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1 | INTRODUCTION

3

Abstract

Let B be the set of rooted trees containing an infinite binary
subtree starting at the root. This set satisfies the metaproperty
that a tree belongs to it if and only if its root has children u
and v such that the subtrees rooted at # and v belong to it. Let
p be the probability that a Galton-Watson tree falls in /3. The
metaproperty makes p satisfy a fixed-point equation, which
can have multiple solutions. One of these solutions is p, but
what is the meaning of the others? In particular, are they
probabilities of the Galton-Watson tree falling into other sets
satisfying the same metaproperty? We create a framework
for posing questions of this sort, and we classify solutions to
fixed-point equations according to whether they admit prob-
abilistic interpretations. Our proofs use spine decompositions
of Galton-Watson trees and the analysis of Boolean functions.
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A seminal problem in discrete probability is to determine the probability of survival of a Galton-Watson
tree. For the sake of simplicity, suppose that the offspring distribution is Poi(4), and denote the tree
by T;. Let Ty denote the set of infinite rooted trees. Let p denote the survival probability, given by
P[T, € Ti]. The typical solution gives p as a fixed point of a map as follows: Let Z be the number
of children v of the root of T; such that the subtree rooted at v is infinite. Each subtree is infinite with
probability p, just like the original tree. Thus Z ~ Poi(pA) by Poisson thinning. Since T} is infinite if
and only if Z > 1,

p=1—e?. (1)
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As is well known [3], when A > 1, this equation has two solutions, and the positive one is the true
value of p. In arriving at (1), the only property of T;,s we used was that ¢ € Ty if and only if there
exists some child v of the root of ¢ such that the subtree descending from v is in T;,¢. Let us call this the
metaproperty of Tiy¢ that yields (1).

Again, let T, be a Galton-Watson tree with child distribution Poi(4). It is natural to ask if there is
some other set of trees 7y satisfying the metaproperty such that P[T,; € 7p] is the other solution to (1),
which is 0. A bit of thought reveals that 7y = @ fits this criteria. Vacuously, t € @ if and only if the
root of ¢ has a child whose subtree is in @, and clearly P[T, € @] = 0. Thus, the metaproperty yields
an equation with two solutions, and each solution gives the probability under the Galton-Watson mea-
sure of a set of trees satisfying the metaproperty. Indeed, we will later see that Tj,r and @ are the only
two sets of trees satisfying the metaproperty, up to measure zero changes under the Galton-Watson
measure with child distribution Poi(4) (see Remark 1.2 for more discussion on measure zero
changes).

This work was motivated by a nearly identical example that is more difficult to resolve. This time,
we consider sets of trees /3 where ¢t € I3 if and only if the root of ¢ has at least two children « and v
whose subtrees are in /3. Let us call this metaproperty the at-least-two rule. Suppose p = P[T; € B]
for some set of trees /3 obeying the at-least-two rule. Invoking Poisson thinning and self-similarity as
in the first example, we get

p=1-e1+ ip). )

As explained in [23], which investigated the existence of a giant 3-core in a random graph, there is
a critical parameter A & 3.35 where this equation changes behavior (see Figure 1). For all 4 > 0,
there is a trivial solution to (2) given by p = 0. When A < A, this is the only solution. At 4 = A,
a second solution emerges, and when 4 > A there are three solutions. (We prove these statements
in Example 5.5.) Let By be the set of all trees that contain an infinite binary subtree starting at the
root. Note that 3y satisfies the at-least-two rule. It was shown by Dekking [8] (also see [22]) that
P[T; € By] is the largest solution to (2) when 4 > A, shown in green in Figure 1. An immediate
intuition as to why the green curve is the one corresponding to P[T; € By] is that this is the only curve
which is increasing in A. Another set of trees obeying the at-least-two rule is the empty set. Obviously,
P[T; € @] = 0, the smallest solution to (2), shown in red in Figure 1. Joel Spencer posed the question
that set this work in motion: is there a set of trees to go with the middle solution (shown in blue in
Figure 1)? More formally, the question asks the following:

Question 1.1 (Spencer). Let T, be a Galton-Watson tree with child distribution Poi(4). Say that a
set of trees BB follows the at-least-two rule if r € B if and only if the root of ¢ has two children u and v

o

S
N

FIGURE1 A plot showing all p satisfying (2) for given A. For A < A.; =~ 3.35, the only solution to (2) is p = 0. For A = Ay,
there are two solutions for p, and for A > A, there are three [Color figure can be viewed at wileyonlinelibrary.com]
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such that the subtrees rooted at u and v are also in /3. Suppose that 4 > A Does there exist a set of
trees BB following the at-least-two rule such that P[T; € 3] is the middle solution of (2)?

We answer this question in the negative. More generally, our main result, Theorem 1.7, gives
the answer to any question of this form. In the language of this paper, it is a criterion for which
fixed points of tree automata admit interpretations. In this example, the tree automaton refers to
the at-least-two metaproperty. For the Galton-Watson child distribution Poi(4), the fixed points of
this automaton are the solutions to (2). An interpretation corresponds to a set of trees following the
metaproperty given by the automaton. Theorem 1.7 shows that By and @ are the only two sets of trees
following the at-least-two rule, up to measure zero changes under the Galton-Watson measure with
child distribution Poi(4).

Remark 1.2. It is important that we consider sets of trees satisfying a metaproperty only up to mea-
sure zero changes under a Galton-Watson measure with a given child distribution. For example, let 77
be the set of trees that contain an infinite binary subtree somewhere within them (i.e., not necessarily
starting from the root). This set satisfies our original metaproperty: a tree is in 7 if and only if its root
has at least one child initiating a tree in 7. But on its face, 7 is neither 7i,s nor @&, which we claimed
were the only sets of trees satisfying this metaproperty. The solution to this apparent paradox is that
from the perspective of the Galton-Watson tree T, with child distribution Poi(4), the set 7 is in fact
equivalent to either Tir or @. For 4 < Ay, there is zero probability that T lies in 7, and hence T is
a measure zero change away from @. For A > A, the tree T, falls in 7 with probability 1 given that
T, is infinite. Hence 7 is a measure zero change away from 7, in this case.

1.1 | Summary of main result

We start by giving a nonrigorous version of our main result, since it will take some effort to state all the
definitions we need for a formal statement. A tree automaton is a set of rules determining the color of a
parent vertex in a tree from the color of its children. Let X be a finite set representing the possible colors.
The automaton corresponding to the at-least-two rule acts on colors £ = {0, 1}, assigning color 1 to
the parent if and only if it has at least two children of color 1. A fixed point of a tree automaton is a
probability distribution v on X such that if a Galton-Watson tree is generated and the children of the
root are assigned i.i.d.-V colors, then the color of the root induced by the automaton is also distributed
as v. For the example presented earlier, the fixed points have the form Bernoulli(p), where p satisfies
(2). To define an interpretation of a tree automaton, suppose we have amap 1: 7 — X, where T is
the space of rooted trees. Now, imagine coloring each vertex v in an arbitrary tree by applying : to the
subtree rooted at v. If the resulting coloring of the tree is always consistent with the rules given by the
tree automaton, then we call the map an interpretation of the automaton. We saw two interpretations
in our earlier example: the first mapped a tree to 0 or 1 depending on whether it contained an infinite
binary tree starting at its root, and the second mapped all trees to 0.

It is not hard to see that the color of a Galton-Watson tree assigned by an interpretation of an
automaton must be distributed as a fixed point of the automaton (see Lemma 1.4). For example, if 7 is
the first interpretation described above and T is a Galton-Watson tree with child distribution Poi(A),
then 1(T) is distributed as Bernoulli(p;), where p; is the largest solution to (2). Our main result flips
this around, letting us determine for a given fixed point Vv whether there exists an interpretation 1 such
that «(T) ~ V.

The criterion is based on an object we call the pivor tree. Essentially, first generate the
Galton-Watson tree to level n. Then, randomly color the vertices at level n by sampling independently
from the given fixed point. Apply the automaton to color the vertices at levels O to n — 1. Now, call a
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FIGURE 2 The first three levels of a tree colored consistently with the at-least-two automaton given in Example 1.3. Red
denotes state 0 and green denotes state 1. Vertices in bold are pivotal, meaning that flipping their colors and recoloring above
them according to the automaton causes the root to flip colors [Color figure can be viewed at wileyonlinelibrary.com]

vertex pivotal for this coloring if altering its color and recoloring all of its ancestors by the automaton
alters the color of the root (see Figure 2). The set of all pivotal vertices to level n then forms a random
subtree of the original Galton-Watson tree. There is a natural way to extend this construction beyond a
fixed n to give a (possibly) infinite tree, the pivot tree, which turns out to be multitype Galton-Watson.

Loosely speaking, the main result of this paper is that when |X| = 2, a given fixed point of a tree
automaton has a corresponding interpretation if and only if the associated pivot tree is subcritical or
critical (or equivalently, if it is almost surely finite). If so, then it has precisely one interpretation, up
to measure zero changes with respect to the Galton-Watson measure. This criterion is quite practical
to check, and we do so for the at-least-two automaton and some other examples in Section 5.

When 3 < |Z| < o0, we prove only that a subcritical pivot tree implies existence of an interpreta-
tion. We believe that our approach in this paper can be adapted to prove that a supercritical pivot tree
implies nonexistence of an interpretation, but there are several complications (see Remark 4.16).

We now proceed to define these terms more formally. We then state our main results in Section 1.8.

1.2 | Notation

We define T to be the set of locally finite, ordered, rooted trees (ordered means that an ordering is given
for the children of each vertex). This set can be viewed as a metric space (see [19, Exercise 5.2]), which
we endow with its Borel o-algebra to make a measure space. Our results will be for Galton-Watson
trees with general child distributions, sometimes under mild moment conditions. We will typically
denote the tree by T and the child distribution by y. We always assume that y puts positive probability
on {2,3,...},sothat T is a true tree. For any tree t € T, we let V(¢) denote its vertex set and R, its root.
Let #(v) denote the subtree of  made up of v and its descendants. We let ¢|,, denote the tree obtained by
truncating 7 beyond its nth generation and [¢], C 7 the set of trees that match 7 up to the nth generation,
where the root is considered to belong to generation 0. Let L,(#) denote the set of all nodes of ¢ in
generation n, and let £,,(f) = |L,(¢)|. We abbreviate L,(T) by L, and £,,(T) by ¢,.

We will often work with colored trees, defined as a pair (¢, 7) consisting of a tree t € 7 together
with a coloring 7 : V(f) - X. We denote the space of colored trees as T, taking the set of colors £
as fixed in advance. For (¢,7) € T, let [¢, 7], C Teo denote the set of colored trees that match (¢, 7)
up to the nth generation.

1.3 | Tree automata

Let Z denote a finite set, to be thought of as colors or states. A tree automaton on the states X is
essentially a set of rules for determining the state of a parent in the tree from the states of its chil-
dren. Formally, we define an automaton as a map A : Ng — X, where Ny = N U {0}. The vector
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n= (n(7 S Z) € Ng represents the count of children in each state, and A(ii) represents the state
assigned to the parent.

Example 1.3 (At-least-two automaton). We define an automaton A on states X = {0, 1} that assigns
state 1 to the parent if and only if at least two of its children have state 1. Formally, the automaton is
the map (ng, n;) — 1{n; > 2}. As we mentioned, this automaton is implicit in Question 1.1.

Tree automata are of interest in logic and theoretical computer science. In these settings, they
typically act on trees with vertex labels rather than plain trees, and there are some restrictions on
them. See [7] and [17, Chapter 7] for more details on automata for finite trees, and [27, Section 6]
for more on infinite trees. Tree automata can be used to determine which sets of trees can be defined
by a given logic. For example, call a set of trees regular if there exists a tree automaton so that a tree
falls into the set if and only if the automaton assigns its root one of a set of accepted states. A set of
finite trees is definable in monadic second-order logic if and only if it is regular [17, Theorem 7.30,
Theorem 7.34]. A similar statement holds for infinite trees as well [27, Theorem 6.19]. We will revisit
logic in Section 1.9, after we state our results.

For a given tree t, we say that an assignment of colors 7: V(f) — X is compatible with the
automaton A if for every v € V(¢), we have

T(v) = A(), 3

where 71 = (n, . ¢ € X) and n, is the number of children of v that are colored ¢ under 7. If # is finite,
there is only one coloring compatible with A. At each leaf, this coloring takes the value A(0, ..., 0),
and then the automaton determines the colors of all other vertices. When ¢ is infinite, however, there
are typically many assignments compatible with a given automaton.

1.4 | Interpretations

An interpretation of an automaton is a deterministic classification of trees into the states of X such
that the state of a tree can be computed from the states of the subtrees descending from the children
of its root, according to the rules of the automaton. For example, assign a tree state 1 if it contains an
infinite binary subtree starting at its root, and assign it state O otherwise. This is an interpretation of
the at-least-two automaton of Example 1.3, since a tree ¢ has state 1 if and only if its root R, has at least
two children u, v with subtrees #(u), t(v) in state 1.

Formally, we define an interpretation as follows. Let y be a probability measure on the nonnegative
integers, and let GW(y) denote the Galton-Watson measure on 7 with child distribution y. We call a
measurable map 1 : 7 — X an interpretation of the automaton A under GW(y), if for a.e.-GW(y) tree
t € T, the coloring 7 : V() — X, defined as

(v) = 1(2(v)), forallv € V(1), “4)

is compatible with A. Typically, we will call 7 an interpretation of A without mentioning GW(y), since
the offspring distribution will be fixed throughout. For many interpretations, including our example
of assigning a tree 1 if it contains an infinite binary subtree from the root, the compatibility condition
holds for every tree in 7', and the measure GW(y) is irrelevant.

1.5 | Fixed points and their connections with interpretations

Let T ~ GW(y). If 1: T — X is an interpretation of the automaton A under GW(y), then the
distribution of (T is constrained by the self-similarity of 7. For example, if y ~ Poi(4) and 1 is
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an interpretation of the at-least-two automaton of Example 1.3, then (7)) ~ Bernoulli(p), where p
satisfies (2).

We now describe these constraints on the distribution of :(7') when 1 is an interpretation of a general
automaton A and T ~ GW(y). Let D denote the set of all probability distributions on X (as Z is finite, D
is a finite-dimensional simplex). We define amap ¥ : D — D that we call the automaton distributional
map corresponding to A and y, as follows. Fix X € D. Consider a random tree whose root has children
according to y. To each child, mutually independently, we attach a random state in X that follows the
distribution X. For every realization of this random procedure, we determine the state at the root using
the rules of the automaton A. We then set W(¥) to be the distribution of the random state thus induced
at the root.

Lemma1.4. LetT ~ GW(y). If1is an interpretation for the tree automaton A, then the distribution
of (T) is a fixed point of the automaton distribution map V.

Proof.  Let the distribution of (T)bey = (y, : 6 € X) € D. Let t: V(T) — X be the assignment
defined by 7(v) = «(T(v)) for all v € V(T), which is almost surely compatible with A by definition of
interpretation.

Under the labeling 7, the state of the root Ry is distributed as y, since (Rr) = «(T). On the other
hand, Ry has children according to the distribution y; each of these children has an independent copy
of T descending from it. So, from the definition of z, the children of Ry have i.i.d. labels distributed
as y. Hence the corresponding label at the root is ¥(¥), by definition of ¥. This shows that ¥(y) =y,
which is what we claimed. [

For all tree automata, the automaton distribution map ¥ has at least one fixed point. This holds
because ¥ is a continuous map from a finite-dimensional simplex to itself, and so the Brouwer
fixed-point theorem guarantees the existence of a fixed point.

For a given automaton A and child distribution y, suppose V is some fixed point of ¥. We call
1 an interpretation of the automaton A corresponding to v if 1 is indeed an interpretation of A and
«(T) ~ v. It is not hard to show that up to measure zero changes, there is at most one interpretation
corresponding to a given fixed point (see Proposition 1.6). If such an interpretation exists, we call v
interpretable; otherwise, we call it rogue. Our main results are a criterion for determining whether a
given fixed point is rogue or interpretable when |X| = 2 (Theorem 1.7), as well as a sufficient condition
for interpretability for |£| > 3 (Theorem 1.8). To state this criterion, we must define the two randomly
colored trees explained in the next two sections.

1.6 | The random state tree

Fix a child distribution y, automaton A, and a fixed point V of the resulting automaton distributional
map P. The random state tree associated with V is a colored Galton-Watson tree. We write it as (T, w),
where w : V(T) — X is a random coloring of the tree 7. It is defined by the following properties:

i) T ~GW(y);
(ii) for every n, the conditional distribution of (w(v) TVE Ln) given T, is i.i.d. v;
(ili)  is almost surely compatible with A.

Proposition 1.5.  These properties uniquely determine the distribution of (T, ).

Essentially, the random state tree is defined up to height n by generating the first n levels of T,
coloring the leaves i.i.d. V, and then coloring the first n— 1 levels of the tree according to the automaton.



802 Wl LEY JOHNSON ET AL.

The distributions of colored trees generated by this procedure turn out to be consistent for different
values of n, which is a consequence of V being a fixed point of ¥. Kolmogorov’s extension theorem
then shows the existence of the distribution of the entire colored tree. This is shown in detail in the
proof of Proposition 1.5, which we give in Section 2.

The coloring of the vertices of the random state tree is reminiscent of an interpretation, which
also yields a coloring of the tree via (4). But note that for a given fixed point of ¥, the random state
tree coloring always exists, and it is a random coloring (on top of the randomness of the tree). On the
other hand, given a fixed point of ¥, there may be no interpretations associated with it; if there is an
interpretation, the coloring it yields is deterministic given the tree.

1.7 | Definition of the pivot tree

We now describe the pivot tree, leaving its formal definition to Section 2.3. Consider some vertex of
(T, ), and imagine changing its color and then recoloring all the vertices above it according to the rule
of the automaton. We call this recoloring operation a switching. If the switching changes the color at
the root, then we call the vertex pivotal for (T, w). It is not hard to see that a vertex can only be pivotal if
its parent is pivotal. The subgraph of T induced by the pivotal vertices is thus a subtree, which we call
the pivot tree Tpiy. As we will see in Proposition 2.4, the pivot tree is a multitype Galton-Watson tree.

We mention that the pivot tree is a bit more complicated when there are more than two states,
because a vertex can change colors in more than one way. However, to state Theorem 1.8, we need
only use the pivot tree with maximal target set, in which a vertex is pivotal if its color can be switched
to any other color with the result of changing the color of the root in any way.

1.8 | The main result

For all of our results, fix a child distribution y, an automaton A on a finite set of states X, and let
¥ : D — D be the automaton distributional map corresponding to A and y, defined in Section 1.5.
First, as we mentioned, there is at most one interpretation for each fixed point:

Proposition 1.6. If 1,1/ : T — X are interpretations of A under GW(y) corresponding to the same
fixed point of the automaton distribution map, then 1 =1’ a.e.-GW(y).

Now, we give our main results. Let V be a fixed point of ¥. We assume that the support of the
probability distribution V is all of X; that is, as a vector, all entries of V are nonzero. This is in fact no
restriction, since if V is supported on a subset of =, we can simply remove the extra elements of = and
view A as an automaton on this smaller set. Recall that the pivot tree associated with V is a multitype
Galton-Watson tree, which will be proven in Proposition 2.4. We define a multitype Galton-Watson
tree to be subcritical, critical, or supercritical depending on whether its matrix of mean offspring sizes
has spectral radius smaller than, equal to, or greater than 1 (see Section 2.4).

Theorem 1.7. Suppose that |X| = 2 and y has finite logarithmic moment. Then V admits an
interpretation if and only if the pivot tree associated with v is subcritical or critical.

This theorem completely classifies fixed points as interpretable or rogue when |Z| = 2. It is practi-
cal to apply (see Section 5 for some examples), since it only takes a computation to check the criticality
of a given Galton-Watson tree.

When |Z| > 3, we give only a sufficient condition for existence of an interpretation.
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Theorem 1.8.  If the pivot tree with maximal target set associated with V is subcritical, then V admits
an interpretation.

Our full version of this result, Proposition 3.1, is actually slightly stronger and applies in some
cases when the pivot tree is critical (see Remark 3.6).

1.9 | Connections to other work

This work has some concrete connections with mathematical logic. We start by defining first-order
and monadic second-order logic on trees. A sentence in the first-order language for rooted trees is a
finite combination of the following:

e aconstant symbol R representing the root;

o a function 7 where 7(v) represents the parent of vertex v;
e arelation =, denoting equality of vertices;

o the Boolean connectives;

o existential and universal quantifications over vertices.

For example, a valid first-order sentence is that some vertex has exactly one child, which is expressed
in the formal language by

13y (O =9A (2@ =x = z=V)).

The monadic second-order language adds

¢ existential and universal quantifications over sets of vertices;
o the relation €, denoting set membership.

For example, the following sentence states that the tree is infinite:

35 Vx <(x€ $) = (EW=DAGE S))).

The quantifier depth of a sentence in either language is the maximal depth of nesting of existential and
universal qualifiers. In the example above, the quantifier depth is 3.

Using Ehrenfeucht games, one can partition the set of rooted trees into finitely many types by the
relation that two trees have the same type if they have the same truth value for all first-order sentences
of quantifier depth at most & (see [17, Chapter 3]). Call this partition the rank-k types. One can do the
same replacing first-order logic with monadic second-order logic, producing the MSO rank-k types
[17, Section 7.2]. In both cases, one can deduce the type of a given tree ¢ from the types of the trees
rooted at the children of the root of . This gives rise to tree automata on the set of rank-k and MSO
rank-k types, both of which have interpretations given by mapping a tree to its type.

In [24,25], this automaton is investigated for the first-order case. The most fundamental result of
[25] is that its automaton distribution map is a contraction and hence has a unique fixed point. As a
consequence, since the at-least-two property has multiple fixed points, the property of a tree containing
an infinite binary tree starting from its root cannot be expressed in first-order logic. We discuss this
further in Section 5.3. Our initial motivation for this paper was to make sense of the meaning of multiple
fixed points.

Our work also has some connections to the theory of recursive distributional equations (RDEs) as
developed by Aldous and Bandyopadhyay [1]. A prototypical example of an RDE is for the height of
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a Galton-Watson tree. Given a child distribution, let N be the number of children of the root. Then the
height of the tree H satisfies the distributional equation

Hi 1 4+ max(Hy, ..., Hy),

where H,, H,, ... are independent copies of H.

For a given tree automaton, the automaton distribution map ¥ defines an RDE. For any choice of
fixed point v, the random state tree (7', w) is an example of an object introduced by Aldous and Bandy-
opadhyay called a recursive tree process (RTP). RTPs are classified as endogenous or nonendogenous,
which for (7', w) corresponds to whether w(R7) is measurable with respect to 7. In Proposition 2.2,
we show that this is equivalent to interpretability of v. Thus, Theorems 1.7 and 1.8 can be viewed as
criteria for the endogeny of an RTP, for RTPs in a certain class. This work or extensions of it might
prove useful, as the endogeny of RTPs is an actively pursued topic (see [2,4, 13, 16], for example).

Two very recent papers have a similar flavor as ours. In [6], the authors consider critical
Galton-Watson trees conditioned to have n vertices. Each vertex of the tree is given a label from a finite
set. The label of a parent is a function of the labels of the children along with an independent set of
randomness. (This is also the case with Aldous and Bandyopadhyay’s definition of a RTP.) The main
result of the paper is a limit theorem for the distribution of the label of the root as n — 0.

The paper [20] considers Galton-Watson trees labeled by elements of [0, 1], cut off at level 2n.
Leaves are assigned independent labels sampled uniformly from [0, 1]. Then, the label at a parent at an
even generation is the minimum of its children’s labels; at an odd generation, it is the maximum of its
children’s labels. This models a game in which two players take turns, one trying to make the score big
and one trying to keep it small. The paper classifies possible limit distributions for the label at the root
as n — oo. It also investigates endogeny, the question of whether the value at the root is determined
by the structure of the tree.

1.10 | Outline

In Section 2, we first establish basic properties of interpretations, fixed points, the random state tree,
and the pivot tree used throughout this paper. In Section 3, we prove the first direction of Theorem 1.7,
existence of an interpretation when the pivot tree is almost surely finite. The main tool for this is
the Kahn-Kalai-Linial inequality from the theory of Boolean functions [14]. The other direction of
Theorem 1.7 is proven in Section 4 using the spine decomposition technique pioneered by Lyons,
Peres, and Pemantle [18]. Finally, in Section 5, we apply these results to answer Question 1.1. We also
give examples exhibiting a phase transition between interpretable and rogue for a fixed point as the
child distribution of the tree is varied. In Section 6, we discuss some open questions.

2 | FOUNDATIONAL PROPERTIES OF OUR OBJECTS

In this section, we fix a child distribution y, an automaton A on a set of states X, and a fixed point v
of the automaton distributional map ¥ : D — D determined by A and y. We will demonstrate some
of the basic properties of fixed points, interpretations, the random state tree, and the pivot tree.

2.1 | The random state tree

We now give the proof of Proposition 1.5, establishing the existence of the random state tree (7, w)
defined in Section 1.6. We then show in Proposition 2.1 that it is a multitype Galton-Watson tree.



JOHNSON ET AL. WI LEY 805

Proof of Proposition 1.5. To invoke the Kolmogorov extension theorem [15, Theorem 6.16], we
must construct a sequence of random variables (7}, w,,) such that T, is the truncation to level n of a
GW(y)-distributed tree, the distribution of (@,(v))er,(r,) conditional on T, is i.i.d.-v, the values of
w,(v) forvinlevels 0, ...,n — 1 are as given by the automaton, and the truncation of (7},+1, ®,+1) ton
levels is distributed as (7}, ®,). (Formally speaking, to apply the Kolmogorov extension theorem, we
view labeled trees as a sequence of their finite truncations, but we will ignore these details.)

To construct (7, ®,), we simply define T, as the truncation of a Galton-Watson tree, then color
the level n vertices i.i.d.-v, and then color levels 0, ..., n — 1 of the tree according to the automaton.
The crux of the proof is showing that the truncation of (7,41, @,+1) to level n is distributed as (7, w,,).
Clearly, T,+1|, is distributed as T;,, and the coloring given by w,4; on levels 0, ... ,n — 1 of T4 1], is
as induced by the automaton. We need only show that conditional on 7,4 |,, the labeling w4 assigns
i.i.d. v colors to the level n vertices.

To see this, recall how we define W(X): We let a node have children according to distribution y. Each
of these children is assigned, mutually independently, a state according to distribution X. The induced
random state of the parent node, obtained via the rules of A, has distribution ¥(X). Meanwhile, each
v € L,(T,,4+1) has children according to y, these children receive i.i.d.-V labels from w,1, and @, 1(v)
is given by applying the automaton to these labels. Hence, the distribution of w,41(v) conditional on
Tyi1ln 18 P(V). As Vis assumed to be a fixed point, this equals V. The values of w,,1(v) are independent
for the different level n vertices v conditional on T, 1|,, showing that @, assigns i.i.d. V colors to the
level n vertices. [

Now that we have shown the existence of the random state tree, we prove that it is Galton-Watson
with types given by w.
Proposition 2.1.  The random state tree (T, w) is a multitype Galton-Watson tree.

Proof. Foroy,...,op € Z, let

/YCO](O-I’ et O-k) = )((k)‘_;(o'l) e U(Gk),

the probability that Ry has exactly k children and that their types in order are oi,...,o0;. Let
x2,(01, ..., 01) denote the conditional probability that Ry has exactly k children and that their types
in order are o4, ..., oy, given that w(Ry) = o. Thus, if o is the type according to A for a vertex with
children of types o1, ..., ok, then

Zeol(O1, -0 61) = V@) 25y (01, .. OF). 5)

Our goal is to prove that conditional on the first n levels of (T, ®), each vertex v at level n inde-
pendently gives birth according to the distribution given by )(C“;(lv). Fix any (¢, 7) € T¢o. By definition
of w,

P|(T.o) €[t elut| =P|[T €| ] ¥(zw),

UEL, (1)

recalling the notation [¢], and [, 7], defined in Section 1.2. For a vertex v € V(¥), let C(v) denote its
children in ¢. Since T is Galton-Watson with child distribution y,

P[(T,a))e[t,r]nﬂ] - <P[Te[t]n] I1 ;{(lC(v)I)) T ()

veL, (1) u€l, (1)
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=p[rem ] (;{(IC(V)I) I1 V(T(”))>

vEL, () ueC(v)

P[T € [l]n] H ZCOI(T(“)uGC(V))'

VveL,(f)

By (5), this becomes
P[(T.o) €[ttt =P[T € l1la| [ 76002 (rwhece)
veL, (1)

=P|To e lnel] TT 25 (ctuecw).

veL,(n)

which is exactly what we set out to prove. [

2.2 | Equivalent conditions for interpretability of fixed points

We start with a definition that will come up again elsewhere in the paper. Given a rooted tree ¢ and a
coloring of its level n vertices, we can repeatedly apply the automaton A to determine the state of the
root. We define A" : % — ¥ to be the result of doing so, considering it as a map from the colors at
level n to a color at the root.

Now, we show that a given fixed point can have at most one interpretation:

Proof of Proposition 1.6.  Viewing the statement of the proposition probabilistically, our goal is to
show that «(T) = //(T) a.s. Fix some ¢ € X. We first show that for any n,

P(T)=0c | Tl,| =P[/(T) =0 | T|,] as. (6)

To prove this, we start by observing that 1(T) is determined by (z(T(v)))veL . Indeed, since : is an
interpretation of A and thus respects the automaton,

(T) = A" ( (TOD) ey, )
Conditional on T|,, each tree T(v) for v € L, is independent and distributed identically to T. Let

v be the fixed point corresponding to 1 and . Since the distribution of «(T) is v, the distribution of
(«(T(v)))ver, conditional on T, is i.i.d. v. Therefore,

P[(T) =0 | T],] = P[A’}((a)(v))veL) =0 | Tln] as., %
recalling that by its definition, the coloring @ of the random state tree (7, w) also assigns colors to

the level n vertices by sampling independently from v, conditional on T|,,. The exact same reasoning
shows that

P/(T) =0 | 1] = P[a3( (o) o, ) = | Th] as.

which proves (6).
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Now, we take limits as n — oo to complete the proof. The o-fields generated by T'|,, form a filtration
that converges to the o-field generated by 7. Hence, by Lévy’s upward theorem,

P(T) =0 |T|,| > P[T) =0 | T| = 1{«(T) = o} as. ®)
and

P[/(T)=0c |Tl,| > P[/(T) =0 |T| =1{/(T) =0} as. )
By (6), these two limits are identical. We conclude that 1{«(T) = ¢} = 1{/(T) = o} as.
forall o € 3. .

The expression A7, ((a)(v))veL“) in (7) is equal to w(R7), since the coloring w is compatible with A.
Thus (7) can be written as

PT) = o | Tl.] = P|oR) = o | Tl,] as. (10)

which will come up again in the next proposition. Before we state it, we mention a standard char-
acterization of measurability [15, Lemma 1.13]: Let X and Y be random variables taking values in
measurable spaces X and Y, respectively, with X assumed to be a Polish space endowed with its Borel
o-algebra. Then the measurability of X with respect to Y is equivalent to existence of a measurable
mapf: Y — X suchthat X = f(Y) a.s.
Proposition 2.2.  The following statements are equivalent:
(i) V is interpretable;
(ii) foreacho € %,
lim Plw(Ry) = o | T|,| € {0,1} a.s.;
n—-oo

(iii) w(Rt) is measurable with respect to T;
(iv)  is measurable with respectto T.

Proof that (i) = (ii). Let 1 be the interpretation of automaton A corresponding to v (it is unique
up to GW(y)-negligible sets by Proposition 1.6). By (10),

lim Plw(Ry) = o | Tl,| = lim P[T) =6 | T|,] = 1{«(T) =} € {0,1} as.,

applying Lévy’s upward theorem as in (8). [

Proof that (ii) = (iii). Invoking Lévy’s upward theorem and then (ii),
PloRr) =0 | T| = lim Plo(R) = | T|,| € {0,1} ass. (11)
Thus, given the entire tree 7', we can almost surely determine whether w(R7) equals ¢ or not. Since

this is true for every ¢ € Z, the state w(Rr) is almost surely equal to a deterministic function of 7,
showing that w(Ry) is measurable with respect to 7. [
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Proof'that (iii) = (iv). Fix any v € L,. Let w|r(, denote the restriction of @ on the subtree T(v).
The conditional distribution of the colored tree (T(v), | T(V)) given T'|, is the same as the unconditional
distribution of (T, w). By (iii), we know that w(v) is measurable with respect to T(v) and is hence an
almost sure function of T(v). As T has countably many vertices, we can write @ as an almost sure
function of T. [

Proof'that (iv) = (i). Since w is measurable with respect to 7', so is w(Rr). Therefore there exists
a measurable map 1: 7 — X such that (7) = w(R7) a.s. We claim that this will serve as the desired
interpretation: Since w is almost surely compatible with A, the assignment v — 1(T'(v)) is also almost
surely compatible with A and is hence an interpretation. Furthermore, from the construction of w, we
know that w(R7) will be distributed as v, and hence so is (T). =

We mentioned at the end of Section 1.6 that the coloring of 7" given by w and the coloring given
by an interpretation via (4) are in general different. However, it is a consequence of Proposition 2.2
that when an interpretation exists for a given fixed point, the two colorings are the same:

Corollary 2.3.  The fixed point V is interpretable if and only if @ is measurable with respect to T. If
this occurs, then o(R,) is determined by t for GW(y)-a.e. t € T, and the resulting map T — X given by
t — w(R,) is the unique interpretation corresponding to the fixed point, up to a.e.-GW(y) equivalence.

Proof. The equivalence of interpretability and measurability of @ with respect to 7 is one part
of Proposition 2.2. In the proof that (iv) implies (i), it is shown that # — ®(R,) yields an inter-
pretation corresponding to the given fixed point. The uniqueness of this interpretation is given by
Proposition 1.6. [

The equivalences proven in this section reduce the question of whether a fixed point of ¥ is rogue
or interpretable to whether the coloring w in the random state tree (7, w) is random or deterministic
given T. This question is on its face no easier than the original one. To answer it, the key will be the
pivot tree, a random subtree of (7', w) that we discuss now.

2.3 | The pivot tree

We start with some notation. Suppose we are given a colored tree (¢, 7) with 7 compatible with A.
Suppose v € L,(f). Now, imagine that we change the color of v to some y € X\ {z(v)}, and then
recolor the vertices at levels 0, ..., n— 1 based on this. We say that we have swiftched the color atv toy,
and we denote the new coloring by 7"~7. Note that "~ is only defined on ¢|,,, and that it is consistent
with the automaton at levels O, ... ,n — 1.

Now, we give the full definition of the pivot tree. When |Z| = 2, this definition is simple: the pivot
tree of (¢, ) consists of the subgraph induced by all vertices v such that switching 7 at v changes the
value of the root. We denote the pivot tree of (T, w) by Ty, which we will prove shortly is indeed a
tree. See Figure 2 for an example.

When |Z| > 3, we sometimes demand that the color of the root change to one of a specific set of
colors, known as the target set, complicating the definition. Given (¢, 7) with 7 compatible with A, let
A C 2\ {r(R,)} represent this target set. Given ¢, 7, and A, for any v € V(¢) we define

B,={yeX: r""(R) € A}.

In other words, B, is the set of colors such that switching v to an element of B, changes the color of the
root to an element of .A. For any v € V(¢), we say that v is pivotal for (t, T) with target set A if B, # @.
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FIGURE 3 The automaton in this example is on {0, 1,2}. The state of a parent is given by the sum of its children’s states,
capped at 2. Bold vertices are pivotal with target set {0, 1}. Written to the right of each vertex v is the set B,, indicating which
states v can be switched to with the effect of changing the state of the root to a value in the target set

To define the pivot tree of (T, w), we must specify a target set for each possible state of the root.
Foreacho € X, let @ # A, C X\ {0} be a given (deterministic) set that we call the target set of
the root at state . The most basic example is to set A, = X \ {o} for all o, which corresponds to
requiring the color of the root to change without caring what it changes to. Let A = (A;)sex. We
define the pivot tree, Tpiy = Tpiv(A), as the subgraph of T induced by all vertices pivotal for (T, @)
with target set Aur,). The pivot tree is measurable with respect to (T, w); that is, Ty is a measurable
function of (T, w). Also, observe that this definition works in the || = 2 case as well. Here, there is
only one possible choice of A, and either B, = @ or B, is a singleton set made up of the opposite
color as w(v).

Proposition 2.4.  For given target sets (Ay)ses, assign the type (w(v); B,) to each vertex v € V(T).
With these types, both T and Ty, are multitype Galton-Watson trees.

Proof.  We start with proof for T. Let &, denote the o-algebra generated by T'|, and by the types
(w(v); B,) for vertices v up to level n. We will refer to these as augmented types, in contrast with the
unaugmented types given by o alone.

We must show that conditional on %, the vertices at level n independently give birth accord-
ing to their augmented types. First, we observe that the values of B, for v in T|, are determined by
the first n levels of (T, w). Hence, conditioning on &, is the same as conditioning on the first n lev-
els of (T, w). Thus, by Proposition 2.1, conditional on &, each vertex v at level n independently
gives birth to children whose number and unaugmented type are determined by the unaugmented
type of v.

Now, we just need to extend this statement to the augmented types. The key fact is the following:
Let uy, ..., uy be the children of some node v. Then for each i = 1, ..., k, the set B, is determined by
w(uy), ...,o(u;) and B,. Indeed, from w(u,), ..., ®(u;), we can determine the effect on the color of v
of changing u; to have any given color. From B,, we know whether the change will alter the color of
the root to have a value in A, ,). Thus we can determine B,,,.

Let C(v) denote the children of a vertex v, as in Proposition 2.1. From the fact above, conditional
on &, the distribution of (Bu ‘u€E C(v)) for any v € L, is determined by (w(v); B,). This completes
the proof that T is multitype Galton-Watson with the augmented types.

To prove the statement for Tp;,, we first observe that Ty, is indeed a tree, since if a vertex u has
B, # @, then its parent v evidently satisfies B, # @. Thus, Ty is the tree formed by ignoring vertices
of certain types in the Galton-Watson tree 7', which always creates another Galton-Watson tree. m

See Figure 3 for an example of a pivot tree when |X| > 3. In general, when we refer to Ty, as
a Galton-Watson tree from now on, we mean with types given as in Proposition 2.4. When |Z| = 2,
since either B, = @ or B, is a singleton set for each v, we can think of the type (w(v); B,) as simply
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(v) along with an indicator on v being pivotal. Thus T, in this case is Galton-Watson with the types
given by w alone. Naively, one might think that (7}, @) would be Galton-Watson even when |Z| > 3.
We can see the problem with this in Figure 3. Let u be the 0-labeled vertex on the bottom level of the
tree, and let v be its parent. Vertex u is not pivotal for the given target set of the root (or indeed, for any
possible target set). However, for the subtree rooted at v, vertex u is pivotal for the target set {0,2}.
Thus, if we do not include the sets B,, in the information given by the types, the law of the progeny of
a vertex would depend not just on the type of the vertex but on its ancestors.

2.4 | Regularity properties of the pivot tree

For a given multitype Galton-Watson tree, define a matrix by setting M;; to the expected number of
offspring of type j for a parent of type i. We classify the process as subcritical, critical, or supercritical
depending on whether the spectral radius of M is smaller than, equal to, or greater than 1. If M" has
strictly positive entries for some choice of n, then the Galton-Watson process is called positive regular.
This says that it is possible for any type to have a descendant of any other type, and that no periodic
behavior occurs. The process is called singular if each type gives birth to exactly one child with prob-
ability one. Multitype Galton-Watson trees are nearly always considered under the assumption that
they are positive regular and nonsingular. Under this assumption, the process dies out with probability
one in the subcritical and critical cases, and it survives with positive probability in the supercritical
case. Regardless of the starting type, the expected size of the nth generation vanishes exponentially
in the subcritical case; remains of constant order in the critical case; and grows exponentially in the
supercritical case.

For a Galton-Watson tree without these assumptions, the situation is messier. To illustrate, con-
sider a process with two types A and B and matrix of means M = [(') ‘1’] for a > 0. The expected
number of vertices of each type at level n starting with a vertex of type A is given by the first row of
M", which is (1, an). Thus, even though this process is critical, the expected size of the nth generation
grows to infinity, though only at a polynomial rate. On the other hand, this tree still dies out with
probability one, as we can see by viewing it as a backbone of a critical single-type Galton-Watson
tree of vertices of type A, each of which gives birth to critical single-type trees of vertices of type B,
all of which die out with probability one.

In general, without the assumption of positive regularity and nonsingularity, it is still correct
that a subcritical tree has exponentially vanishing expected nth generation and hence dies out almost
surely. By [26] (see [12, Theorem 10.1]), so long as there does not exist a collection of types C such
that the children of a vertex of type in C include exactly one of the types in C with probability one,
a critical tree dies out almost surely; and a supercritical tree survives with positive probability from
some starting state.

The Galton-Watson tree Ty, need not be positive regular. Nonetheless, when |Z| = 2, many features
of positive regularity still hold. We give a lemma that we will use to prove this.

Lemma 2.5. Suppose that £ = {0, 1}. Let Zy and Z, be the number of children of Ry pivotal for
(T, w) of types 0 and 1, respectively. Then

E[Z | o(Rr) = 0] = E[Z | w(R7) = 1],
and

7(0)?
V(1)

E(Zy | o(Rr) = 1] = E[Z, | o(Rr) = 0].
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Hence, if M is the matrix of means of Tpiy, given by M = (m;;); je(0,1y where mj; = E[Z; | w(Ry) = i,
then

M < M0 m01> (12)
= | 7o .

mmm moo
Proof. Givenaliste = (o1, ..., 0%) € {0, 1} representing the states of an ordered set of children, we

abuse notation slightly and write A(o) to mean the value that the automaton assigns to the parent given
these children. For example, if ¢ = (0,0, 1,0, 1), then we write A(c) to denote A(3, 2), the type of the
parent when there are three children of type 0 and two of type 1. We say that coordinate o; is pivotal if
switching its value changes A(o). For example, if A is the at-least-two automaton of Example 1.3 and
o is as above, then o3 and o5 are pivotal.

Fora,b € {0,1}, let

S(a,b) = {(a,i): ce (0,1}, ie{l,... .k}, Al6) = a,

o; = b, and o; is pivotal },

representing a configuration of k children making the parent have type a and a choice of a pivotal child
of type b. There is a natural bijection between Si(a, b) and Si(1 —a, 1 —b). The map is given by sending
(0,i) € Si(a,b) to (¢',i) € Sy(1 —a, 1 —b), where ¢’ is equal to 6 except at coordinate i. Applying this
bijection, keeping in mind that the states of the level 1 vertices of (T, w) conditional on T|; are i.i.d. V,

E[Zo1{o(Rr) = a} | Ry has k children] = )’ v®"(0)
(0,0)ES(a,0)

- 2050 0)
(6.)eS(1-a,1) v(1)
v(0) .

= ﬁE[zll{w(ieT) =1-a} | Ry has k children|.
\%

Here we use the notation v®" to denote the n-fold product measure of v with itself. Taking expectations,
in the a = 0 case this yields

E[Zl{w(Rr) = 0}]  E[Zi1{w(Rr) = 1}]
7(0) B v(l)

[l

while in the a = 1 case it yields

E[Zl{w®Rr) =1}] 502 E[Zil{w(Rr) = 0}]
V(1) T V()2 v(0)

This lets us prove that when |Z| = 2, the pivot tree behaves nicely. In particular, at criticality Ty
dies out and has expected size one at every generation.

Proposition 2.6.  Suppose that = = {0, 1} and that both entries of V are positive. Let M = (m); jejo,1}
be the matrix of means of Tpy.
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(a) The largest eigenvalue of M in absolute value is equal to E[(Tyiy)].

(b) Foralln, it holds that E[¢,(Tpiv)] = E[£1(Tpi)]".

(c) If Tyiv is supercritical, then it is infinite with positive probability conditional on both w(Ry) = 0
and on w(Ry) = 1.

(d) If Ty is critical, then it is finite with probability one.

Proof of (a). By (12) from Lemma 2.5, the characteristic polynomial of M is

which has roots mygy + %mm- The larger of these is mgyy + %mm. We then compute

E[Z1(Tyiv)] = ElZo + Z1] = V(0)(moo + mo1) + V(1)(mio + mi1)

> - (0)?
= v(0)(mgo + mo1) + V(1)< VE(I);Z mo1 + moo>

70) (7()+70))

= (U(O)+\_/'(1))m00+ (1) o1

= mgyo + %mm-
|
Proof of (b).  The value of E[Z,(Ty)] is the sum of entries of the vector VM". We can confirm by
hand that Vv is a left eigenvector of M corresponding to the eigenvalue E[¢ 1(Tpiv)], from which the
statement follows.

There is a more conceptual explanation for this, which we briefly sketch. Let v be a vertex at
level n of T, and consider the following question: conditional on 7|, and on v being pivotal, what is
the distribution of w(v)? The answer is V, just as if we had not conditioned on v being pivotal. This is
because switching the color of v yields a bijection between colorings in which v is pivotal with color 0
and pivotal with color 1, with a ratio v(0)/v(1) of probabilities of each corresponding state under the
product measure v®». Thus, pivotal vertices are colored by v, and so the expected number of pivotal
children of a pivotal vertex is E[£(Tpiy)]. Iterating this and applying linearity of expectation yields
E[Z,(Tyiv)] = E[Z1(Tyin)]" =

Proof of (c). 'We consider two cases. First, suppose that my; = mo = 0. By Lemma 2.5, the matrix
M has the form | "% m(:m ], and by our supercriticality assumption mgo > 1. Hence, Ty, conditional on
either w(Ry) = 0 or (Rr) = 1 is a supercritical single-type Galton-Watson tree, and it survives in
both cases with positive probability.

Now, suppose it is not true that mg; = m;o = 0. Since the multitype Galton-Watson tree (Tpiy, @)
is supercritical, it survives with positive probability from some starting state. Hence at least one of the
two probabilities P[Tpiv survives | w(Ry) = O] and P[TpiV survives | w(Ry) = 1] must be positive.
By Lemma 2.5, both mg; and mo are positive. Thus, the root of T, conditioned to be type O has
positive probability of giving birth to a pivotal vertex of type 1, and vice versa. Therefore if either of

P[TpiV survives | w(Ry) = 0] or P[TpiV survives | o(Rr) = 1] is positive, then both of them are. [ |

Proof of (d).  As in the previous proof, we break the proof into two cases depending on whether
mo; = myo = 0. If so, then T}, conditional on either w(Rr) = 0 or w(Rr) = 1 is a critical single-type
Galton-Watson tree, which dies out with probability one unless it is singular. To rule this out suppose
that a vertex of type O gives birth to a single pivotal vertex of type O with probability one. Then in
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particular, a vertex of type 0 always gives birth to exactly one child of type 0, since all children of a given
type have the same pivotal status. Now, we claim that a vertex of type 0 cannot give birth to any vertices
of type 1. Indeed, they would be nonpivotal, and hence switching one of them would yield another
configuration with multiple children of type O but still with a type 0 root. (Note that we have assumed
that v puts positive probability on both types, meaning that the configuration after the switching still
has positive probability of occurring.) Hence, a vertex of type O gives birth almost surely to exactly
one child, which has type 0. Thus, we have deduced the automaton: it assigns a parent type O if and
only if there is exactly one child, which has type 0. Since v is a fixed point, it satisfies v(0) = y(1)v(0).
But then v(0) € {0, 1}, contradicting our assumption that v places positive probability on both types.
The same argument also shows that a vertex of type 1 does not give birth to exactly one child of type 1
in the my; = mo = 0 case.

Now, consider the case that mg; and m;( are nonzero. According to [12, Theorem 10.1], we must
show that for the pivot tree, there does not exist a collection of states C such that the children of a
vertex of type in C almost surely include exactly one with type in C. Suppose there exists such a set
C.If C = {0}, then mgy = 1. But as the highest eigenvalue of M is mgg + %mm and my; is assumed
to be nonzero, Ty is not critical. The same argument rules out C = {1}. If C = {0, 1}, then every
vertex (of whatever type) gives birth to exactly one pivotal vertex almost surely. Since all children of
the same type have the same pivotality status, this implies that every vertex must give birth almost
surely to a unique child (i.e., one whose type is the opposite of all of its siblings). But this can happen
only if y is supported on {0, 1}, since otherwise choosing the number of children according to y and
then coloring them i.i.d. v, there is positive probability that they all are colored the same. But this is a
contradiction, since y is assumed to assign positive weight to {2, 3,...}. [

3 | SUBCRITICAL PIVOT TREES

As in Section 2, throughout this section we fix a child distribution y, an automaton A on a finite set of
states X, and a fixed point V of the automaton distributional map ¥ : D — D corresponding to A and
- We let (T, o) be the random state tree for v. As usual, we let T,iv denote the pivot tree for (7', ), but
in this section we fix the maximal target set A, = X\ {o} for o € Z. Throughout this section, when
we refer to a vertex as pivotal for (7', @), we mean that it is pivotal with this target set (see Section 2.3).
Recall from Proposition 2.4 that T}, is a Galton-Watson tree with the types defined there. Our goal in
this section is to prove the following:

Proposition 3.1.  Suppose that Ty, is almost surely finite and that EZ,,(Tpiy) < 1 for all sufficiently
large n. Then V is interpretable.

This condition on Ty, holds when it is subcritical, and when |Z| = 2 it also holds when T;y is
critical, as discussed in Section 2.4.

Our proof will use the theory of Boolean functions and influences (see [11,21]). We first introduce
some ideas and results from this theory, starting with pivotality in the context of Boolean functions.
For a function g : X" — {0, 1}, we say that the ith coordinate is pivotal for g at (sy, ..., s,,) if the map

s H g(sl’ . Jsl—l7s7sl+l’ e 9SWI)

is nonconstant. To relate this to our earlier definition of a pivotal vertex in Section 2.3, recall the map
A" : 4@ - ¥ defined in Section 2.2, which gives the color at the root of ¢ according to the automaton
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A as a function of the colors at level n. For some fixed ¢ € %, define g, : =40 - (0,1} by
(01,....00,0) = VA (01, ...,00,) = 0}. (13)

Then every pivotal coordinate for gr,, at (@(v))ver,(r) is a pivotal vertex for (T, w). We mention that
the converse is false: not every pivotal vertex for w is a pivotal coordinate, because changing the label
of the vertex might change the label of the root from one element of X \ {o¢} to another, leaving gr
the same either way.

The influence of the ith coordinate of a map g : " — {0, 1}, denoted by I;(g), is the probability
that the ith coordinate is pivotal for (S, ... ,S,,), where Sy, ..., S, are independent and identically dis-
tributed as v. The total influence, I(g), is the sum of the influences of all the coordinates, or equivalently
the expected number of pivotal coordinates for g at (S, ..., Sp).

The following is a variant of the BKKKL inequality [5, Theorem 1], which is itself a variant of the
KKL inequality [14].

Proposition 3.2 (Theorem 3.4 from [10]). There exists a universal constant ¢ > 0 such that the
following holds. Let g : " — {0, 1} be an arbitrary map, and let p = P[g(S1,...,S,) = 1], where
S1, ..., S, are independent and distributed as V. Then

I(g) > cmin(p, 1 _p)10g<ﬁl‘(g)>-

Thus, if the total and maximum influences are small, then min(p, 1 — p) is small, meaning that g is
nearly constant. Our idea is to apply this to the map gr, introduced in (13), which will then show that
criterion (ii) of Proposition 2.2 is satisfied and hence V is interpretable.

For the rest of this section, we fix an arbitrary state ¢ € X and consider g, as defined in (13).
Define

I,() = E[Z/ﬂn(Tpiv) | T|.= tln]~

When we consider the random state tree (7, w) up to level n, there are two sources of randomness:
the tree itself, which is Galton-Watson, and the colors, which are determined by coloring the level n
vertices i.i.d. V. We obtain I,,(¢) by taking an expectation only over this second source of randomness,
with the structure of the tree fixed. In other words, if the level n vertices of the deterministic tree ¢ are
colored i.i.d. v, then ,(7) is the expected number of these vertices that are pivotal. Thus, I,(T) is the
expected number of pivotal vertices for (7', w) conditional on T'|,.. Since a level n vertex of 7 is pivotal
for w if the corresponding coordinate of g7, is pivotal at (w(v)),er (1), We have I(gr,,) < I,(T).
For a given tree ¢, let

IM%(f) = ernLaz)P[v € Toiv | Tlu = tla]-

Observe that I,,(f) has the same definition except that a sum replaces the maximum. Just as I(gr,) <
I,(T), we have max; Ii(gr,,) < L™ (T).

Lemma 3.3.  If Ty, is almost surely finite, then If™(T) — 0 a.s. as n — oo.
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Proof.  We will show this by proving that
LM (T) < P|Tyy survives to height n | T1,] a.s. (14)
and
P[TpiV survives to height n | T|n] — 0 a.s. (15)

asn — co.
For the first claim, we start with the observation that for any v € L,(T),

P|v € Ty | Tls| < P[Tpiy survives to height n | T1,] a.s.,
since v € Ty;y implies that Ty,;y survives to height n. Since

max _ .
L) = VIEI%?()’(I')P[V € Tyiv | Tln]’

this proves (14).
Now we turn to (15). Asn — oo,

P[T};, survives to height n] — 0,

since Tpiy is almost surely finite. Hence the convergence in (15) holds in L!. To get the almost sure
convergence, we show that

P[TpiV survives to height 7 | Tln] (16)

is a supermartingale, which is more trivial than it looks at first glance. If T},;, survives to height n + 1,
then it survives to height n. Hence,

P[Tpiv survives to height n + 1 | TI,,,a)|T|n] < P[TpiV survives to height 7 | Tl,l,colﬂn]

= 1{T};, survives to height n}.
Taking conditional expectations,
P[TpiV survives to height n + 1 | Tln] < P[TpiV survives to height 7 | Tln].
Finally,
E[P[Tpiv survives to height n + 1 | 41| | T|,,]
= P|[T},iy survives to height n + 1 | T,].
Altogether, this shows that
E[P[TpiV survives to height n+ 1 | T[] | T|,,] < P[Ty survives to height n | T|,|,

proving that (16) is a supermartingale. Thus it has an almost sure limit, which must coincide with the
L' limit. This proves (15), which completes the proof. [
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Next, we give two easy technical lemmas to be used in the proof of Proposition 3.1.

Lemma 3.4. Let X, and Y, be nonnegative random variables, and suppose that EX, < 1 for alln
and Y, - o a.s. Let Z, = min(X,,/ Yy, 1). Then EZ,, — 0.

Proof. Fix some large N. We then compute

EZ, = E[Z,1{Y, > N}| + E[Z,1{Y, < N}]
<E[X,/N| +P[Y, <N|
<1/N+P[Y, <N|.

Since P[Y, < N] - 0 asn — oo, we have limsup,_,  EZ, < 1/N. This holds for arbitrarily large
values of N, confirming that EZ, — 0.

Lemma 3.5. Suppose that (X,,),>0 takes values in [0, 1] and is a martingale under some filtration
(Fiuso- Then (min(X,,, 1-X )) is a supermartingale under the same filtration.

Proof. LetY, = min(X,, 1 — X,,). Since Y,,4+; < X,+1 and Y,,4+1 < 1 — X,,41, we can take expectations
to get

E[Yn+l | Fal < E[Xn+l | Ful =X, (17)
and

E[Yn+1 | F<1 _EXn+l | Fl=1-X,. (18)

On the event X, < 1/2, which is measurable with respect to F,,, Equation (17) gives E[Y,+1 | Fu] < Yy,
since ¥, = X,,. On the complement of this event, (18) gives E[Y,1 | F,] < Y, since X,, = 1 — Y.
Hence E[Y,,1; | F,] < Y, holds in both cases, proving that (Y, is a supermartingale. [

Proof of Proposition 3.1.  'We will check that criterion (ii) of Proposition 2.2 holds. Fix a color ¢ in
2. Let

p(T1,) = PloRr) = o | Tla).

Our goal is to show that p(T'|,,) converges almost surely to O or 1. We can assume that ¢ is in the support
of v, since otherwise p(T|,) = 0 a.s. for all n. Consider gr,, as defined in (13). Observe that

Haw(Ry) = 0} = gra((@W)ver, ).

and that the conditional distribution of (w(v)),er (1) given T, is i.i.d. V. We thus apply Proposition 3.2
conditionally on T, to obtain

I(gr) 2 emin(p(T1,), 1 = p(T|y)) log <ma+(gr)>

Rearranging this, we obtain

min(p(T|,), 1 = p(T|,)) < < —. (19)
clog = l(g” clog i
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Now, we show that min(p(T|,), 1 — p(T,)) converges to 0 in L' as n — oo. Let X,, = I,(T) and
1
lrr’nax(T) N
assumption is bounded by 1. Since T}y is assumed to be almost surely finite, Lemma 3.3 shows ¥,, — o

a.s. By Lemma 3.4, it holds that E min(X,,/Y,, 1) — 0. Since min(p(T|,), 1-p(T|,)) < min(X,/Y,, 1),
this proves that min(p(T'|,), 1 — p(T'|,)) converges to 0 in L.

Since p(T|,) is a martingale, Lemma 3.5 shows that min (p(Tl,,), 1 —p(Tl,,)) is a supermartingale.
Hence it has an almost sure limit, which must match its L! limit of 0. This proves that lim p(T|,) €
{0, 1} a.s. By Proposition 2.2, the fixed point V is interpretable. [

Y, = clog

Then EX,, is the expected number of pivotal vertices for (7, ) at level n, which by

Proof of Theorem 1.7 (<=).  Subcritical Galton-Watson trees have exponentially vanishing expected
nth generation size and are almost surely finite (see Section 2.4). Hence the conditions of Proposi-
tion 3.1 hold in the subcritical case. In the critical case, EZ,(Tp,iy) = 1 and T}y, is almost surely finite
by parts (b) and (d) of Proposition 2.6. n

Proof of Theorem 1.8.  If T, is subcritical, then the conditions of Proposition 3.1 hold. n

Remark 3.6.  While we have stated Theorem 1.8 for subcritical pivot trees only, Proposition 3.1 in
fact applies to critical pivot trees, so long as EZ,(Tyy) < 1 (any constant bound would also work).
As discussed in Section 2.4, Galton-Watson trees that are not positive regular can have their expected
nth generation size grow to infinity even in the critical case. However, even though pivot trees are not
necessarily positive regular, we are not sure if it is possible for EZ,,(Tpiy) to grow to infinity when Tp;y
is critical.

4 | SUPERCRITICAL PIVOT TREES

As usual, throughout this section we fix a child distribution y, an automaton A on a set of states X, and
a fixed point vV of the automaton distributional map ¥ : D — D corresponding to A and y, and we let
(T, w) be the random state tree for V.

Our goal is to prove that if the pivot tree is supercritical, then V is rogue in the |X| = 2 case.
According to Proposition 2.2, rogueness of V is equivalent to nonmeasurability of @ with respect to 7.
Thus, we will try to show that for T in some class of trees of positive weight under the GW( y) measure,
the coloring w is nondeterministic. The idea of the proof is that T}, is supercritical, it occurs with
positive probability that w(R7) = 0 and Ty, survives. On this event, we randomly choose an infinite
path starting from the root of Ty, and switch all the colors along it. This gives us a new colored tree
with the same underlying tree but a different color at the root. Since the new coloring of the tree only
differs at one vertex per level, it seems intuitive that it occurs with similar likelihood as the original
one, meaning that w takes different values for the same tree with positive probability.

The difficulty lies in making rigorous the idea that the switched coloring has similar probability
as the original one. To do so, we use spine decompositions as developed by Lyons, Pemantle, and
Peres [18], an elegant probabilistic method for proving two branching processes absolutely contin-
uous or mutually singular to each other. The two processes we consider are (7, @), conditioned on
survival of the pivot tree, and the switched version of this process described above. We prove the
switched version is absolutely continuous with respect to the original. Under the assumption that v
is interpretable, it is a probability one event that the color w(R7) is given as a deterministic function
of T. By absolute continuity, the color of the root in the switched process is equal to the same func-
tion of the tree. But this is a contradiction, as we know that these colors differ while the trees are
the same.
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Let our set of colors be ¥ = {0, 1}. Recall from the discussion after Proposition 2.4 that the
definition of the pivot tree is simpler in the two-color case. A vertex is pivotal for (T, o) if swapping
its color results in the root swapping colors, and the pivot tree Ty,;y can be defined as the subtree of T’
consisting of all pivotal vertices. The pivot tree is Galton-Watson with types given by w, with no need
for the sets A and B, used in the definitions when there are three or more colors.

We now formalize this and add an extra bit of information to the types, extending @ to a map
w, . V(T) — {0d,O0s, 1d, 1s} as follows. For a vertex v, the 0 or 1 in w.(v) is given by w(v). To decide
on d or s, consider (T(v), w|r(,), the restriction of the random state tree to v and its descendants.
If this tree has an infinite pivot tree, then w.(v) assigns type s, for survives. If this tree has a finite
pivot tree, then w.(v) assigns type d, for dies. For v € Ty, this is equivalent to assigning either s
or d depending on whether Tj;, restricted to v and its descendants is infinite or finite. We will refer
to vertices as s-labeled or d-labeled according to the value assigned to them by w,. Define v, as the
distribution of w.(R7), a probability measure on {0d,Os, 1d, Is}. Let T¢o. denote the space of trees
with vertices labeled {0d, Os, 1d, 1s}. For (z, 7..) € Teol, let [£, 7.], denote the subset of T, made up
of trees agreeing with (¢, 7,.) up to the nth generation.

Proposition 4.1.  (a) Conditional on T|,, the distribution of (w.(V))ver,(r) is i.i.d. Vs.

(b) Forie {0,1}, let p(i) be the probability that Ty, survives conditional on w(Rr) = i. Then condi-
tional on T\, and on wr),, the s- and d-labels given to each vertex v € L, by w, are independent,
with v receiving an s-label with probability p(w(v)).

(c¢) The labeled tree (T, w,) is multitype Galton-Watson.

Proof.  Given T|,, the distribution of (w(V)),er, (1) is i.i.d. v, by definition of (T, ). Hence, con-
ditional on T|,, the trees (T'(v),w|rw)) for v € L,(T) are independent and distributed as the
(unconditional) distribution of (T, w). Since V, is the distribution of w,.(Ry), it is thus the conditional
distribution given T'|, of each of the independent w,.(v) forv € L,(T), proving (a). For (b), once we have
conditioned on T'|,, and on w|7) , for each v € L,(T), the tree (T(v), ®|7()) is distributed as (T, w) con-
ditional on having state w(v) at the root. Thus the pivot tree of (7'(v), ®| () survives with probability
p(w(v)). The s- or d-label for v depends only on (T'(v), ®|r() and hence are given independently.

The proof of (c) is nearly the same as the proof of Proposition 2.1, though we will give it now in
detail. For o1, ... o € {0d, Os, 1d, 1s}, let

Xeolx (015 ..., 00) = )((k)v*(al) e V*(O'k)-

By the first claim, this is the probability that Ry has exactly k children whose types according to w,
are ¢y, ... , 6y, in order. For any type ¢ € {0d, Os, 1d, 1s} with V,(c) > 0, let )(g)l*(ol, ..., 0y) denote
the conditional probability that Ry gives birth to k children of types o1, ..., o} according to w, given
that w,.(Rr) = o. Observe that the value of w, at the root of a tree can be determined from the value of
. at its children: the 0 or 1 can be determined according to the automaton, and the s- or d-type can be
determined according to whether there is a pivotal child of the root of s-type. Hence, if o is the type

at the root corresponding to children of types o1, ... , o, then

Xeolx(O1, ..., 00) = V(@) xS (01, ..., Op). (20)

Now, we seek to prove that given the first n levels of (7, w.), each vertex v at level n independently
gives birth according to ;(w*(v). Fix (¢, 7.) € Tcol. By the first claim of this proposition,

colsx

P[T.0) €l nlu | =P|Tlhn] [T ¥(nw).

u€L, (1)
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With C(v) denoting the set of a children of a vertex v,

P|(T.@) € [t 7l | = (P[Temn] I ;((IC(V)I)> I1 v(zw)

veL, (1) u€L, (1)
= P[T (S [t]n] H AXcolx (T*(M)ueC(v))~
veL, (1)

Continuing to follow the proof of Proposition 2.1, by (20),

P, €[t dt| =P|T € 1| [T e (reiecon)

ol
vEL, (1)

=P|T.o) e lnnl] [T 250 (5uecn).

veEL, (1)
|

We will assume throughout the section that T}y is supercritical. This implies that either P[w..(R7) =
0s] > 0 or P[w.(R7) = 1s] > 0, but in fact both are true by Proposition 2.6(c). Thus, it makes sense to
consider the distribution of (T, w..) conditional on w.(R7y) = 0s or w.(R7) = 1s. With this in mind, we
make a number of definitions. Most important among them are the probability measures RST®, RST'S,
RST®~!5 and RST!*~% on the space Teo., with RST standing for random state tree. The measures
RST® and RST' are the distributions of (T, w,) conditioned on w,(Ry) = Os and w.(Ry) = ls,
respectively. The measure RST®~! is the distribution of a labeled tree obtained by sampling from
RST®, choosing an infinite path of pivotal vertices, and swapping every label in the path. The measure
RST!~% j5 obtained in the same way, starting with RST'® instead of RST®. Thus, RST' and RST®~ 1
are both distributions on labeled trees with 1s at the root. Our goal, as we sketched before and will
explain in more detail shortly, is to prove that RST®~1 is absolutely continuous with respect to RST'S.

Definitions 4.2 (Definitions of RST, (77, 0%), Te, W(t,7.), Wa(t,T), Pwac)s Pw, s Ths T0s
RST®=15, RST!S=% (79, 0%~1%), and (T, 0!~%)).  For £ € {0d, 1d, 0s, 1s}, let RST’ be the law
of (T, w,) conditioned on w(Ry) = £. Let (T?, ") be a random variable distributed as RST’. Let
Ts« C Teol« be the set of all trees (¢, 7,) labeled by {0d, 1d, Os, 1s} that are compatible with the automa-
ton, have their d and s labels consistent with the tree and other labels, and have Os or 1s at the root.
This space is the union of the supports of RST® and RST'*. It could also be defined as the set of all
trees (7, 7.) € Teolx such that [z, 7], has positive probability under RST® or RST' for all n.

Given a deterministic tree (¢, 7.) € Ty, let W(t, 7,.) be the set of infinite paths in (¢, z,) that start at
R, and contain only pivotal s-labeled vertices. Let W,(, 7.) be the set of paths from R, of length n with
the same property. Note that these sets are nonempty for any (7, 7,.) € Ty, since any pivotal s-labeled
vertex must have a pivotal s-labeled child.

We define Pyy,z,) and Pyy (.-, to be distributions on W(z, 7.) and W,(t, 7..), respectively, given as
follows. Let Vy = R,. Choose V| uniformly from the pivotal s-labeled children of V|, (as we said, there
must be at least one). Then choose V, uniformly from the pivotal s-labeled children of V, and so on.
Let Pyy(.r,) be the distribution of (Vy, V1, ...), and let Py () be the distribution of (Vy, ..., V).

For an assignment 7 : R(f) — X and a vertex v € L,(¢), we defined 7"~ as the coloring of ¢|,, given
by switching the color of v to y and updating the colors at levels 0, ..., n—1 according to the automaton.
We now extend this definition to allow switching when the colors include s- and d-labels and to allow
switching an infinite path. Suppose that (¢, 7,) € Teol«. Given a path u = (ug, u1,...) € W(t, 1), let
¥ denote 7, with labels Os and 1s swapped along the path. It is easy to check that this new labeling is
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also compatible with the automaton A, and that its s and d markings follow the same rules as before.
For it € W,(t, 7.), we define 77 in the same way, except that z” is only a labeling of ¢|,. For a vertex
x € R(r), we use ¥ as a shorthand for 7%, where 7 is the path from R, to x.

Finally, we define %~ as the switched labeling (@), where Vis sampled from Pyyzos 40). To
summarize, (T%, wQHS) is formed by the following procedure: First condition (7, w,) on w, = Os to
obtain (7%, ®%). Then, choose an infinite s-labeled path of pivotal vertices in (T%, ©%*) by starting
at the root and successively choosing a pivotal s-labeled child at random. Finally, swap all Os and 1s
labels along this path to obtain (7%, 0%~'%). We define w!5~% analogously, and we define RST%®~ !

and RSTS~% as the distributions of (7%, ®%~'%) and (T'5, w!5~%), respectively.

We now lay out our plan for the section. Our goal is to prove that RST®~!S « RST™. It follows
quickly from this that V is rogue by an argument we sketch now. Supposing that V is interpretable, we
can express @w(Rr) as «(T) for a deterministic function 1: 7 — X, by Proposition 2.2. By definition of
RST® and RST, we have «(T%) = 0 a.s. and ((T"%) = 1 a.s. Recalling that (7%, ®%~1%) ~ RST®™!s,
absolute continuity lets us conclude from «(7'%) = 1 a.s. that (7%) = 1 a.s., a contradiction.

To prove the absolute continuity of RST®~!* with respect to RST'*, we use a technique of restrict-
ing these measures to successively larger o-algebras and computing the Radon-Nikodym derivatives
of the restricted measures. The result we use is well known:

Lemma 4.3 ([19, Lemma 12.2]).  Let u and v be probability measures on a o-algebra & . Suppose

that 1 € %, C --- C F, and that U,F, generates & . Also suppose that u|g_ is absolutely
continuous with respect to v|g,_ with Radon-Nikodym derivative X,,. Define X = limsup,,_, , X,,. Then

HLv << X<oop-ae & /de:l,
and
ulv & X=opae /de:O.

In our case, we will restrict RST?®~!* and RST' to the o-algebra &, generated by the first n levels
of the labeled tree. That is, we define &, as the o-algebra on Ty, generated by the sets of the form
(7, T ]

To investigate these Radon-Nikodym derivatives, we start by giving representations of RST%®~!
and RST!*~% in terms of RST® and RST"*:

Lemma 4.4. For any (t,1,) € Ty,

RST "[1, 2]y = ), RST[1, 2/ 1uPyy; (i), @1
uew,(t,r,)
and
RSTH=%[1, 7,1, = 2 RST [, 701,Pyy (1)) (22)

uew,(,z,)
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Proof. These statements follow very directly from the definitions. Recall that (7%, @%~'*) differs
from (T%, »{*) along a random path (V;);»o sampled from Pyy(zos o), in which all s and 1s labels have

been swapped. Hence,
(T* ™) € [t 7.,

holds if and only if

(T%, %) € [1, 7%] for some i € W,(t, %), and (V, ..., V,) = i.

Since i € W, (t, z%) if and only if i € W),(z, 7,.), we can refine (23) to

(T%, %) € [1, 7] for some & € W,(t,7,), and (Vy, ..., V,) = ii.

As the events in (24) are disjoint for different choices of i,

P[0t ") € [1. 1)

Y PT®.oP) el el and Vo, ... Vi) =i

uew,(t,z,)

Y Pl € el P e @,

ueWw,(1.z,)

which is a restatement of (21). The proof of (22) is identical.

Define a map r, on Ty, as follows. For (¢, 7,) € T, with Os at the root, let

RST"~%[t,7,],

rn(ts T*) =
RST®[¢, 7.1,

and for (¢, 7,) € Tg,. with 1s at the root, let

RST®~"[1, 7,1,

r}’l(t7 T*) = 1s
RST™[t, 7.]n

(23)

(24)

(25)

(26)

Thus, r,(t, 7.) matches the Radon-Nikodym derivative either of RST!*~%| &, with respect to RSTY| 7,
or of RST®~ |5 with respect to RST" |5 , depending on z,(R,). To prove that RST*~!* « RST",

it therefore suffices by Lemma 4.3 to show that

lim sup 7,,(T%, 0%~1) < o0 a.s.

n—-oo

We define

HtTY= Y Py i),

uew,(,t,)

@7)

with fy(, 7,) taken to be 1. According to the next lemma, we can use this simpler function f, as a

stand-in for r,,.
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Lemma 4.5.  For some constant 1 < C < oo depending on V,, it holds for all n > 0 and all (¢, t,) €
Ts that

%‘fl’l(l‘v T*) S rn(ts T*) S Cfn(t, T*)~

Proof. We aim to show that for some 1 < C < oo, it holds for all » > 0, u € W,(t, ), and
(t, 74) € Ty, with 7.(R,) = 1s that

%RSTIS[t, 7.]n < RST®[t, 4], < CRST"™[1, 741,

and it holds for all n > 0, u € W,(t, 7..), and (¢, 7.) € Ty, with 7,.(R;) = Os that

%RSTOS[L .]n < RST™[1, 7], < CRST®[1, 7.],.

Once we prove this, the result follows immediately from Lemma 4.4 and the definition of r,,.
To prove these statements, we go back to the unconditioned tree (7', @..). Let

MaX,e(os,1s) Va(0)
= 5, _-
MiNge(0s,15) Vs(0)
By Proposition 4.1(a),
P|(T.o.) € t,eL,] = P71y =1l,] ] %)
xEL, (1)
< CPIT], =l [T %m0 = P o) € L7l

xEL, (1

since 7% and 7, match each other on L, (f) except at a single vertex, where one assigns Os and the other
assigns Is.
Suppose that 7,.(R;) = 1s. Then

P((T,w.) € [1,7{1,]
V.(0s)
CiP|(T.@.) € [1,7.],]

RST®[z,77], =

V(0s)
C%P [(T, w.) € [t, T*]n]

— = C2RST™[t, 7.,
Vi(ls)

The lower bound on RST®[z,z%], and the bounds on RST'[z,7%], follow by nearly identical
proofs. [
Next, we recast f,,(¢, 7,.) as a weighted sum over paths.

Definitions 4.6 (N(x,,7,) and w;. (x,y)). For a vertex x € V(¢), let N(x,1, 7,) be the number of
pivotal s-labeled children of x in (¢, 7,.). Suppose that x and y are respectively a vertex and its child in
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some path in W(¢, 7,.). Define
WI,T*(-xs )’) = N(-xs t’ T:)_ls

which we will view as a weight on the edge from x to y. We will shorten this to w(x, y) when the tree
(t, ) is clear from context.

In words, w(x, y) is the reciprocal of the number of pivotal s-labeled children of x after swapping
all labels on the path from the root to x to y. Note that this count of pivotal s-labeled children is never
zero for such an x and y, since y is always s-labeled and pivotal for (¢, 7)) as a consequence of belonging
to a path in W(¢, 7,.).

Lemma 4.7. Forany (t,7,) € Ty,

n—1
htey =Y [ wows), (28)

FeW, (t,r,) i=0
which we can express recursively as

[t 1) = ) WRL 01 (1), T, (29)

where x ranges over the pivotal s-labeled children of R,.

Proof.  To prove (28), we need to show that for any i = (ug, ... , u,) € W,(t, 7s),

n—1

Py ety @ = [V (i1, 72 )
i=0

This is evident, as PW”(,,TE)(Zi) is the probability that i is selected by the procedure of starting at the
root in (¢, 7¥) and uniformly picking a pivotal s-labeled child, then another pivotal s-labeled child, and
so on. Equation (29) follows from (28) by partitioning W, (¢, 7.) into paths going through each of the
s-labeled children of the root. [

Recall that ®%~!* is formed by swapping labels in @ along a random path V= (Vi)i0, where
Vo = Ryvs. Call this path the spine of (T%, ®”~%). We now give some terminology for describing the
weights (in the sense of Definitions 4.6) of edges along and hanging off the spine.

Definitions 4.8 (Definitions of V; ;, W;, W;, TP, TP % and @,). LetViy,..., Vix, be the pivotal
s-labeled children of V; in (T%, %*~'*) other than Viy;. Let Wi = wros go-1s(Vi, Vig1), and let Wy =
wros gos=1s(Vi, Vij).

Let T*Pi"e C T% be the subtree consisting of V and all vertices V;,. Let 75" be the restriction of
TP to height n. Let @ be the o-algebra generated by V, TP and % 15| e Let @, be the o-algebra
generated by (Vo, ..., V,,), T, and by @®~'%| . See Figure 4 for a depiction of the information
captured by these o-algebras. '

The key idea in analyzing f,(T%, ®2~'%) is that while (7%, ©%~!%) behaves unusually along the
spine, starting from any vertex V;; it is a multitype Galton-Watson tree with the same child distributions
as (T, w,). This is formally expressed in Proposition 4.9. Thus, understanding the weights along the
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FIGURE 4 A subset of (7%, ©*~'%). The tree automaton in this example assigns 1 to a vertex if and only if it has exactly one
1-labeled child. The spine, (V;);»o, is on the left side, and vertices V;, ..., Vi;, hang off each V. Pivotal vertices and the edges
between them are in bold. Alongside each edge is its weight. For example, the weight from V,, to V; is %, because if V, and V;
have their labels swapped from Is to Os, then V}, has three pivotal s-labeled children

interpretable

rogue

o v A > o =

FIGURE 5 Plot for Example 5.7, showing the fixed point for the automaton assigning the parent state “1” if and only if there
are zero “1” children with a Poi(4) child distribution [Color figure can be viewed at wileyonlinelibrary.com]

spine of (T%, w%~!%) as well as the weights on (7, w.,) is enough to understand the weights on all of
(T%, @%~1%). This is the same idea used by Pemantle, Peres, and Lyons to prove the Kesten-Stigum
theorem (see [18, Section 3] or [19, Chapter 12]).

Proposition 4.9.

(a) The random variables {W,-, W; J}
(b) Conditional on &, the subtrees

i<n 15k, 4T€ measurable with respect to G ,,.

{(Tos(x), wSS*‘S|Toa(x)) tx=V;forsomei>0,0<j< k,-}

are independent.
(c) For any x = V;j, the subtree (T%(x), a;‘,,f“lsm(x)) is distributed conditional on € as RST® if
@®15(x) = 0s and as RST' if 0%~ 5(x) = Is.
(d) The subtree (TOS(V,,), a)gS*lSmVﬂ)) is distributed conditional on €, as RST®1® if ¥=15(V,) =
Is and as RST~% if 0= 15(V,) = 0s.
Proof.  Part (a) follows directly from the definition. For parts (b) and (c), note that for any x = V;;,
the subtree (T%(x), @271 70y, is identical to (T%(x), ®%|70:(,). We can also recharacterize & as
the o-algebra generated by V, T*Pine and @2 | 7pne. Conditioning on & is then just revealing part of
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(T%, ©%), which is Galton-Watson by Proposition 4.1(c). Under this conditioning, the subtrees
{(T%), 0¥ |10:(9) : x = Vi for some i > 0,0 <j <k}

are unrevealed except for the labels of their roots, and hence they evolve independently according to
RST* or RST".

To prove part (d), we observe that conditioning on &, reveals (V, ..., V,), and it reveals a portion
of (T%, %) with V,, as a leaf. Thus (T%(V,), w25|To.\\(Vn)) evolves either as RST® or as RST"* condi-
tional on €,,, depending on % (V,,). Also, by its definition, (V;);s, conditional on €, is distributed as
Pyrosv, a0, )- THUS, (T%(V,), %7 5| 7os(y ) is distributed conditionally on &, as stated. u

Now, we can start evaluating lim sup, f,(T%, @%~15). First, we expand f,(T%, ©%~!%) in terms of

the weights along and off the spine.

Lemma 4.10.  We can express f,(T*, 0%~') as

n—1

ki
Jo(T®, 1) = Z(WO < Wip) Z Wiifeict (T®(Vi), @8 oy, )
i=0 =
+Wo- - Wy

n—1 k;
< Z(Wo - Wisn) Z Wi Crueic (T®(Vi), wgs_)lshﬂs(vu))
i=0

P (30)

+ Wo- - Wy,
where C is the constant from Lemma 4.5.

Proof.  The equality holds by successively applying (29) from Lemma 4.7, and the inequality is an
application of Lemma 4.5. [

It is odd that we have bounded f;, by r, when f, is a simpler quantity that we typically prefer to work
with. But in the proof of Lemma 4.15, it will be easier to work with the Radon-Nikodym derivative
itself rather than an approximation.

Now, in Lemmas 4.11-4.14, we prove some technical facts that help us bound (30).

Lemma 4.11. Foranyiand 1 <j < k;, the process

(Vn—i—1 (T®Vip), @2 Blro,y)) )

n>i+1

conditional on & is a nonnegative martingale in n with mean one.

Proof. By definition of r,, given in (25) and (26), the process is nonnegative. By Proposition 4.9(c),
the conditional distribution of

(TOS(Vi,j), wES_ASHOs(V,._j))

given € is either RST® or RST', depending on the value of w®~15(V; ;). For the sake of con-
creteness, suppose that @®~15(V; ;) = Os so that its conditional distribution is RST®. Then



826 Wl LEY JOHNSON ET AL.

Faie1 (T®(V; J-),cogwlsms%)) conditional on ¥ is the Radon-Nikodym derivative of RST"*”%|¢
with respect to RST* g, applied to an RST®-distributed random variable. Hence, conditional on €,
it is a martingale in n [9, Lemma 5.3.4]. The same logic shows that r,_i_; (T%(V;)), wfﬂ“lslros(vm)
is a martingale conditional on € when @%~!5(V; ;) = Is. The initial value of either martingale,
whenn=1i+1,is 1. u

Lemma 4.12. For some ¢ < 1, it holds for all n > 0 that
E[W,W,.1 | €,] Lca.s.

Proof.  First, we claim that W, is the reciprocal of the number of pivotal s-labeled children of V,, in
the original unswitched tree (7%, co‘,zs); that is,

Wn =N(Vns TOS, a)ES)—l. (31)
Indeed, by the definition of W, in Definitions 4.8 and then the definition of w; . (x, y) in Definitions 4.6,
W, = Wi opets (Vi Vigt) = N (Vi T, (@019 V) 7

The labels (02 ~!%)Va+1 consist of the original labels @ switched along the spine and then switched
back again, yielding (31).

We now seek to analyze this expression conditional on &,,. By Proposition 4.9(d), the distribution
of (T%(V,),»%~"|7y,)) conditional on &, is either RST"*~% or RST®”"%, depending on & (V,,).
Equivalently, the distribution of (TOS(V,,), wSSIT(Vn)) conditional on €, is RST” where £ = @0%(V,),
which is measurable with respect to &,. Hence, N(V,,, T%, wgs) conditional on &, is distributed as
N(Rye, T, @%), where £ = 0% (V).

Let ¢, = EN(RT»»,T’/”,a)f)‘1 for # = O0s, 1s. Recall that N(RTf,Tf,a)f) > 1, since a pivotal
s-labeled vertex must give birth to another pivotal s-labeled vertex. Hence, we have ¢, = 1 if and only
if N(Rpe, T?,0%) = 1 a.s. If cos < 1 and cjs < 1, then set ¢ = max(cgs, ¢15) and use the easy bound
Wue1 < 1to get

E[W, W1 | @] <cas.

The troublesome case is when cgs = 1 or ¢ = 1. Suppose cos = 1. If ¢y = 1, the proof is identical
with the roles of Os and 1s switched. The argument has two steps:

(@ cis <1
(b) a vertex of type Os gives birth to a pivotal 1s-labeled vertex with positive probability.

Suppose that (a) is false. Then cos = ¢|s = 1, and consequently no vertex type in (7, w..) ever gives birth
to more than one s-labeled pivotal child. This implies that no vertex gives birth to more than one pivotal
child. Indeed, according to Proposition 4.1(b), given the colors of the children of a vertex, their s- and
d-labels are assigned independently. Thus, if a vertex of color O or 1 had positive probability of having
multiple pivotal children, it would also have positive probability of having multiple s-labeled pivotal
children. Since vertices of either color give birth to at most one pivotal child, the highest eigenvalue
of the matrix of means of (T}, @) is at most one. But this contradicts our assumption throughout this
section that the pivot tree is supercritical, establishing (a).



JOHNSON ET AL. WI LEY 827

For (b), from cos = 1 we know that a vertex of type Os always gives birth to exactly one pivotal
s-labeled child. As above, this implies that it always gives birth to exactly one pivotal child. In fact, a
vertex of type 0 must always give birth to zero or one pivotal children, since if it had positive probability
of giving birth to two or more, then it would have positive probability of giving birth to two or more
pivotal s-labeled vertices, and so a vertex of type Os would have positive probability of giving birth to
two or more pivotal children. Hence mgy + mg; < 1, in the language of Lemma 2.5.

Suppose that (b) is false and a vertex of type Os never gives birth to a pivotal 1s-labeled vertex.
Then, a vertex of type 0 never gives birth to a pivotal vertex of type 1 (if it had positive probability of
doing so, then a vertex of type Os would have positive probability of giving birth to a pivotal vertex of
type 1s). Hence, mo; = 0. By Lemma 2.5, the matrix of means for Ty, has the form [ " m(?m where
moo < 1. But this contradicts the supercriticality of Ty, proving (b).

Now, we are ready to evaluate E[W,W,,,.; | €,] when cos = 1. Let p be the probability that a vertex
of type Os has a pivotal child of type 1s, which we know to be positive by (b). If ®?(V,,) = Os, then

E[an‘/VnH | ?n] =1 —ptpcis < 1.
If wSS(Vn) = 1s, then using the bound W, | < 1, we have
E[W, W, | Gl <cs <1

We then take c as the maximum of these two values to complete the proof. [

We mention that the difficult case in this proof, where one of cos and ¢y is zero, can truly occur.
For example, let A be the two-state automaton assigning color 1 to a parent if and only if the parent
has at least three children, all of which have the same color. If a vertex has color 0, then it has a pivotal
child only when it has three or more children and all but one of them are the same color, in which case
it has exactly one pivotal child (the odd-colored one). Thus, conditional on being type Os, a vertex has
exactly one pivotal s-labeled child, which makes cos = 1.

The following lemma is well known, though it is most commonly stated with its converse under the
additional assumption that X}, X5, ... are independent (see [19, Exercise 12.2]). We sketch the proof
here.

Lemma 4.13.  Let X1, X3, ... be nonnegative random variables with a common distribution. If this
distribution has finite log-moment, then

[c)

Z "X, < o a.s.

n=1

forallc € (0,1).

Proof.  Apply the Borel-Cantelli lemma to show that lim sup,,_, ., ilog X, = 0 a.s. Then it follows
for some finite random N that X,, < (2¢)™" forn > N. u

Lemma 4.14.  If the child distribution y has finite log-moment, then

o
Z Wo -+ Wi iN(Vi, T, 027" < o0 a.s.
i=0
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Proof.  First, we claim that

E[W - - W] < L7

for some ¢ < 1. This is proven by applying Lemma 4.12 to take conditional expectations given &;_,,
then given &;_4, and so on. Choosing any b € (\/E, 1) and applying Markov’s inequality,

D PIWo- - Wiy > b] si
i i=1

By the Borel-Cantelli lemma, it holds almost surely that Wy - - - W;_; < &' for all but finitely many
values of i. Hence, it suffices to show that

cli/ 2J

Z BNV, T, 0% 1%) < o0 a.s. (32)
i=0

Now, it remains to apply Lemma 4.13. Since N(V;, T%, ©%~1%) is the number of s-pivotal offspring
of V; in (T%, @%~1%), it is bounded by the total number of offspring of V; in T7%. By Proposition 4.9(c),
the distribution of (T(V;),w®~!*|r«,) conditional on & is either RST® or RST'. Thus, condi-
tional on €, the random variable N(V;, T%, ©%~!%) is stochastically dominated by the number of
vertices at level 1 of either 7% or T'. Let Ags and A; be random variables with these distributions,
respectively. Since y is assumed to have finite log-moment, both A¢s and A have finite log-moment
as well. Now, let X; have any distribution that stochastically dominates Ags and A5 and has finite
log-moment. For example, one could take X; = Ags + Ajs where Ao and Aj are independent. Thus,
N(V;, T%, ©%~1%) conditional on & is stochastically dominated by X;, and so there exists a coupling
in which N(V;, T%, 0%~') < X; for all i. (Note that we do not care about the joint distribution of
X1, X, ....) Under this coupling,

o ]
D UNVLT o) < Y biX;,
i=0 i=0

which is almost surely finite by Lemma 4.13. This proves (32), from which the lemma follows. u

Finally, we are ready to achieve what we have been building towards by bounding the right-hand
side of (30).

Lemma 4.15.  Assume that the child distribution y has finite log-moment. Then

lim sup f,(T%, 0%~%) < o0 a.s.

n—oo
Proof.  Let
n—1 k;
Y, = Z(WO < Wion) Z WlJcrl’l i— ](TOS(Vt,]) wOs—> |TOS(‘/'[J))’
i=0 j=1

one of the terms on the right-hand side of (30). We will show that Y, converges almost surely to a finite
value. The idea is to use Lemmas 4.11 and 4.14 to show that the conditional distribution of (¥,),>0
given & is that of a submartingale bounded in L.
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First, consider Y, conditionally on & . By Proposition 4.9(a), the random variables Wy, Wy, ... are
constants. By Proposition 4.9(c), the processes

(TS (Vi) 0% o )
(r (T2 Vi) @ My, ) ni+l
are independent for different values of i. By Lemma 4.11, these processes are martingales. Hence, Y,
conditional on & is a sum of independent martingales with an additional martingale added at each
step, which makes it a submartingale conditional on & .

To prove that sup, E[Y,, | €] < o a.s., by Lemma 4.11,

E[rn—i—l (TOS(ViJ)’ wgs_)lslTos(Vi‘,‘)) | g:l =las.

Hence,

n—1 k;
supE[Y,, | 1= sup Y} (Wo---Wirr) 3 Wiy
n =0 j=1

n—1
< sup 2 Wo- - WiiiN(V,, T%, a)gs_)“)

T i=0

(s8]
< Z Wo - Wit N(Vi, T®, 0%~ < 0 a.s. (33)
i=0

The first inequality uses the bound W;; < 1 along with the fact that k; = N (V,-, 7%, wQS*ls) — 1. The
last inequality is the statement of Lemma 4.14.

We have now shown that (Y,),>0 conditional on & is a submartingale bounded in L' It hence
converges almost surely to a finite limit. Since Wy - - - W,,_; is a decreasing positive sequence in n, it
also converges as n — co. By Lemma 4.10, we have shown that f,,(T%, ®%~ ) is bounded by a process
converging almost surely to a finite limit as n — oo. u

Proof of Theorem 1.7 (=>).  Suppose that T}, is supercritical. By Lemmas 4.5 and 4.15,

lim sup 7,,(T%, 0%~ < o0 a.s.

n—oo

By Lemma 4.3, we have RST®!® « RST'®. Therefore any almost sure event under RST'® is almost
sure under RST®~ 1

Suppose that v is interpretable. By Proposition 2.2, the random variable w(R7) is measurable with
respect to 7. Hence there exists a measurable map ¢ : 7 — {0, 1} such that w(R7) = ¢@(T) a.s. Since
T% and T are distributed as T conditioned on subevents of @(R7) = 0 and w(Rr) = 1, respectively, we
have @(T%) = 0 a.s. and @(7T'%) = 1 a.s. Stating the second of these facts in terms of measure theory,
the event {(t, 7.) € Ts. : @(¢) = 1} has probability one under RST'S. Hence it has probability one under
RST®=!S a5 well. Since (T%, 0%~15) ~ RST®~!S, this shows that @(T%) = 1 a.s., a contradiction. =

as well.

Remark 4.16.  The main difficulty in extending this proof to the case |X| > 3 is that the regularity
properties proven in Section 2.4 for |2| = 2 do not necessarily hold when |Z| = 3. For example, when
|Z| = 2, if the pivot tree is supercritical, then it survives with positive probability conditional on either
@(R7) = 0 or w(Ry) = 1 by Proposition 2.6(c), which let us define measures RST® and RST'*. When
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|Z] > 3, if the pivot tree is supercritical, it must survive with positive probability from some starting
state, but it is not obvious that it must do so from multiple starting states. Nonetheless, we expect that
it can be done and plan to address it in future work.

5 | APPLICATIONS OF THE MAIN RESULTS

5.1 | Monotone tree automata

We introduce here a special class of tree automata, which we term monotone tree automata. This class
encompasses tree automata that arise out of many naturally occurring EMSO properties of rooted trees.

Consider an automaton A with set of colors Z. Suppose that X has a total ordering on it, so that
without loss of generality, we set X = {0,...s}. Leti = (n;: 0 <i<s)andm = (m;: 0 <i <),
where n; and m; represent counts of children of type i. If Zfzo n; = Zfzo m;, then we write n < m
if one can modify the configuration of children from 7 to become m by only increasing the colors
of children. (For example, (1,2,1) < (1,1, 2), since one moves from children 0,1,1,2 to 0,1,2,2 by
increasing the color of a child from 1 to 2.) The automaton A is called monotone if #i < m implies that
A1) < A(m).

In the following lemma we state a notable characteristic of the pivot tree when we consider a
monotone tree automaton A on two states.

Lemma 5.1. Consider a tree automaton A on two colors. Then A is monotone if and only if pivotal
children always have the same color as their parents.

Proof. LetX = {0,1}. Assume pivotal children always have the same state as their parents, and
consider two configurations of children 7 < . Suppose that A(7) = 1. We can move from 7 to i only
by changing vertices from state 0 to 1. These vertices are never pivotal, so A(7) = 1. Since A(1) = 1
implies A(7n) = 1, the automaton A is monotone.

Conversely, suppose that a node can have a pivotal child of the opposite state of itself. Then
swapping this child’s state changes the parent’s state in the opposite direction, showing that A is not
monotone. u

Lemma 5.2. Let A be a monotone tree automaton with ¥ = {0, 1}, and let Ty, be the pivot tree
associated with some fixed point. Then

E[Z)(Tpiv) | o(Ry) = 0] = E[£1(T}iv) | @(Rr) = 1].

That is, the expected number of pivotal children that a vertex has is the same regardless of whether the
vertex is labeled O or 1.

Proof. By Lemma5.1,

E[Z1(Tpiv) | o(Rr) = 0] = E[Z) | @(Rr) = 0],
and

E[Z1(Tpiv) | o(Rr) = 11 = E[Z; | @(Ry) = 1],

using the notation of Lemma 2.5. By this lemma, these quantities are equal. [
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When |X| = 2, the automaton distribution map ¥ maps a distribution Bernoulli(x) to Bernoulli(y).
We thus abuse notation and treat ¥ as a map from [0, 1] to itself, writing ¥(x) = y instead of
Y(Bernoulli(x)) = Bernoulli(y). We also say that p € [0, 1] is a fixed point of ¥ rather than saying
that Bernoulli(p) is.

In the next lemma, we give a convenient way of determining whether a fixed point corresponding
to a given monotone automaton with two colors is rogue or not.

Lemma 5.3. Suppose A is a monotone automaton with set of colors £ = {0, 1}. For a fixed point
v = Bernoulli(p) with 0 < p < 1, the growth rate of the pivot tree is equal to V' (p).

Proof. In Lemma 2.6, we show that if M is the matrix of means for Ty, then the spectral radius is
equal to the expected number of pivotal children of the root, which is the growth rate of T};,. Thus all
we have to establish is that ¥/ (p) is equal to the spectral radius of M.

The value of W(x) is given by the following procedure: Sample a number of children from y and
assign them i.i.d. Bernoulli(x) states. Then, apply the automaton to determine the state of the parent.
Then W(x) is the expected value of the parent. Abusing notation slightly by letting A act on a sequence
of states as we did in the proof of Lemma 2.5, we have

Y(x) = E[AXy, ..., Xk)],

where K ~ y and (X;);>; are i.i.d. Bernoulli(x) under E*. Let P denote the number of coordinates of
(X1, ..., Xy) that are pivotal for A at (Xi, ..., Xi). By the Margulis-Russo formula [11, Theorem 3.2],

d X X
aE [AXy, ..., X0 | K] = E*[P | K].
Taking expectations,
¥ (x) = E[P].

Under E?, the random variable P has the distribution of the number of pivotal children of the root of
(T, w). Hence,

lP/(P) = E[fl(Tpiv)]- ]

Remark 5.4.  Since a fixed point p of ¥ is attractive if |¥'(p)] < 1, this lemma together with
Theorem 1.7 shows that for a monotone two-state automaton, an attractive fixed point is always inter-
pretable. We mention that this is not true for nonmonotone automata. For example, the fixed point in
Example 5.8 can be computed to be rogue for A = 4 despite being attractive.

We are finally ready to answer Question 1.1. Recall that the at-least-two automaton assigns the
parent state 1 if and only if at least two children have state 1. We mentioned in the introduction that
with Poisson child distribution, this automaton has either one, two, or three fixed points depending on
A. We will prove this in detail now, and we will classify the fixed points as rogue or interpretable.

Example 5.5. Let A be the at-least-two automaton, and let y ~ Poi(1). As we saw in (2), the
automaton distribution map is

Yx) =1 -e (1 + Ax).
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~ 3.35.

Acrit = min ——————
T o0 T—e(1+x)

The function x/ (1 —e (1 + x)) is convex on (0, o0) and hence has a unique minimizer, which we
denote by x*. Now, substituting Ax for x in the function to be minimized, consider the inequality

= < (34)

on (0, 00). If A < Ay, it has no solutions, since Ax/¥(x) > Aq. Hence W(x) < x for x > 0, demon-
strating that ¥ has no fixed points other than the trivial x = 0. If A = A, then (34) has exactly one
solution. The solution is x = x* /Ay, and equality occurs in (34), making it a fixed point of ¥. Since
X* < Acrit, the solution lies in (0, 1). Hence W has one nontrivial fixed point in this case. If 4 > A,
then (34) has an interval of solutions [a, b], which contains x* /4 € (0, 1). It is easy to check that a > 0
and b < 1. Thus W(x) lies below the line y = x on (0, @), then sits above it on (a, b), and then lies below
iton (b, 1], giving ¥ fixed points a, b in addition to 0.

Now, assume that A > A, so that W has fixed points 0, a, and b. Question 1.1 asks whether there
exists a classification of trees into states {0, 1} such that a tree has state 1 if and only if it has at least two
children of state 1, and a Galton-Watson tree with Poi(4) child distribution has state 1 with probability
a. In other words, the question is whether a is rogue or interpretable. By Lemma 5.3, we can answer
this question by finding ¥’(a). Since ¥(x) lies under the curve y = x up until x = a and then rises above
it, its derivative at x = a exceeds 1. Therefore a is a rogue solution by Lemma 5.3 and Theorem 1.7.

The following result uses a similar approach:

Proposition 5.6.  The highest and lowest fixed points of a monotone two-state automaton are always
interpretable.

Proof.  1f W(1) = 1, then the highest fixed point is 1, which has the trivial interpretation ¢ — 1.
Otherwise W(1) < 1, and at the highest fixed point the graph of W is either crossing from above the
line y = x to below, or it has y = x as a tangent line (note that ¥ is continuously differentiable). In
either case ¥'(x) < 1 at the fixed point, making it interpretable by Lemma 5.3 and Theorem 1.7. The
same argument shows that the smallest fixed point is also interpretable. [

5.2 | More examples of two-state automata

We give some examples of tree automata for which a fixed point undergoes a phase transition from
interpretable to rogue as a parameter of the child distribution is varied. We also give a numerical
example to show that a two-state automaton can have many fixed points. As in the previous section,
we write W(x) = y rather than W(Bernoulli(x)) = Bernoulli(y) for two-state automata.

Example 5.7. Consider the automaton where a node is in state 1 if and only if it has zero children

in state 1, given formally by the map (ng, n;) — 1{n; = 0}. The distributional map corresponding to
this automaton with Poi(A4) offspring distribution is

Px) = e .
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Notice that if we consider the function f;(x) = e™* — x, then f/{’ (x) = A%2e™* > 0, showing that it is
a convex function. Moreover, f;(0) = 1 and f;(1) = e* — 1 < 0 for all A > 0. Hence f; has a unique
root in (0, 1), which tells us that there is a unique fixed point x(4) of V.

For this automaton, a node in state O has pivotal children if and only if it has exactly one child
in state 1 (whatever the number of 0O-state children may be), and this child will be pivotal. A node in
state 1 has pivotal children if and only if it has at least one child, in which case every child will be
pivotal. If Xjy denotes the total number of O-state children and X, the total number of 1-state children
of the root, then

E[£\(Tpiv)] = E[1{X; = 1} + Xo1{X, = 0}]
= ixe ™ + E[X,]P[X; = 0]

= Axe ™™ + A1 —x)e ™™ = de™H.

Thus, to determine if the fixed point is rogue or interpretable with Theorem 1.7, we have to determine
if e <1,
Rewriting the equation x(4) = e~ we find that

logx(A) = —Ax(d) <  y(A)logy(d) = 4, (35)

where y(1) = (x(i))_l. Noting that the function ulogu is strictly increasing over all # > 1 (which is
the range we care about), we conclude that 4 > e if and only if y(1) > e. In that case, from the first
equation of (35), we have

Ae™D = jx(A) = log y(A) > 1.

This shows that £ [z,”l(Tin)] > 1for A > e, and E [fl(Tpiv)] < 1 for A < e. By Theorem 1.7 and
Proposition 2.6(a), the fixed point is interpretable for 4 < e and rogue for A > e. This is illustrated in
Figure 5.

Example 5.8. Consider the automaton A on color set ¥ = {0, 1}, where a node is in state 1 if and
only if it has at least one child in state O and at least one child in state 1. That is, the automaton is
the map (ng,n;) = 1{(ny > 1) A (n; > 1)}. The distributional map for this automaton with child
distribution Poi(4) is given by

Y)=1—e 0 _ogmh 4 074 (36)
Note that
W (x) = —Ae™ 1 4 JeH, (37)
and
P (x) = =A% _ 27 <, (38)

showing that ¥ is strictly concave. We observe that ¥(0) = 0 and ¥/(0) = A(1 — e™%). Let Ag =~ 1.35
be the unique solution to A(1 — e™*) = 1. If 4 < Ay, we have ¥/(0) < 1, and the graph of W(x) stays
below the line y = x for all x > 0. Thus O is the only fixed point of W(x) in this case. If 1 > A, then
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interpretable

rogue

o N ok O 0 ~

FIGURE 6 Plot for Example 5.8, showing the fixed point for the automaton assigning the parent state “1” if and only if it has
at least one “0” child and at least one “1” child with a Poi(4) child distribution [Color figure can be viewed at
wileyonlinelibrary.com]

¥'(0) > 1. Since ¥(1) = 0, this implies that the graph of W(x) rises above the line y = x and then dips
back below it, giving rise to a nontrivial fixed point we denote by x(4).

Let X; be the number of children of the root in state i. We summarize all configurations in which
any of these children are pivotal:

Root in state 0

e Xy >2,X; =0: Xy pivotal children
e Xo =0, X; > 2: X, pivotal children

Root in state 1

e Xy = X; = 1: two pivotal children
e Xy >2,X; = 1: one pivotal child
e Xp =0, X; > 2: one pivotal child

Thus,

E[£(Tyiy)] = E[Xol{xo >2.X; =0} + X, 1{Xo = 1.X; >2)

FUXo =X, = 1+ 1{Xo 22X = 1} +1{Xp = 1, X, > 2}]
=e A1 —x)(l - e_’l(l_x)) + e_’l(l_x)/lx(l - e_’lx)

FPXo > 1L,X, = 1]+ PXo = 1,X; > 1]
= /1(6_’“ + e M0 _ 26_/1).

Substituting from (36), we get
E[fl (Tpiv)] = /1(1 - X(/D - 6_/1).

For A = A, we have x(4) = 0 and E[£(Tpiy)] = Ao(1 — e %) = 1. With some laborious calculus,
one can establish that as 4 increases, the quantity E[#(T};v)] decreases and then increases, reaching
1 at A; = 2.30. Thus, by Theorem 1.7 and Proposition 2.6(a), this fixed point x(4) is interpretable for
A € [4o, A1] and rogue for A > A;. A plot showing the behavior of the fixed points is given in Figure 6.

Example 5.9. Finally we present an example to demonstrate that the automaton may have many
fixed points. Consider the automaton A on color set X = {0, 1}, where a node is in state 1 unless it
has x children in state 1 for x € {1,2,3,4,5} U {8,9,10, 11} in which case it is state 0. That is, the
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FIGURE 7 A plot of the fixed points for the automaton in Example 5.9 with Poi(4) child distribution [Color figure can be
viewed at wileyonlinelibrary.com]

automaton is the map (ng,n;) — 1{(n; € {0,6,7}) vV (n; > 12)}. The plot of the fixed points for this
automaton with child distribution Poi(4) is shown in Figure 7.

5.3 | First-order interpretations

As we mentioned in the introduction, the papers [24,25] investigated tree automata and fixed points
corresponding to statements of first-order logic. The goal of [25] is to study the probability that T ~
GW (Poi(4)) satisfies some given first-order sentence of quantifier depth k. Recall from Section 1.9 that
there is an automaton on the set of rank k types and an interpretation given by sending a tree to its type.
Assuming that the child distribution is Poi(4), the automaton distribution map for the tree automaton is
then shown to be a contraction [25, Theorem 3.2], which implies that it has a unique fixed point. This
fixed point is also shown to be a smooth function of A [25, Theorem 2.4]. Finally, this is applied to the
original problem: since the set of trees satisfying a given first-order sentence @ of quantifier depth & is
the union of a collection of rank k types, the probability that T satisfies ¢ is also a smooth function of A.

All of this work was done with no explicit mention of the concept of interpretations. Our goal here
is to put it more comfortably into this paper’s framework. We call 1 : 7 — X afirst-order interpretation
if each set of trees {t € T : 1(t) = o} for ¢ € X can be defined in the first-order language described in
Section 1.9.

To avoid reproving results in [24,25], we continue to assume that y ~ Poi(4), but we expect that
the results should hold for general child distributions. As usual, the assumption that a fixed point has
no zero entries causes no loss of generality, since the set X can be shrunk and the automaton considered
as one on a smaller set of states.

Theorem 5.10.  Assume that y ~ Poi(4), and let T be any finite set of states. Let 1. T — X be an
interpretation of an automaton A corresponding to a fixed point V, which we assume has strictly positive
entries. If 1 is a first-order interpretation, then V is the only fixed point of the automaton distribution
map.

Proof. Let T,/ C T consist of all trees 7 on which 1(z) is tautologically determined by ¢|,. That is,
7,124 consists of all trees ¢ such that 1(¢) = «(¢’) for all ¢ € [¢],,.. It follows from [25, Lemma 5.6] that

lim P[T € 7, = 1. 39)
n—oo
Let (¢, 7) be an arbitrary tree whose coloring is compatible with the automaton A. We claim that
if t € T, then t(R,) = 1(¢). Indeed, condition on T € [f],. Under this conditioning, the vector
(I(T(v)))veL ® is i.i.d. V. Since v has strictly positive entries, this vector takes on each value in ¢+
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with positive probability. Since ¢t € T,™, we have «(T) = 1(¢) a.s. But «(7) is given by iteratively
applying the automaton to (I(T(V)))Ve L@ from which we can conclude that applying the automaton
in this way to any vector in %@ yields 1(¢). Thus, since 7(R,) is given by applying the automaton to
(z(t(v)))veLn (> 1t 00 is equal to 1(7).

Now, suppose that V' is another fixed point of the automaton map, and let (7, ) be the random
state tree associated with V/. If T € 7,/ for any n, then w(R7) = 1(T) by the claim we have just proved.
By (39), it holds with probability one that T € 7, for some value of n (observe that T € 7,/ forms
an increasing sequence of events). Hence w(R7) = «(T) a.s. Thus w(R7) ~ V, since «(T) ~ V. But by
the definition of the random state tree, w(Rr) ~ V', demonstrating that v = V', m

6 | FURTHER QUESTIONS

The most straightforward open problem is to extend Theorem 1.7 to 3 < |Z| < oo0. Theorem 1.8 already
provides one direction of the theorem, leaving the critical and supercritical cases. As we discussed in
Remarks 3.6 and 4.16, it might be possible to adapt the two-state proofs. In both cases, the difficulty is
that the pivot tree need not be positive regular. In fact, it seems to us that when the pivot tree is positive
regular, all proofs go through as is, and Theorem 1.7 holds in general for |X| < oo (though we have
not checked every detail).

Beyond this, two generalizations interest us. First, extending the results to infinite state spaces
would allow the theory to address situations like those considered in [20]. Second, one could consider
randomized automata: give each vertex v an independent source of randomness X, and then allow
the automaton to determine the state of a vertex from the states of its children together with X,. This
situation often arises in practice and is the model considered in [1]. Extending the theory to this case
might yield answers to questions about endogeny, as discussed in Section 1.9.

In a different direction, we wonder what configurations of fixed points are possible. For example,
when 3 < |X| < o0, can an automaton have infinitely many fixed points? (This can be ruled out when
|X| = 2 by arguing that the automaton distributional map is analytic.) In the case |X| = 2, for any
specified finite set of rogue and interpretable fixed points, is there an automaton and a child distribution
to match them? Even restricting ourselves to two-state monotone automata, it is not clear which sets
of rogue and interpretable fixed points can occur.

Section 5.3 also raises some questions. For example, Theorem 5.10 provides a condition on an
interpretation that makes the corresponding tree automaton have a unique fixed point. This suggests
the problem of giving conditions on the tree automaton itself that force its automaton distribution map
to have a unique fixed point.
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