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Abstract

A little over 25 years ago Pemantle [6] pioneered the study of the contact process
on trees, and showed that on homogeneous trees the critical values λ1 and λ2 for
global and local survival were different. He also considered trees with periodic degree
sequences, and Galton-Watson trees. Here, we will consider periodic trees in which the
number of children in successive generations is (n, a1, . . . , ak) with maxi ai ≤ Cn1−δ

and log(a1 · · · ak)/ logn → b as n → ∞. We show that the critical value for local
survival is asymptotically

√︁
c(logn)/n where c = (k − b)/2. This supports Pemantle’s

claim that the critical value is largely determined by the maximum degree, but it also
shows that the smaller degrees can make a significant contribution to the answer.
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1 Introduction

The contact process can be defined on any graph as follows: occupied sites become
vacant at rate 1, while vacant sites become occupied at rate λ times the number of
occupied neighbors. In 1974 Harris introduced the contact process on Zd. In 1992
Pemantle [6] began the study of contact processes on trees. Let ξt be the set of occupied
sites at time t and use ξ0t to denote the process with ξ00 = {0} where 0 is the root of the
tree. His main new result was that the process had two phase transitions:

λ1 = inf{λ : P (ξ0t ̸= ∅ for all t) > 0}
λ2 = inf{λ : lim inf

t→∞
P (0 ∈ ξ0t ) > 0}.

Let Td be the tree in which each vertex has d + 1 neighbors. When d = 1, T1 = Z,
so we restrict our attention to d ≥ 2. Pemantle showed that λ1 < λ2 when d ≥ 3 by
getting upper bounds on λ1 and lower bounds on λ2.1n 1996 Liggett proved that in d = 2

λ1 < 0.605 < 0.609 < λ2 to settle the last case. At about the ssme time, Stacey gave an
elegant proof that on Td and a number of other graphs we have λ1 < λ2. For an account
of the history and the theory of the contact process see Liggett’s 1999 book, [5].
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The Contact Process on Periodic Trees

Pemantle also considered periodic trees and Galton-Watson trees. In the special case
that the number of children alternates between a and b he showed 1/(

√
a +

√
b) ≤ λ2.

He did not give the details of the proof, but this can easily be proved using Lemma
3.1 in Pemantle and Stacey [7], which gives a formula for the critical value for local
survival for branching random walk on a general graph. Pemantle also showed, see
the first sentence after (7) on page 2103, that for a general period k tree with degree
sequence (a1, a2, . . . , ak) the critical value λ2 ≤ C/(a1 · · · ak)1/2k. When k = 2 the bound
is C/(ab)1/4. When a = b, the upper and lower bounds differ by a factor of 2. However
when a = 1 and b = n

1/(
√
a+

√
b) = 1/(1 +

√
n) C/(ab)1/4 = C/n1/4. (1.1)

As Pemantle notes on page 2103, the upper and lower bounds are different orders of
magnitude. He continues with “Which of these asymptotics for λ2 is sharp if either? The
somewhat surprising answer is that the lower bound is sharp even though the geometric
mean (a1 · · · ak)1/k is clearly a better representative for the growth rate of the tree.” The
next result shows that the lower bound is more accurate than the upper bound, but it is
not quite sharp.

Theorem 1.1. On the (1, n) tree, as n → ∞ the critical value

λ2 ∼
√︁
c2(log n)/n where c2 = 1/2.

On page 2103, Pemantle says that “for reasonably regular non-homogeneous trees the
critical value is determined by M the maximum number of children and is at most
rM−1/2 where r is a logarithmic measure of how far apart vertices with M children are
from each other.” The next result confirms his intuition about the importance of the
maximum degree but also shows that the lower degree vertices can have a significant
influence on λ2.

Theorem 1.2. Consider the (n, a1, a2, . . . , ak) tree where k is a fixed integer and ai can
depend on n. Suppose maxi ai ≤ Cn1−δ for some positive C, δ and

b = lim
n→∞

log(a1a2 · · · ak)
log n

.

As n → ∞ the critical value λ2 ∼
√︁
ck log n/n where ck = (k − b)/2.

Theorem 1.1 is the special case k = 1, a1 = 1, so it suffices to prove Theorem 1.2.
Using the methods developed to study λ2 we can derive asymptotics for λ1

Theorem 1.3. Under the assumptions of Theorem 1.2. (i) If c′k = (k + 1)/2− (b+ 1) > 0

then as n → ∞ the critical value λ1 ∼
√︁
c′k log n/n. (ii) If (k + 1)/2 − (b + 1) < 0 then

(log λ1)/ log n → −(b+ 1)/(k + 1).

When b = k the critical value is of order 1/n, which is the correct order of magnitude
value for the homogeneous tree in which all vertices have degree n. The difference
between (i) and (ii) is that in the second caseλ ≪ n−1/2 so the contact process does not
survive very long on stars.

1.1 The survival time of the contact process on finite trees

Let ρ be the root of the periodic tree (n, a1, . . . , ak). Truncating the periodic tree at
height k gives a subgraph Sk = {x : d(ρ, x) ≤ k}, where d is the distance on the tree. A
vertex x ∈ Sk at distance i from the center ρ is said to be in the set Li (“level i"). In Sk,
vertices on level 1 ≤ i < k have ai children while vertices on level k are leaves, i.e., they
have no children. When the context is clear we also write Sk = (n, a1, . . . , ak), where the
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The Contact Process on Periodic Trees

sequence corresponds to the offspring number on each level. When we delete the root
from Sk we end up with n subtrees {Tk,i}ni=1 with Tk,i = (a1, . . . , ak).

The first step in the proof of Theorem 1.2 is to prove in Section 2 an upper bound on
the survival time of contact process on Sk.

Theorem 1.4. Suppose λ =
√︁

c(log n)/n where c > 0. Let τk be the survival time of
contact process on Sk = (n, a1, . . . , ak) starting from all sites occupied where maxi ai ≤
Cn1−δ for some positive C and δ. For any ϵ > 0, when n is sufficiently large

Eτk ≤ C0(log n)e
(1+ϵ)λ2n = C0(log n)n

c(1+ϵ),

where C0 is some positive constant depending on k but not on C, δ.

When k = 1, Sk reduces to the star graph. In this case the result holds for all λ (see
[4] for details). Theorem 1.4 gives the only upper bound we know of for the survival time
for the contact process on the star. There are many lower bounds for the survival time
on stars. See Theorem 4.1 in [6], Lemma 5.3 in [1], and Lemma 1.1 in [2]. These bounds
can be used to show that the critical value for prolonged survival of the contact process
on some random graphs is 0, but to identify the asymptotics for the critical value on
the (n, a1, . . . , ak) tree, we need a more precise result on the survival time on the star
graph with n leaves. We denote the state of the star by (i, j) where i is the number of
occupied leaves and j = 1, 0 when the center is occupied, vacant. Let Pi,j be the law of
the process starting at state (i, j) and let T0,0 be the time to the hit (0, 0).

Theorem 1.5. Let L = (1− 4δ)λn with δ > 0 . If η > 0 is small then

PL,1

(︂
σ0 ≥ e(1−η)λ2n

)︂
→ 1 as n → ∞.

Combining this with Theorem 1.4 shows that if λ2n → ∞ the survival time on the star is
exp((1 + o(1))λ2n).

2 Upper bound on survival times on Sk

2.1 Equilibrium on T ∗
k

To prepare for the proof of Theorem1.4, we first consider the contact process on Sk

with the center ρ permanently occupied. Let Tk = (a1, . . . , ak) denote a generic subtree
of ρ and let T ∗

k be Tk with ρ attached to the root and with ρ permanently occupied. Since
the center ρ is always occupied, the contact process on Sk can be simply treated as n

independent contact processes on the T ∗
k,i’s. As ρ is always occupied, the contact process

ξt on T ∗
k has a stationary distribution ξ∞.

We use xi to denote a generic vertex in Li. To compute the occupancy probability
for a vertex xi ∈ Li we need the notion of the dual process ζt of ξt. To construct ξt
by graphical representation, we assign a Poisson process Nx of rate 1 to each vertex
x ∈ T ∗

k \{ρ} and a Poisson process N(x,y) of rate λ to each ordered pair of vertices that
are joined by an edge of T ∗

k . The dual process ζt is constructed by looking at the dual
path on the same graphical representation we used to construct ξt. (See Liggett [5] for
an account of graphical representation and duality.) It follows from duality that

P (xi ∈ ξt) = P (ρ ∈ ζxi
s for some s ≤ t) ≤ P (ρ ∈ ζxi

s for some s ≥ 0).

Letting t → ∞ gives P (xi ∈ ξ∞) ≤ P (ρ ∈ ζxi
s for some s ≥ 0), That is, if xi ∈ ξ∞ then the

dual contact process ζxi
t starting from xi has to reach ρ at some time. If we have a dual

path of length i+ 2m from xi to ρ then i+m steps will be toward ρ and m steps away.
Let (y0, y1, . . . , yi+2m) denote a path from xi to ρ with y0 = xi and yi+2m = ρ. To produce
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The Contact Process on Periodic Trees

a particle at ρ, we need a birth from yj to yj+1 to occur before the particle at yj dies for
all j = 0, . . . i+2m− 1. So the expected number of particles produced at ρ by this path is
(λ/(1 + λ))i+2m ≤ λi+2m. If we let d = Cn1−δ so that ai ≤ d for all i = 1, . . . , k, then the
expected number of particles Nxi,ρ that reach ρ has

ENxi,ρ ≤
∞∑︂

m=0

(︃
i+ 2m

m

)︃
λi+2mdm ≤ λi(1 +

∞∑︂
m=1

2i+2mλ2mdm)

= λi(1 + 2i
∞∑︂

m=1

(4λ2d)m) ≤ (1 + η)λi. (2.1)

Since λ2d → 0 as n → ∞, η > 0 can be arbitrarily small if n is large enough. It follows
that

P (xi ∈ ξ∞) ≤ P (Nxi,ρ ≥ 1) ≤ E(Nxi,ρ) ≤ (1 + η)λi. (2.2)

2.2 Proof of Theorem 1.4

Proof. Starting with all sites occupied on Sk, we will set the center ρ to be occupied
for an amount of time M chosen so that the distribution of the contact process on each
T ∗
k,i becomes close to the equilibrium ξ∞. After time M when the center ρ first becomes

vacant we run a trial to see if the following event occurs:

G = {ρ is not recolonized before the contact process dies out on Sk}.

If G occurs we terminate the process and obtain an upper bound on the survival time; if
G does not occur then we set all of the sites in Sk to be 1, make ρ occupied for the next
M units of time, and sbegin the next try.

Our first step is to choose M . The contact process ξt on T ∗
k is additive so we can

write ξt = ξρt ∪ ξ̂
1

t where ξ̂
1

t is the contact process on Tk with initially all 1’s, and ξρt the

contact process on T ∗
k with ρ initially and permanently occupied. By the time ξ̂

1

t dies
out, we have ξt = ξρt , whose distribution is stochastically dominated by the stationary
distribution ξ∞.

For our purpose M should be chosen to be roughly the extinction time of ξ̂
1

t . To
simplify notation we let d = Cn1−δ, the upper bound on maxi ai and consider the contact
process on the regular tree Td. Let At be the contact process on Td with birth rate
γ and death rate 1. Since Tk ⊂ Td, if we take γ > λ the contact process ξt on Tk is
stochastically dominated by At. Following the proof of Theorem 4.1 in part I of Liggett
[5], we define wθ(At) =

∑︁
y∈At

θℓ(y). where ℓ(y) is a function from Td to Z so that for

each y ∈ Td, ℓ(z) = ℓ(y) − 1 for exactly one neighbor z of y and ℓ(z) = ℓ(y) + 1 for the
other d neighbors z of y. Liggett shows that if θ = 1/

√
d

d

dt
EAwθ(At)

⃓⃓⃓⃓
t=0

≤ [2
√
dγ − 1]wθ(A0)

When n is sufficiently large and γ = 1/(log n)
√
d ≈ (log n)−1n−(1−δ)/2 ≫ λ, for any small

η > 0 we have
ETk

wθ(At) ≤ wθ(Tk)e
−(1−η)t ≤ (dθ)ke−(1−η)t. (2.3)

Markov’s inequality implies that

d−k/2PTk
(ℓ(x) ≤ k for some x ∈ At) ≤ dk/2e−(1−η)t ≤ dk/2e−t/2.

It follows that

P (ξ̂
1

t ̸= ∅) ≤ PTk
(ℓ(x) ≤ k for some x ∈ At) ≤ dke−t/2, (2.4)
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The Contact Process on Periodic Trees

so the process dies out with high probability when t ≥ 4k log d. Since d = Cn1−δ we can
choose M = 4k log n.

With the choice of M fixed, next we will estimate the probability of the event G and
obtain an upper bound on the survival time. Now we start the contact process on T ∗

k with
all sites occupied and set ρ to be occupied for the first M units of time. After time M we
allow ρ to become vacant at rate 1. For any η > 0 and t ≥ M , when n is large enough

P (ξt(xi) = 1) ≤ P (ξρt (xi) = 1) + P (ξ̂
1

t (xi) = 1) ≤ P (xi ∈ ξ∞) + P (ξ̂
1

t ̸= ∅)

≤ (1 + η)λi + n−(1−δ)k ≤ (1 + 2η)λi by (2.2).

Call the subgraph consisting of ρ and all of its neighbors the central star. When the
center ρ first becomes vacant (after time M ), we use D1 to denote the set of occupied
sites on the central star and D2 the set of occupied sites outside the central star. By
the additivity of the process we observe that G is the intersection of the following two
events:

G1 = {ρ /∈ ξD1
t for any t} and G2 = {ρ /∈ ξD2

t for any t},

where ξAt is the contact process on Sk with an initial set A of occupied sites. Since G1

and G2 are both decreasing events, i.e., having more births or fewer deaths is bad for
them, so by the Harris-FKG inequality

P (G) = P (G1 ∩G2) ≥ P (G1)P (G2).

We begin by estimating P (G2). Note that the expected number of particles outside
the central star at time t ≥ M is

≤ (1 + 2η)
(︁
na1λ

2 + na1a2λ
3 + . . . na1a2 · · · ak−1λ

k
)︁
.

Since λ =
√︁
(c log n)/n, if ai = Cn1−δ for all i with δ < 1/2 this grows rapidly as n → ∞.

Fortunately, if we start a contact process on Sk from a site on level i and freeze
any particle that reaches the center ρ, then the expected number of such particles is
≤ (1 + η)λi by the same dual path argument as in (2.1). Therefore the expected number
Nρ of particles reaching the center ρ is

≤ (1 + η)(1 + 2η)
(︁
na1λ

4 + na1a2λ
6 + . . . na1a2 · · · ak−1λ

2k+2
)︁
≤ n−δ/2.

Hence when n is large

P (Gc
2) ≤ P (Nρ ≥ 1) ≤ E(Nρ) ≤ n−δ/2 ≤ η.

Now we turn to event G1. Let ζx1
t and ζ̃

x1

t denote the contact process on Tk and T ∗
k ,

respectively, with the site x1 ∈ L1 initially occupied. We need to estimate the probability
of event B = {ζ̃

x1

t dies out before giving birth to ρ}. Let σ be the amunt of time 0 is
occupied in ζx1

t . Using the definition of wθ and a calculation similar to (2.3)

Eσ ≤
∫︂ ∞

0

Ex1
wθ(At)dt ≤

∫︂ ∞

0

e−(1−η)tdt ≤ 1 + 2η.

when η is small. Note that on event B, ζx1
t and ζ̃

x1

t can be coupled together exactly.
Hence event B occurs if there is no arrival of infection arrows pointing from x1 to ρ

during the survival time σ of ζx1
t , i.e.,

P (B) ≥ P (Poisson(λσ) = 0) = Ee−λσ ≥ e−λEσ ≥ e−(1+2η)λ.

If there are m occupied neighbors of ρ when it becomes vacant then we need event B to
occur on m subtrees to ensure the occurrence of G1. Again by the Harris-FKG inequality
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P (G1) ≥ P (B)m ≥ e−(1+2η)mλ. Since the occupancy of sites adjacent to the root are
independent events, (2.2) and the law of large numbers implies that for sufficiently large
n we have P (m ≤ (1 + 3η)λn) ≥ 1− η. From this it follows that for small η and large n

P (G1) ≥ (1− η)e−(1+2η)(1+3η)λ2n ≥ (1− η)e−(1+6η)λ2n. (2.5)

Therefore, P (G) ≥ P (G1)P (G2) ≥ (1− η)2e−(1+6η)λ2n. That is, in expectation we need to
try (1− η)−2e(1+6η)λ2n times to have a success. In each trial, it takes an expected amount
of time M + 1 for ρ to become vacant. Let {Xi}ni=1 be a set of i.i.d. random variables

representing the survival time of the contact process ξ̂
1

t on {Tk,i}ni=1, respectively. We
observe that it takes time ≤ E(max1≤i≤n Xi) to determine if G occurs. Since

E( max
1≤i≤n

Xi) ≤ 2(k + 1) log n+

∫︂ ∞

2(k+1) logn

P ( max
1≤i≤n

Xi > t) dt

≤ 2(k + 1) log n+

∫︂ ∞

2(k+1) logn

n · (Cn1−δ)ke−t/2 dt ≤ 4k log n by (2.4),

each round takes at most M + 1 + 4k log n ≤ 9k log n units of time in expectation. It
follows that

Eτk ≤ (9k log n)(1− η)−2e(1+6η)λ2n ≤ C0(log n)e
(1+6η)λ2n

for some C0 > 0 and sufficiently large n.

3 Lower bound on λ2

Lemma 3.1. Let ck = (k − b)/2 and ϵ > 0. When n is sufficiently large, the critical value
λ2 of the contact process on the (n, a1, a2, . . . , ak) tree in Theorem 1.2 satisfies

λ2 ≥

√︄
ck log n

(1 + ϵ)n
.

Proof. Let S(ρ) ≡ Sk ∪ Lk+1, where we recall that Lk+1 = {y : d(y, ρ) = k + 1}. We
start the contact process on S(ρ). When a site in Sk gives birth onto a site on Lk+1

we freeze the particle at yk+1 We begin with only ρ occupied and run the process until
there are no particles on Sk. These particles will be the descendants of the initial
particle ρ in a branching random walk that we use to dominate the contact process
on the periodic tree. When the contact process on Sk dies out we are left with frozen
particles in Lk+1. Each frozen particle at yk+1 starts a new contact process on a subgraph
S(yk+1) ≡ {z : |z−yk+1| ≤ k+1} which is isomorphic to S(ρ) and has center yk+1. If there
are several frozen particles at the same site they start independent contact processes.
Then we freeze every particle that escapes from S(yk+1), and so on.

Let B(S(ρ), yk+1) be the total number of particles frozen at yk+1 ∈ Lk+1 in the contact
process on S(ρ). Let y1 denote the neighbor of ρ that is at distance k to yk+1. When the
center ρ is occupied, it gives birth to a particle at y1 at rate λ. By the same reasoning
as in (2.1), starting from a particle at y1, to produce a particle at yk+1 we need a path
from y1 to yk+1 where in each step a birth occurs before death. If we set the center ρ

to be always occupied, then we can ignore the paths from y1 to yk+1 that go through ρ.
Therefore, starting from a particle at y1 the expected number of particles reaching yk+1

is ≤ (1 + η)λk by the same computation as (2.1).
By Theorem 1.4 the expected survival time on Sk is ≤ C(log n)e(1+η)λ2n. If during this

whole time the center ρ is occupied and pushing particles to y1 at rate λ, then there are
an expected number of ≤ λ ·C(log n)e(1+η)λ2n times we start a process from a particle at
y1 to produce particles at yk+1. Hence

EB(S(ρ), yk+1) ≤ λ · C(log n)e(1+η)λ2n · (1 + η)λk ≤ λk+1n(1+2η)c. (3.1)
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To bound the number of particles on the periodic tree that reach the root ρ, we consider a
tree consisting of the vertices of degree n in which each vertex is connected to the others
vertices of degree n at distance k + 1. This is a N -regular tree with N = n(a1a2 · · · ak).
Starting from the root, there are

≤
(︃
2m

m

)︃
Nm · 1m ≤ 22mNm

paths of length 2m that returns to it. So the expected number of particles returning to
the root is

≤ 22mNm(λk+1n(1+2η)c)2m = (2N1/2λk+1n(1+2η)c)2m (3.2)

We have log(λ)/ log n → −1/2 and (logN)/ log n → 1 + b so

lim
n→∞

log(2λk+1N1/2n(1+ϵ)c)

log n
= −k + 1

2
+

1 + b

2
+ (1 + 2η)c < 0

if c < (k − b)/2(1 + 2η). In this case, the expected number of particles that return to
the origin is finite, which means the process does not survive locally. Taking ϵ = 2η

completes the proof.

4 Lower bound on survival time on stars

Here, following the approach of Chatterjee and Durrett [2], we will reduce the contact
process on a star to a one dimensional chain. We denote the state of the star by (j, k)

where j is the number of occupied leaves and k = 1, 0 when the center is occupied,
vacant. We will only look at times when the center is occupied. When the center is
vacant and there are j occupied leaves, the next event will occur after exponential time
with mean 1/(jλ + j). The probability that it will be a birth at the center is λ/(λ + 1).
The probability it will be the death of a leaf particle is 1/(λ + 1). Thus, the number
of leaf particles Z that will be lost while the center is vacant has a shifted geometric
distribution with success probability λ/(λ+ 1), i.e.,

P (Z = j) =

(︃
1

λ+ 1

)︃j

· λ

λ+ 1
for j ≥ 0. (4.1)

Note that EZ = 1/λ. Since we are interested in a lower bound on the survival time, we
can simply ignore the time spent when the center is vacant. Here we will construct a
process Xt that gives a lower bound on the number of occupied leaves in the contact
process.

Let δ > 0 and L = (1− 4δ)λn. When there are k ≤ L occupied leaves and the center
is occupied, new leaves become occupied at rate λ(n− k) ≥ λ(n− λn) ≥ λ(1− δ)n for
sufficiently large n since λ =

√︁
c log n/n → 0 as n → ∞. Let Xt have the following

transition rates:

jump at rate
Xt → Xt − 1 L

Xt → min{Xt + 1, L} (1− δ)λn

Xt → Xt − Z 1

Here Z is independent of Xt and has the distribution given in (4.1).

Lemma 4.1. Let δ > 0. Suppose λ =
√︁
c(log n)/n and let

θ =
1

λ+ 1

(︃
λ− 1

δλn

)︃
If n is large then h(Xt) ≡ (1− θ)Xt is a supermartingale when Xt < L.
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Proof. Suppose the current value is V = (1− θ)Xt where Xt ≤ L = (1− 4δ)λn. We have:
V → V/(1− θ) t rate ≤ L, V → V (1− θ) at rate ≥ (1− δ)λn, and V → V (1− θ)−Zat rate
1. The changes in value due to the first two transitions are, if θ is small,

V

(︃
1

1− θ
− 1

)︃
≤ (1− δ)−1θV at rate ≤ L

V [(1− θ)− 1] = −θV at rate ≥ (1− δ)λn

We have L = (1− 4δ)λn < (1− δ)(1− 3δ)λn, so the first two types of jumps have a net
drift (︁

(1− δ)−1L− (1− δ)λn
)︁
θV ≤ −(2δλn)θV. (4.2)

In the third case, ignoring the fact that the number of occupied leaves cannot drop below
0, we have

E(1− θ)−Z ≤
∞∑︂
k=0

(︃
1

1 + λ

)︃k
λ

1 + λ
· (1− θ)−k =

λ

1 + λ

∞∑︂
k=0

(︃
1

(1 + λ)(1− θ)

)︃k

=
λ

1 + λ
· 1

1− 1/(1 + λ)(1− θ)
=

λ(1− θ)

λ− θ − θλ

so we have V (E(1−θ)−Z−1) = θV
λ−θ(1+λ) = (δλn)θV for the chosen value of θ. Combining

this with (4.2) gives that for any δ > 0, h(Xt) is a supermartingale for large n.

We use Pi to denote the law of the process Xt starting with X0 = i. Since Xt omits
some time intervals from the contact process on the star, the next result implies Theorem
1.5.

Lemma 4.2. Let L = (1− 4δ)λn and T−
a = inf{t : Xt < a}. If η > 0 is small then

PL−1

(︃
T−
ηL ≥ 1

λ2n
e(1−4η)λ2n

)︃
→ 1 as n → ∞.

Proof. Suppose a < x < b are integers. Let Tb = inf{t : Xt = b} and note that X(Tb) = b

while X(T−
a ) ≤ a− 1. Since h(Xt) is a supermartingale and h is decreasing

h(x) ≥ h(a− 1)Px(T
−
a < Tb) + h(b)[1− Px(T

−
a < Tb)]

Rearranging we have

Px(T
−
a < Tb) ≤

h(x)− h(b)

h(a− 1)− h(b)
.

When x = b− 1 this implies

Px(T
−
a < Tb) ≤

h(b− 1)− (1− θ)h(b− 1)

h(a− 1)− h(b− 1)
=

θh(b− 1)/h(a− 1)

1− h(b− 1)/h(a− 1)

Let η > 0. We will apply this result with b = L = (1− 4δ)λn and a = ηb. If δ is small
b ≥ (1− η)λn. If λ is small then 1− θ < 1− (1− η)λ. With these choices

h(b− 1)/h(a− 1) = (1− θ)b−a < (1− (1− η)λ)(1−2η)λn ≤ exp
(︁
−(1− 3η)λ2n

)︁
.

If n is large,
Pb−1(T

−
a < Tb) ≤ 2λ exp(−(1− 3η)λ2n). (4.3)

Let GL = {Xt returns (1/2λ)e(1−4η)λ2n times to L before going < ηL}. It follows from
(4.3) that P (GL) ≥ 1− e−ηλ2n. In order to return to L we have to jump from L− 1 to L, a
time that dominates an exponential random variable with parameter λn/2 so the law of
large numbers tells us that the total amount of time before Xt < ηL is ≥ 1

λ2ne
(1−4η)λ2n

on GL which completes the proof.
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5 Ignition on a star graph

In this section we will describe a mechanism for the contact process on the period
tree (n, a1, . . . , ak) to survive, which basically relies on the dynamics on the star graphs
of degree n embedded in tree. Vertices with degree n will be called hubs.

There are three ingredients in the proof of the upper bounds on λ2

1. survival of the process on the star graph containing a hub for a long time,

2. pushing particles from one hub to other hubs at distance k + 1,

3. “ignition”, which refers to increasing the number of occupied leaves at the new
hub to L.

The first point was taken care of in the previous section. The third is covered in this one.
Starting from only the central vertex of a degree n hub occupied, we need to increase
the number of occupied leaves to L = (1− 4δ)λn by time nc/4, which is referred to as
the ignition of a hub. We treat L and K in the following lemma as integers for simplicity.

Lemma 5.1. Suppose λ =
√︁
c0(log n)/n. Let T0,0 be the first time the star is vacant and

Ti be the first time the star has i occupied leaves. For any small δ > 0 if K = λn/
√
log n

and L = (1− 4δ)λn, then for large n

(i)P0,1(TK > T0,0) ≤ 3/
√︁

log n,

(ii)PK,1(T0,0 < TL) ≤ 2 exp(−(c0/3)
√︁

log n)

(iii)E0,1 min{T0,0, TL} ≤ (1 + log n)/2δ

Proof. Let p0(t) be the probability a leaf is occupied at time t when there are no occupied
leaves at time 0 and the central vertex has been occupied for all s ≤ t. p0(0) = 0 and

dp0(t)

dt
= −p0(t) + λ(1− p0(t)) = λ− (λ+ 1)p0(t)

Solving gives p0(t) = λ(1 − e−(λ+1)t)/(λ + 1). As t → 0, p0(t) ∼ λt so if t is small
p0(t) ≥ λt/2 Taking t = 2/

√
log n it follows that if B = Binomial(n, λ/

√
log n)

P0,1(TK < T0,0) ≥ P (B > K) exp(−2/
√︁
log n)

The second factor is the probability that the center stays occupied until time 2/
√
log n,

and exp(−2/
√
log n) ≥ 1− 2/

√
log n. B has mean λn/

√
log n and variance ≤ λn/

√
log n so

Chebyshev’s inequality implies

P (B < λn/(2
√︁

log n)) ≤ λn/
√
log n

(λn/(2
√
log n))2

≤ 4
√
log n

λn
≤ 1√

log n
.

For (ii) we use the supermartingale h(Xt) from Lemma 4.1.

PK,1(T0,0 < TL) ≤ 2(1− λ/3)λn/
√
logn

≤ 2 exp(−λ2n/3
√︁

log n) = 2 exp(−(c0/3)
√︁

log n).

For (iii) we compare with the process Xt in which we ignore the time spent when the
center is vacant. To bound the time for the process Xt to reach L or die out we note that
EZ = (λ+ 1)/λ− 1 = 1/λ so when n is large

µ = (1− δ)λn− (1− 4δ)λn− 1/λ = 3δλn− 1/λ ≥ 2δλn
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gives a lower bound on the drift. Let T̂ 0,0 be the first time Xt hits 0 and T̂L be the first
time Xt hits L. Xt − µt is a submartingale before time VL = T̂ 0, ∧ T̂L. Stopping the
submartingale Xt − µt at the bounded stopping time VL ∧ s

EX(VL ∧ s)− µE(VL ∧ s) ≥ EX0 = 0.

Since EX(VL ∧ s) ≤ L, it follows that E(VL ∧ s) ≤ L/µ.
Letting s → ∞ we have EVL ≤ L/µ ≤ 1/2δ since L = (1− 4δ)λn and µ ≥ 2δλn. Note

that the above calculation is for Xt which ignores the time when the center is vacant. To
bound the time when the center is vacant, we note that the most extreme excursion that
starts at n and goes to 0 takes a time with mean (log n)/(1 + λ). During time [0, VL] the
excursions occur at rate 1, that is, E0,1 min{T0,0, TL} ≤ (1+log n)EVL ≤ (1+log n)/2δ.

6 Upper bound on λ2

We will prove the result for (n, a1, . . . , ak) tree. Suppose that λ =
√︁
c(log n)/n with

c = ck + ϵ where ck ≡ (k − b)/2. We select one hub to call the root.

Step 1. Pushing the particles out to distance (k + 1)m. Lemma 4.2 implies that if
there at least L occupied leaves before time nc/4 then with high probability we have

G0 = {there will be at least ηL occupied leaves during [nc/4, 3nc/4]}.

During this time interval the hub will try to push particles to hubs at distance k + 1. The
first step is to show that the center is never vacant for very long.

Lemma 6.1. Suppose that the number of occupied leaves is always ≥ ηL on I =

[nc/4, 3nc/4]. Let t0 = 2/(1 − 4δ)η and G1 = {there is no interval of length ≥ t0 in I

during which the center is always vacant}. As n → ∞, P (G1) → 1.

Proof. The center becomes vacant at times of a Poisson process with rate 1. Using large
deviations results for the Poisson process, the probability there are more than nc arrivals
in an interval of length nc/2 is ≤ exp(−γnc). Suppose the center is vacant and let R be
the time needed until it becomes occupied.

P (R > t0) ≤ exp(−t0ληL) = exp(−2c log n) = n−2c

Hence P (Gc
1) ≤ exp(−γnc) + ncn−2c → 0.

When the center is occupied there is probability e−1(1−e−λ) that it will stay occupied
for time 1 and give birth onto a given leaf within time 1. With probability e−1 that leaf
will stay occupied until time 1. Doing this for k + 1 times the probability of passing a
particle to a given hub at distance k + 1 is

≥
[︁
e−1(1− e−λ)e−1

]︁k+1 ≥ λk+1/(2e2)k+1 ≥ C1

(︃
log n

n

)︃(k+1)/2

(6.1)

where C1 = (
√
c/2e2)k+1. Since our cycle takes time t1 ≡ t0 + 2, we have nc/t1 chances

to do this during [nc/4, 3nc/4]. The probability that all attempts fail is

≤

(︄
1− C1

(︃
log n

n

)︃(k+1)/2
)︄nc/t1

≤ exp
(︂
−C2n

c−(k+1)/2(log n)(k+1)/2
)︂

(6.2)

where C2 = C1/t1.
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It follows from (6.2) that the probability of a successful push in [nc/4, 3nc/4] is

≥ 1− exp
(︂
−C2n

c−(k+1)/2(log n)(k+1)/2
)︂
≥ nc−(k+1)/2 when n is large. (6.3)

We say that a hub at distance (k + 1)m that is a descendant of the root is wet if it has
≥ ηL occupied leaves at time mnc. Starting with a wet hub at time 0, the center of
the hub will become occupied at rate at least ηL and then Lemma 5.1 implies that the
hub will be ignited within time nc/4 with high probability. When the hub successfully
pushes a particle to an adjacent hub during time [nc/4, 3nc/4], that adjacent hub can
ignite within the next nc/4 units of time with high probability and hence be wet at time
nc. Therefore a wet hub can make an adjacent hub wet with probability ≥ nc−(k+1)/2

when n is large. The pushing events for different neighbors are not independent, but we
can estimate the expected number Zm of hubs that become wet at distance (k + 1)m at
time mnc. Let N ≡ n(a1 · · · ak). Then EZm = (Nnc−(k+1)/2)m.

Step 2. Bringing a particle back to the root. To simplify notation we will write
N ≡ n(a1 · · · ak). Let TN denote an N -regular tree. We will compare with an oriented
percolation in TN ×Z+, where the probability for successfully pushing a particle to a
neighbor is p ≡ nc−(k+1)/2 so that it is dominated by the contact process (see (6.3)). The
mean number of paths Nm that go out a distance (k + 1)m and lead back to the origin is
ENm = Nmp2m.

Note that the pushing events to different neighbors in the oriented percolation are
not independent due to the underlying contact process. To estimate the second moment
EN2

m we need to control the correlation between different paths back to the root. For
simplicity in notation we write a0 = n. For some 0 ≤ l < m and 0 ≤ r < k+1, the number
of pairs of paths from distance (k+1)m back to the root that agree in the last l(k+1)+ r

steps is

N l

(︄
r−1∏︂
i=0

ai

)︄(︄
Nm−l−1

k∏︂
i=r

ai

)︄2

≤ N lN2(m−l−1)N2 = N2m−l.

Since the two paths merge at distance l(k + 1) + r from the root, the corresponding step
in the oriented percolation involves two dependent pushing events from two vertices
to their common neighbor. The probability of this event is trivially upper bounded by p.
Hence the probability that all the edges in the combined path are successful pushes is
≤ pl(pm−l−1)2p = p2m−l−1. Thus the second moment of the number of successful paths
out and back is

EN2
m ≤

m∑︂
l=0

N2m−l(p2m−l−1)2 ≤ (Np2)2mp−2

(︄
m∑︂
l=0

(Np2)−l

)︄
.

Since c = ck + ϵ, Np2 = n2(ck+ϵ)−(k−b) > 1 when n is sufficiently large, which then gives
EN2

m ≤ Cp−2(Np2)2m for some constant C > 0.
The Cauchy-Schwarz inequality implies that E(Nm1{Nm>0})

2 ≤ E(N2
m)P (Nm > 0).

Rearranging we conclude that

P (Nm > 0) ≥ (ENm)2

E(N2
m)

≥ (Np2)2m

Cp−2(Np2)2m
=

p2

C
= n2c−(k+1)/C.

Since m is arbitrary we have that a particle returns to the root at arbitrarily large
times in the oriented percolation. This implies that the dominating contact process
survives strongly with probability ≥ n2c−(k+1)/C > 0 for any sufficiently large n. That is,
λ2 ≤

√︁
c(log n)/n when n is large enough.
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7 Proof of Theorem 1.3

Case 1: c′k = (k + 1)/2− (b+ 1) > 0.
We begin with the lower bound, which is proved using results from Section 3. Let

α = c′k − ϵ and λ =
√︁
α(log n)/n. Using (3.1) it follows that the total number of frozen

particles on neighboring hubs is ≤ C0(log n)n
(1+η)αn1+bλk+1 for some constant C0. From

this we see that if η is small then the expected number of particles that escape from Sk

is < 1 and comparing with a branching process implies that the process dies out.
Turning to the upper bound, let β = c′k + ϵ and λ =

√︁
β(log n)/n. Let L = (1− 4δ)λn

with δ > 0. Theorem 1.5 implies that starting from a “wet hub” (that has L occupied
neighbors) then with high probability (i) the infection on the associated star survives for
at least exp((1−η)λ2n) = nc where c = (1−η)β, and (ii) has ηL occupied neighbors during
this time. Computations in Step 3 of Section 6 imply that the probability of successfully
pushing the infection to a neighboring hub during [nc/4, 3nc/4] is ≥ nc−(k+1)/2 when n

is large. The ignition result, Lemma 5.1, implies that at time nc the new hub will have
at least L occupied neighbors with high probability. The expected number of new wet
neighboring hubs is ≥ nc+b+1−(k+1)/2. If η is small then under our choice of β the number
of wet hubs dominates a supercritical branching process.

Case 2: (k + 1)/2− (b+ 1) < 0.
Again we begin with the lower bound. Suppose λ = n−α with α > 1/2. In this

case, Theorem 1.4 implies that the contact process survives for O(log n) on the graph
Sk. Using (3.1) again, the expected number of particles that escaped from Sk is ≤
C(log n)nb+1λk+1 = C(log n)nb+1−α(k+1) for some positive constant C. If α > b+1

k+1 the
above is < 1 when n is large. Comparing with a branching process implies the the
process dies out.

Starting with the center of Sk infected, the probability that it successfully pushes the
infection to a neighboring hub is ≥ C1λ

k+1 by (6.1). If we only use neighboring hubs
that are further from the root then we can compare with a branching process whose
expected number of offspring is ≥ C1λ

k+1n1+b = C1n
−α(k+1)+1+b. Hence when α < b+1

k+1

the contact process dominates a supercritical branching process, which implies λ > λ1.
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