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Abstract

A little over 25 years ago Pemantle [6] pioneered the study of the contact process
on trees, and showed that on homogeneous trees the critical values A1 and A2 for
global and local survival were different. He also considered trees with periodic degree
sequences, and Galton-Watson trees. Here, we will consider periodic trees in which the
number of children in successive generations is (n, a1, ..., ar) with max; a; < Cnt™°
and log(ai ---ax)/logn — b as n — oco. We show that the critical value for local
survival is asymptotically /c(logn)/n where ¢ = (k — b)/2. This supports Pemantle’s
claim that the critical value is largely determined by the maximum degree, but it also
shows that the smaller degrees can make a significant contribution to the answer.
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1 Introduction

The contact process can be defined on any graph as follows: occupied sites become
vacant at rate 1, while vacant sites become occupied at rate A times the number of
occupied neighbors. In 1974 Harris introduced the contact process on Z%. In 1992
Pemantle [6] began the study of contact processes on trees. Let &; be the set of occupied
sites at time ¢ and use &) to denote the process with £J = {0} where 0 is the root of the
tree. His main new result was that the process had two phase transitions:

A = inf{\: P(¢) # § for all t) > 0}
Ao = inf{X : liminf P(0 € ) > 0}.
— 00

Let T, be the tree in which each vertex has d + 1 neighbors. Whend =1, Ty = %7,
so we restrict our attention to d > 2. Pemantle showed that A\; < Ay when d > 3 by
getting upper bounds on \; and lower bounds on A;.1n 1996 Liggett proved that in d = 2
A1 < 0.605 < 0.609 < \s to settle the last case. At about the ssme time, Stacey gave an
elegant proof that on T; and a number of other graphs we have A\; < As. For an account
of the history and the theory of the contact process see Liggett’s 1999 book, [5].

*Partially supported by DMS grants DMS 1505215 and 1809967 from the Probability Program. This original
version of this paper [4] was produced in a DOMath project at Duke University in the summer of 2018 with
undergraduates Yufeng Jiang, Remy Kassem, Grayson York, and Brandon Zhao.

TE-mail: zoe@math.duke.edu

*Dept. of Math, Duke University, Box 90320, Durham NC 27708-0320

E-mail: rtd@math.duke.edu


https://doi.org/vVOL-PID
http://www.imstat.org/ecp/
mailto:zoe@math.duke.edu
mailto:rtd@math.duke.edu

The Contact Process on Periodic Trees

Pemantle also considered periodic trees and Galton-Watson trees. In the special case
that the number of children alternates between a and b he showed 1/(v/a + vb) < Ay.
He did not give the details of the proof, but this can easily be proved using Lemma
3.1 in Pemantle and Stacey [7], which gives a formula for the critical value for local
survival for branching random walk on a general graph. Pemantle also showed, see
the first sentence after (7) on page 2103, that for a general period k tree with degree
sequence (a1, as, . .., a;) the critical value Ay < C/(a; - - - ax)'/?*. When k = 2 the bound
is C'/(ab)'/*. When a = b, the upper and lower bounds differ by a factor of 2. However
whena=1andb=n

1/(Va+Vb)=1/1++vn)  C/(ab)"/* = C/nt/* (1.1)

As Pemantle notes on page 2103, the upper and lower bounds are different orders of
magnitude. He continues with “Which of these asymptotics for A\ is sharp if either? The
somewhat surprising answer is that the lower bound is sharp even though the geometric
mean (ap - - - ak)l/ k is clearly a better representative for the growth rate of the tree.” The
next result shows that the lower bound is more accurate than the upper bound, but it is
not quite sharp.

Theorem 1.1. On the (1,n) tree, as n — oo the critical value
A2 ~ y/co(logn)/n  where co = 1/2.

On page 2103, Pemantle says that “for reasonably regular non-homogeneous trees the
critical value is determined by M the maximum number of children and is at most
rM~1/? where r is a logarithmic measure of how far apart vertices with M children are
from each other.” The next result confirms his intuition about the importance of the
maximum degree but also shows that the lower degree vertices can have a significant
influence on As.

Theorem 1.2. Consider the (n,a1,as,...,a;) tree where k is a fixed integer and a; can
depend on n. Suppose max; a; < Cn'~? for some positive C,§ and

b= lim 1080102 ak)
n— 00 10g’fl

As n — oo the critical value Ay ~ /¢y logn/n where ¢, = (k — b)/2.

Theorem 1.1 is the special case k = 1, a; = 1, so it suffices to prove Theorem 1.2.
Using the methods developed to study Ay we can derive asymptotics for Ay

Theorem 1.3. Under the assumptions of Theorem 1.2. (i) If ¢, = (k+1)/2—(b+1) >0
then as n — oo the critical value \y ~ \/cj logn/n. (i) If (k +1)/2 — (b+ 1) < 0 then
(logA1)/logn — —(b+1)/(k+1).

When b = k the critical value is of order 1/n, which is the correct order of magnitude
value for the homogeneous tree in which all vertices have degree n. The difference
between (i) and (ii) is that in the second case\ < n~!/2 so the contact process does not
survive very long on stars.

1.1 The survival time of the contact process on finite trees

Let p be the root of the periodic tree (n,aq,...,ax). Truncating the periodic tree at
height k gives a subgraph Sy, = {z : d(p, z) < k}, where d is the distance on the tree. A
vertex x € Sy at distance 7 from the center p is said to be in the set L; (“level i"). In S,
vertices on level 1 < i < k have a; children while vertices on level k are leaves, i.e., they
have no children. When the context is clear we also write Sy = (n,aq,...,ax), where the
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sequence corresponds to the offspring number on each level. When we delete the root
from S, we end up with n subtrees {T} ;}_, with T ; = (a1, ..., ax).

The first step in the proof of Theorem 1.2 is to prove in Section 2 an upper bound on
the survival time of contact process on Sy.

Theorem 1.4. Suppose A = /c(logn)/n where ¢ > 0. Let 7, be the survival time of
contact process on Sy, = (n,as,...,a) starting from all sites occupied where max; a; <
Cn'~% for some positive C' and 6. For any € > 0, when n is sufficiently large

By, < Co(logn)e!" 9™ = Cy(log n)n 1+,

where C is some positive constant depending on k but not on C, .

When k = 1, S; reduces to the star graph. In this case the result holds for all A (see
[4] for details). Theorem 1.4 gives the only upper bound we know of for the survival time
for the contact process on the star. There are many lower bounds for the survival time
on stars. See Theorem 4.1 in [6], Lemma 5.3 in [1], and Lemma 1.1 in [2]. These bounds
can be used to show that the critical value for prolonged survival of the contact process
on some random graphs is 0, but to identify the asymptotics for the critical value on
the (n,a1,...,ax) tree, we need a more precise result on the survival time on the star
graph with n leaves. We denote the state of the star by (¢, j) where 7 is the number of
occupied leaves and j = 1,0 when the center is occupied, vacant. Let P; ; be the law of
the process starting at state (¢, j) and let Tp o be the time to the hit (0, 0).

Theorem 1.5. Let L = (1 — 40)An with 6 > 0. If n > 0 is small then
Pr 1 (Uo > e(l_””?”) -1 asn— .

Combining this with Theorem 1.4 shows that if \?n — oo the survival time on the star is
exp((1 + o(1))\%n).

2 Upper bound on survival times on 5,

2.1 Equilibrium on T}

To prepare for the proof of Theorem1.4, we first consider the contact process on S,
with the center p permanently occupied. Let Tj, = (ay, ..., ax) denote a generic subtree
of p and let T} be T}, with p attached to the root and with p permanently occupied. Since
the center p is always occupied, the contact process on Sj can be simply treated as n
independent contact processes on the T} ;’s. As p is always occupied, the contact process
& on T} has a stationary distribution {.

We use x; to denote a generic vertex in L;. To compute the occupancy probability
for a vertex x; € L; we need the notion of the dual process (; of &. To construct &
by graphical representation, we assign a Poisson process N, of rate 1 to each vertex
x € T))\{p} and a Poisson process N(, , of rate A to each ordered pair of vertices that
are joined by an edge of T};. The dual process (; is constructed by looking at the dual
path on the same graphical representation we used to construct &;. (See Liggett [5] for
an account of graphical representation and duality.) It follows from duality that

P(z; € &)= P(pe (S forsome s <t) < P(p € (7 for some s > 0).

Letting t — oo gives P(z; € {x) < P(p € (7¢ for some s > 0), That is, if z; € { then the
dual contact process (;* starting from x; has to reach p at some time. If we have a dual
path of length 7 4+ 2m from z; to p then ¢ + m steps will be toward p and m steps away.
Let (yo,y1,- - -, Yit2m) denote a path from z; to p with yo = z; and y;42,, = p. To produce
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a particle at p, we need a birth from y; to y;41 to occur before the particle at y; dies for
all j =0,...74+2m — 1. So the expected number of particles produced at p by this path is
(A/(1L+X)+2m < Xi#2m Ifwe let d = On'~% so that a; < d foralli = 1,..., k, then the
expected number of particles N, , that reach p has

ENzhp S Z <Z + m> )\7,+2mdm S )\7,(1 + Z 21+2m)\2mdm)
m

m=0 m=1
=N(1420)(@Nd)™) < (1L+ ). (2.1)
m=1

Since A%2d — 0 as n — 0o, n > 0 can be arbitrarily small if n is large enough. It follows
that )
P(x; € {oo) < P(Nyyp > 1) < E(Ng, p) < (14 m)A (2.2)

2.2 Proof of Theorem 1.4

Proof. Starting with all sites occupied on Sj, we will set the center p to be occupied
for an amount of time M chosen so that the distribution of the contact process on each
Ty ; becomes close to the equilibrium ... After time M when the center p first becomes
vacant we run a trial to see if the following event occurs:

G = {p is not recolonized before the contact process dies out on S }.

If G occurs we terminate the process and obtain an upper bound on the survival time; if
G does not occur then we set all of the sites in Si to be 1, make p occupied for the next
M units of time, and sbegin the next try.

Our first step is to choose M. The contact process & on T} is additive so we can
write & = £ U étl where étl is the contact process on T}, with initially all 1’s, and £/ the
contact process on T} with p initially and permanently occupied. By the time étl dies
out, we have & = £/, whose distribution is stochastically dominated by the stationary
distribution €.

For our purpose M should be chosen to be roughly the extinction time of éi . To
simplify notation we let d = Cn'~?, the upper bound on max; a; and consider the contact
process on the regular tree T,;. Let A; be the contact process on T, with birth rate
~ and death rate 1. Since T} C Ty, if we take v > X the contact process & on T}, is
stochastically dominated by A;. Following the proof of Theorem 4.1 in part I of Liggett
[5], we define wy(A;) = ZyeAt 0'®W) . where {(y) is a function from T? to Z so that for
each y € T?, £(z) = £(y) — 1 for exactly one neighbor z of y and /(z) = {(y) + 1 for the
other d neighbors =z of y. Liggett shows that if 6 = 1/ Vid

d
S Bawg(4))] < [2Vdy — 1w (A)
t t=0
When n is sufficiently large and v = 1/(logn)vd ~ (logn)~'n~(1=%)/2 > ), for any small
n > 0 we have
Er,we(Ay) < wg(Ty)e” 1Mt < (df)ke= (=1, (2.3)

Markov’s inequality implies that
d=*2Pp, (6(z) < k for some z € A;) < d*/2e= (1=t < gk/2¢71/2,
It follows that

P&, #0) < Pr,(¢(z) < k for some z € A,) < d*e™ /2, (2.4)
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so the process dies out with high probability when ¢ > 4k logd. Since d = Cn'~% we can
choose M = 4klogn.

With the choice of M fixed, next we will estimate the probability of the event G and
obtain an upper bound on the survival time. Now we start the contact process on 7} with
all sites occupied and set p to be occupied for the first M units of time. After time M we
allow p to become vacant at rate 1. For any n > 0 and t > M, when n is large enough

P(&(xi) = 1) < P(&f(as) = 1) + P& (a5) = 1) < Pla; € éxc) + P(&; # 2)
<A4+PXN +n 079 < (142N by (2.2).

Call the subgraph consisting of p and all of its neighbors the central star. When the
center p first becomes vacant (after time M), we use D; to denote the set of occupied
sites on the central star and D, the set of occupied sites outside the central star. By
the additivity of the process we observe that G is the intersection of the following two
events:

Gi={p¢ & foranyt) and Gy={p¢ & forany ¢},

where ¢ is the contact process on S;, with an initial set A of occupied sites. Since G
and G, are both decreasing events, i.e., having more births or fewer deaths is bad for
them, so by the Harris-FKG inequality

P(G) = P(G1 NGa) > P(G1)P(G2).

We begin by estimating P(G2). Note that the expected number of particles outside
the central star at time t > M is

<(1+2n) (nal)\Q + najas\® +...najas - ak,l)\k) )

Since A\ = /(clogn)/n, if a; = Cn'~? for all i with § < 1/2 this grows rapidly as n — oc.

Fortunately, if we start a contact process on Sj from a site on level i and freeze
any particle that reaches the center p, then the expected number of such particles is
< (1 +n)\? by the same dual path argument as in (2.1). Therefore the expected number
N, of particles reaching the center p is

< (1+4+n)(142n) (nal)\4 +na1as\® + .. .najas - ak,l)\%'ﬂ) <n%/2,
Hence when n is large
P(G$) < P(N, >1) < E(N,) <n~%? <.

Now we turn to event G;. Let ¢;* and Efl denote the contact process on T}, and 17,
respectively, with the site x; € L; initially occupied. We need to estimate the probability
of event B = {zfl dies out before giving birth to p}. Let o be the amunt of time O is
occupied in ¢;'. Using the definition of wy and a calculation similar to (2.3)

Eo < / E, wye(Ay)dt < / e~ =mtgr <1 4 2.
0 0

when 7 is small. Note that on event B, (;' and Zfl can be coupled together exactly.
Hence event B occurs if there is no arrival of infection arrows pointing from z; to p
during the survival time o of (!, i.e.,

P(B) > P(Poisson(\o) = 0) = Ee 7 > ¢ o > o= (12mA
If there are m occupied neighbors of p when it becomes vacant then we need event B to

occur on m subtrees to ensure the occurrence of G;. Again by the Harris-FKG inequality
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P(Gy) > P(B)™ > e~(+21)mA_ Since the occupancy of sites adjacent to the root are
independent events, (2.2) and the law of large numbers implies that for sufficiently large
n we have P(m < (1+ 3n)An) > 1 — n. From this it follows that for small n and large n

P(Gy) > (1— n)e—(1+2n)(1+3n)x2n > (1— n)e—(l-&-ﬁn))\zn. (2.5)

Therefore, P(G) > P(G1)P(Gs) > (1 — n)2e~(146m3°n_ That is, in expectation we need to
try (1 —n)~2e(+6mMA’ times to have a success. In each trial, it takes an expected amount
of time M + 1 for p to become vacant. Let {X;}!" ; be a set of i.i.d. random variables
representing the survival time of the contact process ét on {T};}" ,, respectively. We
observe that it takes time < E(maxi<;<, X;) to determine if G occurs. Since

E(max X;) <2(k+1) lognJr/ P(max X; >t)dt
1<isn 2(k+1)logn 1<isn
<2(k+1)logn —|—/ n- (C'Tzl_‘s)’“<2_"‘/2 dt < 4klogn by (2.4),
2(k+1)logn

each round takes at most M + 1 + 4klogn < 9klogn units of time in expectation. It
follows that
2 2
E7, < (9klogn)(1 —n) 26 < Oy (log n)etFomA ™

for some Cj > 0 and sufficiently large n. O

3 Lower bound on )\,

Lemma 3.1. Let ¢;, = (k — b)/2 and € > 0. When n is sufficiently large, the critical value

Ao of the contact process on the (n,aq,as,...,a;) tree in Theorem 1.2 satisfies
N> ]Gk logn
=V a+eon

Proof. Let S(p) = Sk U Liy1, where we recall that Ly = {y : d(y,p) = k + 1}. We
start the contact process on S(p). When a site in Sy gives birth onto a site on L1
we freeze the particle at y;+1 We begin with only p occupied and run the process until
there are no particles on S;. These particles will be the descendants of the initial
particle p in a branching random walk that we use to dominate the contact process
on the periodic tree. When the contact process on S;, dies out we are left with frozen
particles in Ly . Each frozen particle at y; 1 starts a new contact process on a subgraph
S(yk+1) = {z : |#—yr+1| < k+1} which is isomorphic to S(p) and has center yy1. If there
are several frozen particles at the same site they start independent contact processes.
Then we freeze every particle that escapes from S(yx+1), and so on.

Let B(S(p),yr+1) be the total number of particles frozen at yx1 € Li1 in the contact
process on S(p). Let y; denote the neighbor of p that is at distance % to yx+1. When the
center p is occupied, it gives birth to a particle at y; at rate A. By the same reasoning
as in (2.1), starting from a particle at y;, to produce a particle at y;; we need a path
from y; to yx+1 where in each step a birth occurs before death. If we set the center p
to be always occupied, then we can ignore the paths from y; to yx4; that go through p.
Therefore, starting from a particle at y; the expected number of particles reaching yx11
is < (1 + n)\* by the same computation as (2.1).

By Theorem 1.4 the expected survival time on S, is < C(log n)e*MA*"_If during this
whole time the center p is occupied and pushing particles to y; at rate A, then there are
an expected number of < A - C(log n)e(H")AQ” times we start a process from a particle at
y1 to produce particles at y;+1. Hence

EB(S(p), yr+1) < A~ C(logn)e(1+”))‘2" (14 np)AE < AR (d+2n)e, (3.1)
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To bound the number of particles on the periodic tree that reach the root p, we consider a
tree consisting of the vertices of degree n in which each vertex is connected to the others
vertices of degree n at distance k + 1. This is a N-regular tree with N = n(ajas - - - ay).
Starting from the root, there are

< 2m N™. 1™ < 22mNm
S\ <
paths of length 2m that returns to it. So the expected number of particles returning to

the root is
< 22mNm()\k+1n(l+2n)c)2m — (2N1/2)\k’+1n(1+2n)c>2m (3.2)

We have log(\)/logn — —1/2 and (log N)/logn — 1+ b so

_ log(2AFHIN1/2p(1te)e) k+1 1+b
lim = — +
n—oo logn 2 2

+(1+2n)c<0

if ¢ < (k—b)/2(1 + 2n). In this case, the expected number of particles that return to
the origin is finite, which means the process does not survive locally. Taking € = 27
completes the proof. O

4 Lower bound on survival time on stars

Here, following the approach of Chatterjee and Durrett [2], we will reduce the contact
process on a star to a one dimensional chain. We denote the state of the star by (j, k)
where j is the number of occupied leaves and £ = 1,0 when the center is occupied,
vacant. We will only look at times when the center is occupied. When the center is
vacant and there are j occupied leaves, the next event will occur after exponential time
with mean 1/(j\ + j). The probability that it will be a birth at the center is A\/(A + 1).
The probability it will be the death of a leaf particle is 1/(A + 1). Thus, the number
of leaf particles Z that will be lost while the center is vacant has a shifted geometric
distribution with success probability A/(A + 1), i.e.,

1Y A
— 1) = _— - —_— > . .
P(Z =j) (/\+1> T+ 1 forj >0 4.1)

Note that EZ = 1/). Since we are interested in a lower bound on the survival time, we
can simply ignore the time spent when the center is vacant. Here we will construct a
process X; that gives a lower bound on the number of occupied leaves in the contact
process.

Let 6 > 0 and L = (1 — 40)An. When there are k < L occupied leaves and the center
is occupied, new leaves become occupied at rate A(n — k) > A(n — An) > A(1 — §)n for
sufficiently large n since A = \/clogn/n — 0 as n — oco. Let X; have the following
transition rates:

jump at rate
X=Xy —1 L

X; > min{X; +1,L} (1-90)An
X=Xy —Z 1

Here Z is independent of X; and has the distribution given in (4.1).
Lemma 4.1. Let § > 0. Suppose A = \/c(logn)/n and let

1 1
b= (A_am)

Ifn is large then h(X;) = (1 — §)*X is a supermartingale when X; < L.
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Proof. Suppose the current value is V = (1 — §)*¢ where X; < L = (1 — 45)An. We have:
V—=V/1-6)trate< L,V — V(1 —0)atrate > (1 —6)An, and V — V(1 — ) Zat rate
1. The changes in value due to the first two transitions are, if 8 is small,

1-6
V[(1-6)—1] = -0V atrate > (1—0)\n

1
\% ( — 1) <(1- 5)_191/ atrate < L

We have L = (1 —46)An < (1 —6)(1 — 30)An, so the first two types of jumps have a net
drift
(1=6)""L = (1=68)An) OV < —(26An)6V. (4.2)

In the third case, ignoring the fact that the number of occupied leaves cannot drop below
0, we have

L, o=/ 1\ _ p R 1 F
EQ1-6) Z<Z<1+/\> T 170 k:1+AkZ<(1+A)(1—e)>

k=0 =0
A 1 A1 -0)
LA 11/ N1 —-0) A—0—0)
sowe have V(E(1-60)"% -1) = % = (6An)0V for the chosen value of §. Combining
this with (4.2) gives that for any § > 0, h(X}) is a supermartingale for large n. O

We use P; to denote the law of the process X; starting with Xy = . Since X; omits
some time intervals from the contact process on the star, the next result implies Theorem
1.5.

Lemma 4.2. Let L = (1 — 46) n and T, = inf{t : Xy < a}. If n > 0 is small then

1
Pr_y <TT,_L > )\26(1477)/\271) —1 asn— .
n

Proof. Suppose a < z < b are integers. Let T}, = inf{¢ : X; = b} and note that X (T) = b
while X (T7) < a — 1. Since h(X;) is a supermartingale and h is decreasing

h(z) > h(a —1)P (T, <Tp)+ h(b)[1 — P(T, <Tp)]
Rearranging we have
When x = b — 1 this implies

_ h(b—1)—(1—-0)h(b—1) Oh(b—1)/h(a —1)
P, (T, Ty) < =
2l <) S =5 m D" hp=1) 1—h(b—1)/h{a 1)
Let n > 0. We will apply this result with b = L = (1 — 46)A\n and a = nb. If § is small
b> (1 —mn)An. If Xis small then 1 — 0 < 1 — (1 —n)A. With these choices

h(b—1)/h(a—1)=(1-0)""* < (1 — (1 —nAN)I72D exp (—(1 - 3n)A\?n).
If n is large,
Py (T, <Ty,) < 2Xexp(—(1 —3n)A\%n). (4.3)

Let G = {X; returns (1/2))e(!=4M>*" times to L before going < nL}. It follows from
2

(4.3) that P(G) > 1 — e~ In order to return to L we have to jump from L —1to L, a

time that dominates an exponential random variable with parameter A\n/2 so the law of

large numbers tells us that the total amount of time before X, < nL is > ﬁe(l“h’)kz”
on GG, which completes the proof. O
ECP 0 (2012), paper 0. http://www.imstat.org/ecp/
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5 Ignition on a star graph

In this section we will describe a mechanism for the contact process on the period
tree (n,aq,...,ax) to survive, which basically relies on the dynamics on the star graphs
of degree n embedded in tree. Vertices with degree n will be called hubs.

There are three ingredients in the proof of the upper bounds on Ao

1. survival of the process on the star graph containing a hub for a long time,
2. pushing particles from one hub to other hubs at distance k£ + 1,

3. “ignition”, which refers to increasing the number of occupied leaves at the new
hub to L.

The first point was taken care of in the previous section. The third is covered in this one.
Starting from only the central vertex of a degree n hub occupied, we need to increase
the number of occupied leaves to L = (1 — 40)An by time n¢/4, which is referred to as
the ignition of a hub. We treat L and K in the following lemma as integers for simplicity.

Lemma 5.1. Suppose A = \/co(logn)/n. Let Ty o be the first time the star is vacant and
T; be the first time the star has i occupied leaves. For any small § > 0 if K = An/+/logn
and L = (1 — 49)An, then for large n

(’L)POl(TK > TO,O) S 3/\/ log n,

(i1) Pr,1(To,0 < Tr) < 2exp(—(co/3)+/logn)
(ZZZ)EOJ IIliIl{TQo, TL} < (1 + log n)/25

Proof. Let py(t) be the probability a leaf is occupied at time ¢ when there are no occupied
leaves at time 0 and the central vertex has been occupied for all s < ¢. py(0) = 0 and

dpo(t)
dt

= —po(t) + A(1 = po(t)) = A — (A + 1)po(t)

Solving gives po(t) = M1 — e~ ATV /(X +1). Ast — 0, po(t) ~ M so if ¢ is small
po(t) > At/2 Taking t = 2/+/logn it follows that if B = Binomial(n, A\/+/logn)

Po1(Tx < Tho) > P(B > K) exp(—2/+/logn)

The second factor is the probability that the center stays occupied until time 2/+/logn,

and exp(—2/y/logn) > 1 —2/+/logn. B has mean An/+/logn and variance < An//logn so

Chebyshev’s inequality implies

An/+v/logn < 4y/logn < 1
(An/(2ylogn))? = An = logn’

For (ii) we use the supermartingale h(X;) from Lemma 4.1.

P(B < An/(24/logn)) <

Prc1(Too < Tr) < 2(1 — A/3)An/Vicen

< 2exp(—A?n/3y/logn) = 2exp(—(co/3)\/logn).

For (iii) we compare with the process X; in which we ignore the time spent when the
center is vacant. To bound the time for the process X; to reach L or die out we note that
EZ =(A+1)/A—1=1/)so when n is large

p=(1=38M—(1—-40)An—1/A=35An—1/\ > 25\n
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gives a lower bound on the drift. Let T070 be the first time X, hits 0 and 7', be the first
time X; hits L. X; — ut is a submartingale before time V;, = Ty, A T';,. Stopping the
submartingale X; — ut at the bounded stopping time Vi A s

EX(VL A\ S) — /.LE(VL N S) >FEXy=0.

Since EX (Vi A's) < L, it follows that E(Vy As) < L/p.

Letting s — oo we have EV;, < L/u < 1/2§ since L = (1 — 46) n and u > 26\n. Note
that the above calculation is for X; which ignores the time when the center is vacant. To
bound the time when the center is vacant, we note that the most extreme excursion that
starts at n and goes to O takes a time with mean (logn)/(1 + A). During time [0, V] the
excursions occur at rate 1, thatis, Ey 1 min{7p 0,7} < (14+logn)EVy < (1+logn)/26. O

6 Upper bound on )\,

We will prove the result for (n,aq,...,a;) tree. Suppose that A = /c(logn)/n with
¢ = ¢ + € where ¢, = (k — b)/2. We select one hub to call the root.

Step 1. Pushing the particles out to distance (k + 1)m. Lemma 4.2 implies that if
there at least L occupied leaves before time n¢/4 then with high probability we have

Gy = {there will be at least nL occupied leaves during [n°/4, 3n°/4]}.

During this time interval the hub will try to push particles to hubs at distance k + 1. The
first step is to show that the center is never vacant for very long.

Lemma 6.1. Suppose that the number of occupied leaves is always > nL on I =
[n°/4,3n°/4]. Letty = 2/(1 —49)n and Gy = {there is no interval of length > t; in I
during which the center is always vacant}. Asn — co, P(G1) — 1.

Proof. The center becomes vacant at times of a Poisson process with rate 1. Using large
deviations results for the Poisson process, the probability there are more than n°¢ arrivals
in an interval of length n¢/2 is < exp(—~yn°®). Suppose the center is vacant and let R be
the time needed until it becomes occupied.

P(R > to) S exp(—to)\nL) = exp(_chogn) — n*QC
Hence P(G$) < exp(—yn®) + n°n=2¢ — 0. -

When the center is occupied there is probability e~ (1 — e*’\) that it will stay occupied
for time 1 and give birth onto a given leaf within time 1. With probability e~! that leaf
will stay occupied until time 1. Doing this for £ + 1 times the probability of passing a
particle to a given hub at distance k£ + 1 is

> [6_1(1 — e_’\)e_l]k—s_1

(6.1)

(k+1)/2
> AR /(2e2)k 1 > o) (logn)

where C; = (y/c/2e?)k*1. Since our cycle takes time t; = t, + 2, we have n°/t; chances
to do this during [n¢/4, 3n¢/4]. The probability that all attempts fail is

log n ) FF1/2 n/t
<[1-C < > < exp (fC'gnC*(kH)/z(logn)(k+1)/2) (6.2)
n
where Cy = C} /1.
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It follows from (6.2) that the probability of a successful push in [n°/4,3n°/4] is
>1—exp (—ancf(k“)m(log n)(k“)/Q) > e~ (*+D/2 when n is large. (6.3)

We say that a hub at distance (k + 1)m that is a descendant of the root is wet if it has
> nL occupied leaves at time mn®. Starting with a wet hub at time 0, the center of
the hub will become occupied at rate at least nL and then Lemma 5.1 implies that the
hub will be ignited within time n°/4 with high probability. When the hub successfully
pushes a particle to an adjacent hub during time [n°/4, 3n°/4], that adjacent hub can
ignite within the next n°/4 units of time with high probability and hence be wet at time
n¢. Therefore a wet hub can make an adjacent hub wet with probability > n¢(k+1)/2
when n is large. The pushing events for different neighbors are not independent, but we
can estimate the expected number Z,, of hubs that become wet at distance (k + 1)m at
time mn®. Let N = n(a; - - - ay). Then EZ,, = (Nnc~(k+1/2ym,

Step 2. Bringing a particle back to the root. To simplify notation we will write
N =n(ay---ax). Let Ty denote an N-regular tree. We will compare with an oriented
percolation in Ty X Z,, where the probability for successfully pushing a particle to a
neighbor is p = n¢~(#+1)/2 g0 that it is dominated by the contact process (see (6.3)). The
mean number of paths N,, that go out a distance (k¥ + 1)m and lead back to the origin is
EN,, = N™p?™.

Note that the pushing events to different neighbors in the oriented percolation are
not independent due to the underlying contact process. To estimate the second moment
EN? we need to control the correlation between different paths back to the root. For
simplicity in notation we write ag = n. Forsome 0 <! < m and 0 < r < k41, the number
of pairs of paths from distance (k + 1)m back to the root that agree in the last [(k + 1) +r
steps is

r—1 k 2
Nl <H Qi) (lel Ha7) S NZNZ(mflfl)NQ — N2mfl.
1=0 1=r

Since the two paths merge at distance [(k + 1) + r from the root, the corresponding step
in the oriented percolation involves two dependent pushing events from two vertices
to their common neighbor. The probability of this event is trivially upper bounded by p.
Hence the probability that all the edges in the combined path are successful pushes is
< pl(pm~t=1)2p = p?™~I=1. Thus the second moment of the number of successful paths
out and back is

EN?n < ZNQm—l(me—l—l)Q < (Np2)2mp—2 <Z(Np2)—l> )

1=0 =0

Since ¢ = ¢ + €, Np? = n?(+9)=(k=0) - 1 when n is sufficiently large, which then gives
ENZ2 < Cp~2(Np?)*™ for some constant C' > 0.
The Cauchy-Schwarz inequality implies that E(Ny,1¢y,, >01)? < E(N2)P(Ny, > 0).
Rearranging we conclude that
(ENm)* (Np?)*m p?

> > — £ _ 207(}{)*%1) .
Pl =02 Fvay 2 ey — 0 =" /€

Since m is arbitrary we have that a particle returns to the root at arbitrarily large
times in the oriented percolation. This implies that the dominating contact process
survives strongly with probability > n2~(*+1) /C' > 0 for any sufficiently large n. That is,

A2 < y/c(logn)/n when n is large enough.
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7 Proof of Theorem 1.3

Case 1: ¢, = (k+1)/2—(b+1) > 0.

We begin with the lower bound, which is proved using results from Section 3. Let
a = ¢, —eand A = y/a(logn)/n. Using (3.1) it follows that the total number of frozen
particles on neighboring hubs is < Cy(log n)ntMan!+bA\k+1 for some constant Cy. From
this we see that if 7 is small then the expected number of particles that escape from Sy
is < 1 and comparing with a branching process implies that the process dies out.

Turning to the upper bound, let 8 = ¢}, + ¢ and A = /S(logn)/n. Let L = (1 — 46)\n
with § > 0. Theorem 1.5 implies that starting from a “wet hub” (that has L occupied
neighbors) then with high probability (i) the infection on the associated star survives for
at least exp((1—7n)A\?n) = n where ¢ = (1—n)f, and (ii) has L occupied neighbors during
this time. Computations in Step 3 of Section 6 imply that the probability of successfully
pushing the infection to a neighboring hub during [n¢/4, 3n¢/4] is > n°=(*+1)/2 when n
is large. The ignition result, Lemma 5.1, implies that at time n¢ the new hub will have
at least L occupied neighbors with high probability. The expected number of new wet
neighboring hubs is > n¢+0*+1=(k+1)/2 [f is small then under our choice of 3 the number
of wet hubs dominates a supercritical branching process.

Case 2: (k+1)/2—(b+1) <0.

Again we begin with the lower bound. Suppose A = n~® with « > 1/2. In this
case, Theorem 1.4 implies that the contact process survives for O(logn) on the graph
Si. Using (3.1) again, the expected number of particles that escaped from S, is <
C(logn)n" ™A+ = C(log n)nbT1=**+1) for some positive constant C. If a > ¥ the
above is < 1 when n is large. Comparing with a branching process implies the the
process dies out.

Starting with the center of Sy infected, the probability that it successfully pushes the
infection to a neighboring hub is > C;\**! by (6.1). If we only use neighboring hubs
that are further from the root then we can compare with a branching process whose
expected number of offspring is > Cy ¥ T1p! Tt = Oy n~a(+1)+1+0 Hence when o < Z%i
the contact process dominates a supercritical branching process, which implies A > ;.
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