once we have

conditioned on T|n and on 𝜔|T|n , for each v ∈ Ln(T), the tree (T(v), 𝜔|T(v)) is distributed as (T , 𝜔) con-

ditional on having state 𝜔(v) at the root. Thus the pivot tree of (T(v), 𝜔|T(v)) survives with probability

𝜌(𝜔(v)). The s- or d-label for v depends only on (T(v), 𝜔|T(v)) and hence are given independently.

The proof of (c) is nearly the same as the proof of Proposition 2.1, though we will give it now in

detail. For 𝜎1,… 𝜎k ∈ {0d, 0s, 1d, 1s}, let

𝜒col∗(𝜎1,… , 𝜎k) = 𝜒(k)𝜈∗(𝜎1) · · · 𝜈∗(𝜎k).

By the first claim, this is the probability that RT has exactly k children whose types according to 𝜔∗
are 𝜎1,… , 𝜎k, in order. For any type 𝜎 ∈ {0d, 0s, 1d, 1s} with 𝜈∗(𝜎) > 0, let 𝜒𝜎

col∗(𝜎1,… , 𝜎k) denote

the conditional probability that RT gives birth to k children of types 𝜎1,… , 𝜎k according to 𝜔∗ given

that 𝜔∗(RT ) = 𝜎. Observe that the value of 𝜔∗ at the root of a tree can be determined from the value of

𝜔∗ at its children: the 0 or 1 can be determined according to the automaton, and the s- or d-type can be

determined according to whether there is a pivotal child of the root of s-type. Hence, if 𝜎 is the type

at the root corresponding to children of types 𝜎1,… , 𝜎k, then

𝜒col∗(𝜎1,… , 𝜎k) = 𝜈∗(𝜎)𝜒𝜎
col∗(𝜎1,… , 𝜎k). (20)

Now, we seek to prove that given the first n levels of (T , 𝜔∗), each vertex v at level n independently

gives birth according to 𝜒
𝜔∗(v)
col∗ . Fix (t, 𝜏∗) ∈ col∗. By the first claim of this proposition,

P
[
(T , 𝜔∗) ∈ [t, 𝜏∗]n+1

]
= P

[
T ∈ [t]n+1

] ∏
u∈Ln+1(t)

𝜈∗
(
𝜏∗(u)

)
.
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With C(v) denoting the set of a children of a vertex v,

P
[
(T , 𝜔) ∈ [t, 𝜏∗]n+1

]
=
(

P
[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜒
(|C(v)|)) ∏

u∈Ln+1(t)
𝜈∗
(
𝜏∗(u)

)
= P

[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜒col∗
(
𝜏∗(u)u∈C(v)

)
.

Continuing to follow the proof of Proposition 2.1, by (20),

P
[
(T , 𝜔) ∈ [t, 𝜏∗]n+1

]
= P

[
T ∈ [t]n

] ∏
v∈Ln(t)

𝜈∗(𝜏∗(v))𝜒
𝜏∗(v)
col∗

(
𝜏∗(u)u∈C(v)

)
= P

[
(T , 𝜔) ∈ [t, 𝜏∗]n

] ∏
v∈Ln(t)

𝜒
𝜏∗(v)
col∗

(
𝜏∗(u)u∈C(v)

)
.

▪

We will assume throughout the section that Tpiv is supercritical. This implies that either P[𝜔∗(RT ) =
0s] > 0 or P[𝜔∗(RT ) = 1s] > 0, but in fact both are true by Proposition 2.6(c). Thus, it makes sense to

consider the distribution of (T , 𝜔∗) conditional on 𝜔∗(RT ) = 0s or 𝜔∗(RT ) = 1s. With this in mind, we

make a number of definitions. Most important among them are the probability measures RST0s, RST1s,

RST0s→1s, and RST1s→0s on the space col∗, with RST standing for random state tree. The measures

RST0s and RST1s are the distributions of (T , 𝜔∗) conditioned on 𝜔∗(RT ) = 0s and 𝜔∗(RT ) = 1s,

respectively. The measure RST0s→1s is the distribution of a labeled tree obtained by sampling from

RST0s, choosing an infinite path of pivotal vertices, and swapping every label in the path. The measure

RST1s→0s is obtained in the same way, starting with RST1s instead of RST0s. Thus, RST1s and RST0s→1s

are both distributions on labeled trees with 1s at the root. Our goal, as we sketched before and will

explain in more detail shortly, is to prove that RST0s→1s is absolutely continuous with respect to RST1s.

Definitions 4.2 (Definitions of RST𝓁 , (T𝓁 , 𝜔𝓁
∗ ), s∗, (t, 𝜏∗), n(t, 𝜏∗), P(t,𝜏∗), Pn(t,𝜏∗), 𝜏

v⃗
∗, 𝜏x

∗,

RST0s→1s, RST1s→0s, (T0s, 𝜔0s→1s
∗ ), and (T1s, 𝜔1s→0s

∗ )). For 𝓁 ∈ {0d, 1d, 0s, 1s}, let RST𝓁 be the law

of (T , 𝜔∗) conditioned on 𝜔(RT ) = 𝓁. Let (T𝓁 , 𝜔𝓁
∗ ) be a random variable distributed as RST𝓁 . Let

s∗ ⊆ col∗ be the set of all trees (t, 𝜏∗) labeled by {0d, 1d, 0s, 1s} that are compatible with the automa-

ton, have their d and s labels consistent with the tree and other labels, and have 0s or 1s at the root.

This space is the union of the supports of RST0s and RST1s. It could also be defined as the set of all

trees (t, 𝜏∗) ∈ col∗ such that [t, 𝜏∗]n has positive probability under RST0s or RST1s for all n.

Given a deterministic tree (t, 𝜏∗) ∈ s∗, let (t, 𝜏∗) be the set of infinite paths in (t, 𝜏∗) that start at

Rt and contain only pivotal s-labeled vertices. Let n(t, 𝜏∗) be the set of paths from Rt of length n with

the same property. Note that these sets are nonempty for any (t, 𝜏∗) ∈ s∗, since any pivotal s-labeled

vertex must have a pivotal s-labeled child.

We define P(t,𝜏∗) and Pn(t,𝜏∗) to be distributions on (t, 𝜏∗) and n(t, 𝜏∗), respectively, given as

follows. Let V0 = Rt. Choose V1 uniformly from the pivotal s-labeled children of V0 (as we said, there

must be at least one). Then choose V2 uniformly from the pivotal s-labeled children of V1, and so on.

Let P(t,𝜏∗) be the distribution of (V0,V1,…), and let Pn(t,𝜏∗) be the distribution of (V0,… ,Vn).
For an assignment 𝜏 ∶ R(t) → Σ and a vertex v ∈ Ln(t), we defined 𝜏v→𝛾 as the coloring of t|n given

by switching the color of v to 𝛾 and updating the colors at levels 0,… , n−1 according to the automaton.

We now extend this definition to allow switching when the colors include s- and d-labels and to allow

switching an infinite path. Suppose that (t, 𝜏∗) ∈ col∗. Given a path u⃗ = (u0, u1,…) ∈ (t, 𝜏∗), let

𝜏 u⃗
∗ denote 𝜏∗ with labels 0s and 1s swapped along the path. It is easy to check that this new labeling is
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also compatible with the automaton A, and that its s and d markings follow the same rules as before.

For u⃗ ∈ n(t, 𝜏∗), we define 𝜏 u⃗
∗ in the same way, except that 𝜏 u⃗

∗ is only a labeling of t|n. For a vertex

x ∈ R(t), we use 𝜏x
∗ as a shorthand for 𝜏 u⃗

∗ , where u⃗ is the path from Rt to x.

Finally, we define 𝜔0s→1s
∗ as the switched labeling (𝜔0s

∗ )V⃗ , where V⃗ is sampled from P(T0s,𝜔0s
∗ ). To

summarize, (T0s, 𝜔0s→1s
∗ ) is formed by the following procedure: First condition (T , 𝜔∗) on 𝜔∗ = 0s to

obtain (T0s, 𝜔0s
∗ ). Then, choose an infinite s-labeled path of pivotal vertices in (T0s, 𝜔0s

∗ ) by starting

at the root and successively choosing a pivotal s-labeled child at random. Finally, swap all 0s and 1s

labels along this path to obtain (T0s, 𝜔0s→1s
∗ ). We define 𝜔1s→0s

∗ analogously, and we define RST0s→1s

and RST1s→0s as the distributions of (T0s, 𝜔0s→1s
∗ ) and (T1s, 𝜔1s→0s

∗ ), respectively.

We now lay out our plan for the section. Our goal is to prove that RST0s→1s ≪ RST1s. It follows

quickly from this that 𝜈 is rogue by an argument we sketch now. Supposing that 𝜈 is interpretable, we

can express 𝜔(RT ) as 𝜄(T) for a deterministic function 𝜄∶  → Σ, by Proposition 2.2. By definition of

RST0s and RST1s, we have 𝜄(T0s) = 0 a.s. and 𝜄(T1s) = 1 a.s. Recalling that (T0s, 𝜔0s→1s
∗ ) ∼ RST0s→1s,

absolute continuity lets us conclude from 𝜄(T1s) = 1 a.s. that 𝜄(T0s) = 1 a.s., a contradiction.

To prove the absolute continuity of RST0s→1s with respect to RST1s, we use a technique of restrict-

ing these measures to successively larger 𝜎-algebras and computing the Radon-Nikodym derivatives

of the restricted measures. The result we use is well known:

Lemma 4.3 ([19, Lemma 12.2]). Let 𝜇 and 𝜈 be probability measures on a 𝜎-algebra ℱ . Suppose
that ℱ1 ⊆ ℱ2 ⊆ · · · ⊆ ℱ , and that ∪nℱn generates ℱ . Also suppose that 𝜇|ℱn is absolutely
continuous with respect to 𝜈|ℱn with Radon-Nikodym derivative Xn. Define X = lim supn→∞ Xn. Then

𝜇 ≪ 𝜈 ⇐⇒ X < ∞ 𝜇-a.e. ⇐⇒ ∫ X d𝜈 = 1,

and

𝜇 ⟂ 𝜈 ⇐⇒ X = ∞ 𝜇-a.e. ⇐⇒ ∫ X d𝜈 = 0.

In our case, we will restrict RST0s→1s and RST1s to the 𝜎-algebra ℱn generated by the first n levels

of the labeled tree. That is, we define ℱn as the 𝜎-algebra on s∗ generated by the sets of the form

[t, 𝜏∗]n.

To investigate these Radon-Nikodym derivatives, we start by giving representations of RST0s→1s

and RST1s→0s in terms of RST0s and RST1s:

Lemma 4.4. For any (t, 𝜏∗) ∈ s∗,

RST0s→1s[t, 𝜏∗]n =
∑

u⃗∈n(t,𝜏∗)

RST0s[t, 𝜏 u⃗
∗]nPn(t,𝜏 u⃗

∗ )
(u⃗), (21)

and

RST1s→0s[t, 𝜏∗]n =
∑

u⃗∈n(t,𝜏∗)

RST1s[t, 𝜏 u⃗
∗]nPn(t,𝜏 u⃗

∗ )
(u⃗). (22)
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Proof. These statements follow very directly from the definitions. Recall that (T0s, 𝜔0s→1s
∗ ) differs

from (T0s, 𝜔0s
∗ ) along a random path (Vi)i≥0 sampled from P(T0s,𝜔0s

∗ ), in which all 0s and 1s labels have

been swapped. Hence,

(T0s, 𝜔0s→1s
∗ ) ∈ [t, 𝜏∗]n

holds if and only if

(T0s, 𝜔0s
∗ ) ∈ [t, 𝜏 u⃗

∗] for some u⃗ ∈ n(t, 𝜏 u⃗
∗), and (V0,… ,Vn) = u⃗. (23)

Since u⃗ ∈ n(t, 𝜏 u⃗
∗) if and only if u⃗ ∈ n(t, 𝜏∗), we can refine (23) to

(T0s, 𝜔0s
∗ ) ∈ [t, 𝜏 u⃗

∗] for some u⃗ ∈ n(t, 𝜏∗), and (V0,… ,Vn) = u⃗. (24)

As the events in (24) are disjoint for different choices of u⃗,

P
[
(T0s,𝜔0s→1s

∗ ) ∈ [t, 𝜏∗]n
]

=
∑

u⃗∈n(t,𝜏∗)

P
[
(T0s, 𝜔0s

∗ ) ∈ [t, 𝜏 u⃗
∗]n and (V0,… ,Vn) = u⃗

]

=
∑

u⃗∈n(t,𝜏∗)

P
[
(T0s, 𝜔0s

∗ ) ∈ [t, 𝜏 u⃗
∗]n

]
Pn(t,𝜏 u⃗

∗ )
(u⃗),

which is a restatement of (21). The proof of (22) is identical. ▪

Define a map rn on s∗ as follows. For (t, 𝜏∗) ∈ s∗ with 0s at the root, let

rn(t, 𝜏∗) =
RST1s→0s[t, 𝜏∗]n

RST0s[t, 𝜏∗]n
, (25)

and for (t, 𝜏∗) ∈ s∗ with 1s at the root, let

rn(t, 𝜏∗) =
RST0s→1s[t, 𝜏∗]n

RST1s[t, 𝜏∗]n
. (26)

Thus, rn(t, 𝜏∗) matches the Radon-Nikodym derivative either of RST1s→0s|ℱn with respect to RST0s|ℱn

or of RST0s→1s|ℱn with respect to RST1s|ℱn , depending on 𝜏∗(Rt). To prove that RST0s→1s ≪ RST1s,

it therefore suffices by Lemma 4.3 to show that

lim sup
n→∞

rn(T0s, 𝜔0s→1s
∗ ) < ∞ a.s. (27)

We define

fn(t, 𝜏∗) =
∑

u⃗∈n(t,𝜏∗)

Pn(t,𝜏 u⃗
∗ )
(u⃗),

with f0(t, 𝜏∗) taken to be 1. According to the next lemma, we can use this simpler function fn as a

stand-in for rn.
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Lemma 4.5. For some constant 1 ≤ C < ∞ depending on 𝜈∗, it holds for all n ≥ 0 and all (t, 𝜏∗) ∈
s∗ that

1

C
fn(t, 𝜏∗) ≤ rn(t, 𝜏∗) ≤ Cfn(t, 𝜏∗).

Proof. We aim to show that for some 1 ≤ C < ∞, it holds for all n ≥ 0, u⃗ ∈ n(t, 𝜏∗), and

(t, 𝜏∗) ∈ s∗ with 𝜏∗(Rt) = 1s that

1

C
RST1s[t, 𝜏∗]n ≤ RST0s[t, 𝜏 u⃗

∗]n ≤ C RST1s[t, 𝜏∗]n,

and it holds for all n ≥ 0, u⃗ ∈ n(t, 𝜏∗), and (t, 𝜏∗) ∈ s∗ with 𝜏∗(Rt) = 0s that

1

C
RST0s[t, 𝜏∗]n ≤ RST1s[t, 𝜏 u⃗

∗]n ≤ C RST0s[t, 𝜏∗]n.

Once we prove this, the result follows immediately from Lemma 4.4 and the definition of rn.

To prove these statements, we go back to the unconditioned tree (T , 𝜔∗). Let

C1 =
max𝜎∈{0s,1s} 𝜈∗(𝜎)
min𝜎∈{0s,1s} 𝜈∗(𝜎)

.

By Proposition 4.1(a),

P
[
(T , 𝜔∗) ∈ [t, 𝜏 u⃗

∗]n
]
= P[T|n = t|n] ∏

x∈Ln(t)
𝜈∗(𝜏 u⃗

∗(x))

≤ C1P[T|n = t|n] ∏
x∈Ln(t)

𝜈∗(𝜏∗(x)) = C1P
[
(T , 𝜔∗) ∈ [t, 𝜏∗]n

]

since 𝜏 u⃗
∗ and 𝜏∗ match each other on Ln(t) except at a single vertex, where one assigns 0s and the other

assigns 1s.

Suppose that 𝜏∗(Rt) = 1s. Then

RST0s[t, 𝜏 u⃗
∗]n =

P
[
(T , 𝜔∗) ∈ [t, 𝜏 u⃗

∗]n
]

𝜈∗(0s)

≤
C1P

[
(T , 𝜔∗) ∈ [t, 𝜏∗]n

]
𝜈∗(0s)

≤
C2

1
P
[
(T , 𝜔∗) ∈ [t, 𝜏∗]n

]
𝜈∗(1s)

= C2
1

RST1s[t, 𝜏∗]n.

The lower bound on RST0s[t, 𝜏 u⃗
∗]n and the bounds on RST1s[t, 𝜏 u⃗

∗]n follow by nearly identical

proofs. ▪

Next, we recast fn(t, 𝜏∗) as a weighted sum over paths.

Definitions 4.6 (N(x, t, 𝜏∗) and wt,𝜏∗ (x, y)). For a vertex x ∈ V(t), let N(x, t, 𝜏∗) be the number of

pivotal s-labeled children of x in (t, 𝜏∗). Suppose that x and y are respectively a vertex and its child in
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some path in (t, 𝜏∗). Define

wt,𝜏∗ (x, y) = N(x, t, 𝜏y
∗)−1,

which we will view as a weight on the edge from x to y. We will shorten this to w(x, y) when the tree

(t, 𝜏∗) is clear from context.

In words, w(x, y) is the reciprocal of the number of pivotal s-labeled children of x after swapping

all labels on the path from the root to x to y. Note that this count of pivotal s-labeled children is never

zero for such an x and y, since y is always s-labeled and pivotal for (t, 𝜏y
∗) as a consequence of belonging

to a path in (t, 𝜏∗).

Lemma 4.7. For any (t, 𝜏∗) ∈ s∗,

fn(t, 𝜏∗) =
∑

u⃗∈n(t,𝜏∗)

n−1∏
i=0

w(ui, ui+1), (28)

which we can express recursively as

fn(t, 𝜏∗) =
∑

x
w(Rt, x)fn−1(t(x), 𝜏∗|t(x)), (29)

where x ranges over the pivotal s-labeled children of Rt.

Proof. To prove (28), we need to show that for any u⃗ = (u0,… , un) ∈ n(t, 𝜏∗),

Pn(t,𝜏 u⃗
∗ )
(u⃗) =

n−1∏
i=0

N
(
ui, t, 𝜏

ui+1

∗
)−1

.

This is evident, as Pn(t,𝜏 u⃗
∗ )
(u⃗) is the probability that u⃗ is selected by the procedure of starting at the

root in (t, 𝜏 u⃗
∗) and uniformly picking a pivotal s-labeled child, then another pivotal s-labeled child, and

so on. Equation (29) follows from (28) by partitioning n(t, 𝜏∗) into paths going through each of the

s-labeled children of the root. ▪

Recall that 𝜔0s→1s
∗ is formed by swapping labels in 𝜔0s

∗ along a random path V⃗ = (Vi)i≥0, where

V0 = RT0s . Call this path the spine of (T0s, 𝜔0s→1s). We now give some terminology for describing the

weights (in the sense of Definitions 4.6) of edges along and hanging off the spine.

Definitions 4.8 (Definitions of Vi,j, Wi, Wi,j, Tspine, Tspine
n ,𝒢 , and𝒢n). Let Vi,1,… ,Vi,ki be the pivotal

s-labeled children of Vi in (T0s, 𝜔0s→1s
∗ ) other than Vi+1. Let Wi = wT0s,𝜔0s→1s

∗
(Vi,Vi+1), and let Wi,j =

wT0s,𝜔0s→1s
∗

(Vi,Vi,j).
Let Tspine ⊆ T0s be the subtree consisting of V⃗ and all vertices Vi,j. Let Tspine

n be the restriction of

Tspine to height n. Let𝒢 be the 𝜎-algebra generated by V⃗ , Tspine and𝜔0s→1s
∗ |Tspine . Let𝒢n be the 𝜎-algebra

generated by (V0,… ,Vn), Tspine
n and by 𝜔0s→1s|Tspine

n
. See Figure 4 for a depiction of the information

captured by these 𝜎-algebras.

The key idea in analyzing fn(T0s, 𝜔0s→1s
∗ ) is that while (T0s, 𝜔0s→1s

∗ ) behaves unusually along the

spine, starting from any vertex Vi,j it is a multitype Galton-Watson tree with the same child distributions

as (T , 𝜔∗). This is formally expressed in Proposition 4.9. Thus, understanding the weights along the
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FIGURE 4 A subset of (T0s, 𝜔0s→1s). The tree automaton in this example assigns 1 to a vertex if and only if it has exactly one

1-labeled child. The spine, (Vi)i≥0, is on the left side, and vertices Vi,1,… ,Vi,ki
hang off each Vi. Pivotal vertices and the edges

between them are in bold. Alongside each edge is its weight. For example, the weight from V0 to V1 is
1

3
, because if V0 and V1

have their labels swapped from 1s to 0s, then V0 has three pivotal s-labeled children

FIGURE 5 Plot for Example 5.7, showing the fixed point for the automaton assigning the parent state “1” if and only if there

are zero “1” children with a Poi(𝜆) child distribution [Color figure can be viewed at wileyonlinelibrary.com]

spine of (T0s, 𝜔0s→1s
∗ ) as well as the weights on (T , 𝜔∗) is enough to understand the weights on all of

(T0s, 𝜔0s→1s
∗ ). This is the same idea used by Pemantle, Peres, and Lyons to prove the Kesten-Stigum

theorem (see [18, Section 3] or [19, Chapter 12]).

Proposition 4.9.

(a) The random variables
{

Wi,Wi,j
}

i<n, 1≤j≤ki
are measurable with respect to 𝒢n.

(b) Conditional on 𝒢 , the subtrees

{(
T0s(x), 𝜔0s→1s

∗ |T0s(x)
)
∶ x = Vi,j for some i ≥ 0, 0 ≤ j ≤ ki

}

are independent.
(c) For any x = Vi,j, the subtree (T0s(x), 𝜔0s→1s

∗ |T0s(x)) is distributed conditional on 𝒢 as RST0s if
𝜔0s→1s
∗ (x) = 0s and as RST1s if 𝜔0s→1s

∗ (x) = 1s.
(d) The subtree

(
T0s(Vn), 𝜔0s→1s

∗ |T(Vn)
)

is distributed conditional on 𝒢n as RST0s→1s if 𝜔0s→1s
∗ (Vn) =

1s and as RST1s→0s if 𝜔0s→1s
∗ (Vn) = 0s.

Proof. Part (a) follows directly from the definition. For parts (b) and (c), note that for any x = Vi,j,

the subtree (T0s(x), 𝜔0s→1s
∗ |T0s(x)) is identical to (T0s(x), 𝜔0s

∗ |T0s(x)). We can also recharacterize 𝒢 as

the 𝜎-algebra generated by V⃗ , Tspine, and 𝜔0s
∗ |Tspine . Conditioning on 𝒢 is then just revealing part of

http://wileyonlinelibrary.com
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(T0s, 𝜔0s
∗ ), which is Galton-Watson by Proposition 4.1(c). Under this conditioning, the subtrees

{(
T0s(x), 𝜔0s

∗ |T0s(x)
)
∶ x = Vi,j for some i ≥ 0, 0 ≤ j ≤ ki

}
are unrevealed except for the labels of their roots, and hence they evolve independently according to

RST0s or RST1s.

To prove part (d), we observe that conditioning on 𝒢n reveals (V0,… ,Vn), and it reveals a portion

of (T0s, 𝜔0s
∗ ) with Vn as a leaf. Thus (T0s(Vn), 𝜔0s

∗ |T0s(Vn)) evolves either as RST0s or as RST1s condi-

tional on 𝒢n, depending on 𝜔0s
∗ (Vn). Also, by its definition, (Vi)i≥n conditional on 𝒢n is distributed as

P(T0s(Vn),𝜔0s|T0s(Vn)
). Thus, (T0s(Vn), 𝜔0s→1s

∗ |T0s(Vn)) is distributed conditionally on 𝒢n as stated. ▪

Now, we can start evaluating lim supn fn(T0s, 𝜔0s→1s
∗ ). First, we expand fn(T0s, 𝜔0s→1s

∗ ) in terms of

the weights along and off the spine.

Lemma 4.10. We can express fn(T0s, 𝜔0s→1s
∗ ) as

fn(T0s, 𝜔0s→1s
∗ ) =

n−1∑
i=0

(W0 · · ·Wi−1)
ki∑

j=1

Wi,jfn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
)

+ W0 · · ·Wn−1

≤
n−1∑
i=0

(W0 · · ·Wi−1)
ki∑

j=1

Wi,jCrn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
)

+ W0 · · ·Wn−1,

(30)

where C is the constant from Lemma 4.5.

Proof. The equality holds by successively applying (29) from Lemma 4.7, and the inequality is an

application of Lemma 4.5. ▪

It is odd that we have bounded fn by rn when fn is a simpler quantity that we typically prefer to work

with. But in the proof of Lemma 4.15, it will be easier to work with the Radon-Nikodym derivative

itself rather than an approximation.

Now, in Lemmas 4.11-4.14, we prove some technical facts that help us bound (30).

Lemma 4.11. For any i and 1 ≤ j ≤ ki, the process

(
rn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
))

n≥i+1

conditional on 𝒢 is a nonnegative martingale in n with mean one.

Proof. By definition of rn, given in (25) and (26), the process is nonnegative. By Proposition 4.9(c),

the conditional distribution of (
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)

)

given 𝒢 is either RST0s or RST1s, depending on the value of 𝜔0s→1s
∗ (Vi,j). For the sake of con-

creteness, suppose that 𝜔0s→1s
∗ (Vi,j) = 0s so that its conditional distribution is RST0s. Then
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rn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
)

conditional on 𝒢 is the Radon-Nikodym derivative of RST1s→0s|n

with respect to RST0s|n , applied to an RST0s-distributed random variable. Hence, conditional on 𝒢 ,

it is a martingale in n [9, Lemma 5.3.4]. The same logic shows that rn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
)

is a martingale conditional on 𝒢 when 𝜔0s→1s
∗ (Vi,j) = 1s. The initial value of either martingale,

when n = i + 1, is 1. ▪

Lemma 4.12. For some c < 1, it holds for all n ≥ 0 that

E[WnWn+1 ∣ 𝒢n] ≤ c a.s.

Proof. First, we claim that Wn is the reciprocal of the number of pivotal s-labeled children of Vn in

the original unswitched tree (T0s, 𝜔0s
∗ ); that is,

Wn = N(Vn,T0s, 𝜔0s
∗ )−1. (31)

Indeed, by the definition of Wn in Definitions 4.8 and then the definition of wt,𝜏∗ (x, y) in Definitions 4.6,

Wn = wT0s,𝜔0s→1s
∗

(Vi,Vi+1) = N
(
Vn,T0s, (𝜔0s→1s

∗ )Vn+1

)−1
.

The labels (𝜔0s→1s
∗ )Vn+1 consist of the original labels 𝜔0s

∗ switched along the spine and then switched

back again, yielding (31).

We now seek to analyze this expression conditional on 𝒢n. By Proposition 4.9(d), the distribution

of
(
T0s(Vn), 𝜔0s→1s

∗ |T(Vn)
)

conditional on 𝒢n is either RST1s→0s or RST0s→1s, depending on 𝜔0s
∗ (Vn).

Equivalently, the distribution of
(
T0s(Vn), 𝜔0s

∗ |T(Vn)
)

conditional on 𝒢n is RST𝓁 where 𝓁 = 𝜔0s
∗ (Vn),

which is measurable with respect to 𝒢n. Hence, N(Vn,T0s, 𝜔0s
∗ ) conditional on 𝒢n is distributed as

N(RT𝓁 ,T𝓁 , 𝜔𝓁
∗ ), where 𝓁 = 𝜔0s

∗ (Vn).
Let c𝓁 = EN(RT𝓁 ,T𝓁 , 𝜔𝓁

∗ )−1 for 𝓁 = 0s, 1s. Recall that N(RT𝓁 ,T𝓁 , 𝜔𝓁
∗ ) ≥ 1, since a pivotal

s-labeled vertex must give birth to another pivotal s-labeled vertex. Hence, we have c𝓁 = 1 if and only

if N(RT𝓁 ,T𝓁 , 𝜔𝓁
∗ ) = 1 a.s. If c0s < 1 and c1s < 1, then set c = max(c0s, c1s) and use the easy bound

Wn+1 ≤ 1 to get

E[WnWn+1 ∣ 𝒢n] ≤ c a.s.

The troublesome case is when c0s = 1 or c1s = 1. Suppose c0s = 1. If c1s = 1, the proof is identical

with the roles of 0s and 1s switched. The argument has two steps:

(a) c1s < 1;

(b) a vertex of type 0s gives birth to a pivotal 1s-labeled vertex with positive probability.

Suppose that (a) is false. Then c0s = c1s = 1, and consequently no vertex type in (T , 𝜔∗) ever gives birth

to more than one s-labeled pivotal child. This implies that no vertex gives birth to more than one pivotal

child. Indeed, according to Proposition 4.1(b), given the colors of the children of a vertex, their s- and

d-labels are assigned independently. Thus, if a vertex of color 0 or 1 had positive probability of having

multiple pivotal children, it would also have positive probability of having multiple s-labeled pivotal

children. Since vertices of either color give birth to at most one pivotal child, the highest eigenvalue

of the matrix of means of (Tpiv, 𝜔) is at most one. But this contradicts our assumption throughout this

section that the pivot tree is supercritical, establishing (a).
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For (b), from c0s = 1 we know that a vertex of type 0s always gives birth to exactly one pivotal

s-labeled child. As above, this implies that it always gives birth to exactly one pivotal child. In fact, a

vertex of type 0 must always give birth to zero or one pivotal children, since if it had positive probability

of giving birth to two or more, then it would have positive probability of giving birth to two or more

pivotal s-labeled vertices, and so a vertex of type 0s would have positive probability of giving birth to

two or more pivotal children. Hence m00 + m01 ≤ 1, in the language of Lemma 2.5.

Suppose that (b) is false and a vertex of type 0s never gives birth to a pivotal 1s-labeled vertex.

Then, a vertex of type 0 never gives birth to a pivotal vertex of type 1 (if it had positive probability of

doing so, then a vertex of type 0s would have positive probability of giving birth to a pivotal vertex of

type 1s). Hence, m01 = 0. By Lemma 2.5, the matrix of means for Tpiv has the form
[ m00 0

0 m00

]
where

m00 ≤ 1. But this contradicts the supercriticality of Tpiv, proving (b).

Now, we are ready to evaluate E[WnWn+1 ∣ 𝒢n] when c0s = 1. Let p be the probability that a vertex

of type 0s has a pivotal child of type 1s, which we know to be positive by (b). If 𝜔0s
∗ (Vn) = 0s, then

E[WnWn+1 ∣ 𝒢n] = 1 − p + pc1s < 1.

If 𝜔0s
∗ (Vn) = 1s, then using the bound Wn+1 ≤ 1, we have

E[WnWn+1 ∣ 𝒢n] ≤ c1s < 1.

We then take c as the maximum of these two values to complete the proof. ▪

We mention that the difficult case in this proof, where one of c0s and c1s is zero, can truly occur.

For example, let A be the two-state automaton assigning color 1 to a parent if and only if the parent

has at least three children, all of which have the same color. If a vertex has color 0, then it has a pivotal

child only when it has three or more children and all but one of them are the same color, in which case

it has exactly one pivotal child (the odd-colored one). Thus, conditional on being type 0s, a vertex has

exactly one pivotal s-labeled child, which makes c0s = 1.

The following lemma is well known, though it is most commonly stated with its converse under the

additional assumption that X1,X2,… are independent (see [19, Exercise 12.2]). We sketch the proof

here.

Lemma 4.13. Let X1, X2,… be nonnegative random variables with a common distribution. If this
distribution has finite log-moment, then

∞∑
n=1

cnXn < ∞ a.s.

for all c ∈ (0, 1).

Proof. Apply the Borel-Cantelli lemma to show that lim supn→∞
1

n
log Xn = 0 a.s. Then it follows

for some finite random N that Xn ≤ (2c)−n for n ≥ N. ▪

Lemma 4.14. If the child distribution 𝜒 has finite log-moment, then

∞∑
i=0

W0 · · ·Wi−1N
(
Vi,T0s, 𝜔0s→1s

∗
)
< ∞ a.s.
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Proof. First, we claim that

E[W0 · · ·Wi−1] ≤ c⌊i∕2⌋

for some c < 1. This is proven by applying Lemma 4.12 to take conditional expectations given 𝒢i−2,

then given 𝒢i−4, and so on. Choosing any b ∈ (
√

c, 1) and applying Markov’s inequality,

∞∑
i=1

P[W0 · · ·Wi−1 > bi] ≤
∞∑

i=1

c⌊i∕2⌋
bi < ∞.

By the Borel-Cantelli lemma, it holds almost surely that W0 · · ·Wi−1 ≤ bi for all but finitely many

values of i. Hence, it suffices to show that

∞∑
i=0

biN(Vi,T0s, 𝜔0s→1s
∗ ) < ∞ a.s. (32)

Now, it remains to apply Lemma 4.13. Since N(Vi,T0s, 𝜔0s→1s
∗ ) is the number of s-pivotal offspring

of Vi in (T0s, 𝜔0s→1s
∗ ), it is bounded by the total number of offspring of Vi in T0s. By Proposition 4.9(c),

the distribution of
(
T(Vi), 𝜔0s→1s

∗ |T(Vi)
)

conditional on 𝒢 is either RST0s or RST1s. Thus, condi-

tional on 𝒢 , the random variable N(Vi,T0s, 𝜔0s→1s
∗ ) is stochastically dominated by the number of

vertices at level 1 of either T0s or T1s. Let A0s and A1s be random variables with these distributions,

respectively. Since 𝜒 is assumed to have finite log-moment, both A0s and A1s have finite log-moment

as well. Now, let Xi have any distribution that stochastically dominates A0s and A1s and has finite

log-moment. For example, one could take Xi = A0s + A1s where A0s and A1s are independent. Thus,

N(Vi,T0s, 𝜔0s→1s
∗ ) conditional on 𝒢 is stochastically dominated by Xi, and so there exists a coupling

in which N(Vi,T0s, 𝜔0s→1s
∗ ) ≤ Xi for all i. (Note that we do not care about the joint distribution of

X1,X2,….) Under this coupling,

∞∑
i=0

biN(Vi,T0s, 𝜔0s→1s
∗ ) ≤

∞∑
i=0

biXi,

which is almost surely finite by Lemma 4.13. This proves (32), from which the lemma follows. ▪

Finally, we are ready to achieve what we have been building towards by bounding the right-hand

side of (30).

Lemma 4.15. Assume that the child distribution 𝜒 has finite log-moment. Then

lim sup
n→∞

fn(T0s, 𝜔0s→1s
∗ ) < ∞ a.s.

Proof. Let

Yn =
n−1∑
i=0

(W0 · · ·Wi−1)
ki∑

j=1

Wi,jCrn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
)
,

one of the terms on the right-hand side of (30). We will show that Yn converges almost surely to a finite

value. The idea is to use Lemmas 4.11 and 4.14 to show that the conditional distribution of (Yn)n≥0

given 𝒢 is that of a submartingale bounded in L1.
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First, consider Yn conditionally on 𝒢 . By Proposition 4.9(a), the random variables W0,W1,… are

constants. By Proposition 4.9(c), the processes

(
rn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
))

n≥i+1

are independent for different values of i. By Lemma 4.11, these processes are martingales. Hence, Yn
conditional on 𝒢 is a sum of independent martingales with an additional martingale added at each

step, which makes it a submartingale conditional on 𝒢 .

To prove that supn E[Yn ∣ 𝒢 ] < ∞ a.s., by Lemma 4.11,

E
[
rn−i−1

(
T0s(Vi,j), 𝜔0s→1s

∗ |T0s(Vi,j)
) ||| 𝒢

]
= 1 a.s.

Hence,

sup
n

E[Yn ∣ 𝒢 ] = sup
n

n−1∑
i=0

(W0 · · ·Wi−1)
ki∑

j=1

Wi,j

≤ sup
n

n−1∑
i=0

W0 · · ·Wi−1N
(
Vi,T0s, 𝜔0s→1s

∗
)

≤
∞∑

i=0

W0 · · ·Wi−1N
(
Vi,T0s, 𝜔0s→1s

∗
)
< ∞ a.s. (33)

The first inequality uses the bound Wi,j ≤ 1 along with the fact that ki = N
(
Vi,T0s, 𝜔0s→1s

∗
)
− 1. The

last inequality is the statement of Lemma 4.14.

We have now shown that (Yn)n≥0 conditional on 𝒢 is a submartingale bounded in L1. It hence

converges almost surely to a finite limit. Since W0 · · ·Wn−1 is a decreasing positive sequence in n, it

also converges as n → ∞. By Lemma 4.10, we have shown that fn(T0s, 𝜔0s→1s
∗ ) is bounded by a process

converging almost surely to a finite limit as n → ∞. ▪

Proof of Theorem 1.7 (=⇒). Suppose that Tpiv is supercritical. By Lemmas 4.5 and 4.15,

lim sup
n→∞

rn(T0s, 𝜔0s→1s
∗ ) < ∞ a.s.

By Lemma 4.3, we have RST0s→1s ≪ RST1s. Therefore any almost sure event under RST1s is almost

sure under RST0s→1s as well.

Suppose that 𝜈 is interpretable. By Proposition 2.2, the random variable 𝜔(RT ) is measurable with

respect to T . Hence there exists a measurable map 𝜑∶  → {0, 1} such that 𝜔(RT ) = 𝜑(T) a.s. Since

T0s and T1s are distributed as T conditioned on subevents of𝜔(RT ) = 0 and𝜔(RT ) = 1, respectively, we

have 𝜑(T0s) = 0 a.s. and 𝜑(T1s) = 1 a.s. Stating the second of these facts in terms of measure theory,

the event {(t, 𝜏∗) ∈ s∗ ∶ 𝜑(t) = 1} has probability one under RST1s. Hence it has probability one under

RST0s→1s as well. Since (T0s, 𝜔0s→1s
∗ ) ∼ RST0s→1s, this shows that 𝜑(T0s) = 1 a.s., a contradiction. ▪

Remark 4.16. The main difficulty in extending this proof to the case |Σ| ≥ 3 is that the regularity

properties proven in Section 2.4 for |Σ| = 2 do not necessarily hold when |Σ| = 3. For example, when|Σ| = 2, if the pivot tree is supercritical, then it survives with positive probability conditional on either

𝜔(RT ) = 0 or 𝜔(RT ) = 1 by Proposition 2.6(c), which let us define measures RST0s and RST1s. When
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|Σ| ≥ 3, if the pivot tree is supercritical, it must survive with positive probability from some starting

state, but it is not obvious that it must do so from multiple starting states. Nonetheless, we expect that

it can be done and plan to address it in future work.

5 APPLICATIONS OF THE MAIN RESULTS

5.1 Monotone tree automata

We introduce here a special class of tree automata, which we term monotone tree automata. This class

encompasses tree automata that arise out of many naturally occurring EMSO properties of rooted trees.

Consider an automaton A with set of colors Σ. Suppose that Σ has a total ordering on it, so that

without loss of generality, we set Σ = {0,… s}. Let n⃗ = (ni ∶ 0 ≤ i ≤ s) and m⃗ = (mi ∶ 0 ≤ i ≤ s),
where ni and mi represent counts of children of type i. If

∑s
i=0 ni =

∑s
i=0 mi, then we write n⃗ ⪯ m⃗

if one can modify the configuration of children from n⃗ to become m⃗ by only increasing the colors

of children. (For example, (1, 2, 1) ⪯ (1, 1, 2), since one moves from children 0,1,1,2 to 0,1,2,2 by

increasing the color of a child from 1 to 2.) The automaton A is called monotone if n⃗ ⪯ m⃗ implies that

A(n⃗) ≤ A(m⃗).
In the following lemma we state a notable characteristic of the pivot tree when we consider a

monotone tree automaton A on two states.

Lemma 5.1. Consider a tree automaton A on two colors. Then A is monotone if and only if pivotal
children always have the same color as their parents.

Proof. Let Σ = {0, 1}. Assume pivotal children always have the same state as their parents, and

consider two configurations of children n⃗ ⪯ m⃗. Suppose that A(n⃗) = 1. We can move from n⃗ to m⃗ only

by changing vertices from state 0 to 1. These vertices are never pivotal, so A(m⃗) = 1. Since A(n⃗) = 1

implies A(m⃗) = 1, the automaton A is monotone.

Conversely, suppose that a node can have a pivotal child of the opposite state of itself. Then

swapping this child’s state changes the parent’s state in the opposite direction, showing that A is not

monotone. ▪

Lemma 5.2. Let A be a monotone tree automaton with Σ = {0, 1}, and let Tpiv be the pivot tree
associated with some fixed point. Then

E[𝓁1(Tpiv) ∣ 𝜔(RT ) = 0] = E[𝓁1(Tpiv) ∣ 𝜔(RT ) = 1].

That is, the expected number of pivotal children that a vertex has is the same regardless of whether the
vertex is labeled 0 or 1.

Proof. By Lemma 5.1,

E[𝓁1(Tpiv) ∣ 𝜔(RT ) = 0] = E[Z0 ∣ 𝜔(RT ) = 0],

and

E[𝓁1(Tpiv) ∣ 𝜔(RT ) = 1] = E[Z1 ∣ 𝜔(RT ) = 1],

using the notation of Lemma 2.5. By this lemma, these quantities are equal. ▪
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When |Σ| = 2, the automaton distribution map Ψ maps a distribution Bernoulli(x) to Bernoulli(y).
We thus abuse notation and treat Ψ as a map from [0, 1] to itself, writing Ψ(x) = y instead of

Ψ(Bernoulli(x)) = Bernoulli(y). We also say that p ∈ [0, 1] is a fixed point of Ψ rather than saying

that Bernoulli(p) is.

In the next lemma, we give a convenient way of determining whether a fixed point corresponding

to a given monotone automaton with two colors is rogue or not.

Lemma 5.3. Suppose A is a monotone automaton with set of colors Σ = {0, 1}. For a fixed point
𝜈 = Bernoulli(p) with 0 < p < 1, the growth rate of the pivot tree is equal to Ψ′(p).

Proof. In Lemma 2.6, we show that if M is the matrix of means for Tpiv, then the spectral radius is

equal to the expected number of pivotal children of the root, which is the growth rate of Tpiv. Thus all

we have to establish is that Ψ′(p) is equal to the spectral radius of M.

The value of Ψ(x) is given by the following procedure: Sample a number of children from 𝜒 and

assign them i.i.d. Bernoulli(x) states. Then, apply the automaton to determine the state of the parent.

Then Ψ(x) is the expected value of the parent. Abusing notation slightly by letting A act on a sequence

of states as we did in the proof of Lemma 2.5, we have

Ψ(x) = Ex[A(X1,… ,XK)],

where K ∼ 𝜒 and (Xi)i≥1 are i.i.d. Bernoulli(x) under Ex. Let P denote the number of coordinates of

(X1,… ,Xk) that are pivotal for A at (X1,… ,Xk). By the Margulis-Russo formula [11, Theorem 3.2],

d

dx
Ex[A(X1,… ,Xk) ∣ K] = Ex[P ∣ K].

Taking expectations,

Ψ′(x) = Ex[P].

Under Ep, the random variable P has the distribution of the number of pivotal children of the root of

(T , 𝜔). Hence,

Ψ′(p) = E[𝓁1(Tpiv)]. ▪

Remark 5.4. Since a fixed point p of Ψ is attractive if |Ψ′(p)| < 1, this lemma together with

Theorem 1.7 shows that for a monotone two-state automaton, an attractive fixed point is always inter-

pretable. We mention that this is not true for nonmonotone automata. For example, the fixed point in

Example 5.8 can be computed to be rogue for 𝜆 = 4 despite being attractive.

We are finally ready to answer Question 1.1. Recall that the at-least-two automaton assigns the

parent state 1 if and only if at least two children have state 1. We mentioned in the introduction that

with Poisson child distribution, this automaton has either one, two, or three fixed points depending on

𝜆. We will prove this in detail now, and we will classify the fixed points as rogue or interpretable.

Example 5.5. Let A be the at-least-two automaton, and let 𝜒 ∼ Poi(𝜆). As we saw in (2), the

automaton distribution map is

Ψ(x) = 1 − e−𝜆x(1 + 𝜆x).
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Define

𝜆crit = min
x>0

x
1 − e−x(1 + x)

≈ 3.35.

The function x∕
(
1 − e−x(1 + x)

)
is convex on (0,∞) and hence has a unique minimizer, which we

denote by x∗. Now, substituting 𝜆x for x in the function to be minimized, consider the inequality

𝜆x
Ψ(x)

≤ 𝜆 (34)

on (0,∞). If 𝜆 < 𝜆crit, it has no solutions, since 𝜆x∕Ψ(x) ≥ 𝜆crit. Hence Ψ(x) < x for x > 0, demon-

strating that Ψ has no fixed points other than the trivial x = 0. If 𝜆 = 𝜆crit, then (34) has exactly one

solution. The solution is x = x∗∕𝜆crit, and equality occurs in (34), making it a fixed point of Ψ. Since

x∗ < 𝜆crit, the solution lies in (0, 1). Hence Ψ has one nontrivial fixed point in this case. If 𝜆 > 𝜆crit,

then (34) has an interval of solutions [a, b], which contains x∗∕𝜆 ∈ (0, 1). It is easy to check that a > 0

and b < 1. Thus Ψ(x) lies below the line y = x on (0, a), then sits above it on (a, b), and then lies below

it on (b, 1], giving Ψ fixed points a, b in addition to 0.

Now, assume that 𝜆 > 𝜆crit, so that Ψ has fixed points 0, a, and b. Question 1.1 asks whether there

exists a classification of trees into states {0, 1} such that a tree has state 1 if and only if it has at least two

children of state 1, and a Galton-Watson tree with Poi(𝜆) child distribution has state 1 with probability

a. In other words, the question is whether a is rogue or interpretable. By Lemma 5.3, we can answer

this question by finding Ψ′(a). Since Ψ(x) lies under the curve y = x up until x = a and then rises above

it, its derivative at x = a exceeds 1. Therefore a is a rogue solution by Lemma 5.3 and Theorem 1.7.

The following result uses a similar approach:

Proposition 5.6. The highest and lowest fixed points of a monotone two-state automaton are always
interpretable.

Proof. If Ψ(1) = 1, then the highest fixed point is 1, which has the trivial interpretation t → 1.

Otherwise Ψ(1) < 1, and at the highest fixed point the graph of Ψ is either crossing from above the

line y = x to below, or it has y = x as a tangent line (note that Ψ is continuously differentiable). In

either case Ψ′(x) ≤ 1 at the fixed point, making it interpretable by Lemma 5.3 and Theorem 1.7. The

same argument shows that the smallest fixed point is also interpretable. ▪

5.2 More examples of two-state automata

We give some examples of tree automata for which a fixed point undergoes a phase transition from

interpretable to rogue as a parameter of the child distribution is varied. We also give a numerical

example to show that a two-state automaton can have many fixed points. As in the previous section,

we write Ψ(x) = y rather than Ψ(Bernoulli(x)) = Bernoulli(y) for two-state automata.

Example 5.7. Consider the automaton where a node is in state 1 if and only if it has zero children

in state 1, given formally by the map (n0, n1) → 1{n1 = 0}. The distributional map corresponding to

this automaton with Poi(𝜆) offspring distribution is

Ψ(x) = e−𝜆x.
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Notice that if we consider the function f𝜆(x) = e−𝜆x − x, then f ′′
𝜆
(x) = 𝜆2e−𝜆x > 0, showing that it is

a convex function. Moreover, f𝜆(0) = 1 and f𝜆(1) = e−𝜆 − 1 < 0 for all 𝜆 > 0. Hence f𝜆 has a unique

root in (0, 1), which tells us that there is a unique fixed point x(𝜆) of Ψ.

For this automaton, a node in state 0 has pivotal children if and only if it has exactly one child

in state 1 (whatever the number of 0-state children may be), and this child will be pivotal. A node in

state 1 has pivotal children if and only if it has at least one child, in which case every child will be

pivotal. If X0 denotes the total number of 0-state children and X1 the total number of 1-state children

of the root, then

E[𝓁1(Tpiv)] = E
[
1{X1 = 1} + X01{X1 = 0}

]
= 𝜆xe−𝜆x + E[X0]P[X1 = 0]
= 𝜆xe−𝜆x + 𝜆(1 − x)e−𝜆x = 𝜆e−𝜆x.

Thus, to determine if the fixed point is rogue or interpretable with Theorem 1.7, we have to determine

if 𝜆e−𝜆x(𝜆) ≤ 1.

Rewriting the equation x(𝜆) = e−𝜆x(𝜆), we find that

log x(𝜆) = −𝜆x(𝜆) ⇐⇒ y(𝜆) log y(𝜆) = 𝜆, (35)

where y(𝜆) = (x(𝜆))−1. Noting that the function u log u is strictly increasing over all u > 1 (which is

the range we care about), we conclude that 𝜆 > e if and only if y(𝜆) > e. In that case, from the first

equation of (35), we have

𝜆e−𝜆x(𝜆) = 𝜆x(𝜆) = log y(𝜆) > 1.

This shows that E
[
𝓁1(Tpiv)

]
> 1 for 𝜆 > e, and E

[
𝓁1(Tpiv)

] ≤ 1 for 𝜆 ≤ e. By Theorem 1.7 and

Proposition 2.6(a), the fixed point is interpretable for 𝜆 ≤ e and rogue for 𝜆 > e. This is illustrated in

Figure 5.

Example 5.8. Consider the automaton A on color set Σ = {0, 1}, where a node is in state 1 if and

only if it has at least one child in state 0 and at least one child in state 1. That is, the automaton is

the map (n0, n1) → 1{(n0 ≥ 1) ∧ (n1 ≥ 1)}. The distributional map for this automaton with child

distribution Poi(𝜆) is given by

Ψ(x) = 1 − e−𝜆(1−x) − e−𝜆x + e−𝜆. (36)

Note that

Ψ′(x) = −𝜆e−𝜆(1−x) + 𝜆e−𝜆x, (37)

and

Ψ′′(x) = −𝜆2e−𝜆(1−x) − 𝜆2e−𝜆x < 0, (38)

showing that Ψ is strictly concave. We observe that Ψ(0) = 0 and Ψ′(0) = 𝜆(1 − e−𝜆). Let 𝜆0 ≈ 1.35

be the unique solution to 𝜆(1 − e−𝜆) = 1. If 𝜆 ≤ 𝜆0, we have Ψ′(0) ≤ 1, and the graph of Ψ(x) stays

below the line y = x for all x > 0. Thus 0 is the only fixed point of Ψ(x) in this case. If 𝜆 > 𝜆0, then
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FIGURE 6 Plot for Example 5.8, showing the fixed point for the automaton assigning the parent state “1” if and only if it has

at least one “0” child and at least one “1” child with a Poi(𝜆) child distribution [Color figure can be viewed at

wileyonlinelibrary.com]

Ψ′(0) > 1. Since Ψ(1) = 0, this implies that the graph of Ψ(x) rises above the line y = x and then dips

back below it, giving rise to a nontrivial fixed point we denote by x(𝜆).
Let Xi be the number of children of the root in state i. We summarize all configurations in which

any of these children are pivotal:

Root in state 0

• X0 ≥ 2, X1 = 0: X0 pivotal children

• X0 = 0, X1 ≥ 2: X1 pivotal children

Root in state 1

• X0 = X1 = 1: two pivotal children

• X0 ≥ 2, X1 = 1: one pivotal child

• X0 = 0, X1 ≥ 2: one pivotal child

Thus,

E[𝓁1(Tpiv)] = E
[
X01{X0 ≥ 2,X1 = 0} + X11{X0 = 1,X1 ≥ 2}

+ 1{X0 = X1 = 1} + 1{X0 ≥ 2,X1 = 1} + 1{X0 = 1,X1 ≥ 2}
]

= e−𝜆x𝜆(1 − x)
(
1 − e−𝜆(1−x)) + e−𝜆(1−x)𝜆x

(
1 − e−𝜆x)

+ P[X0 ≥ 1,X1 = 1] + P[X0 = 1,X1 ≥ 1]
= 𝜆

(
e−𝜆x + e−𝜆(1−x) − 2e−𝜆

)
.

Substituting from (36), we get

E[𝓁1(Tpiv)] = 𝜆
(
1 − x(𝜆) − e−𝜆

)
.

For 𝜆 = 𝜆c, we have x(𝜆) = 0 and E[𝓁1(Tpiv)] = 𝜆0(1 − e−𝜆0) = 1. With some laborious calculus,

one can establish that as 𝜆 increases, the quantity E[𝓁1(Tpiv)] decreases and then increases, reaching

1 at 𝜆1 ≈ 2.30. Thus, by Theorem 1.7 and Proposition 2.6(a), this fixed point x(𝜆) is interpretable for

𝜆 ∈ [𝜆0, 𝜆1] and rogue for 𝜆 > 𝜆1. A plot showing the behavior of the fixed points is given in Figure 6.

Example 5.9. Finally we present an example to demonstrate that the automaton may have many

fixed points. Consider the automaton A on color set Σ = {0, 1}, where a node is in state 1 unless it

has x children in state 1 for x ∈ {1, 2, 3, 4, 5} ∪ {8, 9, 10, 11} in which case it is state 0. That is, the

http://wileyonlinelibrary.com
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FIGURE 7 A plot of the fixed points for the automaton in Example 5.9 with Poi(𝜆) child distribution [Color figure can be

viewed at wileyonlinelibrary.com]

automaton is the map (n0, n1) → 1{(n1 ∈ {0, 6, 7}) ∨ (n1 ≥ 12)}. The plot of the fixed points for this

automaton with child distribution Poi(𝜆) is shown in Figure 7.

5.3 First-order interpretations

As we mentioned in the introduction, the papers [24, 25] investigated tree automata and fixed points

corresponding to statements of first-order logic. The goal of [25] is to study the probability that T ∼
GW(Poi(𝜆)) satisfies some given first-order sentence of quantifier depth k. Recall from Section 1.9 that

there is an automaton on the set of rank k types and an interpretation given by sending a tree to its type.

Assuming that the child distribution is Poi(𝜆), the automaton distribution map for the tree automaton is

then shown to be a contraction [25, Theorem 3.2], which implies that it has a unique fixed point. This

fixed point is also shown to be a smooth function of 𝜆 [25, Theorem 2.4]. Finally, this is applied to the

original problem: since the set of trees satisfying a given first-order sentence 𝜑 of quantifier depth k is

the union of a collection of rank k types, the probability that T satisfies 𝜑 is also a smooth function of 𝜆.

All of this work was done with no explicit mention of the concept of interpretations. Our goal here

is to put it more comfortably into this paper’s framework. We call 𝜄∶  → Σ a first-order interpretation
if each set of trees {t ∈  ∶ 𝜄(t) = 𝜎} for 𝜎 ∈ Σ can be defined in the first-order language described in

Section 1.9.

To avoid reproving results in [24, 25], we continue to assume that 𝜒 ∼ Poi(𝜆), but we expect that

the results should hold for general child distributions. As usual, the assumption that a fixed point has

no zero entries causes no loss of generality, since the set Σ can be shrunk and the automaton considered

as one on a smaller set of states.

Theorem 5.10. Assume that 𝜒 ∼ Poi(𝜆), and let Σ be any finite set of states. Let 𝜄∶  → Σ be an
interpretation of an automaton A corresponding to a fixed point 𝜈, which we assume has strictly positive
entries. If 𝜄 is a first-order interpretation, then 𝜈 is the only fixed point of the automaton distribution
map.

Proof. Let  taut
n ⊆  consist of all trees t on which 𝜄(t) is tautologically determined by t|n. That is,

 taut
n consists of all trees t such that 𝜄(t) = 𝜄(t′) for all t′ ∈ [t]n. It follows from [25, Lemma 5.6] that

lim
n→∞

P[T ∈  taut
n ] = 1. (39)

Let (t, 𝜏) be an arbitrary tree whose coloring is compatible with the automaton A. We claim that

if t ∈  taut
n , then 𝜏(Rt) = 𝜄(t). Indeed, condition on T ∈ [t]n. Under this conditioning, the vector(

𝜄(T(v))
)

v∈Ln(t)
is i.i.d. 𝜈. Since 𝜈 has strictly positive entries, this vector takes on each value in Σ𝓁n(t)

http://wileyonlinelibrary.com
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with positive probability. Since t ∈  taut
n , we have 𝜄(T) = 𝜄(t) a.s. But 𝜄(T) is given by iteratively

applying the automaton to
(
𝜄(T(v))

)
v∈Ln(t)

, from which we can conclude that applying the automaton

in this way to any vector in Σ𝓁n(t) yields 𝜄(t). Thus, since 𝜏(Rt) is given by applying the automaton to(
𝜄(t(v))

)
v∈Ln(t)

, it too is equal to 𝜄(t).
Now, suppose that 𝜈′ is another fixed point of the automaton map, and let (T , 𝜔) be the random

state tree associated with 𝜈′. If T ∈  taut
n for any n, then 𝜔(RT ) = 𝜄(T) by the claim we have just proved.

By (39), it holds with probability one that T ∈  taut
n for some value of n (observe that T ∈  taut

n forms

an increasing sequence of events). Hence 𝜔(RT ) = 𝜄(T) a.s. Thus 𝜔(RT ) ∼ 𝜈, since 𝜄(T) ∼ 𝜈. But by

the definition of the random state tree, 𝜔(RT ) ∼ 𝜈′, demonstrating that 𝜈 = 𝜈′. ▪

6 FURTHER QUESTIONS

The most straightforward open problem is to extend Theorem 1.7 to 3 ≤ |Σ| < ∞. Theorem 1.8 already

provides one direction of the theorem, leaving the critical and supercritical cases. As we discussed in

Remarks 3.6 and 4.16, it might be possible to adapt the two-state proofs. In both cases, the difficulty is

that the pivot tree need not be positive regular. In fact, it seems to us that when the pivot tree is positive

regular, all proofs go through as is, and Theorem 1.7 holds in general for |Σ| < ∞ (though we have

not checked every detail).

Beyond this, two generalizations interest us. First, extending the results to infinite state spaces

would allow the theory to address situations like those considered in [20]. Second, one could consider

randomized automata: give each vertex v an independent source of randomness Xv and then allow

the automaton to determine the state of a vertex from the states of its children together with Xv. This

situation often arises in practice and is the model considered in [1]. Extending the theory to this case

might yield answers to questions about endogeny, as discussed in Section 1.9.

In a different direction, we wonder what configurations of fixed points are possible. For example,

when 3 ≤ |Σ| < ∞, can an automaton have infinitely many fixed points? (This can be ruled out when|Σ| = 2 by arguing that the automaton distributional map is analytic.) In the case |Σ| = 2, for any

specified finite set of rogue and interpretable fixed points, is there an automaton and a child distribution

to match them? Even restricting ourselves to two-state monotone automata, it is not clear which sets

of rogue and interpretable fixed points can occur.

Section 5.3 also raises some questions. For example, Theorem 5.10 provides a condition on an

interpretation that makes the corresponding tree automaton have a unique fixed point. This suggests

the problem of giving conditions on the tree automaton itself that force its automaton distribution map

to have a unique fixed point.
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